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Abstract 

Purpose: The capacity for machine learning (ML) to facilitate radiotherapy (RT) planning for 

primary brain tumors has not been described. We evaluated ML-assisted RT planning with 

regards to clinical acceptability, dosimetric outcomes and planning efficiency for adults and 

children with primary brain tumours.   

 

Methods and Materials: In this prospective study, children and adults receiving 54 Gy 

fractionated radiotherapy for a primary brain tumor were enrolled. For each patient, one ML-

assisted RT plan was created and compared with one or two plans created using standard 
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(“manual”) planning procedures. Plans were evaluated by the treating oncologist, who was 

blinded to the method of plan creation. The primary endpoint was the proportion of ML plans 

that were clinically acceptable for treatment. Secondary endpoints included the frequency with 

which ML plans were selected as preferable for treatment, and dosimetric differences between 

ML and manual plans.   

 

Results: A total of 116 manual plans and 61 ML plans were evaluated across 61 patients. Ninety-

four percent of ML plans and 93% of manual plans were judged to be clinically acceptable (p = 

1.0). Overall, the quality of ML plans were similar to manual plans. ML plans comprised 34.5% 

of all plans evaluated, and were selected for treatment in 36.1% of cases (p = 0.82). Similar 

tumor target coverage was achieved between both planning methods. Normal brain (brain minus 

PTV) received an average of 1 Gy less mean dose with ML plans (as compared to manual plans, 

p < 0.001). ML plans required an average of 45.8 minutes less time to create, as compared with 

manual plans (p < 0.001). 

 

Conclusion: ML-assisted automated planning creates high-quality plans for patients with brain 

tumours, including children. Plans created with ML assistance delivered slightly less dose to 

normal brain tissues, and can be designed in less time. 

 

Keywords 

Brain neoplasms; Machine learning; Radiotherapy planning 

 

Introduction 

Radiotherapy (RT) is a curative-intent treatment used for many children and adults with primary 

brain tumors. A high-quality RT plan delivers a focused dose of radiation to the tumor and 

surrounding at-risk regions, while minimizing radiation to normal brain tissues. This is 

particularly crucial for young patients, in whom excess RT to normal brain can lead to significant 

long-term side effects including cognitive changes [1, 2], hearing loss [3, 4] and endocrinopathy 

[5]. 

 

The standard manual method of RT planning is a time-consuming iterative process of testing 

beam/arc angles and optimization parameters by trained radiation therapists (also known as 

dosimetrists or planners). This process can be associated with substantial variation in plan 

quality, depending on the experience of the dosimetrist and oncology staff. If a less-than-optimal 
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plan is created, then a given patient may receive a higher-than-needed dose to specific organs-at-

risk (OARs).[6, 7] Machine learning (ML) methods allow for automated processes to design, 

develop and deliver fully optimized RT plans that can improve the quality of RT plans, as well as 

reduce the time needed to create such plans.[8] Our group previously trained a ML radiotherapy 

model for children and adults with brain tumors; this novel method created RT plans that 

reduced doses to normal brain structures, while requiring less time than conventional RT 

planning to generate.[9]  

 

The objective of study was to prospectively evaluate ML plans for children and adult patients 

receiving conventionally fractionated RT (54 Gy) for a primary brain tumor through blinded 

comparison with plans generated through a standard, manual planning process. We hypothesized 

that ≥90% of ML plans would be deemed clinically acceptable by expert radiation oncologist 

evaluation. 

 

Methods and Materials 

Patients 

From January 2022 through May 2023, patients planned to receive conformal (focal) 54 Gy 

radiotherapy for an intracranial tumour were eligible to be prospectively enrolled and underwent 

concurrent manual and ML planning at a single institution. Ineligible patients were individuals 

with extracranial tumors or target volumes extending caudal to foramen magnum, or had 

emergency RT planning. There was no restriction on patient age or prior courses of RT. The 

target sample size was estimated using Simon’s two-stage design, with the criterion for success 

being ≥90% of ML plans judged as clinically acceptable, while a clinical acceptability rate of 
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<80% would be unsatisfactory.  With a power of 80% and type 1 error rate (one-sided) of 0.05, a 

minimum of 57 evaluable patients needed to be evaluated to distinguish these rates.  

 

Study procedures 

Enrolled patients first underwent standard-of-care simulation with non-contrast CT in a 

thermoplastic mask and MR simulation with gadolinium contrast. Images were imported into the 

clinical treatment planning system (TPS; RayStation 8B or 10B, RaySearch Laboratories, 

Stockholm, Sweden) for oncologist contours. Up to three plans were created based on the 54 Gy 

prescription: 1-2 manual and 1 machine-learning. Manual plans were created by trained 

dosimetrists in RayStation 8B or 10B; it is standard practice at our institution to create at least 1 

or more plans for radiation oncologist review and choice, typically with differing beam geometry 

and/or optimization parameters (i.e. to focus on target coverage vs. OAR sparing). In a small 

number of patients, all clinical objectives could be met, and only one manual plan was created. 

Machine learning plans were created in a separate instance of RayStation 8B (which avoided 

biasing the dosimetrist creating manual RT plans) based on an existing, previously created ML 

model that was trained on high-quality 54 Gy plans in children and adults.[9] Briefly, this ML 

model was trained using atlas regression forests to associate image features with expected 

radiation dose within an atlas of 95 high-quality 54 Gy intracranial RT plans from two academic 

institutions. The most common tumor type in the training set was glioma (65% of all cases); 

among all cases, there was representation of midline (n = 45), left lateralized left (n = 18) and 

right lateralized (n = 32) tumors. When a novel case was presented for ML planning, a 

conditional random field model was used to generate a predicted dose distribution; that is, what 

an idealized dose distribution should look like (high doses to PTV, low doses to OARs). 
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Predicted dose plans were then converted into clinically deliverable volumetric modulated arc 

therapy (VMAT) plans using an inverse-planning optimization algorithm in RayStation 8B that 

mimicked predicted dose and minimized differences between the predicted and final dose, while 

ensuring technical beam delivery constraints were met to create a deliverable VMAT plan. 

 

After the creation of the manual and ML plans, the ML plan was copied back into the clinical 

instance of RayStation (version 8B or 10B) and all plans were de-identified with removal of 

beam geometry and optimization parameters, so that it was not possible to determine whether a 

given plan was created manually or using ML. The treating radiation oncologist reviewed the 

blinded plans, identified which plans were clinically acceptable, selected a preferred plan, and 

completed a form which collected subjective, qualitative information about all three plans 

(Supplementary Material 1). After a plan was selected for clinical treatment, the dosimetrist then 

unblinded the plans, submitted the chosen plan for quality assurance (QA) by a medical physicist 

and a second dosimetrist. The plan also underwent patient-specific QA using a phantom 

(ArcCHECK, Sun Nuclear, Melbourne, FL) as per institutional standard operating procedures for 

VMAT plans and submitted to the treating radiation oncologist for final approval, prior to 

commencement of the first treatment fraction. 

 

Data analysis 

The primary endpoint was the proportion of ML plans that were judged to be clinically 

acceptable, defined as safe and suitable for treatment; this was a binary endpoint. Secondary 

endpoints included the proportion of cases in which the ML plan was used as the basis for 

treatment, time required to create ML and manual plans (defined as time between initiation of 
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planning by the dosimetrist to when RT plan(s) are ready to present to the radiation oncologist 

for review, as recorded by the dosimetrist), and evaluation of doses to OARs between planning 

methods (both quantitatively and by subjective oncologist evaluation). The observed probability 

of ML plan acceptability was compared with expected probability using a two-sided z-test. 

Times to plan manual vs. ML cases were compared using a two-sided paired t-test. A two-sided 

Student’s t-test was used to compare times to plan patients enrolled in the 1
st
 vs. 2

nd
 half of the 

study. Dosimetric parameters for manual plans were averaged if two manual plans were 

available. Paired t-tests were used to compare dose data between manual and ML treatment 

plans. Multiple testing adjustment of paired t-tests were done using the Benjamini-Hochberg 

method to generate q-values (adjusted p-values) with a false discovery rate (Q) of 

0.05. Statistical analysis was performed using R version 4.2.2 on Windows. 

 

The project was reviewed and approved by the hospital research ethics board (REB) and the 

hospital Quality Improvement Review Committee (QIRC) as a quality improvement (QI) 

initiative, with waiver of patient or family consent. Details regarding staff participating in the 

project, as well as the QI study protocol and CONSORT-AI checklist are provided in 

Supplementary Material 2. 

 

Results 

A total of 61 patients were accrued. Baseline characteristics of patients are presented in Table 1. 

Five and nine of 61 patients were pediatric, defined as age <18 and age <21, respectively. An 

example of three RT plans created for a patient is shown in Figure 1. 
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Plan acceptability 

A total of 116 manual plans and 61 ML plans were presented for physician evaluation. Six 

patients had one manual and one ML plan created; the remaining 55 patients had two manual and 

one ML plan created. A total of 61 of 177 (34.5%) of plans evaluated by oncologists were ML 

plans. Overall, 93% of ML plans (54 of 58) and 94% of manual plans (103 of 110) were judged 

to be clinically acceptable (p = 1.0, Table 2). The proportion of cases in which the ML plan was 

selected for treatment was not significantly different from the overall proportion of ML plans 

evaluated (i.e. 34.5% of plans evaluated were ML plans, and 36.1% of plans selected for 

treatment were ML plans; p = 0.82; Table 3). All ML plans selected for treatment were able to 

pass patient-specific QA without additional modification. Subjective oncologist evaluations of 

manual vs ML plans are presented in Table 2. Fifty-eight oncologist evaluations were available 

for analysis; three patients’ plans did not have detailed subjective ratings recorded. Plans 

generated using the ML method were rated highly for OAR avoidance, with similar target 

coverage as compared to manual plans. Qualitative comments were provided by the reviewing 

oncologist for 17 cases and are shown in Supplementary Material 3. 

 

In the subgroup of nine pediatric patients age <21 at the time of RT start, a total of 9 ML plans 

and 17 manual plans were presented for oncologist selection. ML plans were chosen for 

treatment in 3 of 9 patients (33.3%), as compared to an expected probability of ML selection of 

34.6%.  

 

Quantitative dosimetry 
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Quantitative evaluation of RT dosimetry is presented in Table 4. There was no statistically 

significant difference in GTV, CTV or PTV coverage; ML plans delivered slightly higher 

maximum dose to the PTV by 40 cGy (p < 0.001). Machine learning plans were clinically 

equivalent for target coverage, but were better able to avoid normal brain tissues (with a 101 cGy 

reduction in mean dose to the “brain minus PTV” structure, p < 0.001). Doses to the parotids and 

spinal cord were significantly lower with ML planning, while doses to the lenses were slightly 

higher with ML planning. An exploratory analysis separately comparing ML plans with the 1
st
 or 

2
nd

 manual plan generated is presented in Supplementary Material 5; statistically significant 

differences to PTV maximum dose, normal brain, spinal cord and lenses were retained. 

 

The time to create RT plans was compared between manual vs. ML methods is shown in Figure 

2. The mean time savings is 45.8 minutes (p < 0.001), with less time required for ML plans. 

Machine learning cases planned in the first half of the study (first 30 patients) required a mean of 

69.3 minutes to plan, while ML cases planned in the second half of the study (subsequent 31 

patients) required a mean of 43.4 minutes to plan (p < 0.001; Supplementary Material 4). Prior to 

unblinding, oncologists were also asked if they could identify which of the RT plans they were 

presented with were designed using the ML method; 28 of 58 guesses were correct (51.7%), 

whereas if guessing was done at random, one would expect a correct rate of ML plan 

identification of 34.5% (p = 0.084). 

 

Discussion 

To our knowledge, this is the first prospective study to evaluate the performance of ML-assisted 

RT planning for patients with brain tumors, and the first to include pediatric patients. In over 
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90% of cases, ML was able to create high-quality RT plans that, in blinded comparisons, were of 

equivalent quality to plans created by specialized RT planners. ML plans produced small 

reductions in mean dose to the normal brain by 101 cGy, were slightly hotter within the PTV (40 

cGy) and with higher conformity of the 50% (2700 cGy) isodose line, at a cost of slightly 

increased lens maximum doses. Creation of ML plans also required less time than manual 

planning; a potential training effect was observed over time among dosimetrists operating the 

TPS, with patients enrolled in the second half of the study requiring less time to generate an ML 

plan as compared to patients enrolled in the first half of the study. 

 

There is potential in this ML platform to consistently create RT plans that are acceptable for 

clinical treatment (by subjective oncologist evaluation), while improving planning efficiency and 

potentially reducing turn-around time to plan design and approval. Qualitative evaluation by 

treating oncologists demonstrates consistent ability of ML plans to achieve tumor target 

coverage, which is of primary importance to ensure efficacy of ML planning. Other metrics 

relating to safety of ML plans (OAR sparing, high-dose conformity and dose fall-off) were 

competitive (though not superior) to manual planning. With this knowledge, machine learning 

RT planning can facilitate improved access to high quality RT care and provide important 

education opportunities, particularly in regions where availability of skilled radiation therapists is 

limited.[10] There are some instances where ML planning is used as an effective quality 

assurance tool to ensure that manual plans are of satisfactory quality.[11]  

 

A strength of our study is the inclusion of patients with brain targets across different 

neuroanatomical regions. In some studies that use artificial intelligence or ML to assist RT 
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planning, treated volumes and targets were anatomically homogeneous, as with breast or prostate 

treatments.[12-14] However, our trained model [9] included patients with tumors from all 

regions of the brain, which allowed it to successfully create deliverable RT plans for any location 

of intracranial brain tumor. 

 

This is one of the first known studies to prospectively evaluate ML planning for pediatric and 

adult brain tumors. Many other studies have evaluated artificial intelligence or ML systems to 

assist planning breast [15], thoracic [15], genitourinary [8], head-and-neck [16, 17], cervical [18] 

tumors. What is unique about our study is that we prospectively evaluated acceptability of ML 

plans, and proceeded to deliver the ML plans in clinical treatment of children and adults with 

brain tumors with RT. The project was able to implement ML planning in a real-world clinical 

setting with dosimetric improvement in plans delivered to patients, as well as potential resource 

savings with respect to dosimetrist time. 

 

A limitation of our study is the possibility of bias for or against ML planning. Dosimetrists were 

requested not to use the ML plan to improve their manual plan; the ability of the ML plan to 

affect manual planning was reduced by use of a different treatment planning system database to 

design ML plans (as compared with manual plans). There was also a weak trend (not statistically 

significant) in the ability of the oncologist to guess which one of the presented plans was an ML 

plan. Nonetheless, given our finding that the ML plan was preferred for treatment no more or 

less frequently than manual plans, we do not believe that evaluator bias affected our findings. 

Oncologist ratings of ML plan acceptability were subjective, though quantitative metrics did 

demonstrate slightly superior normal brain tissue sparing with ML plans; whether this mean dose 

                  



 11 

reduction of -101 cGy to the brain is clinically significant (with respect to tumor control or 

acute/late toxicity) could not be determined by our study. Future work should incorporate 

analysis of factors that are associated with ML plan acceptability and oncologist preferences 

during dosimetric review. 

 

Although ML planning results in time savings once implemented, this does not consider the 

resources and time required to train and develop the model. In addition, although our model can 

be used between institutions using the same treatment planning system, it is not directly scalable 

to other dose prescriptions, since it was tuned and trained to perform best for 54 Gy 

prescriptions. For example, the ML model is unable to selectively underdose a 60 Gy PTV that 

overlaps with optic structures (to meet optic tolerances of 54 Gy, for example), while ensuring 

dosimetric coverage of the remainder of the target volume to 60 Gy. Patients with tumor targets 

that extended into the orbit, inferior to the foramen magnum, or outside the bony skull base were 

excluded because the ML model could not create acceptable plans for these individuals, since 

patients with extracranial targets were not included in the initial training set for the ML model. 

Future work is planned to update the model to use newer AI algorithms (U-Net, a deep learning 

algorithm) [19, 20] to further improve RT planning and to train additional models for commonly 

used primary CNS dose prescriptions for glioblastoma, such as 40 Gy in 15 fractions and 60 Gy 

in 30 fractions.[21, 22] In addition, future ML models should ideally be portable between 

treatment planning systems to maximize generalizability. 

 

Conclusion 
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In this prospective study, we demonstrate successful implementation and clinical delivery of 

radiotherapy plans designed using an automated, ML-enabled workflow. Plans created using ML 

were selected for clinical treatment as frequently as manual plans by treating radiation 

oncologists, and were deemed acceptable for treatment in >90% of patients. ML plans led to 

statistically significantly lower mean doses to the brain, with increased conformality of the 50% 

isodose line to the PTV, as compared to manual plans. ML planning also required less time to 

create as compared with manual plans. Therefore, ML-assisted RT planning may be considered 

alongside standard manual planning as a treatment option for patients receiving brain RT to a 

prescription of 54 Gy, but should be further evaluated to ensure reproducibility and 

generalizability in a multi-institutional setting. 
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Figure 1. Screenshots of the ML (left column), manual (middle and right columns) plans created 

for a patient in the present study. Axial (top row), coronal (middle row) and sagittal (bottom row) 
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views are presented. The colorwash represents RT dose, while the PTV is shown in a thin red 

line. The moderate isodose lines (in shades of green) and low isodose line (in teal) are slightly 

more conformal to the target in the ML plan, as compared to the manual plans. The ML plan was 

chosen for clinical treatment. 

 

Figure 2. Boxplot comparison of time required (minutes) to create manual vs. machine learning 

(ML) plans. The upper/lower box represents the 1
st
 and 3

rd
 quartiles, the horizontal line 

represents the median, X represents the mean value, whiskers represent 1.5 times the 

interquartile range, and open circles represent outliers. 
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Table 1. Baseline characteristics 

Characteristics N = 61 

Age at RT, years, median (range) 52 (3-81) 

Pediatric, age <18 (%) 5 (8%) 

Pediatric, age <21 (%) 9 (15%) 

Female (%) 32 (52%) 

Diagnosis  

Meningioma 24 (39%) 

Glioma 23 (38%) 

Craniopharyngioma 8 (13%) 

Ependymoma 3 (5%) 

Neurocytoma 2 (3%) 

Atypical teratoid rhabdoid tumor, localized 1 (2%) 

Target location  

Supratentorial 54 (89%) 

Infratentorial 7 (11%) 

Intracranial location  

Cavernous sinus 13 (21%) 

Frontal 13 (21%) 

Sellar, suprasellar, optic pathway 13 (21%) 

Parietal 6 (10%) 

Temporal 4 (7%) 

Brainstem 3 (5%) 

Cerebellar 3 (5%) 

Occipital 3 (5%) 

Cerebellopontine angle 2 (3%) 

Cerebrum, multifocal 1 (2%) 

Target laterality  

Left 17 (28%) 

Right 17 (28%) 

Midline or Bilateral 27 (44%) 

GTV, cc, median (range) 16.2 (0.4-329.3) 

PTV, cc, median (range) 61.3 (3.9-879.4) 

 

Table 2. Oncologist ratings of blinded RT plans. 

 Manual ML p-value  

Rated as acceptable for 

treatment (n = 168 plans) 

103/110 

(94%) 

54/58 

(93%) 

1.0  

     

Subjective evaluation criterion 

(n = 58 patients) 

Target 

coverage 

OAR 

sparing 

High dose 

conformity 

Dose fall-off 

ML plan superior to one or both 9 (16%) 24 (41%) 16 (28%) 22 (38%) 
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manual plans 

ML plan equivalent to both 

manual plans 

42 (72%) 12 (21%) 24 (41%) 16 (28%) 

Manual plan superior 7 (12%) 22 (39%) 18 (31%) 20 (34%) 

 

 

Table 3. Characteristics of ML and manual plans presented for oncologist evaluation. In almost 

all patients, one ML plan was compared to two manual plans. The p-value for observed (vs 

expected) preference for ML plans was p = 0.82.  

 Manual ML 

Number of plans presented for evaluation 116 

(65.5%)  

61 

(34.5%) 

Selected by oncologist for treatment 39 22 

% preferred by oncologist 63.9% 36.1% 

 

 

Table 4. Comparison of doses to organs-at-risk between manual and ML plans. Positive 

difference values indicate higher value for ML (vs. manual), whereas negative difference values 

indicate lower value for ML (vs. manual). Mean values are presented; standard deviations (SD) 

are shown in parentheses. 
Structure Metric Manual (SD) ML (SD) Mean 

Difference 

p q 

GTV V95 (%) 100 (0.1) 100 (0.0) 0.00 0.67 0.72 

CTV V95 (%) 99.9 (0.2) 100 (0.1) +0.05 0.09 0.15 

PTV V95 (%) 98.4 (1.4) 98.0 (1.3) -0.42 0.07 0.13 

PTV Max (cGy) 5566 (71) 5606 (62) +40.2 <0.001 <0.001 

PTV Conformity index (5130 cGy) 0.82 (0.11) 0.83 (0.11) +0.010 0.38 0.45 

PTV Conformity index (4860 cGy) 0.66 (0.12) 0.67 (0.13) +0.018 0.048 0.10 

PTV Conformity index (2700 cGy) 0.26 (0.10) 0.27 (0.11) +0.012 0.005 0.014 

       

Whole brain Mean (cGy) 1537 (1057) 1463 (960) -73.5 <0.001 0.001 

Brain minus PTV Mean (cGy) 1221 (738) 1120 (593) -101.4 <0.001 <0.001 

Brain minus PTV V27Gy (%) 16.0 (14.2) 13.6 (10.9) -2.4 <0.001 <0.001 

Cochlea left Mean (cGy) 1622 (1655) 1685 (1687) +62.3 0.39 0.45 

Cochlea right Mean (cGy) 1644 (1640) 1720 (1695) +76.0 0.24 0.33 

Hippocampus left Mean (cGy) 2078 (1522) 2084 (1502) +6.2 0.90 0.93 

Hippocampus 

right 

Mean (cGy) 2111 (1286) 2115 (1264) +3.3 0.96 0.96 

Pituitary Mean (cGy) 3431 (1916) 3279 (2020) -151.8 0.09 0.15 

Hypothalamus Mean (cGy) 2910 (1933) 2845 (1997) -64.6 0.26 0.35 

Parotid left Mean (cGy) 174 (278) 143 (277) -30.6 0.007 0.016 

Parotid right Mean (cGy) 161 (244) 131 (216) -29.2 0.007 0.016 

       

Body Max (cGy) 5566 (70.5) 5606 (62.2) +40.2 <0.001 <0.001 
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Spinal cord Max (cGy) 788 (1430) 623 (1455) -164.7 <0.001 <0.001 

Lens left Max (cGy) 466 (161) 585 (237) +118.9 <0.001 <0.001 

Lens right Max (cGy) 476 (158) 583 (252) +106.8 <0.001 <0.001 

Optic chiasm Max (cGy) 4340 (1700) 4314 (1752) -26.6 0.44 0.49 

Optic nerve left Max (cGy) 3695 (1921) 3599 (1900) -96.3 0.10 0.15 

Optic nerve right Max (cGy) 3776 (1845) 3670 (1843) -106.0 0.06 0.13 

Brainstem Max (cGy) 4745 (1297) 4792 (1258) 46.1 0.29 0.36 

 
 

 

                  


