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Abstract:

Background:

The purpose of this work was to identify which Glioblastoma (GBM) problems can be handled by Magnetic Resonance Imaging (MRI) and
Machine Learning (ML) techniques. Results, limitations, and trends through a review of the scientific literature in the last 5 years were performed.
Google Scholar, PubMed, Elsevier databases, and forward and backward citations were used for searching articles applying ML techniques in
GBM. The 50 most relevant papers fulfilling the selection criteria were deeply analyzed. The PRISMA statement was followed to structure our
report.

Methods:

A partial taxonomy of the GBM problems tackled with ML methods was formulated with 15 subcategories grouped into four categories: extraction
of characteristics from tumoral regions, differentiation, characterization, and problems based on genetics.

Results:

The dominant techniques in solving these problems are: Radiomics for feature extraction, Least Absolute Shrinkage and Selection Operator for
feature selection, Support Vector Machines and Random Forest for classification, and Convolutional Neural Networks for characterization. A
noticeable trend is that the application of Deep Learning on GBM problems is growing exponentially. The main limitations of ML methods are
their interpretability and generalization.

Conclusion:

The diagnosis,  treatment,  and characterization of  GBM have advanced with  the  aid  of  ML methods  and MRI data,  and this  improvement  is
expected to continue. ML methods are effective in solving GBM-related problems with different precisions, Overall Survival being the hardest
problem to solve with accuracies ranging from 57%-71%, and GBM differentiation the one with the highest accuracy ranging from 80%-97%.
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1. INTRODUCTION

Current  research  using  Machine  Learning  (ML)  for  the
analysis of clinical pathologies has addressed issues such as the
diagnosis  of  metastases  in  lymph  nodes  [1],  mechanical
evaluation and sedative dose in the area of intensive care [2],
image acquisition, segmentation and diagnosis for COVID-19
[3],  for  protein-protein  interaction  [4],  and  the  prediction  of
patient  attendance  at  medical  appointments  [5]  and  several
others [6 - 9]. In medical physics, a joint subspecialty of
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physics  and  medicine,  applications  of  ML  have  considered
cancer  as  a  main  object  of  study,  and  due  to  the  substantial
number of published articles, efforts have been made to review,
organize,  and  classify  ML methods  and  their  applications  to
solve  problems  related  to  different  types  of  cancers.  For
example, in breast cancer, ML techniques have been used for
the classification of breast pathologies [10], prediction of the
possible  recurrence  [11],  selection of  the  best  treatment  [12]
and prediction of the response to neoadjuvant cancer treatment
[13].  Regarding  lung  cancer,  ML  has  been  used  to  research
local  tumor  control  [14]  and  automated  radiation  adaptation
[15]. For other types of cancers, the prediction of biochemical
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malfunction in irradiated patients with prostate cancer has been
studied  [16],  as  well  as  clinical  decision  support  of
radiotherapy treatment planning [17]. Likewise, improvement
of automatic segmentation in the organs of the head and neck
[18]  liver  [19]  and  esophagus  [20]has  been  reported.  Other
works include the automatic segmentation of cardiac structures
in radiotherapy [21], analyzes to predict the pain of the chest
wall [22], and the survival in bladder cancer patients [23].

Glioblastoma  (GBM)  is  an  aggressive  brain  cancer  in
which,  despite  the  development  of  new  diagnostic  tools  and
innovative therapies, no improvement in the patient's health has
been shown [24]. Previous reviews on the intersection between
ML and GBM are scarce and focus on describing the technical
aspects  of  ML  algorithms  instead  of  analyzing  the  related
GBM  problems  [25]or  on  the  revision  of  specific  GBM
subproblems such as the differentiation of GBM from Primary
Central  Nervous  System  Lymphoma  (PCNSL)  [26],  the
assessment  of  metabolic  markers  in  GBM  [27],  the  imaging
biomarkers  of  GBM  treatment  response  [28]  or  the  survival
prediction of GBM patients [29]. Therefore, it remains unclear
which GBM problems and subproblems have been addressed
with ML, the results obtained so far, and the future trends of
this paradigm.

The  objectives  of  this  work  are,  first,  to  identify  the
problems associated with GBM handled with ML in the last 5
years (2018-2022) and to propose a partial taxonomy of these
problems and subproblems; second, to describe a broad range
of applications for different purposes in the study of GBM; and
third,  to  collect  the  most  successful  methods  used  in  the
literature.  We  aim  to  reach  a  public  with  basic  knowledge
about GBM, ML, or both fields, interested in obtaining updated
and structured  information regarding the  latest  advances  and
solutions provided by ML for GBM.

For the sake of brevity and to avoid duplicating theoretical
information  reported  in  previous  reviews,  technical
formulations of the ML methods are omitted. Instead, a set of
two  papers  explaining  the  most  common  algorithms  in  ML
[30], and specifically, Artificial Neural Networks (ANN) [31]
are  provided.  Section  2  describes  the  methodology  for  our
review based on the PRISMA guidance. Section 3 shows the
state  of  the  literature  on  the  intersection  between  ML  and
GBM.  In  section  4,  a  discussion  of  the  main  findings,  a
taxonomy of the ML methods employed, their usage per year,
limitations  and  trends  are  presented.  Lastly,  relevant
conclusions  are  presented  in  section  5.

2. MATERIALS AND METHODS

2.1. Information Sources

During  June  2021  –  March  2023,  Google  Scholar,
PubMed,  Elsevier  databases,  and  forward  and  backward
citations were used to search articles applying ML techniques
in  MRI  for  GBM.  9,399  manuscripts  from  the  last  15  years
were  retrieved,  7,982  from  the  last  five  years,  and  50  were
finally evaluated with the following eligibility criteria, roughly
10 per year.

2.2. Eligibility Criteria

Articles that include in their title or abstract the keywords
GBM, Machine Learning, Deep Learning (DL), and MRI were
selected and classified considering six criteria: (1) investigation
or  application  area,  (2)  method  type,  (3)  language,  (4)
publication type, (5) publication date and (6) citation. For the
application area, articles solving a GBM-related problem were
included.  Pure  statistical  methods  were  discarded  and  only
articles  experimenting  with  ML  methods  were  incorporated.
Articles written in a language different from English were not
included.  Publications  appearing  in  indexed  journals  were
included, but conferences, patents, and other sources were not
considered.

2.3. Search Strategy

The keywords  used in  the  search tools  of  the  considered
databases  were:  “Glioblastoma +  Machine  Learning  +  MRI”
and “Glioblastoma + Deep Learning + MRI”. Relevant articles
were retrieved with filters that sorted all the articles fulfilling
the  criteria  and  selected  those  with  the  highest  number  of
citations.

2.4. Selection and Data Collection Process

For each article, the following information was extracted:
title,  abstract,  date,  authors,  country,  journal,  citation,
objective,  ML/DL  methods,  MRI  technique,  the  best
quantitative results, and conclusion. Mendeley® and Notion®
software were used to systematically arrange relevant articles.
All  those papers  that  reported performance indexes above or
below the average were double-checked by a different pair of
reviewers to ensure that the methodology was correct, and thus
avoiding bias.

2.5. Data Items

We included 50 relevant articles that fulfill  all eligibility
criteria of the last  5 years (2018-2022), on studies using ML
techniques applied to GBM. Although publications in the last
15 years  were searched,  we limited the analysis  to  the last  5
years  because  the  majority  of  published  articles  are  in  this
period, as shown in Fig. (1).

3. RESULTS

The  PRISMA flowchart  shown  in  Fig.  (2)  illustrates  the
procedure  for  selecting  scientific  articles  on  GMB  problems
solved  by  ML  methods.  The  first  search  retrieved  9,399
manuscripts.  Then,  by  applying  filters  on  the  year  and  the
article  type,  and  excluding  repeated  articles  or  non-relevant
ones, we selected the 50 more relevant papers on which all the
following results are based.

One of the main results of this review is the proposal of a
partial taxonomy in which the different GBM subproblems can
be  classified  into  the  following  four  categories:  feature
extraction, differentiation, characterization, and genetics-based
problems. These categories and 15 subcategories are illustrated
in Fig. (3) and described in the next sections. Each section and
subsection starts with a brief introduction to the GBM-related
problem, then a description of the task or tasks associated with
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the problem, the ML methods, the performance achieved, and a clinical  interpretation  is  provided  for  each  of  the  analyzed
articles.

Fig. (1). Papers published in the last 15 years related to Glioblastoma and Machine Learning. A growing trend in the articles applying Machine
Learning techniques to Glioblastoma in the last 10 years, and in the last 5 years applying Deep Learning is observed.

Fig. (2). Flowchart that describes the search and selection process of the papers.
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Fig. (3). Partial taxonomy of problems related to GBM tackled with ML Methods. GBM subproblems appeared with different frequencies, and this is
indicated with bars. In general, from the four types of problems that were identified, the characterization of GBM and the problems based on genetics
were more addressed than feature extraction and GBM differentiation. Within all the subproblems, the analysis of OS is the most studied, followed by
feature extraction and survival outcome.

3.1.  Feature  Extraction  of  GBM  Subregions  (Edema,
Necrosis, Enhancement, and Tumor)

There  are  specific  regions  in  GBM  such  as  edema
(swelling of the brain), necrosis (permanent death of the brain
tissue),  enhancement  (an  abnormal  radiologic  sign  obtained
using radiocontrast), and tumor (mass of abnormal cells), that
have been studied to find relationships with the evolution of the
patient  [32,  33].  We  can  extract  the  main  characteristics  of
these  regions  by  using  radiomics,  which  is  a  quantitative
approach to medical imaging in radiology and oncology, where
high-throughput features related to the shape of the tumor, the
grey levels  of  the image,  the first,  second,  and higher  orders
statistics  are  used  to  measure  underlying  correlations  of  the
tumor phenotype with the information in the image that cannot
be  obtained  by  the  naked  eye  of  the  expert  [34  -  36].  These
characteristics are the base for developing models that describe
the growth, evolution, and prognosis of GBM. The radiomics
method also allows for finding relationships between imaging
attributes  and  biological  or  clinical  features.  From  the  four
GBM  regions,  the  reproducibility  of  features  extracted  by
radiomics  was more stable  and less  sensitive  to  the  intensity

inhomogeneities  and  noise,  in  necrosis  compared  to  edema,
enhanced,  and  active-tumor  regions,  on  different  imaging
preprocessing  [37].

Machine Learning models designed after radiomics feature
extraction have solved different GBM-related problems, such
as  Overall  Survival  (OS),  segmentation,  the  measure  of
concentrations,  survival classification, and others.  To predict
short-term  survival  (less  than  6  months)  in  GBM  patients  a
radiomic  feature  extraction  of  structural  preoperative
multiparametric  MRI  (mpMRI)  was  performed  [38].  The
Naïve-Bayes [39] algorithm reached an accuracy of 80% in this
task with patients who underwent total or near-total resection
of the enhancing tumor. A remarkable relationship between the
amount of resection and short-term survival was observed. For
the  segmentation  task  in  edema,  enhancing,  and  necrosis
subregions, a Convolutional Neural Network (CNN) named U-
Net [40] was used. The resulting segmentation along with other
clinical features was able to predict the OS for three survival
groups,  short,  medium,  and  long,  through  an  XGBoost  [41]
algorithm  which  reached  an  accuracy  of  0.73  [42].  The
performance of both Naïve-Bayes and XGBoost is low for OS
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prediction due to the complexity of this GBM-related problem.

Another problem is to measure concentrations of areas of
high  cellularity,  tumor  infiltration,  and  tumor  necrosis;  a
Support Vector Machine (SVM) [43] classifier and Diffusion
Histology  Imaging  were  employed  to  solve  this  problem,
reaching accuracies of 87.5%, 93.4%, and 89.0%, respectively
[44].  This result  suggests  Diffusion Histology Imaging as an
alternative to available techniques of neuroimaging for guiding
biopsy, surgery, and following up the therapeutic response in
the GBM treatment. Features extracted by radiomics from the
enhancement of the tumor core, the non-enhancing portion of
the tumor, and peritumoral edema subregions, helped to find an
optimal  radiomics  nomogram  where  a  Least  Absolute
Shrinkage and Selection Operator (LASSO) [45] algorithm and
Cox  survival  model  were  used  to  select  the  most  relevant
features.  This  shows  that  combining  multiple  radiomics
signatures derived from these subregions improves the survival
prediction  of  patients  compared  to  clinic  and  single  region
nomograms (C-index: training/test cohort from 0.656/0.535 to
0.717/0.655) [46]. This improvement seems marginal, but for
survival prediction any increment in accuracy is important.

Defining the boundaries between the active tumor area and
perifocal edematous extension is fundamental to radiotherapy
and GBM resection.  A combination of MRI-based radiomics
and  Random  Forest  (RF)  [47]  was  an  efficient  classifier  of
tumor  subregions  of  GBM  in  [48]  where  it  was  found  that
prognostic  radiomic  features,  extracted  from  necrosis,  solid
part, edema, and peritumoral tissue regions from MRI exams
are  correlated  with  biological  processes  influencing  the
response to chemotherapy. The classification accuracies were
93.6%  for  necrosis,  90.4%  for  the  solid  part,  95.8%  for
peritumoral  tissue,  and  90.4%  for  peritumoral  edema.  This
result  means  that  the  peritumoral  features  are  useful  for  the
diagnosis and segmentation of GBM. Chiu et al. [49] provided
a  qualitative  image  interpretation  in  GBM  subregions  and
radiomics features in quantitative usage of image analysis, as
well  as  ratios  of  these  tumor  components,  to  underlie  the
biological process and prognostic status of patients with GBM.
The regions of a necrotic core, solid part,  peritumoral tissue,
and  edema  were  considered.  An  RF  for  tumor  subregions
classification  of  GBM  reached  an  accuracy  of  95.8%  in
peritumoral tissue. An association between volumetric features
and  several  sets  of  tumor  phenotype  features  and  biological
processes was found.

The  before-mentioned  problems  were  addressed  by  ML
methods trained with MRI data, which are difficult to obtain.
Recently,  the  University  of  Pennsylvania  [50]  developed  the
largest publicly available collection of 630 patients diagnosed
with GBM. This collection implemented expert annotations of
tumor subregions and radiomic features corresponding to each
region. The considered subregions were the enhancing tumor,
the  necrotic  tumor  core,  and  the  peritumoral  edematous/
infiltrated tissue. This dataset is relevant because it allows us to
train  the  ML models  previously  described  and  others,  which
focus on solving problems like segmentation, the measure of
concentrations, survival classification, etc.

3.2. GBM Differentiation

The  GBM  diagnostic  is  usually  performed  through  MR
images,  with  which  oncologists  can  establish  the  type  of
problem the patient faces; however, there are other pathologies
such  as  Metastatic  Brain  Tumor  (METs),  Anaplastic
Oligodendroglioma (AO), PCNSL or Meningioma, which can
resemble GBM and confuses the expert. Studies applying ML
techniques  have  helped  to  differentiate  GBM  from  these
diseases  and  to  initiate  appropriate  treatment  management
according  to  the  type  of  brain  tumor.

3.2.1. Metastatic Brain Tumor

GBM and METs have similar MR imaging features. GBM
presents  a  particular  growth  pattern,  making  the  tumor  cells
disseminate further than the enhancing portion, which reveals a
perilesional T2 hyperintense area. In METs, this hyperintensity
can be a consequence of vasogenic edema. A DL–based model,
ResNet-50,  was  used  for  differentiation  between  GBM  and
METs employing MRI, with an Area Under the Curve (AUC)
of  0.89  and  0.83  in  the  internal  and  external  tests  [51].
Similarly,  to  differentiate  between  METs  and  GB  a
combination of 43 radiomic features, Distance Correlation as a
feature  selector,  and  Logistic  Regression  (LR)  [52]  as  a
classifier was implemented and obtained an accuracy of 80%.
This model provided evidence that GBM commonly expands
by  infiltration,  while  METs  grow  by  expansion  [53].  The
differentiation  of  GBM  from  METs  preoperatively  was
performed with SVM and LASSO methods, reaching an AUC
of 0.90 [54]. In this latter work, relevant radiomics attributes of
the tumor microstructure were obtained, but not the attributes
of different histology subtypes. The sphericity of the tumor has
been  proposed  as  a  relevant  characteristic  to  distinguish
between  GBM  and  METs  [55].

3.2.2. Anaplastic Oligodendroglioma

As  stated  in  the  World  Health  Organization  (WHO)
taxonomy, AO is in Grade III, and GBM is in Grade IV derived
from histological attributes. The standardized therapy for GBM
after  surgery is  brain radiotherapy and temozolomide (TMZ)
followed by adjuvant chemotherapy. For AO, it is advised to
employ  maximal  resection  followed  by  radiotherapy  with
adjuvant  chemotherapy,  in  some  cases  clinical  trial  is
recommended.  AO  has  been  confused  with  GBM  in  human
readers’ radiological evaluations. An ML model was proposed
[56]  to  discriminate  between  these  two  diseases.  For  this
classification  task,  filter  algorithms  like  Gradient  Boost
Decision Tree (GBDT) [57] and LASSO with the combination
of  SVM  and  Linear  Discriminant  Analysis  (LDA)  [58]
classifiers were used, achieving an AUC of 0.986. This could
be useful in routine clinical practice to improve GBM and AO
differentiation.

3.2.3. Primary Central Nervous System Lymphoma

A  higher  degree  of  cellularity  and  permeable  neo-
vascularization are presented in PCNSL more frequently than
in  GBM.  Misdiagnosis  could  occur  due  to  the  images  of
atypical  GBM  and  PCNSL  being  hard  to  differentiate.  MRI
radiomics and other ML algorithms discriminated GBM from
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PCNSL with high accuracy, SVM with 96.4%, and LDA with
97.9% [59]. In this study, it was also found that heterogenous
enhancement appeared more frequently in GBM cases (98%)
than the homogenous enhancement in PCNSL cases (64%); in
GBM, necrosis  was  presented in  88% of  the  cases,  and only
5.6%  in  PCNSL.  The  differentiation  of  GBM  and  PCNSL
without tumor delimitation was tackled with a CNN. The CNN
was compared against senior specialist radiologists, reporting
an accuracy of 89% and 90%, respectively, this indicates that
CNN  using  images  without  tumor  delimitation  could  be
implemented  in  the  clinical  area  [60].

3.2.4. Gliosarcoma

Gliosarcoma (GSM) is a variant of GBM associated with a
higher  ratio  of  extracranial  metastasis,  and  lower  ratios  of
epidermal  growth  factor  receptor  (EGFR)  and  O6-
Methylguanine-DNA  Methyltransferase  (MGMT)  without
Isocitrate  dehydrogenase (IDH) mutations.  These differences
between  GSM  and  GBM  justify  the  need  for  a  different
treatment.  In  a  study  [61],  an  ML  radiomics-based  method
extracted features from tumor mass and peritumoral edema to
differentiate  GBM  from  GSM.  A  LASSO  +  SVM  algorithm
obtained  an  AUC  =  0.85.  Tumor  mass  features  significantly
outperformed  peritumoral  edema  features  in  this  task  (P  <
0.05).

3.2.5. Multiple Differentiation

GBM differentiation not only has been performed against a
unique  contrast-enhancing  brain  tumor  but  also  a  multiclass
approach has been considered to discriminate between GBM
and  more  than  one  brain  tumor  at  a  time.  In  a  study  [62],  a
multistep scheme involving pre-processing, region of interest
definition,  feature  extraction,  and  selection,  and  finally  a
classification  step,  was  followed  to  differentiate  GBM  from
METs, PCNSL, and meningiomas. The ML model employed
was  SVM  which  achieved  an  accuracy  of  95.7%  for  GBM,
92.7%  for  metastasis,  97%  for  meningioma,  and  91.5%  for
PCNSL.  Very  recently,  another  multiclass  ML  model  along
with  physiological  MRI,  a  technique  that  enables  the
quantitative  assessment  of  microvascular  architecture,
neovascularization,  oxygen  metabolism,  and  tissue  hypoxia,
was applied to classify contrast-enhancing brain tumors: GBM,
METs, AO, PCNSL, and meningioma, where RF was the ML
model  that  obtained  an  accuracy  slightly  superior  to
radiologists,  0.875  vs.  0.850,  respectively  [63].  The
classification of GBM, METs, and PCNSL preoperatively from
MRI  images  indicates  that  neovascularization  is  not  a
distinctive feature of PCNSL, which has lower microvascular
density.  This  was  possible  by  employing  a  Multilayer
Perceptron (MLP) [64] with VpNET2 tumor volumes, reaching
an accuracy of 69.2% [65].

3.3. GBM Characterization

Once it is certain that we are working with GBM, there are
other  problems  such  as  the  classification  of  the  different
subtypes, the differentiation between Tumor Progression (TP)
or  Pseudoprogession  (PsP),  response  to  the  treatment,  and
survival time. Each of these problems has been addressed by
MRI and the ML methods described below.

3.3.1.  Subtypes:  Classical,  Proneural,  Mesenchymal,  and
Neural

The intensity, volume, and texture features from the tumor
subregions aid in identifying associations with the proneural,
mesenchymal,  and  classical  GBM  subtypes.  Extracted
radiomics  features,  including  fractal  dimensions  of  the
necrosis, whole tumor, and tumor core regions were employed
to  make  a  pairwise  classification  problem,  along  with  ML
algorithms for differentiation of GBM subtypes, where SVM
reached  an  accuracy  of  62.7%  for  mesenchymal,  85.3%  for
classical  and  81.82%  for  proneural  [66].  Comparably,  an
XGBoost-based radiomics model,  where 13 relevant features
extracted  from  three  subregions  were  employed  to  classify
GBM subtypes, obtaining accuracies in the prediction of 71%
for classical, 73% for mesenchymal, and 88% for both neural
and  proneural  [67],  this  suggests  that  the  incorporation  of
radiomic  features  to  either  XGBoost  or  SVM  algorithm
improves  accuracy  in  discrimination  of  GBM  subtypes.

3.3.2. True Progression vs Pseudoprogression

Pseudoprogression  (PsP)  can  be  defined  as  subacute
radiographic  changes  within  the  radiation  field,  mimicking
True Progression (TP). PsP needs to be differentiated from TP
because disease management is  completely different.  In PsP,
the  patient  is  considered  stable,  but  in  TP,  a  treatment
adjustment is necessary [68]. An analysis using mpMRI along
with ML showed characteristic noninvasive signatures of TP vs
PsP  after  GBM  treatment.  TP  patients  showed  imaging
characteristics  with  superior  cellularity,  angiogenesis,  and
lower  water  concentration  compared  to  patients  with  PsP.  A
pre-trained  CNN,  ImageNet  LSVRC-2010,  was  used  for
segmentation and feature extraction, adding an SVM to predict
TP with an accuracy of 84% and 87% for PsP [69]. A different
study developed a radiomics model from T1-weighted contrast-
enhanced imaging after the standard GBM treatment. The RF
algorithm  was  used  to  classify  PsP  and  TP,  finding  that  the
tumor side along with the location of the tumor between these
two groups were statistically significant. This model achieved
an accuracy of 72.78% vs 66.23% from the radiologists [70].

The  GBM  progression  phenotype  was  predicted  using
imaging analysis, ANN, and MR radiomics before surgery. The
DL  architectures  VGG-16,  ResNet-50,  and  a  Decision  Tree
(DT) [71] were used to predict the progression in one of two
classes, localized or diffuse; DT achieved an accuracy of 81%
while ResNet50 and VGG16, 93.1% and 96.1% respectively,
where  worse  OS  prognosis  was  shown  for  the  diffuse
progression pattern in contrast with the distal progression that
obtains better OS [72].Considering patients labeled as PsP or
TP based on histological diagnosis, a 3-D Densenet121 model
was  developed  to  differentiate  between  these  two  categories
[73].  This  architecture  achieved  an  accuracy  of  76.4%,
however,  further  improvements  must  be  made  before  its
implementation  in  the  clinical  environment.

3.3.3. Response to the Treatment

The  analysis  of  genetic,  histological,  and  radiomic
characteristics  of  patients  with  favorable  responses  to  TMZ
treatment allows us to offer the most appropriate treatment to
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new patients.  A retrospective  study involved  patients  treated
with TMZ, which were divided into response or non-response
groups [74]. A binary classification problem considering these
two  groups  was  formulated  and  the  highest  accuracy  was
achieved by a tree-based algorithm with an AUC of 67%. Tree-
based  models  are  useful  due  to  their  high  interpretability,
which is essential in the clinical environment, however, the low
AUC  indicates  that  there  is  still  room  for  improvement  and
other  ML  classifiers  might  be  used,  even  if  this  produces  a
trade-off between interpretability and precision.

In addition to the response or non-response problem, ML
techniques  have  stratified  a  group  of  patients  by  age  [75].
Using  MRI  radiomic  features  along  with  unsupervised
hierarchical  clustering,  it  was found that  there  is  a  statistical
significance between these age groups (T-test, p-value =0.006)
and that there is an age-related stratification with completely
different  genetic  roots,  suggesting  that  treatment  must  be
different  in  the  younger  and  elder  population.

3.3.4. Overall Survival Time – Progression-free Survival

Overall survival (OS) is the time from the date of diagnosis
until  the  day  on  which  patients  are  still  alive.  On  the  other
hand,  progression-free  survival  (PFS)  is  the  time  when  the
disease  does  not  get  worse  [76].  The  combination  of  MRI
features,  genetic  profiles,  and  clinical  data  has  improved the
performance of ML models addressing OS and PFS prediction.
Radiomic  features  extracted  from  multiparametric  MRI,
genetic profiles (IDH1 and MGMT), and clinical data like age,
Karnofsky  Performance  Status,  resection  extent,  and
postoperative treatment were combined in a Random Survival
Forest,  which  is  an  ensemble  of  tree-based  algorithms  that
ensures that individual trees are de-correlated [77]. This model
was used to predict OS and PFS, achieving an AUC of 0.652
and  0.590,  respectively.  MR  images  and  clinical  records  of
GBM  patients  who  have  received  surgery  and  concurrent
chemoradiotherapy were the input for a CNN-based DL model
that predicts OS time as a continuous variable [78]. This model
showed a C-index of 0.768 and an integrated AUC of 0.790,
indicating that using both clinical and radiomic parameters is
useful for OS prediction. Similarly, MRI images for predicting
GBM  from  brain  tumors  are  implemented  in  a  dynamic
architecture  of  Multilevel  Layer  modeling  in  Faster  R-CNN
(MLL-CNN)  for  the  classification  of  total  survival.  The
proposed method produces an average accuracy of 95% in OS
prediction [79].

Another  approach  to  OS  prediction  considered  patient
stratification into short, medium, and long survivors. Radiomic
features extracted from three tumor subregions on standardized
pre-operative mpMRI and an ensemble learning model, random
subspace  discriminant,  achieved  an  accuracy  of  57.8%  in
predicting  these  three  survival  classes  [80].  This  low
performance  indicates  the  hardness  of  the  OS  prediction
problem, and consequently, the need for more experimentation
with  ML  models.  Following  the  stratification  approach,  the
CNN  VGG-19  was  employed  to  discriminate  between  long-
and short-term survivors with a log-rank test-p value of 0.014
[81]. Also, a radiomics nomogram for preoperative prediction
of survival stratification in GBM patients was constructed [82].

They  used  features  extracted  from  mpMRI  and  SVM  for
classification  obtaining  AUCs  of  0.877  and  0.919  in  the
training and validation cohorts, respectively. This non-invasive
tool could facilitate clinical decision-making for preoperative
prediction. In a complementary research line, patient survival
and its association with biomarkers extracted from MRI images
in  GBM  and  clinical  features  were  studied  [83].  Using  ML
algorithms  like  ANN,  C5,  Bayesian,  and  Cox  models  to
determine  the  most  relevant  biomarkers,  an  accuracy  of
70.55% was achieved. Here, it was found that the largest size
of  width,  largest  size  of  length,  and  age  are  biomarkers
associated  with  a  patient’s  survival.  Other  works  related  to
survival  prediction,  generated  radiomic  signatures  for  OS
prediction  [84],  predicted  6  months  postoperative  Karnofsky
Performance  Status  [85],  and  differentiated  short-term  from
long-term  survival  patients  based  on  the  Resting  State
Functional  Connectivity  [86].

3.3.5. Cellular Density Estimation

Increased  cellular  density  is  a  characteristic  of  gliomas,
both in the bulk of the tumor and in areas of tumor infiltration
into the surrounding brain. Making quantitative and spatially
specific  estimates  of  cellular  density,  through  MR  imaging
techniques,  is  an important  task to  benefit  patients.  Relevant
clinical applications include surgical guidance for the extent of
resection and dosimetric radiation targeting of non-enhancing
residual  tumor  during  postoperative  adjuvant  care.  An
MRimaging–based transfer learning approach is proposed [87]
to optimize individualized models of tumor cell density (TCD)
and  extent  for  patients  with  GBM.  These  models  show high
predictive  performance  (r  =  0.88,  mean  absolute  error  =
5.66%),  which  indicates  that  TCD is  significantly  correlated
with the non-enhancing infiltrative tumor segment. This tumor
segment  is  problematic  for  the  diagnosis  and  treatment  of
GBM. TCD was also estimated in a study [88] with moderate-
to-strong  correlations  using  MR  imaging  inputs  and  the  RF
algorithm,  obtaining  an  R2  =  0.59  between  predicted  and
observed  values.

3.4. Genetic-based Problems

The genetic information of GBM is a valuable tool for its
study  and  classification.  This  information  helps  to  solve
different  problems,  ranging  from  knowing  the  prognosis  for
each  type  of  treatment,  survival  results,  characterization  of
immunophenotypes,  and  the  outcome  of  patients  with  IDH1
mutation,  among  others.  The  solution  to  these  problems
improves  the  choice  of  treatment,  shows the  factors  that  can
influence  the  recovery  of  the  patient,  and  allows  a  better
therapeutic follow-up. In addition to IDH1, other genes such as
MGMT and EREG have been of interest to researchers in the
GBM study. The use of gene expression in an initial diagnosis
can  contribute  to  the  selection  of  treatment  and  survival
prognosis.  However,  not  all  hospitals  can  obtain  histologic
information  because  it  involves  both  an  extra  cost  and  an
invasive procedure. Thus, it is necessary to find relationships
between the images and the genetic expressions of the tumor.

3.4.1. Prognostic of Treatment Response

Depending  on  the  first  diagnosis  using  tumor  gene
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expression,  the  prognostic  potential  for  a  GBM  patient’s
survival  that  has  received standard treatment  may change.  A
survival  prediction  model  to  recognize  genes  that  might  be
therapeutic targets or biomarkers was implemented by using a
deep  MLP  network  with  a  Rectifier  Linear  Unit  (ReLU)
function  [89].  From  this,  the  top  10  ranked  genes  related  to
GBM stem cells,  stem cell  niche environment,  and treatment
resistance mechanisms were found, with a concordance index
of  0.70  ±  0.07.  Another  genetic-based  problem  consists  in
finding  the  hierarchical  structure  from  data  on  cancer  gene
expression, and thus, understanding the cellular signaling. An
unsupervised DL model (deep belief network) was developed,
obtaining  a  Kaplan-Meier  p-value  of  0.002.  Their  consensus
clustering  led  to  the  discovery  of  GBM  clusters  with
differential survival.  The expressed genes and mutations like
NF1, IDH1, and EGFR were uniquely correlated with each of
these  clusters  [90].  MGMT  gene  methylation  status  is  a
predictive  biomarker  for  TMZ treatment  resistance  and  poor
PFS.  This  characteristic  is  difficult  to  obtain  due to  the  high
prices for detection and the complexity of the tumor. A model
to predict  between methylated and unmethylated classes was
proposed [91], who employed a radiomics-based ML model for
feature  extraction,  followed  by  a  Genetic  Algorithm-based
wrapper for feature selection, and the XGBoost classifier with
which  an  accuracy  of  92.5%  was  achieved.  Pretreatment
prediction  of  MGMT  was  considered  [92],  where  predictive
models  combining  clinical  factors  and,  six-feature  radiomics
were employed, showing an accuracy of 80% and suggesting
that this may be a potential imaging biomarker for pretreatment
of MGMT methylation.

3.4.2. Survival Outcome

Using mpMRI images, radiomics features were extracted
from  multi-habitats  of  the  tumor  and  used  as  an  imaging
biomarker.  GBM  patients  were  successfully  stratified  using
consensus  clustering  reveling  inherent  phenotypic  subtypes,
“heterogenous  enhancing”,  “rim-enhancing  necrotic”,  and
“cystic”,  where  each  one  of  these,  represents  a  worst,
intermediate, and favorable prognosis, respectively, with a p-
value  =  0.003  between  these  groups  [93].  Extractions  from
MRI, of volume, texture, and intensity from tumor subregions
are  useful  to  understand  the  correlations  with  OS  and  gene
expression.  Six  genes  (TIMP1,  C14orf39,  EREG,  ROS1,
CHIT1, and WDR72) in GBM patients, with different levels of
expression, were useful to develop radiomics-based prediction
models discriminating patients in one of two categories, 1-year
or less than 1 year survival time, achieving an accuracy of 81%
with the GBDT algorithm [94]. In other work, a subset of 35-
gene expression signature was selected to discriminate between
rapidly-progressing and slowly-progressing patients, by using
an  SVM  recursive  feature  elimination  algorithm,  where  a
p<0.05 was obtained [95], tumors were predicted with low NF1
activity  by  using  an  ensemble  of  500  LR  classifiers  and
reporting  a  mean  AUC  of  0.77  [96],  and  the  indicators  OS,
EGFR  amplification,  IDH  mutation,  Ki-67  expression,  and
MGMT methylation, were predicted by using Boruta algorithm
for feature selection and XGBoost for classification, with the
accuracy of 74%, 81%, 88%, 86%, and 71% respectively [97].

3.4.3. Characterization of Immunophenotypes

Immunophenotyping is the identification of the abundance
of  subpopulations  of  immune  cells  to  estimate  immune
response.  Characterization  of  immunophenotypes  in  GBM is
important  for  therapeutic  stratification  and  helps  predict
treatment  response  and  prognosis.  To  classify  G1  to  G5
immunophenotypes of the GBM tumor microenvironment were
employed  the  enrichment  levels  of  aDC,  Treg,  cytotoxic  T
lymphocyte  (CTL),  and  MDSC  immune  cells  as  features,
together  with  radiomic  characteristics  from MRI  and  the  RF
algorithm. Using the T1- weighted contrast-enhanced imaging
data,  the  average  accuracies  of  the  CTL,  aDC,  Treg,  and
MDSC models  were 0.72,  0.75,  0.81,  and 0.88,  respectively.
The  rise  of  CTL  infiltration  in  the  GBM  microenvironment
demonstrated improvement in patients’ survival by eliminating
invasive  tumor  cells  [98].  Single-cell  phenotypes  associated
with continuous clinical variables were identified [99] through
an unsupervised algorithm called Risk Assessment Population
Identification  (RAPID).  This  algorithm  identifies  five
Glioblastoma  Positive  Prognostic  clusters  and  four
Glioblastoma Negative Prognostic clusters associated with OS.
An average of 0.75 F-measure was reported for all clusters.

3.4.4. IDH Mutation

For  predicting  the  IDH1  mutation  status,  the  1p/19q  co-
deletion  status,  and  the  grade  of  tumor,  a  single  multi-task
CNN that uses preoperative MRI scans was implemented. This
is  a  non-invasive  method  that  predicts  multiple  clinically
relevant features of GBM. The CNN achieved an AUC of 0.90
for IDH1, 0.85 for 1p/19q co-deletion, and 0.81 for the grade
(II/III/IV) [100].

The core signaling pathways in IDH wild-type GBM were
predicted by using Next Generation Sequencing, perfusion, and
diffusion  MRI  radiomics  [101].  Radiogenomic  feature
selection  was  performed  by  t-tests,  LASSO,  and  RF.  The
mixture  between  MRI  phenotypes  and  clinical  parameters
improved  the  diagnosis  compared  with  the  use  of  only
phenotypes  obtained  by  MRI,  achieving  an  AUC  of  0.88.  A
model combining tumor core, whole tumor, edema, necrosis,
enhancement,  and  non-enhancement  was  developed  to
preoperatively predict IDH1 mutation status in GBM. The ML
techniques considered in this model are the RF classifier and
all-relevant  feature  selector,  achieving  an  accuracy  of  97%.
This radiomics-based classification with minimal MRI features
allowed the prediction of IDH1 mutation in GBM [102].

4. DISCUSSION

Most of the works reviewed during the last 5 years (50%)
focus on medical images to extract features through radiomics
method, as illustrated in Fig. (4). The most used algorithms are
LASSO for feature selection, and either RF or SVM for both
classification and regression.

The most applied classical ML and DL methods within the
different lines of research were compiled and classified in the
diagram shown in Fig. (5). DL has seen greater use in recent
years, due to the increase in computational power and because
it allows us to skip the manual feature selection step. Also, it
should be noted that ANNs have stood out for their presence
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and use in tasks that required medical images.  The problems
that  these  methods  addressed  involve  feature  extraction,

segmentation,  clustering,  classification,  and  regression.  The
more  relevant  findings  about  the  GBM  problems  tackled  by
ML methods are discussed in the following sections.

Fig. (4). ML techniques used in the works reviewed by year. CNN includes the architectures: ResNet-50 (2), VGG-19 (2),), U-NET (2), MLP (3),
VGG-16 (1), other CNNs architectures (6), and Transfer Learning (3). Clustering includes the methods: RAPID (1), Consensus (1), Hierarchical (2),
and k-means (1). Other ML techniques were: Principal Components Analysis and Distance Correlation (1), Boruta (4), LDA (2), k-NN (2), and
Naïve-Bayes. (2). Tree-based: GBDT (2), DT (3), and XGBoost (3). The number in parenthesis after the method or architecture indicates the articles
in which was considered.

Fig. (5). ML taxonomy representing four learning approaches and their corresponding ML problems. Methods and architectures are grouped by ML
problem. Most of the methods belong to the category of supervised learning to solve GBM classification problems, and the use of DL is appreciated
in classification, feature extraction and segmentation (k-Nearest Neighbors (k-NN).
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4.1. GBM Problems

The  GBM  study  can  be  divided  into,  at  least,  four  main
branches:  I)  feature  extraction  from  different  subregions,  II)
differentiation,  III)  characterization,  and  IV)  genetic-based
problems; and into 15 secondary branches: 1) edema, necrosis,
enhancement,  and  tumor  subregions,  2)  METs,  3)  AO,  4)
PCNSL, 5) GSM, 6) multiple differentiation 7) subtypes, 8) TP
vs  PsP,  9)  response  to  the  treatment,  10)  OS  and  PFS,  11)
cellular  density  estimation,  12)  prognostic  of  standard
treatment,  13)  survival  outcome,  14)  characterization  of
immunophenotypes, and 15) IDH mutation as illustrated in Fig.
(3).

Features  extraction:  Regions  such  as  edema,  necrosis,
enhancement, and the tumor were studied to find relationships
with the evolution of the patient. There is a tendency to employ
DL  for  tumor  segmentation  and  radiomics  techniques  for
feature  extraction  of  GBM  subregions.  Applying  ML
algorithms to these extracted characteristics along with clinical,
molecular, or biological data, a relationship was found between
the  tumor’s  regions  and  the  prognosis  of  the  patient,  its
response to treatment, and survival. This information helps to
build  clinical  nomograms  for  risk  stratification,  care
implementation, and treatment selection. ML methods based on
trees,  like  RF,  reached  an  average  accuracy  of  93%  in  the
problem of GBM subregions classification.

GBM  differentiation:  GBM  was  differentiated  from  five
common brain tumors, METs, AO, PCNSL, meningioma and
GSM. The most frequent differentiation problem was between
GBM and METs. All reviewed works concluded that SVMs are
those  that  better  differentiate  between  GBM  and  other
pathologies. The use of MRI and ML tools led to the discovery
of characteristics to describe GBM, such as the manifestation
of diffuse tumor cell infiltration, necrosis, or bleeding. SVMs
reached  accuracies  up  to  97%  while  more  complicated
algorithms  like  ResNet-50  only  88%  in  the  GBM
differentiation.

GBM characterization: The different GBM subtypes found
in  the  review  are  proneural,  mesenchymal,  classical,  and

neural. Relevant clinical findings suggest that the side where
the tumor is located, and the progression pattern are important
for the prognosis; also, variables such as age, MGMT status,
and IDH1 were identified as indicators of patient survival time.
Regarding  ML  models,  ANN  was  important  when
differentiating  TP  vs  PSP,  the  use  of  CNNs  like  U-Net  for
segmentation  tasks,  or  ResNet-50  and  VGG-16  for
classification. In general, tree-related models such as XGBoost
are easy to explain and apply in the clinic, reaching accuracies
up  to  88%  in  the  subtypes  classification  problem.  However,
there are some problems like OS and response to the treatment
that reached accuracies under 80% indicating that there is room
for improvement.

Genetic-based  problems:  Survival  prediction  by  using
cancer gene expression, discrimination between rapid or slow
progression, and classification of genes like IDH1 and MGMT,
were  among  the  tasks  addressed  by  ML  techniques.  It  was
possible  to  predict  IDH1 mutations  and  MGMT methylation
preoperatively,  this  allows  to  reduce  cost  and  risk  to  the
patients.  Unsupervised and DL models  were  broadly  used to
solve  these  problems.  CNN  architectures,  clustering
algorithms, and RF were the most used ML methods, achieving
accuracy between 71% – 88%.

4.2. Machine Learning Methods

The most used methods, for classification, were SVM and
RF,  which  obtained  higher  accuracy  compared  to  other
algorithms  used  in  the  same  problem.  LASSO  was  another
relevant  technique  when  making  the  selection  of
characteristics.  Most  of  these  articles  focus  on  supervised
learning,  and a  few address  unsupervised  learning problems,
using clustering techniques, such as k-means.

It is worth mentioning that in these studies about GBM, the
use  of  reinforcement  learning  was  not  found;  however,
algorithms  from  this  ML  category  have  been  used  in  other
clinical applications, such as in the mechanical evaluation and
sedative dose in the intensive care area [2], and in the use for
automated radiation adaptation [15].

Table  1.  Summary  of  the  analyzed  studies  working  on  the  intersection  between  GBM  problems  and  Machine  Learning
methods. The list of articles that consider each ML algorithm is sorted by GBM problem.

Machine Learning
Algorithm

GBM Problems
I. Feature extraction II. Differentiation III. Characterization IV. Genetic-based problems

CNN and other NNs I [42, 103]. II [51, 60, 65]. III [66, 72, 73, 78, 79, 81, 83, 84, 87]. IV [89, 90, 92, 93, 100, 101, 102].
DT III [66, 72, 74].

k-NN III [72, 74]. IV [94].
LASSO I [46]. II [54, 56, 59, 61]. III [84]. IV [89, 101].

LR II [53, 55, 59]. IV [94, 96].
Radiomics I [38, 42, 46, 48]. II [53, 55, 61]. III [66, 67, 69, 70, 75, 77, 78, 80, 81, 84]. IV [89, 91, 92, 94, 97, 98, 102].

Random Forest I [42, 48, 49]. II [59, 63]. III [66, 70, 77, 85]. IV [92, 98, 101, 102].
SVM I [44]. II [54, 56, 59, 61]. III [66, 69, 72, 82, 86]. IV [95].

XGBoost II [59]. III [67]. IV [97].

Other algorithms Boruta III [85]. IV [92, 97, 102]. Consensus IV [90]. GBDT II [56]. IV [94]. Hierarchical III [75]. IV [93]. LSIL I
[104]. RAPID IV [99].
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Fig. (6). Comparison between ML methods applied to the four GBM problems discussed in Table 1.

In addition to the identification of the best algorithms for
each  of  the  ML  problems  associated  with  glioblastoma
(classification,  segmentation,  feature  extraction,  and
clustering),  the  use  of  these  algorithms  in  different  GBM
problems (feature extraction, differentiation, characterization,
and  genetic-based  problems)  is  synthesized  in  Table  1  and
illustrated  in  Fig.  (6).  There,  it  can  be  appreciated  that
Radiomics, RF, CNNs, SVM, and LASSO are the predominant
ML methods applied in the analyzed studies.

4.2.1. Evaluation Metrics for ML Methods

Throughout  the  reviewed  articles  we  can  find  different
evaluation metrics according to the problems being addressed.
The main metrics found are summarized in Table 2. As can be
observed from this table, a given study may use a combination
of metrics. For instance, Accuracy, AUC, S-S and p-value are
used [61]; employed Accuracy, AUC, S-S, F-score [63]; in a
study  [90]  only  p-value  is  considered;  or  in  another  [38]
Accuracy,  AUC  and  C-index  were  applied.  Each  metric
evaluates  the  result  of  the  algorithm  from  a  different
perspective. Accuracy measures the fraction of cases that the

model  correctly  predicts.  Sensitivity  is  how  well  a  test
identifies  an  abnormality  and  specificity  is  how  well  a  test
identifies normal patients. AUC measures how likely it is that
the  test  will  rank  two  patients:  one  with  a  lesion  and  one
without, in the correct order, across all possible thresholds. C-
index summarizes risk, event occurrence, and time in a single
number  that  allows  one  to  distinguish  between  good  models
and  quasi-random  ones.  Moreover,  p-value  allows  for
comparison  between  groups.
4.3. Advantages and Limitations

In  general,  the  advantages  of  ML  methods  include  their
capability  to  find  complex  relationships  between  a  large
number  of  input  and  target  variables;  their  independence  of
human intervention to solve difficult work with high success
ratio; their capability of handling multi-dimensional and multi-
variety  data,  as  well  as  to  discover  new trends  and  patterns.
The main limitations of ML methods are their interpretability,
the  lack  of  metrics  for  their  generalization  capability,  the
potential bias due to their training with unbalanced data, and
the privacy of patient data. Table 3 presents more advantages
and limitations for specific ML methods.

Table 2. Evaluation metrics used in the reviewed articles.

Metrics References
Accuracy [38, 42, 44, 48, 49, 51, 53, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 79, 80, 83, 89, 91, 92, 94, 97, 102]

AUC [38, 49, 51, 53, 54, 56, 60, 61, 63, 69, 70, 72, 73, 74, 77, 78, 80, 82, 83, 92, 94, 96, 97, 100, 101, 102]
Sensitivity - Specificity (S-S) [49, 51, 53, 61, 62, 63, 70, 73, 74, 79, 80, 83, 91]

C-index [38, 46, 60, 70, 78, 101]
p-value [61, 65, 69, 72, 75, 77, 78, 80, 81, 87, 90, 91, 94, 95, 96, 98, 99, 101]
Others R2 [87, 88] F-score [63, 93, 102]
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Table 3. Particular advantages and limitations of ML methods applied in GBM sub-problems.

Machine
Learning
Algorithm

Advantages Disadvantages

CNN and other
NNs

+ High reusability of pre-trained filters through transfer
learning
+ Avoid manual extraction of characteristics

- Very low interpretability
- Not pre-trained models require a large amount of data and
specialized computational power

DT + High interpretability
+It supports incremental learning

- Prone to overfitting and thus low generalization capability

k-NN
+ Works well on noisy data since it focuses on local
neighborhoods.
+ Easy to implement

- Expensive computational costs
- Lack of memory

LASSO + Works well with sparse data + Provides implicit variable
selection.

- It is not generally path-consistent (the solution may not
contain the true model, even if there is one)

LR
+ Easy to identify important predictors
+Allows the calculation of confidence intervals

-Requires explicit modeling of interactions
-Fails to detect complex relationships between input and output
variables

Radiomics
+Ability to sample the whole tumor
+Data can be extracted noninvasively using serial examinations

-The extracted image parameters relate to the macroscopic scale
and are unlikely to bear a direct relationship to underlying
cellular biology on a microscopic scale

Random Forest

+No need to specify the functional form and possible
interactions +No rigid statistical assumptions about the
distribution of the target variable +Tolerant of highly correlated
predictors

-Requires the tunning of several hyperparameters
-High sensitivity of predictions depending on the input data
quality

SVM

+ High interpretability
+ Solid theory
+ Capable to provide a bound on the expected generalization
performance based on the number of support vectors

- Expensive computational costs
- Require specialized solvers for large datasets

XGBoost
+Eases the feature scoring
+Does not require feature engineering (missing value
imputation, scaling, etc.)

-Can overfit the data if hyperparameters are not adjusted
correctly
-It works only with numeric features

Most  of  the  ML  methods,  and  particularly  all  Neural
Networks, work as black boxes after training. The underlying
model is not interpretable by common users nor by specialists
in  computer  sciences.  Even  for  trained  models  with  high
performance,  the  lack  of  interpretability  encumbers  their
implementation  in  clinical  environments.  Simple  tree-based
models like Decision Trees are the exception.

Concerning  the  generalization  capability  of  the  ML
algorithms, only SVM possesses a metric based on the number
of support vectors (the training instances required to build the
model) to provide an estimate of generalization, the lesser the
number  of  support  vectors,  the  higher  the  generalization
capability. The rest of the ML models could perform well on
training data but provide unsatisfactory results on unseen cases.
This  raises  the  need  for  external  evaluations  of  the  trained
models before being proposed as a computer-assisted diagnosis
tool.

One more limitation is due to the availability of confirmed
GBM  cases.  This  implies  that  ML  models  are  commonly
trained with a higher number of negative cases, which adds an
extra  design  problem  that  was  not  always  considered  in  the
review articles. Therefore, the ML model must be verified to be
unbiased before being considered in medical practice.

Finally, the privacy of patient information represents one
more limitation. This prevents private hospitals from sharing
their  data  and  their  ML models.  If  private  data  could  not  be
accessed, the reproducibility of successful methods would be
limited.

FUTURE TRENDS

The  application  of  DL  methods  on  GBM  problems  is  a
noticeable trend that has grown exponentially in recent years.
Except  for  SVM  and  RF  algorithms  which  have  remained
among the most efficient. There is an exponentially increasing
trend in the number of publications about ML in GBM. Adding
3730 DL and 5820 ML in 2022 compared to 297 DL and 1110
ML in 2017. Another trend is the increase in the availability of
public  databases,  with  open  access  to  study  these  problems,
such  as  the  case  of  the  UPenn described  above  (section  3.1)
and  The  Cancer  Genome  Atlas  Glioblastoma  TCGA-GBM,
The Cancer Imaging Archive, Ivy Glioblastoma Atlas known
as IvyGAP, and REMBRANDT-VASARI. Since the tumor is
highly  lethal  for  the  patient,  any  information  that  can  be
extracted from the analysis of these datasets with ML methods
is  valuable  to  improve  patient  survival.  From  all  the  papers
reviewed,  the  use  of  MRI  is  still  preferred  to  obtain  GBM
images rather than PET-CT probably due to its complexity and
cost.

CONCLUSION

Four problems and 15 sub-problems associated with GBM
handled  with  ML methods  were  identified  and arranged in  a
partial  taxonomy;  several  applications  of  ML  methods  were
described for different purposes in the study of GBM, and the
most successful were highlighted, thus achieving the objectives
established  in  this  work.  In  general,  it  is  concluded  that  ML
and  DL  methods  are  effective  in  solving  GBM  related
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problems, with different precisions, the OS problem being the
hardest to solve with an accuracy ranging from 57%-71%, and
GBM differentiation the problem where ML methods achieved
the highest accuracy ranging from 80% - 97%. In addition to
accuracy,  the  evaluation  metrics  of  sensitivity,  specificity,
AUC,  C-index  and  p-value  were  found  to  be  used  either  in
combination  or  as  a  single  measure  depending  on  the  ML
method under consideration.

DL methods showed, in general, better performance than
classic ML methods when applied to the same task; however,
there  are  specific  GBM  problems  such  as  the  GBM
differentiation,  where  the  classic  ML  method  SVM  is
preferred.  Pre-trained  convolutional  DL  networks  stood  out
from the rest of ML methods as the state-of-the-art model in
terms  of  performance;  nonetheless,  there  is  room  for
improvement in all  the GBM sub-problems tackled with DL.
There  are  still  many  other  areas  of  research  to  be  addressed
such as the outcome of the combination of different treatments,
the  study  of  GBM  using  techniques  of  nuclear  medicine,  or
GBM  metabolism  for  diagnostic  and  prognostic.  New
categories of GBM problems and sub-problems are expected to
be  added  to  the  proposed  partial  taxonomy  due  to  the
increasing  number  of  investigations  on  GBM  and  ML.  The
results obtained by ML methods on different GBM problems
motivate  physicians  to  become  interested  in  this  modern
technology.

LIST OF ABBREVIATIONS

ANN = Artificial Neural Networks

AO = Anaplastic Oligodendroglioma

AUC = Area Under the Curve

CNN = Convolutional Neural Networks

CTL = cytotoxic T lymphocyte

DL = Deep Learning

DT = Decision Tree

EGFR = epidermal growth factor receptor

GBDT = Gradient Boost Decision Tree

GBM = Glioblastoma

GSM = Gliosarcoma

IDH = Isocitrate dehydrogenase

k-NN = k-Nearest Neighbors

LASSO = Least Absolute Shrinkage and Selection Operator

LDA = Linear Discriminant Analysis

LR = Logistic Regression

METs = Metastic Brain Tumor

MGMT = O6-Methylguanine-DNA Methyltransferase

ML = Machine Learning

MLP = Multilayer Perceptron

mpMRI = multiparametric MRI

MRI = Magnetic Resonance Imaging

OS = Overall Survival

PCNSL = Primary Central Nervous System Lymphoma

PFS = Progression Free Survival

PsP = Pseudoprogression

RAPID = Risk Assessment Population Identification

ReLU = Rectified Linear Unit

RF = Random Forest

SVM = Support Vector Machines

TCD = Tumor Cell Density

TMZ = Temozolomide

CONSENT FOR PUBLICATION

Not applicable.

STANDARDS OF REPORTING

PRISMA guidelines and methodology were followed.

AVAILABILITY OF DATA AND MATERIALS

The data and supportive information are available within
the article.

FUNDING

This  work  was  supported  by  the  National  Council  of
Science and Technology (CONACYT, Mexico), grant number
794494.

CONFLICT OF INTEREST

The  authors  declare  no  conflict  of  interest  financial  or
otherwise.

ACKNOWLEDGEMENTS

Declared none.

SUPPLEMENTARY MATERIAL

PRISMA checklist is available as supplementary material on
the publisher’s website along with the published article.

Supplementary  material  is  available  on  the  publisher’s
website  along  with  the  published  article.

REFERENCES

Bedrikovetski  S,  Dudi-Venkata  NN,  Maicas  G,  et  al.  Artificial[1]
intelligence  for  the  diagnosis  of  lymph  node  metastases  in  patients
with  abdominopelvic  malignancy:  A  systematic  review  and  meta-
analysis. Artif Intell Med 2021; 113: 102022.
[http://dx.doi.org/10.1016/j.artmed.2021.102022] [PMID: 33685585]
Yu C, Ren G, Dong Y. Supervised-actor-critic reinforcement learning[2]
for intelligent mechanical ventilation and sedative dosing in intensive
care units. BMC Med Inform Decis Mak 2020; 20(S3): 124.
[http://dx.doi.org/10.1186/s12911-020-1120-5] [PMID: 32646412]
Shi F, Wang J, Shi J, et al. Review of artificial intelligence techniques[3]
in  imaging  data  acquisition,  segmentation,  and  diagnosis  for
COVID-19.  IEEE  Rev  Biomed  Eng  2021;  14:  4-15.
[http://dx.doi.org/10.1109/RBME.2020.2987975] [PMID: 32305937]
Zhang L, Yu G, Xia D, Wang J. Protein–protein interactions prediction[4]
based on ensemble deep neural networks. Neurocomputing 2019; 324:
10-9.
[http://dx.doi.org/10.1016/j.neucom.2018.02.097]
Nelson A, Herron D, Rees G, Nachev P. Predicting scheduled hospital[5]
attendance with artificial intelligence. NPJ Digit Med 2019; 2(1): 26.
[http://dx.doi.org/10.1038/s41746-019-0103-3] [PMID: 31304373]
Reig  B,  Heacock  L,  Geras  KJ,  Moy  L.  Machine  learning  in  breast[6]
MRI. J Magn Reson Imaging 2020; 52(4): 998-1018.
[http://dx.doi.org/10.1002/jmri.26852] [PMID: 31276247]

http://dx.doi.org/10.1016/j.artmed.2021.102022
http://www.ncbi.nlm.nih.gov/pubmed/33685585
http://dx.doi.org/10.1186/s12911-020-1120-5
http://www.ncbi.nlm.nih.gov/pubmed/32646412
http://dx.doi.org/10.1109/RBME.2020.2987975
http://www.ncbi.nlm.nih.gov/pubmed/32305937
http://dx.doi.org/10.1016/j.neucom.2018.02.097
http://dx.doi.org/10.1038/s41746-019-0103-3
http://www.ncbi.nlm.nih.gov/pubmed/31304373
http://dx.doi.org/10.1002/jmri.26852
http://www.ncbi.nlm.nih.gov/pubmed/31276247


14   Current Medical Imaging, 2024, Volume 20 Waldo-Benítez et al.

Neromyliotis E, Kalamatianos T, Paschalis A, et al. Machine learning[7]
in  meningioma  MRI:  Past  to  present.  A  narrative  review.  J  Magn
Reson Imaging 2022; 55(1): 48-60.
[http://dx.doi.org/10.1002/jmri.27378] [PMID: 33006425]
Erickson BJ, Korfiatis P,  Akkus Z, Kline TL. Machine learning for[8]
medical imaging. Radiographics 2017; 37(2): 505-15.
[http://dx.doi.org/10.1148/rg.2017160130] [PMID: 28212054]
Gui C, Chan V. Machine learning in medicine. Univ West Ont Med J[9]
2017; 86(2): 76-8.
[http://dx.doi.org/10.5206/uwomj.v86i2.2060]
Ibrahim  A,  Gamble  P,  Jaroensri  R,  et  al.  Artificial  intelligence  in[10]
digital breast pathology: Techniques and applications. Breast 2020; 49:
267-73.
[http://dx.doi.org/10.1016/j.breast.2019.12.007] [PMID: 31935669]
Lo  Gullo  R,  Eskreis-Winkler  S,  Morris  EA,  Pinker  K.  Machine[11]
learning  with  multiparametric  magnetic  resonance  imaging  of  the
breast for early prediction of response to neoadjuvant chemotherapy.
Breast 2020; 49: 115-22.
[http://dx.doi.org/10.1016/j.breast.2019.11.009] [PMID: 31786416]
Gu  D,  Su  K,  Zhao  H.  A  case-based  ensemble  learning  system  for[12]
explainable breast cancer recurrence prediction. Artif Intell Med 2020;
107: 101858.
[http://dx.doi.org/10.1016/j.artmed.2020.101858] [PMID: 32828461]
Weis JA, Miga MI, Yankeelov TE. Three-dimensional image-based[13]
mechanical modeling for predicting the response of breast cancer to
neoadjuvant  therapy.  Comput  Methods  Appl  Mech  Eng  2017;  314:
494-512.
[http://dx.doi.org/10.1016/j.cma.2016.08.024] [PMID: 28042181]
Luo  Y,  McShan  D,  Ray  D,  et  al.  Development  of  a  fully  cross-[14]
validated bayesian network approach for  local  control  prediction in
lung cancer. IEEE Trans Radiat Plasma Med Sci 2019; 3(2): 232-41.
[http://dx.doi.org/10.1109/TRPMS.2018.2832609] [PMID: 30854500]
Tseng HH, Luo Y, Cui S, Chien JT, Ten Haken RK, Naqa IE. Deep[15]
reinforcement  learning  for  automated  radiation  adaptation  in  lung
cancer. Med Phys 2017; 44(12): 6690-705.
[http://dx.doi.org/10.1002/mp.12625] [PMID: 29034482]
Oerther B, Buren MV, Klein CM, Kirste S, Nicolay NH, Sprave T, et[16]
al. Predicting biochemical failure in irradiated patients with prostate
cancer by tumour volume measured by multiparametric MRI. In Vivo
2020; 34(6): 3473-81.
[http://dx.doi.org/10.21873/invivo.12187]
Valdes G, Simone CB II, Chen J, et al. Clinical decision support of[17]
radiotherapy  treatment  planning:  A  data-driven  machine  learning
strategy  for  patient-specific  dosimetric  decision  making.  Radiother
Oncol 2017; 125(3): 392-7.
[http://dx.doi.org/10.1016/j.radonc.2017.10.014] [PMID: 29162279]
van Dijk LV, Van den Bosch L, Aljabar P, et al. Improving automatic[18]
delineation  for  head  and  neck  organs  at  risk  by  Deep  Learning
Contouring. Radiother Oncol 2020; 142: 115-23.
[http://dx.doi.org/10.1016/j.radonc.2019.09.022] [PMID: 31653573]
Ahn SH, Yeo AU, Kim KH, et al. Comparative clinical evaluation of[19]
atlas and deep-learning-based auto-segmentation of organ structures in
liver cancer. Radiat Oncol 2019; 14(1): 213.
[http://dx.doi.org/10.1186/s13014-019-1392-z] [PMID: 31775825]
Fechter T,  Adebahr S,  Baltas D, Ben Ayed I,  Desrosiers C, Dolz J.[20]
Esophagus  segmentation  in  CT  via  3D  fully  convolutional  neural
network and random walk. Med Phys 2017; 44(12): 6341-52.
[http://dx.doi.org/10.1002/mp.12593] [PMID: 28940372]
Jung JW, Lee C, Mosher EG, et al. Automatic segmentation of cardiac[21]
structures for breast cancer radiotherapy. Phys Imaging Radiat Oncol
2019; 12: 44-8.
[http://dx.doi.org/10.1016/j.phro.2019.11.007] [PMID: 33458294]
Chao  HH,  Valdes  G,  Luna  JM,  et  al.  Exploratory  analysis  using[22]
machine learning to predict for chest wall pain in patients with stage I
non-small-cell  lung  cancer  treated  with  stereotactic  body  radiation
therapy. J Appl Clin Med Phys 2018; 19(5): 539-46.
[http://dx.doi.org/10.1002/acm2.12415] [PMID: 29992732]
Hasnain  Z,  Mason  J,  Gill  K,  et  al.  Machine  learning  models  for[23]
predicting post-cystectomy recurrence and survival in bladder cancer
patients. PLoS One 2019; 14(2): e0210976.
[http://dx.doi.org/10.1371/journal.pone.0210976] [PMID: 30785915]
Lombardi M, Assem M. Glioblastoma genomics: A very complicated[24]
story. In: Glioblastoma. Brisbane (AU): Codon Publications 2017.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch1]
Valdebenito  J,  Medina  F.  Machine  learning  approaches  to  study[25]
glioblastoma: A review of the last decade of applications. Cancer Rep
2019; 2(6): e1226.

[http://dx.doi.org/10.1002/cnr2.1226] [PMID: 32729254]
Nguyen AV, Blears EE, Ross E, Lall RR, Ortega-Barnett J. Machine[26]
learning applications for the differentiation of primary central nervous
system lymphoma from glioblastoma on imaging: A systematic review
and meta-analysis. Neurosurg Focus 2018; 45(5): E5.
[http://dx.doi.org/10.3171/2018.8.FOCUS18325] [PMID: 30453459]
Neil ZD, Pierzchajlo N, Boyett C, et al. Assessing metabolic markers[27]
in  glioblastoma  using  machine  learning:  A  systematic  review.
Metabolites  2023;  13(2):  161.
[http://dx.doi.org/10.3390/metabo13020161] [PMID: 36837779]
Booth  TC,  Grzeda  M,  Chelliah  A,  et  al.  Imaging  biomarkers  of[28]
glioblastoma  treatment  response:  A  systematic  review  and  meta-
analysis  of  recent  machine  learning  studies.  Front  Oncol  2022;  12:
799662.
[http://dx.doi.org/10.3389/fonc.2022.799662] [PMID: 35174084]
Tewarie  IA,  Senders  JT,  Kremer  S,  et  al.  Survival  prediction  of[29]
glioblastoma  patients—are  we  there  yet?  A  systematic  review  of
prognostic  modeling  for  glioblastoma  and  its  clinical  potential.
Neurosurg  Rev  2021;  44(4):  2047-57.
[http://dx.doi.org/10.1007/s10143-020-01430-z] [PMID: 33156423]
Uribe CF, Mathotaarachchi S, Gaudet V, et al. Machine learning in[30]
nuclear  medicine:  Part  1—Introduction.  J  Nucl  Med  2019;  60(4):
451-8.
[http://dx.doi.org/10.2967/jnumed.118.223495] [PMID: 30733322]
Zukotynski K, Gaudet V, Uribe CF, et al. Machine learning in nuclear[31]
medicine: Part 2—neural networks and clinical aspects. J Nucl Med
2021; 62(1): 22-9.
[http://dx.doi.org/10.2967/jnumed.119.231837] [PMID: 32978286]
Young RJ, Knopp EA. Brain MRI: Tumor evaluation. J Magn Reson[32]
Imaging 2006; 24(4): 709-24.
[http://dx.doi.org/10.1002/jmri.20704] [PMID: 16958058]
Nehring S, Tadi P, Tenny S. Cerebral Edema. StatPearls Publishing[33]
2022.
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than[34]
pictures, they are data. Radiology 2016; 278(2): 563-77.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B.[35]
Radiomics in medical imaging—“how-to” guide and critical reflection.
Insights Imaging 2020; 11(1): 91.
[http://dx.doi.org/10.1186/s13244-020-00887-2] [PMID: 32785796]
Tian J, Dong D, Liu Z, Wei J. Radiomics and Its Clinical Application.[36]
China: Academic Press 2021.
Moradmand  H,  Aghamiri  SMR,  Ghaderi  R.  Impact  of  image[37]
preprocessing  methods  on  reproducibility  of  radiomic  features  in
multimodal magnetic resonance imaging in glioblastoma. J Appl Clin
Med Phys 2020; 21(1): 179-90.
[http://dx.doi.org/10.1002/acm2.12795] [PMID: 31880401]
Cepeda S,  Pérez-Nuñez A, García-García S,  et  al.  Predicting short-[38]
term survival after gross total or near total resection in glioblastomas
by  machine  learning-based  radiomic  analysis  of  preoperative  MRI.
Cancers 2021; 13(20): 5047.
[http://dx.doi.org/10.3390/cancers13205047] [PMID: 34680199]
Leung  K.  Naive  bayesian  classifier.  In:  Polytechnic  University[39]
Department  of  Computer  Science/Finance  and  Risk  Engineering.
2007; pp. 123-56.
Siddique  N,  Paheding  S,  Elkin  CP,  Devabhaktuni  V.  U-net  and  its[40]
variants  for  medical  image  segmentation:  A  review  of  theory  and
applications. IEEE Access 2021; 9(9): 82031-57.
[http://dx.doi.org/10.1109/ACCESS.2021.3086020]
Mitchell R, Frank E. Accelerating the XGBoost algorithm using GPU[41]
computing. PeerJ Comput Sci 2017; 3: e127.
[http://dx.doi.org/10.7717/peerj-cs.127]
Shboul ZA, Alam M, Vidyaratne L, Pei L, Elbakary MI, Iftekharuddin[42]
KM. Feature-guided deep radiomics for glioblastoma patient survival
prediction. Front Neurosci 2019; 13(966): 966.
[http://dx.doi.org/10.3389/fnins.2019.00966] [PMID: 31619949]
Noble WS. What is a support vector machine? Nat Biotechnol 2006;[43]
24(12): 1565-7.
[http://dx.doi.org/10.1038/nbt1206-1565] [PMID: 17160063]
Ye Z, Price RL, Liu X, et al. Diffusion histology imaging combining[44]
diffusion  basis  spectrum  imaging  (DBSI)  and  machine  learning
improves detection and classification of glioblastoma pathology. Clin
Cancer Res 2020; 26(20): 5388-99.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0736]  [PMID:
32694155]
Lemhadri  I,  Ruan F,  Abraham L,  Tibshirani  R.  LassoNet:  A neural[45]
network with feature sparsity. J Mach Learn Res 2021; 22: 1-29.

http://dx.doi.org/10.1002/jmri.27378
http://www.ncbi.nlm.nih.gov/pubmed/33006425
http://dx.doi.org/10.1148/rg.2017160130
http://www.ncbi.nlm.nih.gov/pubmed/28212054
http://dx.doi.org/10.5206/uwomj.v86i2.2060
http://dx.doi.org/10.1016/j.breast.2019.12.007
http://www.ncbi.nlm.nih.gov/pubmed/31935669
http://dx.doi.org/10.1016/j.breast.2019.11.009
http://www.ncbi.nlm.nih.gov/pubmed/31786416
http://dx.doi.org/10.1016/j.artmed.2020.101858
http://www.ncbi.nlm.nih.gov/pubmed/32828461
http://dx.doi.org/10.1016/j.cma.2016.08.024
http://www.ncbi.nlm.nih.gov/pubmed/28042181
http://dx.doi.org/10.1109/TRPMS.2018.2832609
http://www.ncbi.nlm.nih.gov/pubmed/30854500
http://dx.doi.org/10.1002/mp.12625
http://www.ncbi.nlm.nih.gov/pubmed/29034482
http://dx.doi.org/10.21873/invivo.12187
http://dx.doi.org/10.1016/j.radonc.2017.10.014
http://www.ncbi.nlm.nih.gov/pubmed/29162279
http://dx.doi.org/10.1016/j.radonc.2019.09.022
http://www.ncbi.nlm.nih.gov/pubmed/31653573
http://dx.doi.org/10.1186/s13014-019-1392-z
http://www.ncbi.nlm.nih.gov/pubmed/31775825
http://dx.doi.org/10.1002/mp.12593
http://www.ncbi.nlm.nih.gov/pubmed/28940372
http://dx.doi.org/10.1016/j.phro.2019.11.007
http://www.ncbi.nlm.nih.gov/pubmed/33458294
http://dx.doi.org/10.1002/acm2.12415
http://www.ncbi.nlm.nih.gov/pubmed/29992732
http://dx.doi.org/10.1371/journal.pone.0210976
http://www.ncbi.nlm.nih.gov/pubmed/30785915
http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch1
http://dx.doi.org/10.1002/cnr2.1226
http://www.ncbi.nlm.nih.gov/pubmed/32729254
http://dx.doi.org/10.3171/2018.8.FOCUS18325
http://www.ncbi.nlm.nih.gov/pubmed/30453459
http://dx.doi.org/10.3390/metabo13020161
http://www.ncbi.nlm.nih.gov/pubmed/36837779
http://dx.doi.org/10.3389/fonc.2022.799662
http://www.ncbi.nlm.nih.gov/pubmed/35174084
http://dx.doi.org/10.1007/s10143-020-01430-z
http://www.ncbi.nlm.nih.gov/pubmed/33156423
http://dx.doi.org/10.2967/jnumed.118.223495
http://www.ncbi.nlm.nih.gov/pubmed/30733322
http://dx.doi.org/10.2967/jnumed.119.231837
http://www.ncbi.nlm.nih.gov/pubmed/32978286
http://dx.doi.org/10.1002/jmri.20704
http://www.ncbi.nlm.nih.gov/pubmed/16958058
http://dx.doi.org/10.1148/radiol.2015151169
http://www.ncbi.nlm.nih.gov/pubmed/26579733
http://dx.doi.org/10.1186/s13244-020-00887-2
http://www.ncbi.nlm.nih.gov/pubmed/32785796
http://dx.doi.org/10.1002/acm2.12795
http://www.ncbi.nlm.nih.gov/pubmed/31880401
http://dx.doi.org/10.3390/cancers13205047
http://www.ncbi.nlm.nih.gov/pubmed/34680199
http://dx.doi.org/10.1109/ACCESS.2021.3086020
http://dx.doi.org/10.7717/peerj-cs.127
http://dx.doi.org/10.3389/fnins.2019.00966
http://www.ncbi.nlm.nih.gov/pubmed/31619949
http://dx.doi.org/10.1038/nbt1206-1565
http://www.ncbi.nlm.nih.gov/pubmed/17160063
http://dx.doi.org/10.1158/1078-0432.CCR-20-0736
http://www.ncbi.nlm.nih.gov/pubmed/32694155


Machine Learning in Magnetic Resonance Images of Glioblastoma Current Medical Imaging, 2024, Volume 20   15

[http://dx.doi.org/10.48550/arXiv.1907.1220]
Yang Y, Han Y, Hu X, et al. An improvement of survival stratification[46]
in  glioblastoma  patients  via  combining  subregional  radiomics
signatures.  Front  Neurosci  2021;  15:  683452.
[http://dx.doi.org/10.3389/fnins.2021.683452] [PMID: 34054424]
Cha  Z,  Yunqian  M.  Ensemble  Machine  Learning:  Methods  and[47]
Applications. Springer 2012; pp. 157-76.
[http://dx.doi.org/10.1007/978-1-4419-9326-7_5]
Chiu FY, Le NQK, Chen CY. A multiparametric MRI-based radiomics[48]
analysis  to  efficiently classify tumor subregions of  glioblastoma: A
pilot study in machine learning. J Clin Med 2021; 10(9): 2030.
[http://dx.doi.org/10.3390/jcm10092030] [PMID: 34068528]
Chiu  FY,  Yen  Y.  Efficient  radiomics-based  classification  of  multi-[49]
parametric MR images to identify volumetric habitats and signatures
in glioblastoma: A machine learning approach. Cancers 2022; 14(6):
1475.
[http://dx.doi.org/10.3390/cancers14061475] [PMID: 35326626]
Bakas  S,  Sako  C,  Akbari  H,  et  al.  The  University  of  Pennsylvania[50]
glioblastoma  (UPenn-GBM)  cohort:  Advanced  MRI,  clinical,
genomics,  &  radiomics.  Sci  Data  2022;  9(1):  453.
[http://dx.doi.org/10.1038/s41597-022-01560-7]
Shin I, Kim H, Ahn SS, et al. Development and validation of a deep[51]
learning–based model to distinguish glioblastoma from solitary brain
metastasis using conventional MR images. AJNR Am J Neuroradiol
2021; 42(5): 838-44.
[http://dx.doi.org/10.3174/ajnr.A7003] [PMID: 33737268]
LaValley MP. Logistic Regression. Circulation 2008; 117(18): 2395-9.[52]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.682658] [PMID:
18458181]
Chen  C,  Ou  X,  Wang  J,  Guo  W,  Ma  X.  Radiomics-based  machine[53]
learning in differentiation between glioblastoma and metastatic brain
tumors. Front Oncol 2019; 9: 806.
[http://dx.doi.org/10.3389/fonc.2019.00806] [PMID: 31508366]
Qian  Z,  Li  Y,  Wang  Y,  et  al.  Differentiation  of  glioblastoma  from[54]
solitary brain metastases using radiomic machine-learning classifiers.
Cancer Lett 2019; 451: 128-35.
[http://dx.doi.org/10.1016/j.canlet.2019.02.054] [PMID: 30878526]
de  Causans  A,  Carré  A,  Roux  A,  et  al.  Development  of  a  machine[55]
learning  classifier  based  on  radiomic  features  extracted  from  post-
contrast 3D T1-Weighted MR images to distinguish glioblastoma from
solitary brain metastasis. Front Oncol 2021; 11: 638262.
[http://dx.doi.org/10.3389/fonc.2021.638262] [PMID: 34327133]
Fan  Y,  Chen  C,  Zhao  F,  et  al.  Radiomics-based  machine  learning[56]
technology  enables  better  differentiation  between  glioblastoma  and
anaplastic oligodendroglioma. Front Oncol 2019; 9(1164): 1164.
[http://dx.doi.org/10.3389/fonc.2019.01164] [PMID: 31750250]
Ke  G,  Meng  Q,  Finley  T,  Wang  T,  Chen  W.  Lightgbm:  A  highly[57]
efficient gradient boosting decision tree. Adv Neural Inf Process Syst
2017; 30.
Xanthopoulos P, Pardalos P, Trafalis T. Linear discriminant analysis.[58]
In: Robust Data Mining. Springer 2013; pp. 27-33.
[http://dx.doi.org/10.1007/978-1-4419-9878-1_4]
Chen C, Zheng A, Ou X, Wang J, Ma X. Comparison of radiomics-[59]
based machine-learning classifiers in diagnosis of glioblastoma from
primary  central  nervous  system  lymphoma.  Front  Oncol  2020;
10(1151):  1151.
[http://dx.doi.org/10.3389/fonc.2020.01151] [PMID: 33042784]
Xia  W,  Hu  B,  Li  H,  et  al.  Deep  learning  for  automatic  differential[60]
diagnosis  of  primary  central  nervous  system  lymphoma  and
glioblastoma:  Multi-parametric  magnetic  resonance  imaging  based
convolutional  neural  network  model.  J  Magn Reson  Imaging  2021;
54(3): 880-7.
[http://dx.doi.org/10.1002/jmri.27592] [PMID: 33694250]
Qian  Z,  Zhang  L,  Hu  J,  et  al.  Machine  learning-based  analysis  of[61]
magnetic resonance radiomics for the classification of gliosarcoma and
glioblastoma. Front Oncol 2021; 11: 699789.
[http://dx.doi.org/10.3389/fonc.2021.699789] [PMID: 34490097]
Shrot S, Salhov M, Dvorski N, Konen E, Averbuch A, Hoffmann C.[62]
Application  of  MR  morphologic,  diffusion  tensor,  and  perfusion
imaging in the classification of brain tumors using machine learning
scheme. Neuroradiology 2019; 61(7): 757-65.
[http://dx.doi.org/10.1007/s00234-019-02195-z] [PMID: 30949746]
Stadlbauer  A,  Marhold  F,  Oberndorfer  S,  et  al.  Radiophysiomics:[63]
Brain tumors classification by machine learning and physiological mri
data. Cancers 2022; 14(10): 2363.
[http://dx.doi.org/10.3390/cancers14102363] [PMID: 35625967]
Ramchoun  H,  Idrissi  MAJ,  Ghanou  Y,  Ettaouil  M.  Multilayer[64]

perceptron: Architecture optimization and training. Reunir 2017; 71:
1-6.
[http://dx.doi.org/10.1145/3090354.3090427]
Swinburne NC, Schefflein J, Sakai Y, et al. Machine learning for semi-[65]
automated classification of glioblastoma, brain metastasis and central
nervous  system  lymphoma  using  magnetic  resonance  advanced
imaging.  Ann  Transl  Med  2019;  7(11):  232.
[http://dx.doi.org/10.21037/atm.2018.08.05] [PMID: 31317002]
Wijethilake N, Islam M, Meedeniya D, Chitraranjan C, Perera I, Ren[66]
H.  Radiogenomics  of  glioblastoma:  Identification  of  radiomics
associated  with  molecular  subtypes.  Lect  Notes  Comput  Sci  2020;
12449: 229-39.
[http://dx.doi.org/10.1007/978-3-030-66843-3_22]
Le K, Do T, Dang L, Huynh T-T. Radiomics-based machine learning[67]
model  for  efficiently  classifying  transcriptome  subtypes  in
glioblastoma  patients  from  MRI.  Comput  Biol  Med  2021;  132:
104320.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104320]
Le Fèvre C, Lhermitte B, Ahle G, et al. Pseudoprogression versus true[68]
progression  in  glioblastoma  patients:  A  multiapproach  literature
review.  Crit  Rev  Oncol  Hematol  2021;  157:  103188.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103188]  [PMID:
33307200]
Akbari  H,  Rathore  S,  Bakas  S,  et  al.  Histopathology-validated[69]
machine  learning  radiographic  biomarker  for  noninvasive
discrimination  between  true  progression  and  pseudo-progression  in
glioblastoma. Cancer 2020; 126(11): 2625-36.
[http://dx.doi.org/10.1002/cncr.32790] [PMID: 32129893]
Sun YZ, Yan LF, Han Y, et al. Differentiation of pseudoprogression[70]
from true progressionin glioblastoma patients after standard treatment:
A machine learning strategy combinedwith radiomics features from
T1-weighted  contrast-enhanced  imaging.  BMC  Med  Imaging  2021;
21(1): 17.
[http://dx.doi.org/10.1186/s12880-020-00545-5] [PMID: 33535988]
Kingsford C, Salzberg SL. What are decision trees? Nat Biotechnol[71]
2008; 26(9): 1011-3.
[http://dx.doi.org/10.1038/nbt0908-1011] [PMID: 18779814]
Yan JL, Toh CH, Wei KC, Chen PY. A neural network approach to[72]
identify glioblastoma progression phenotype from multimodal MRI.
Cancers 2021; 13(9): 2006.
[http://dx.doi.org/10.3390/cancers13092006]
Moassefi M, Faghani S, Conte GM, et al. A deep learning model for[73]
discriminating  true  progression  from  pseudoprogression  in
glioblastoma  patients.  J  Neurooncol  2022;  159(2):  447-55.
[http://dx.doi.org/10.1007/s11060-022-04080-x] [PMID: 35852738]
Geldof  T,  Van  Damme  N,  Huys  I,  Van  Dyck  W.  Patient-level[74]
effectiveness prediction modeling for glioblastoma using classification
trees. Front Pharmacol 2020; 10: 1665.
[http://dx.doi.org/10.3389/fphar.2019.01665] [PMID: 32116674]
Li  Z,  Wang  Y,  Yu  J,  Guo  Y,  Zhang  Q.  Age  groups  related[75]
glioblastoma study based on radiomics approach. Comput Assist Surg
2017; 22(sup1): 18-25.
[http://dx.doi.org/10.1080/24699322.2017.1378722]  [PMID:
28914549]
Sabel M. Principles of adjuvant chemotherapy for breast cancer. In:[76]
Essentials of Breat Surgery. Mosby 2009; pp. 247-66.
[http://dx.doi.org/10.1016/B978-0-323-03758-7.00016-8]
Bae  S,  Choi  YS,  Ahn  SS,  et  al.  Radiomic  MRI  phenotyping  of[77]
glioblastoma: Improving survival prediction. Radiology 2018; 289(3):
797-806.
[http://dx.doi.org/10.1148/radiol.2018180200] [PMID: 30277442]
Yoon HG, Cheon W, Jeong SW, et al. Multi-parametric deep learning[78]
model for prediction of overall survival after postoperative concurrent
chemoradiotherapy  in  glioblastoma  patients.  Cancers  2020;  12(8):
2284.
[http://dx.doi.org/10.3390/cancers12082284] [PMID: 32823939]
Wankhede DS, Selvarani R. Dynamic architecture based deep learning[79]
approach for glioblastoma brain tumor survival prediction. Neurosci
Inf 2022; 2(4): 100062.
[http://dx.doi.org/10.1016/j.neuri.2022.100062]
Osman AFI. A multi-parametric MRI-based radiomics signature and a[80]
practical  ML  model  for  stratifying  glioblastoma  patients  based  on
survival  toward  precision  oncology.  Front  Comput  Neurosci  2019;
13(58): 58.
[http://dx.doi.org/10.3389/fncom.2019.00058] [PMID: 31507398]
Han  W,  Qin  L,  Bay  C,  et  al.  Deep  transfer  learning  and  radiomics[81]
feature  prediction  of  survival  of  patients  with  high-grade  gliomas.

http://dx.doi.org/10.48550/arXiv.1907.1220
http://dx.doi.org/10.3389/fnins.2021.683452
http://www.ncbi.nlm.nih.gov/pubmed/34054424
http://dx.doi.org/10.1007/978-1-4419-9326-7_5
http://dx.doi.org/10.3390/jcm10092030
http://www.ncbi.nlm.nih.gov/pubmed/34068528
http://dx.doi.org/10.3390/cancers14061475
http://www.ncbi.nlm.nih.gov/pubmed/35326626
http://dx.doi.org/10.1038/s41597-022-01560-7
http://dx.doi.org/10.3174/ajnr.A7003
http://www.ncbi.nlm.nih.gov/pubmed/33737268
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.682658
http://www.ncbi.nlm.nih.gov/pubmed/18458181
http://dx.doi.org/10.3389/fonc.2019.00806
http://www.ncbi.nlm.nih.gov/pubmed/31508366
http://dx.doi.org/10.1016/j.canlet.2019.02.054
http://www.ncbi.nlm.nih.gov/pubmed/30878526
http://dx.doi.org/10.3389/fonc.2021.638262
http://www.ncbi.nlm.nih.gov/pubmed/34327133
http://dx.doi.org/10.3389/fonc.2019.01164
http://www.ncbi.nlm.nih.gov/pubmed/31750250
http://dx.doi.org/10.1007/978-1-4419-9878-1_4
http://dx.doi.org/10.3389/fonc.2020.01151
http://www.ncbi.nlm.nih.gov/pubmed/33042784
http://dx.doi.org/10.1002/jmri.27592
http://www.ncbi.nlm.nih.gov/pubmed/33694250
http://dx.doi.org/10.3389/fonc.2021.699789
http://www.ncbi.nlm.nih.gov/pubmed/34490097
http://dx.doi.org/10.1007/s00234-019-02195-z
http://www.ncbi.nlm.nih.gov/pubmed/30949746
http://dx.doi.org/10.3390/cancers14102363
http://www.ncbi.nlm.nih.gov/pubmed/35625967
http://dx.doi.org/10.1145/3090354.3090427
http://dx.doi.org/10.21037/atm.2018.08.05
http://www.ncbi.nlm.nih.gov/pubmed/31317002
http://dx.doi.org/10.1007/978-3-030-66843-3_22
http://dx.doi.org/10.1016/j.compbiomed.2021.104320
http://dx.doi.org/10.1016/j.critrevonc.2020.103188
http://www.ncbi.nlm.nih.gov/pubmed/33307200
http://dx.doi.org/10.1002/cncr.32790
http://www.ncbi.nlm.nih.gov/pubmed/32129893
http://dx.doi.org/10.1186/s12880-020-00545-5
http://www.ncbi.nlm.nih.gov/pubmed/33535988
http://dx.doi.org/10.1038/nbt0908-1011
http://www.ncbi.nlm.nih.gov/pubmed/18779814
http://dx.doi.org/10.3390/cancers13092006
http://dx.doi.org/10.1007/s11060-022-04080-x
http://www.ncbi.nlm.nih.gov/pubmed/35852738
http://dx.doi.org/10.3389/fphar.2019.01665
http://www.ncbi.nlm.nih.gov/pubmed/32116674
http://dx.doi.org/10.1080/24699322.2017.1378722
http://www.ncbi.nlm.nih.gov/pubmed/28914549
http://dx.doi.org/10.1016/B978-0-323-03758-7.00016-8
http://dx.doi.org/10.1148/radiol.2018180200
http://www.ncbi.nlm.nih.gov/pubmed/30277442
http://dx.doi.org/10.3390/cancers12082284
http://www.ncbi.nlm.nih.gov/pubmed/32823939
http://dx.doi.org/10.1016/j.neuri.2022.100062
http://dx.doi.org/10.3389/fncom.2019.00058
http://www.ncbi.nlm.nih.gov/pubmed/31507398


16   Current Medical Imaging, 2024, Volume 20 Waldo-Benítez et al.

AJNR Am J Neuroradiol 2020; 41(1): 40-8.
[http://dx.doi.org/10.3174/ajnr.A6365] [PMID: 31857325]
Xin  J,  Yixuan  Z,  Dixiang  S,  et  al.  A  multiparametric  MRI-based[82]
radiomics  nomogram  for  preoperative  prediction  of  survival
stratification in glioblastoma patients with standard treatment. Front
Oncol 2022; 12: 758622.
[http://dx.doi.org/10.3389/fonc.2022.758622]
Jajroudi  M,  Enferadi  M,  Homayoun  AA,  Reiazi  R.  MRI-based[83]
machine  learning  for  determining  quantitative  and  qualitative
characteristics  affecting  the  survival  of  glioblastoma  multiforme.
Magn Reson Imaging 2022; 85: 222-7.
[http://dx.doi.org/10.1016/j.mri.2021.10.023] [PMID: 34687850]
Lao J, Chen Y, Li ZC, et al. A deep learning-based radiomics model[84]
for prediction of survival in glioblastoma multiforme. Sci Rep 2017;
7(1): 10353.
[http://dx.doi.org/10.1038/s41598-017-10649-8] [PMID: 28871110]
Della  Pepa  GM,  Caccavella  VM,  Menna  G,  et  al.  Machine[85]
learning–based  prediction  of  6-month  postoperative  karnofsky
performance status in patients with glioblastoma: Capturing the real-
life  interaction  of  multiple  clinical  and  oncologic  factors.  World
Neurosurg 2021; 149: e866-76.
[http://dx.doi.org/10.1016/j.wneu.2021.01.082] [PMID: 33516864]
Lamichhane  B,  Daniel  AGS,  Lee  JJ,  Marcus  DS,  Shimony  JS,[86]
Leuthardt EC. Machine learning analytics of resting-state functional
connectivity predicts survival outcomes of glioblastoma multiforme
patients. Front Neurol 2021; 12(64224): 642241.
[http://dx.doi.org/10.3389/fneur.2021.642241] [PMID: 33692747]
Hu  LS,  Yoon  H,  Eschbacher  JM,  et  al.  Accurate  patient-specific[87]
machine  learning  models  of  glioblastoma  invasion  using  transfer
learning. AJNR Am J Neuroradiol 2019; 40(3): 418-25.
[http://dx.doi.org/10.3174/ajnr.A5981] [PMID: 30819771]
Gates EDH, Weinberg JS, Prabhu SS, et al. Estimating local cellular[88]
density in glioma using MR imaging data. AJNR Am J Neuroradiol
2021; 42(1): 102-8.
[http://dx.doi.org/10.3174/ajnr.A6884] [PMID: 33243897]
Wong KK,  Rostomily  R,  Wong STC.  Prognostic  gene discovery  in[89]
glioblastoma patients using deep learning. Cancers 2019; 11(1): 53.
[http://dx.doi.org/10.3390/cancers11010053] [PMID: 30626092]
Young  JD,  Cai  C,  Lu  X.  Unsupervised  deep  learning  reveals[90]
prognostically relevant subtypes of glioblastoma. BMC Bioinformatics
2017; 18(S11): 381.
[http://dx.doi.org/10.1186/s12859-017-1798-2] [PMID: 28984190]
Do DT, Yang MR, Lam LHT, Le NQK, Wu YW. Improving MGMT[91]
methylation  status  prediction  of  glioblastoma  through  optimizing
radiomics  features  using  genetic  algorithm-based  machine  learning
approach. Sci Rep 2022; 12(1): 13412.
[http://dx.doi.org/10.1038/s41598-022-17707-w] [PMID: 35927323]
Li  ZC,  Bai  H,  Sun  Q,  et  al.  Multiregional  radiomics  features  from[92]
multiparametric MRI for prediction of MGMT methylation status in
glioblastoma multiforme: A multicentre study. Eur Radiol 2018; 28(9):
3640-50.
[http://dx.doi.org/10.1007/s00330-017-5302-1] [PMID: 29564594]

Choi  S,  Cho  HH,  Koo  H,  Cho  K,  Nenning  KH.  Multi-habitat[93]
radiomics unravels distinct phenotypic subtypes of glioblastoma with
clinical and genomic significance. Cancers 2020; 12(7): 1707.
[http://dx.doi.org/10.3390/cancers12071707]
Xin L, Bo C, Bin T. Machine-learning based radiogenomics analysis[94]
of MRI features and metagenes in glioblastoma multiforme patients
with different survival time. J Cell Mol Med 2019; 23(6): 4375-85.
[http://dx.doi.org/10.1111/jcmm.14328]
Fatai AA, Gamieldien J. A 35-gene signature discriminates between[95]
rapidly- and slowly-progressing glioblastoma multiforme and predicts
survival in known subtypes of the cancer. BMC Cancer 2018; 18(1):
377.
[http://dx.doi.org/10.1186/s12885-018-4103-5] [PMID: 29614978]
Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS. A[96]
machine learning classifier trained on cancer transcriptomes detects
NF1 inactivation signal in glioblastoma. BMC Genomics 2017; 18(1):
127.
[http://dx.doi.org/10.1186/s12864-017-3519-7] [PMID: 28166733]
Pasquini L, Napolitano A, Lucignani M, Tagliente E, Dellepiane F,[97]
Rossi-Espagnet MC, et al. Comparison of machine learning classifiers
to  predict  patient  survival  and  genetics  of  GBM:  Towards  a
standardized  model  for  clinical  implementation.  cornell  university.
arXiv:210206526 2021.
Hsu JBK, Lee GA, Chang TH, et al. Radiomic immunophenotyping of[98]
gsea-assessed immunophenotypes of glioblastoma and its implications
for prognosis: A feasibility study. Cancers 2020; 12(10): 3039.
[http://dx.doi.org/10.3390/cancers12103039] [PMID: 33086550]
Leelatian  N,  Sinnaeve  J,  Mistry  AM,  et  al.  Unsupervised  machine[99]
learning reveals risk stratifying glioblastoma tumor cells. eLife 2020;
9: e56879.
[http://dx.doi.org/10.7554/eLife.56879] [PMID: 32573435]
Voort  S,  Incekara  F,  Wijnenga  M,  et  al.  Combined  molecular[100]
subtyping, grading, and segmentation of glioma using multi-task deep
learning. Neuro-Oncology 0000; 25(2): 279-89.
[http://dx.doi.org/10.1093/neuonc/noac166]
Park JE, Kim HS, Park SY, et al. Prediction of core signaling pathway[101]
by  using  diffusion-  and  perfusion-based  mri  radiomics  and  next-
generation  sequencing  in  isocitrate  dehydrogenase  wild-type
glioblastoma.  Radiology  2020;  294(2):  388-97.
[http://dx.doi.org/10.1148/radiol.2019190913] [PMID: 31845844]
Li ZC, Bai H, Sun Q, et  al.  Multiregional  radiomics profiling from[102]
multiparametric  MRI:  Identifying  an  imaging  predictor  of  IDH1
mutation status in glioblastoma. Cancer Med 2018; 7(12): 5999-6009.
[http://dx.doi.org/10.1002/cam4.1863] [PMID: 30426720]
Wu  J,  He  S,  Zhou  S.  Multi-atlas  subcortical  segmentation:  An[103]
orchestration  of  3D  fully  convolutional  network  and  generalized
mixture function. Mach Vis Appl 2023; 34(4): 64.
[http://dx.doi.org/10.1007/s00138-023-01415-0]
Wu J, Yang Q, Zhou S. Latent shape image learning via disentangled[104]
representation for cross-sequence image registration and segmentation.
Int J CARS 2022; 18(4): 621-8.
[http://dx.doi.org/10.1007/s11548-022-02788-9] [PMID: 36346499]

© 2024 The Author(s). Published by Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is
available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

http://dx.doi.org/10.3174/ajnr.A6365
http://www.ncbi.nlm.nih.gov/pubmed/31857325
http://dx.doi.org/10.3389/fonc.2022.758622
http://dx.doi.org/10.1016/j.mri.2021.10.023
http://www.ncbi.nlm.nih.gov/pubmed/34687850
http://dx.doi.org/10.1038/s41598-017-10649-8
http://www.ncbi.nlm.nih.gov/pubmed/28871110
http://dx.doi.org/10.1016/j.wneu.2021.01.082
http://www.ncbi.nlm.nih.gov/pubmed/33516864
http://dx.doi.org/10.3389/fneur.2021.642241
http://www.ncbi.nlm.nih.gov/pubmed/33692747
http://dx.doi.org/10.3174/ajnr.A5981
http://www.ncbi.nlm.nih.gov/pubmed/30819771
http://dx.doi.org/10.3174/ajnr.A6884
http://www.ncbi.nlm.nih.gov/pubmed/33243897
http://dx.doi.org/10.3390/cancers11010053
http://www.ncbi.nlm.nih.gov/pubmed/30626092
http://dx.doi.org/10.1186/s12859-017-1798-2
http://www.ncbi.nlm.nih.gov/pubmed/28984190
http://dx.doi.org/10.1038/s41598-022-17707-w
http://www.ncbi.nlm.nih.gov/pubmed/35927323
http://dx.doi.org/10.1007/s00330-017-5302-1
http://www.ncbi.nlm.nih.gov/pubmed/29564594
http://dx.doi.org/10.3390/cancers12071707
http://dx.doi.org/10.1111/jcmm.14328
http://dx.doi.org/10.1186/s12885-018-4103-5
http://www.ncbi.nlm.nih.gov/pubmed/29614978
http://dx.doi.org/10.1186/s12864-017-3519-7
http://www.ncbi.nlm.nih.gov/pubmed/28166733
http://dx.doi.org/10.3390/cancers12103039
http://www.ncbi.nlm.nih.gov/pubmed/33086550
http://dx.doi.org/10.7554/eLife.56879
http://www.ncbi.nlm.nih.gov/pubmed/32573435
http://dx.doi.org/10.1093/neuonc/noac166
http://dx.doi.org/10.1148/radiol.2019190913
http://www.ncbi.nlm.nih.gov/pubmed/31845844
http://dx.doi.org/10.1002/cam4.1863
http://www.ncbi.nlm.nih.gov/pubmed/30426720
http://dx.doi.org/10.1007/s00138-023-01415-0
http://dx.doi.org/10.1007/s11548-022-02788-9
http://www.ncbi.nlm.nih.gov/pubmed/36346499
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/

	Machine Learning in Magnetic Resonance Images of Glioblastoma: A Review 
	[Background:]
	Background:
	Methods:
	Results:
	Conclusion:

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Information Sources
	2.2. Eligibility Criteria
	2.3. Search Strategy
	2.4. Selection and Data Collection Process
	2.5. Data Items

	3. RESULTS
	3.1. Feature Extraction of GBM Subregions (Edema, Necrosis, Enhancement, and Tumor)
	3.2. GBM Differentiation
	3.2.1. Metastatic Brain Tumor
	3.2.2. Anaplastic Oligodendroglioma
	3.2.3. Primary Central Nervous System Lymphoma
	3.2.4. Gliosarcoma
	3.2.5. Multiple Differentiation

	3.3. GBM Characterization
	3.3.1. Subtypes: Classical, Proneural, Mesenchymal, and Neural
	3.3.2. True Progression vs Pseudoprogression
	3.3.3. Response to the Treatment
	3.3.4. Overall Survival Time – Progression-free Survival
	3.3.5. Cellular Density Estimation

	3.4. Genetic-based Problems
	3.4.1. Prognostic of Treatment Response
	3.4.2. Survival Outcome
	3.4.3. Characterization of Immunophenotypes
	3.4.4. IDH Mutation


	4. DISCUSSION
	4.1. GBM Problems
	4.2. Machine Learning Methods
	4.2.1. Evaluation Metrics for ML Methods

	4.3. Advantages and Limitations

	FUTURE TRENDS
	CONCLUSION
	LIST OF ABBREVIATIONS
	CONSENT FOR PUBLICATION
	STANDARDS OF REPORTING
	AVAILABILITY OF DATA AND MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES




