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Abstract
Background  People with glioma (PwG), a type of brain tumour, have an elevated risk of developing venous 
thromboembolism (VTE). When VTE occurs, anticoagulant therapy is typically initiated, and in some cases, it may 
be prescribed prophylactically. However, these patients are also at risk of intracranial haemorrhage (ICH) as a 
complication of anticoagulation. Despite the clinical importance of this risk-benefit balance, it remains unclear 
whether predictive tools exist to guide anticoagulation decisions in this population.

Methods  We conducted a scoping review to determine whether predictive models exist for estimating the risk 
of intracranial haemorrhage (ICH) in people with glioma (PwG) receiving anticoagulant therapy. For any models 
identified, we assessed their methodological quality and predictive performance. Our search included MEDLINE, 
EMBASE (via Ovid), and the Cochrane Library, covering publications up to 29 November 2024. Studies were eligible if 
they employed predictive modelling to assess ICH risk in anticoagulated PwG. Two reviewers independently screened 
studies and extracted data. We used the PROBAST tool to evaluate model quality.

Results  Of the 1,585 articles screened, none met the inclusion criteria. Although some studies reported on ICH risk 
in PwG, none developed or validated predictive models tailored to this clinical context. One excluded study provides 
conceptual insights that may inform future modelling efforts.

Conclusions  The absence of these models underscores a critical gap in neuro-oncology research and highlights the 
urgent need for targeted model development to support anticoagulation decision-making in PwG.
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Introduction
Primary malignant brain tumours have an annual inci-
dence of approximately 7 per 100,000, People with Gli-
oma (PwG) accounting for 80–85% of these tumours 
in adults [1, 2]. These people face both thrombotic and 
haemorrhagic complications, with venous thromboem-
bolism (VTE) affecting up to 30% of patients and sig-
nificantly impacting survival outcomes [2–7]. Glioma 
is recognised as one of the most prothrombotic can-
cers, with mechanisms including tumour-related activa-
tion of the coagulation cascade, release of procoagulant 
microvesicles, and abnormal tumour vasculature contrib-
uting to this risk [2, 3, 7–9]. Several studies [6, 10] report 
that the cumulative incidence of VTE in PwG approaches 
24% within the first year post-diagnosis, with most events 
occurring in the first three months after surgery.

Although anticoagulation therapy can improve out-
comes in PwG with VTE [4], it also elevates the risk of 
intracranial haemorrhage (ICH), a complication strongly 
associated with poor survival [2, 5, 11–13]. In one retro-
spective analysis, PwG who developed VTE had a median 
overall survival of 14 months, compared to 19 months 
in those without VTE, further underscoring the clini-
cal importance of thromboprophylaxis [14]. This risk is 
particularly pronounced in high-grade gliomas, where 
aggressive tumour biology and abnormal vascular fea-
tures predispose patients to spontaneous or treatment-
related ICH [15, 16]. Multiple Meta-analyses and cohort 
studies consistently report a significantly higher ICH 
risk among anticoagulated PwG compared to those not 
receiving anticoagulation [2, 5, 13].

Making clinical decision about anticoagulation in PwG 
is challenging, as it requires careful consideration of mul-
tiple factors, including tumour characteristics, timing 
of surgical interventions, platelet levels, functional sta-
tus, and the balance between thrombotic and the risk of 
haemorrhage [17]. Also, the brain tumour microenviron-
ment itself adds to this complexity, with abnormal vas-
culature, increased vessel density, and glioma infiltration 
of surrounding tissues predisposing patients to bleeding 
even in the absence of anticoagulation [2, 4, 5].

The absence of validated, glioma-specific tools for 
predicting ICH leaves clinicians reliant on retrospec-
tive studies, expert consensus, and individual judgement 
[18–20]. This complexity is further compounded by the 
diverse biological behaviour of glioma and individual 
variation in how PwG metabolise anticoagulants [19, 21, 
22]. Moreover, choosing between low molecular weight 
heparin and direct oral anticoagulants (DOACs) intro-
duces additional challenges, as emerging evidence sug-
gests DOACs may carry a lower risk of ICH, although 
the data remain conflicting [23]. This issue is of more 
relevance as the population ages since anticoagulation 
is frequently indicated in PwG for VTE prophylaxis and 

common comorbidities such as atrial fibrillation, further 
underscoring the need for reliable ICH risk prediction [5, 
13, 24].

Predictive models offer a promising approach for 
navigating this complexity of anticoagulation decisions 
in PwG. These tools have demonstrated good results 
in areas related to tumour grading, genetic profiling, 
and prognosis [25–28]. Their ability to integrate diverse 
clinical and image inputs and to capture non-linear rela-
tionships makes them potentially well-suited for risk pre-
diction. With appropriate training and validation, they 
could support individualised anticoagulation decisions in 
this high-risk population [29].

In this scoping review we aim to: (i) determine whether 
any predictive models currently exist for predicting ICH 
in PwG receiving anticoagulation therapy; (ii) appraise 
the methodological quality and clinical relevance of any 
identified models; and (iii) map critical gaps in the cur-
rent evidence base to guide future model development. 
By conducting a structured and comprehensive literature 
review, we aim to highlight key research gaps and con-
tribute to the development of predictive tools that can 
guide personalised anticoagulation decisions in patients 
with glioma.

Methods
Study design
The review was conducted following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses extension for Scoping Reviews (PRISMA-ScR) guide-
lines [30] to ensure methodological transparency.

Eligibility criteria
Studies were eligible for inclusion if they met the follow-
ing criteria: the population consisted of PwG, there was 
an anticoagulation therapy intervention, the incidence 
and risk of ICH were reported as an outcome, and a pre-
dictive model was implemented. Additionally, the studies 
had to be full-text, peer-reviewed articles published in 
English. Studies that did not meet these inclusion criteria 
were excluded; no further exclusion criteria were deemed 
necessary.

Search strategy
We conducted a structured literature search using MED-
LINE and EMBASE via the Ovid platform, as well as the 
Cochrane Library, which include the Cochrane Database 
of Systematic Reviews and CENTRAL. The search cov-
ered publications up to 29 November 2024. The strat-
egy was developed by TA, WSJ, FH & AM iteratively 
based on relevant terms identified in key papers, includ-
ing existing reviews. These terms were expanded using 
controlled vocabularies such as MeSH (for MEDLINE) 
and Emtree (for EMBASE), alongside relevant free-text 
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keywords. The final strategy focused on three main 
concepts: glioma as the population, anticoagulation as 
the intervention, and ICH as the outcome. Two experi-
enced information specialists FW, and SG, reviewed the 
final search terms for completeness and accuracy. The 
complete search strategy is provided in Supplementary 
Appendix 1. As a limitation, the search was restricted to 
English-language publications and did not include sup-
plementary citation chaining, grey literature, or trial reg-
istries, which may have led to the omission of potentially 
relevant studies.

Study selection
Search results were imported into Covidence, where 
duplicate records were removed. Titles and abstracts 
were screened independently by two reviewers [TA & 
WSJ], and the full texts of potentially eligible articles 
were planned to be assessed in the same way. Any dis-
agreements were discussed and resolved by consensus, 
with input from a third reviewer [FH] where needed.

Citation chaining and grey literature searches were 
planned to be conducted for included studies to identify 
additional relevant publications. The review focused on 
peer-reviewed publications to maintain consistency and 
ensure quality across the dataset.

Data extraction
Data extraction was planned to be conducted by two 
independent reviewers using a structured approach. The 
key fields included study design, publication year, popula-
tion characteristics, model type, variables used, outcome 
measures, and reported performance metrics. In cases of 
disagreement, a third reviewer would have mediated the 
discussion to reach consensus.

Quality assessment
Risk of bias
Our protocol specified that we would use the PROBAST 
tool for evaluating prediction models. This tool remains 
relevant as frameworks for assessing the methodological 
quality of future studies in this area [31, 32].

Results
A total of 5,467 records were identified from EMBASE, 
MEDLINE, and the Cochrane Database. After removing 
duplicates, 1,585 unique articles were screened. Follow-
ing title, abstract, and full-text review, no studies met 
the eligibility criteria. The full screening process is sum-
marised in the PRISMA flow diagram (Fig. 1).

Discussion
In this study, we aimed to determine whether any statis-
tical or machine learning (ML) models exist for predict-
ing the risk of intracranial haemorrhage (ICH) in people 

with glioma (PwG) receiving anticoagulation therapy. We 
also sought to evaluate the methodological quality and 
clinical relevance of any identified models and to map key 
evidence gaps to inform future model development. We 
screened 1,585 records from MEDLINE, EMBASE, and 
the Cochrane Library; however, no studies met our inclu-
sion criteria. This absence highlights a fundamental gap 
in the literature. Given the aging population and increas-
ing use of anticoagulation for both VTE and comor-
bidities such as atrial fibrillation [1], the development 
of a reliable, glioma-specific ICH prediction tool is very 
important.

Although no eligible predictive models were identified, 
one excluded study applied the PANWARDS score which 
was originally developed for atrial fibrillation to a glioma 
cohort, offering only limited exploratory insight [1]. In 
a retrospective analysis of 133 patients with high-grade 
glioma receiving enoxaparin, a higher rate of major ICH 
was observed compared to non-anticoagulated patients 
(14.7% vs. 2.5%; P =.036). All ICH events occurred in 
patients with PANWARDS scores ≥ 25 (sensitivity 100%, 
specificity 40%), yet the study did not involve model 
development or validation specific to PwG and there-
fore did not meet our inclusion criteria. While vari-
ables included in PANWARDS (platelet count, albumin, 
comorbidities) [33] may inform future work, any tool for 
PwG must go further and incorporate glioma-specific 
factors such as tumour grade, size, and location. More-
over, the low specificity of PANWARDS also limits its 
clinical utility, highlighting the need for models tailored 
to the unique biology and treatment context of PWG 
receiving anticoagulation.

To address this gap, future research should aim to inte-
grate diverse data types which include glioma-specific 
factors, clinical, radiological, radiomic, and genetic fea-
tures to inform robust predictive models. Advanced 
modelling techniques such as deep learning are par-
ticularly well suited to maximising the value of multi-
dimensional datasets because they can learn complex, 
non-linear associations across different data modalities 
[34–36]. Convolutional neural networks (CNNs), which 
form the foundation of many deep learning approaches, 
are especially effective for medical imaging [37]. They can 
automatically detect and combine spatial patterns such 
as tumour boundaries, oedema, and vascular abnormali-
ties, which are often difficult to capture with traditional 
statistical models. Beyond simple feature detection, 
CNN-based architectures such as U-Net, a widely used 
medical image segmentation network, extend this capa-
bility to image segmentation, enabling precise delineation 
of tumour and peri-tumoural regions [38]. These seg-
mented regions can then be quantified through radiomics 
to extract detailed descriptors of texture, intensity, and 
shape, which, when integrated with clinical data, provide 
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a rich representation of the factors that may influence 
ICH risk [39].

The development of such models must be guided by 
stakeholder engagement to ensure clinical relevance and 
practicality. Clinicians, patients, IT teams, and policy-
makers should be involved in defining the target product 

profile (TPP) for these models, ensuring they address 
real-world needs and constraints [40, 41]. While the 
exact model architecture will depend on the charac-
teristics of future datasets, candidate approaches may 
include Random Forest, Decision Trees, Support Vec-
tor Machines, and neural networks. These methods 

Fig. 1  PRISMA flow diagram and results from literature screening
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are capable of handling high-dimensional, non-linear 
data and can be evaluated comparatively in future stud-
ies. Importantly, explainable AI techniques should be 
prioritised to enhance clinical interpretability, such as 
highlighting feature importance and decision pathways. 
We also recommend using established frameworks like 
PROBAST to ensure methodological rigour and support 
reproducibility in predictive modelling efforts.

While this study identified no existing models for pre-
dicting ICH risk in PwG on anticoagulation, it highlights 
a critical unmet need and provides a roadmap for future 
research.

The absence of existing predictive models may reflect 
several barriers. Glioma is a rare tumour, and the sub-
set of patients receiving anticoagulation is even smaller, 
which limits the availability of large, representative datas-
ets [42, 43]. Furthermore, it displays pronounced genetic 
and phenotypic heterogeneity, presenting significant 
challenges for establishing consistent predictors across 
cohorts [44]. Additionally, modelling ICH risk requires 
approaches capable of accounting for complex variable 
interactions and non-linear relationships, which tra-
ditional statistical methods may not fully capture [45]. 
These challenges highlight the need for advanced model-
ling techniques and harmonised data collection in future 
research.

In the absence of reliable prediction tools, clinicians 
must make anticoagulation decisions in PwG based on 
limited or generalised evidence. This creates signifi-
cant uncertainty, particularly when trying to balance the 
known thrombotic risk against the potentially fatal con-
sequences of ICH. The absence of validated models leaves 
a critical gap in supporting safe, individualised treatment 
planning. Addressing this gap through targeted predic-
tive model development should therefore be treated as a 
research priority with direct clinical relevance.

To move the field forward, we propose a conceptual 
framework for developing predictive models using data 
from glioma with and without ICH. This would involve 
collecting high-quality clinical, radiological, and genomic 
data, followed by preprocessing and segmentation of 
imaging data to extract radiomic features. These variables 
would then be used to train a predictive model capable 
of estimating individualised ICH risk. This structured 
approach offers a practical foundation for future model 
development tailored to this high-risk population.

While the potential development of these models is 
important, they are unlikely to influence clinical deci-
sions once VTE has been confirmed, as anticoagulation 
is typically initiated [46]. In these cases, the immediate 
need to manage thrombotic risk takes precedence. The 
primary value of our proposed model lies in prophylactic 
contexts, where decisions regarding anticoagulation are 
more discretionary [47]. These include determining the 

timing of anticoagulation around neurosurgical proce-
dures, selecting appropriate agents and dosing strategies, 
and establishing the intensity of monitoring required 
[47]. Models designed for these scenarios could support 
more personalised and safer prevention strategies, align-
ing with current clinical practice and addressing a recog-
nised gap in evidence-based decision-making.

The review used three major databases: MEDLINE, 
EMBASE and the Cochrane Library, which are widely 
regarded as principal sources of biomedical literature. 
While this approach ensured robust coverage of high-
quality studies, it may have excluded relevant work 
indexed in other databases or published in languages 
other than English. Grey literature was not considered, 
consistent with our focus on peer-reviewed publications 
most relevant for clinical practice. Citation searching was 
not applicable, as no eligible studies were identified to 
provide a reference base. These boundaries were applied 
to maintain methodological consistency and transpar-
ency. Taken together, the absence of eligible studies indi-
cates that predictive models for intracranial haemorrhage 
in glioma remain underdeveloped rather than reflecting a 
shortcomings in the search strategy.

Conclusion
This review identifies a critical gap in the literature: the 
absence of predictive models for ICH risk in PwG receiv-
ing anticoagulation therapy. Consequently, clinicians 
must rely on limited or nonspecific guidance, which may 
result in inconsistent or suboptimal care for this vulner-
able population. This situation underscores the urgent 
need for tools to support personalised decision-making 
in this high-risk group.

Future research must prioritise a multimodal approach, 
combining clinical, genetic, and radiological data to 
reflect the complex interplay of factors influencing ICH 
risk in glioma. Advanced modelling techniques, includ-
ing machine learning, will be crucial to detect patterns 
within these high-dimensional datasets that conven-
tional methods may overlook. Although tools like the 
PANWARDS score have identified potentially relevant 
variables, their lack of validation or specificity for glioma 
means that bespoke models are urgently needed.

However, technical innovation alone is not enough. 
Clinicians, patients, and regulators must collaborate to 
ensure these models are practical, clinically relevant, and 
aligned with real-world needs. Tools like TPPs can help 
define essential features, balancing predictive accuracy 
with usability and cost [41].

Addressing these challenges will enable the develop-
ment of models that support clinicians and patients in 
making informed, personalised decisions, thereby reduc-
ing preventable harm and improving outcomes. Although 
the path forward is complex, the potential to transform 



Page 6 of 7Adeyemo et al. BMC Neurology          (2025) 25:458 

care for PwG is substantial, offering the opportunity to 
resolve current gaps in evidence-based practice.
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