Neuro-Oncology Advances

7(1), vdaf193, 2025 | https://doi.org/10.1093/noajnl/vdaf193 | Advance Access date 1 September 2025

Targeting the tumor microenvironment in pediatric gliomas: Advances and future directions in immunotherapy

Cheyenne Ahamed^o, Lam Nguyen^o, Cayley S. Brock^o, Ayla Farzamnia^o, Pierrick Millet^o, Keisaku Sato^oand, Kevin K. Kumar^o.

All author affiliations are listed at the end of the article

Corresponding Author: Kevin K. Kumar, MD, PhD, 1601BTrinity Street, Health Discovery Building 3.216, Austin, TX 78712-1889, USA (kevin.kumar@austin.utexas.edu).

Abstract

The tumor microenvironment (TME) is a critical determinant of tumor progression and therapeutic response in gliomas. While pediatric gliomas have historically been treated using strategies derived from the management of adult gliomas, emerging evidence reveals that pediatric gliomas possess a unique TME. The pediatric TME is distinct, characterized not only by differences in cellular composition but a lower mutational burden, diminished neoantigen presentation, and heightened immunosuppressive activity. The unique immune landscape, developmental trajectories, and immune escape mechanisms in the pediatric TME create barriers to effective therapy. Recent studies show promising results in novel and advanced therapeutic strategies, highlighting the potential for innovative immunotherapeutic approaches. Advances in methodologies for modeling the TME, including computational approaches and animal-based models, provide new insights into pediatric glioma biology. Utilization of computational models may provide opportunities to predict tumor response to specific therapies and tailor immunotherapy regimes to individuals, allowing for personalized care. Leveraging the unique features of the pediatric TME offers an opportunity to overcome current barriers to immunotherapy and develop more effective, age- and tumor-specific treatment strategies.

Key Points

- The tumor microenvironment of pediatric gliomas differs significantly from adults.
- Lower mutational burden, reduced neoantigen presentation, and heightened immunosuppression hinder therapy.
- Emerging immunotherapies and advanced tumor modeling can help better target pediatric glioma.

Brain tumors, accounting for approximately 25% of all pediatric cancers, are the leading cause of cancer-related deaths in children in developed countries. Pediatric gliomas are the most common type of CNS tumor in children and are classified as either low-grade or high-grade based on histological features. Patients with high-grade gliomas typically have poor prognosis compared to their low-grade counterparts, with a median survival of about one year.

Pediatric gliomas exhibit considerable molecular heterogeneity that contributes to their diverse tumor microenvironment

(TME) and variable responses to immune-based therapies.³ The 2021 WHO Classification incorporated molecular profiling into diagnostic criteria, allowing for categorization based on specific genetic alterations.⁴This has allowed for both pediatric low-grade gliomas (pLGGs) and pediatric high-grade gliomas (pHGGs) to be stratified into distinct molecular subgroups, defined by their genetic drivers. pLGGs such as pilocytic astrocytomas and gangliogliomas are frequently driven by activation of the RAS-MAPK pathway.⁵ Approximately 35% of pLGGs harbor structural variants such as KIAA1549::BRAF

fusions, while another 20% possess single-nucleotide variants, most commonly the BRAF V600E point mutation.5 Additional cases involve both structural and singlenucleotide variants in FGFR1/2/3.5 pLGGs also often involve a single genetic aberration and are associated with a favorable prognosis, separating them from their adult counterpart, which exhibit a higher mutational burden and increased likelihood of malignant transformation.6 In contrast, pHGGs are more genetically diverse.⁶ Infant hemispheric gliomas often contain NTRK fusions and other receptor tyrosine kinase (RTK) alterations, including ALK, ROS1, and MET fusions.⁶ Diffuse midline gliomas (DMG) are defined by H3K27M mutations, with H3.1 variants typically located in the pons and H3.3 variants more frequent in thalamic, spinal, and cerebellar locations. Diffuse hemispheric gliomas (DHG) are enriched for H3.3 G34 mutations, while histone- and IDH-wild type pHGGs often show BRAF mutations, CDK deletions, and RTK aberrations.⁶

Traditional treatments, including surgical resection, radiation, and chemotherapy, have varying efficacy across tumor subtypes.7 Gross total resection shows a high survival benefit but safely achieving it may be challenging due to tumor location and infiltration.8 While radiotherapy is one of the most effective nonsurgical treatments in pediatric glioma, recurrence is commonly observed due to acquisition of radioresistance.9 It also risks long-term effects, including secondary malignancy and cognitive impairments.9 Children treated with chemotherapy following surgical resection or radiotherapy have significantly better outcomes and recent trends advocate for early chemotherapy use. 10 However, differences in molecular profiles within tumor types lead to variable outcomes, raising the risk of exposing pediatric patients to additional toxicity without major benefit.11

The tumor microenvironment (TME) consists of cells, blood vessels, and molecules within the surroundings of a tumor that can both positively or negatively affect tumor growth. ¹² A tumor and its TME exert reciprocal effects on each other; while a tumor relies on the TME for support, the TME also influences how the tumor develops and grows. ¹³ The TME of pediatric tumors typically displays a lower mutational burden and limited expression of mutation-derived antigens that reduces immunogenicity, allowing these tumors to evade immune surveillance and develop resistance to immunotherapy. ¹⁴

Immunotherapy offers a targeted alternative to conventional treatments by leveraging the precision of the immune system to coordinate a focused response to cancer cells. 15 This approach minimizes the toxicity with traditional therapies, making it a promising option for pediatric patients, where maintenance of neurodevelopmental performance is paramount. 15 Unfortunately, immunotherapy for pediatric gliomas has yet to demonstrate as robust therapeutic efficacy in comparison to adult gliomas. 16

One major barrier to immunotherapy efficacy is the immaturity of the pediatric immune system due to its reliance on innate, non-specific immunity and the underdevelopment of adaptive, antigen-specific responses.¹⁷ This immaturity manifests in distinct histological and molecular features that set pediatric tumors apart from those in adults.¹⁴ Another significant limitation is the scarcity of clinical trials focused specifically on this population

and the unique features of the pediatric TME. ¹⁸ To address this gap, modeled representations of the pediatric TME are utilized to better explain its components and effect on immunotherapy outcomes. ¹⁵ Recent advancements in mathematical, computational, and novel animal models allow researchers to simulate the pediatric TME, including its unique cellular composition and intracellular interactions. ¹⁹ By incorporating the distinctive features of the pediatric TME into these models, responses to both current and novel immunotherapies can be predicted and subsequently validated with clinical data. ^{19,20}

This review explores the distinctive features of the pediatric glioma TME and how they differ from adult cases, with implications for developing pediatric-specific immunotherapies. We assess the current state of immunotherapy and highlight modeling approaches that deepen our understanding of the pediatric TME. Our goal is to inform future clinical trials and experimental strategies, ultimately guiding treatment and improving outcomes for children with glioma. The 2021 WHO CNS tumor classification subsumes "pediatric glioblastoma" under molecularly defined entities like diffuse pediatric-type high-grade glioma. ²¹ We use the historical term when referring to pre-2021 literature.

Comparing the Pediatric and Adult TME

The innate immune system plays a crucial role as the first line of response against tumor cells and impacting the adaptive immune response to restrict glioma progression.²² Tumor cell proliferation and genetic instability can release damage-associated molecular patterns (DAMPs), which activate innate immune system pathways, prompting efforts to harness these pathways for therapeutic purposes.²² One key target is the cGAS-STING pathway, wherein cyclic GMP-AMP synthase (cGAS) detects cytoplasmic double-stranded DNA, a marker of genomic instability, and activates the stimulator of interferon genes (STING).23 This leads to the secretion of type I interferons, pro-inflammatory cytokines, and induction of autophagy.²³ In mouse models of pHGGs, activating the cGAS-STING pathway and adding a STING agonist to radiotherapy significantly improved survival over radiotherapy alone.²⁴ Adult glioblastoma mouse models treated with a STING agonist led to decreases in immunosuppressive markers, enhanced myeloid cell activation, and increased numbers of infiltrating CD8+T and NK cells, demonstrating an ability to alter the TME to a more immunostimulatory phenotype.²⁵

Toll-like receptors (TLRs) also respond to DAMPs, supporting immune surveillance, DNA repair, and activation of inflammatory pathways like NF-kB and MAPK.²³ TLR agonists are being explored for glioma therapy.²⁶The TLR7 agonist imiquimod induces redistribution of CD4 + and CD8 +T cells from peripheral blood into the brain, reduces intratumoral Treg levels, and activates brain-infiltrating lymphocytes.²⁷ The TLR9 agonist CpG increases effector T cells relative to Tregs and can eliminate murine intracranial glioma when combined with tumor lysate and effector T

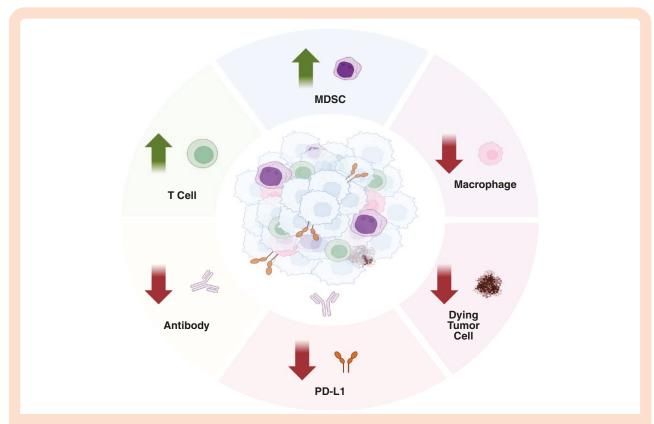


Figure 1. Proposed Properties of the Pediatric Glioma TME. Pediatric glioma TMEs are characterized by an increased presence of T cells and myeloid-derived suppressor cells (MDSCs), coupled with decreased levels of PD-L1, macrophage, antibodies, and apoptotic (dying) tumor cells compared to adult TMEs. These differences contribute to the classification of pediatric tumors as predominantly "cold," indicating lower immune activity, while adult tumors are often described as "hot," reflecting higher immune activity. Created in BioRender. Kumar, K. (2025) https://BioRender.com/ogbpxfz.

cells.²⁷ However, high TLR4 expression in glioma cell lines makes it a challenging target, as its activation promotes tumor survival and immune evasion.²⁷ Co-activation of the Fas pathway alongside TLR4 agonists has been shown to counteract TLR4's tumor-promoting effects, suggesting a potential strategy to overcome this challenge.²⁷

The tumor microenvironment (TME) greatly affects immunotherapy efficacy, and its complexity and heterogeneity make targeting pediatric gliomas especially challenging.^{28,29} Pediatric gliomas are classified as "cold" tumors from an immunological perspective, characterized by a low mutational burden and a lack of neoantigens.³⁰ This paucity of neoantigens makes mounting an immune response challenging as it prevents the activation of lymphocytes, particularly cytotoxicT lymphocytes (CTLs).³⁰ The TME consists of several distinct cell types, including myeloid-derived suppressor cells (MDSCs), eosinophils, neutrophils, andT cells (Figure 1).⁹

Both the diversity of cell types within the TME and the relative proportions of each type have implications for tumorigenicity and metastasis.³¹ Populations of tumor-associated macrophages (TAMs) derived from the TME are either brain-resident microglia or bone marrow-derived macrophages.³² In adult glioblastomas, infiltrating macrophages account for 85% of the TAM population, while resident microglia account for the remaining 15%.³³ TAMs contribute

to the immunosuppressive microenvironment by releasing macrophage-derived cytokines that lead to immune evasion and result in tumor progression.34 Macrophage polarization is influenced by the molecular components of its surrounding environment dictating whether the macrophage adopts a classically activated phenotype or an alternatively activated phenotype. Classically activated macrophages express pro-inflammatory cytokines such as interleukin (IL)-12, IL-23, and tumor necrosis factor alpha (TNFα), while alternatively activated macrophages express anti-inflammatory molecules, such as IL-10 and transforming growth factor beta (TGF-β).35-37 Classically activated macrophages are considered to be involved in the anti-tumor response, adopting this phenotype in response to interferon-y released by innate and adaptive immune cells.³⁸ They produce pro-inflammatory cytokines implicated in killing tumor cells, recruit immune cells, and create an inflammatory TME that hinders the growth and spread of tumor cells.³⁸ Conversely, alternatively activated macrophages are considered pro-tumorigenic by promoting angiogenesis, tumor remodeling and an antiinflammatory TME that allows for immune cell evasion and tumor growth.39

In adult glioblastomas, the TME is dominated by alternatively activated macrophages, shifting the balance toward immunosuppression.⁴⁰ These macrophages

prevent immune cell recruitment, express high levels of programmed cell death ligand 1 (PD-L1) to suppress T cell activation, and release factors like vascular endothelial growth factor and platelet-derived growth factor to promote angiogenesis and tumor invasion. 41,42 However, studies indicate that TAMs function differently in pediatric gliomas than in adults. For instance, although high TAM expression is associated with shorter overall survival in adult glioblastomas, this correlation is not observed in pediatric cases. 43

Pediatric gliomas exhibit fewer immune cells overall, including a notably lower abundance of T cells compared to their adult counterparts.44 T-cell infiltration is limited in pediatric gliomas, with T cells clustering in perivascular spaces, rather than infiltrating deeper into the tumor parenchyma.45 Studies in adult glioblastomas have shown an increased presence of CD4 + CD56 +T cells, suggesting an immunoregulatory role that may contribute to immune evasion.46 Pediatric gliomas also demonstrate higher varieties in T-cell populations depending on tumor subtypes when compared to adult gliomas.47 Higher T-cell counts were found in pLGGs than in pHGGs with both exhibiting tissue-resident memory T cells with CD103 + and T-cell factor 1 + subpopulations that have distinct spatial localization.48 pHGGs and pLGGs show higher expression of CD8+T cells, whereas DMGs exhibit minimal immune cell infiltration and low inflammation.⁴⁸ Subtype differences extend to TAM populations as well with the number of CD163 + macrophages markedly increased in pLGGs and pHGGs but not in DMGs and the ratio of CD163 + to CD68 + macrophages elevated with no elevation found in DMGs.49

Reduced expression of PD-L1 is observed in pediatric gliomas, suggesting that pediatric gliomas may utilize different immune evasion techniques than adults.50 The binding of PD-L1 to its receptor programmed cell death protein 1 (PD-1) is an important feature of immune evasion for tumor cells, as it leads to T-cell disruption and apoptosis, allowing for tumor cells to escape detection from the immune system.⁵¹ In adult gliomas, studies have found PD-L1 expression to be as high as 88% whereas expression in pediatric gliomas averaged to 45%.⁵² Although PD-L1 is rarely expressed on tumor cells in pediatric gliomas, its correlation with TAMs suggests it may still represent a viable immunotherapeutic target.53 MDSC cells contribute to creating an immunosuppressive TME by presenting PD-L1 to T-cells, polarizing macrophages to alternative activation, and promoting tumor growth through enhanced angiogenesis.54 High levels of MDSC infiltration are present in both pediatric DMG and adult glioblastomas, making it a potential therapeutic target. 55

pHGGs have been found to express distinct epigenetic signatures from their adult counterparts. Pediatric DMGs typically harbor histone H1 and H3 mutations, with a K27M mutation frequently found as well as H3.3 G34 mutations. H3 mutations are found in over 50% of pHGGs but only less than 0.2% of adult HGGs. These genetic differences may drive the occurrence of an immunologically cold microenvironment, as demonstrated by K27M's impact on lowering immune cell infiltration. He limited efficacy of immunotherapy in pediatric gliomas are partly explained by differences between potential immunotherapy

targets, secondary to variations in the TME.⁵⁹ Several immunotherapy trials are underway investigating epidermal growth factor receptor (EGFR) as a target, given that amplification of EGFR is present in 60% of adult HGG; however, these trials have not demonstrated success to date.⁵⁵ In contrast, EGFR amplifications are only observed in 5.5% of pediatric glioblastoma, making it a less viable target and necessitating a reevaluation of immunotherapeutic strategy for pediatric patients.⁶⁰

Single-cell RNA sequencing (scRNA-seq) and expression analysis identified four types of malignant cells within pediatric glioblastomas: neural progenitor cell-like (NPC-like), oligodendrocyte progenitor cell-like (OPClike), astrocyte-like (AC-like), and mesenchymal-like (MES-like).61 Pediatric glioblastomas predominantly exhibit NPC-like and OPC-like states which are highly proliferative, contributing to rapid tumor growth.⁶¹ In contrast, adult glioblastomas feature more stable, fixed states such as AC-like cells, which are less common in pediatric cases. 61 These findings suggest that pediatric and adult gliomas differ fundamentally in their origins, with pediatric gliomas rooted in disruptions during development while adult gliomas arise from accumulated genetic mutations over time.⁶² The developing pons and forebrain have unique progenitor and differentiation pathways disrupted in pediatric gliomas.63 Additionally, pediatric glioma cells have been linked to specific developmental lineages, with tumors mirroring normal differentiation patterns within their respective lineages.⁶⁴ Diffuse hemispheric gliomas with a driver mutation at glycine 34 in histone 3 (DHG-H3G34) account for over 30% of pHGGs.65 Genomic profiling of DHG-H3G34 revealed TP53 and ATRX mutations in over 90% of cases, along with high rates of alterations in cell-cycle regulators such as CDK4 and CDK6 amplification and PDGFRA alterations, presenting potential vulnerabilities to CDK4/6 inhibitors and PDGFRA-targeted therapy.⁶⁶ Molecular and epigenomic analyses of DHG-H3G34 have identified interneuron progenitors as a potential cell of origin.⁶⁷ These tumors also recapitulate transcriptional and developmental features of GABAergic interneuron lineages.65 DHG-H3G34's developmental program reveals a vulnerability, allowing CDK6 and interneuron differentiation regulators to target its progenitor-like state.65 These differences between the pediatric and adult TME underscore the heterogeneity of gliomas and highlight the need for age-specific therapeutic strategies.⁶²

Recent Advancements in Immunotherapy

While immunotherapy has shown promise in adult gliomas, its application in pediatric gliomas remains limited due to their unique features, including a low mutational burden, distinct epigenetic drivers, and an immunosuppressive tumor microenvironment.³⁰ Logistical barriers, including few eligible patients and limited trial access near homes, further hinder pediatric brain tumor immunotherapy development.⁶⁸ By examining a range of immunotherapy strategies, we aim to identify gaps

shaped by the unique characteristics of pediatric tumors and to highlight areas requiring further investigation and improvement.

Immune Checkpoint Inhibitors

Immune checkpoint inhibitors (ICIs) have emerged as an innovative form of immunotherapy that targets molecules involved in lymphocyte regulation.^{69–71} The main three that have been extensively studied are cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PD-1 (CD279), and PD-L1 (CD274).^{69–71} CTLA-4 is expressed on T cells, and it binds to the B7 protein on antigen-presenting cells (APCs) to inhibit lymphocyte activation and differentiation through competitive inhibition of CD28, a stimulatory molecule.^{69,72} The PD-1/PD-L1 pathway suppresses naive T-cell proliferation and differentiation by inhibiting protein kinase signaling pathways.^{70,71} Inhibiting these checkpoints can activate lymphocytes, providing a promising approach for tumor treatment.⁷²

A recent retrospective study evaluated pembrolizumab (PBL), an anti-PD-1 monoclonal antibody, in both adult and pediatric brain tumors. However, no patients showed responses mediated by local lymphocytes. This may be due to the large molecular size of PBL (146 kDa), its poor penetration of the blood-brain barrier, and limited T-cell infiltration.⁷³ A subsequent study found that anti-PD-1 inhibitors improved survival in pediatric patients with relapsed hypermutant tumors associated with germline DNA repair deficiencies.⁷⁰ Continued use of ICIs resulted in a median survival of 2 years.⁷⁴ Nivolumab, an anti-PD-L1 inhibitor, also demonstrated benefits in pediatric cancers with high mutation burden or mismatch repair deficiency, particularly in tumors microsatellite instability.⁷¹ Although few studies have examined the effects of ipilimumab, a CTLA-4 inhibitor, alone in pediatric gliomas, reports indicate that neither nivolumab alone nor in combination with ipilimumab improved survival in pediatric patients with CNS tumors.75

More recent immune checkpoint inhibitors under investigation in pediatric gliomas target T-cell immunoglobulin and mucin-domain-containing-3 (TIM-3) and indoleamine 2,3-dioxygenase (IDO).^{76–78} TIM-3 is an inhibitory molecule on the surfaces of immune cells and a significant component of the TME in DMG.75 TIM-3 inhibition in syngeneic mouse models prevents DMG recurrence by promoting TME inflammation and T-cell activation.⁷⁶ IDO controls inflammation and T-cell immune tolerance by metabolizing tryptophan into kynurenine.77 In a recent phase I trial, pediatric brain tumor patients received indoximod, an indoleamine 2,3-dioxygenase 1 inhibitor, alongside chemotherapy and radiation.⁷⁸ Indoximod therapy was well tolerated, and responders had a median overall survival three times longer than nonresponders.⁷⁸ Immune checkpoint inhibitors have shown limited efficacy in pediatric gliomas, largely due to key challenges such as low mutational burden, which reduces neoantigen presentation and impairs immune recognition.³⁰ The glioma TME is highly immunosuppressive, with fewer infiltrating B and T cells, limiting targets for checkpoint inhibitors and reducing ICI efficacy in pediatric gliomas.72

CAR T-Cell Therapy

Chimeric antigen receptor (CAR) T-cell therapy, a specialized form of adoptive cell therapy (ACT) in which T cells are genetically modified to target cancer, has emerged as a promising new immunotherapy for pediatric glioma. 79,80 CART cells activate T lymphocytes through direct antigen recognition, bypassing major histocompatibility complex (MHC)-mediated antigen presentation.80 They consist of three components: an extracellular region for antigen recognition, a transmembrane region for stability, and an intracellular region for signal transmission into T cells.80 The affinity of the extracellular antigen-binding domain has been modulated to improve CAR specificity and reduce "on-target, off-tumor" side effects.81 Modifications to transmembrane domains (TMDs), such as incorporating native TMDs such as NKG2D and developing multi-chain interactions, have improved CAR stability and antitumor potency by altering dimerization and intracellular signaling.81 Immunoreceptor tyrosine activation motifs (ITAMs) are phosphorylation sites on cytoplasmic domains and are central to CAR design, with their number and diversity influencing CAR modification.81 CART cells can be delivered intravenously, intrathecally, or intracerebroventr icularly.82

Interest in CAR T therapy for brain tumors emerged from ACT studies in melanoma brain metastases. showing patient-derived immunotherapies can be effective in neuro-oncology.83 Subsequent studies have identified key biomarkers for CART therapy in pediatric brain tumors.84-86 Analysis of patient-derived orthotopic xenograft samples identified a hierarchy of biomarker expression in pediatric tumor cells, with B7 homolog 3 (B7-H3), an immunosuppressive signaling protein, and disialoganglioside (GD2), a molecule that facilitated tumor proliferation, showing the highest levels.84 CART cells targeting B7-H3 demonstrated significant anti-tumor activity.84 Subsequent studies of high-grade pediatric gliomas have demonstrated the significant anti-tumor effect of B7-H3 CART cells in immunocompetent xenograft models.85,86

GD2 is another prevalent antigen target that is highly expressed on glioma cells with the histone H3K27M mutation.⁸⁷ CART cells against the GD2 antigen induced clinical and radiographic improvement in the majority of patients trialed with H3K27M-mutated DMG or spinal cord DMG.⁸⁸ Toxicities associated with GD2-CART cells were tolerable and reversible with supportive treatment.⁸⁸ Similarly, human epidermal growth factor receptor 2 (HER2)-targeting CART cells have shown efficacy, demonstrating antigen-specific cytotoxicity and tumor regression in DMG xenograft models.^{89,90}

Despite its promise, CAR T-cell therapy faces notable challenges. Nonspecific-targeting of CAR T cells against normal cells can lead to significant adverse effects, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome (iCANS), and tumor inflammation-associated neurotoxicity (TIAN).91 Intraventricular administration of CAR T cells is associated with a lower incidence and severity of these adverse effects.82 Antigen heterogeneity and the suppressive tumor microenvironment found in glioma cells can also

impede CART cell trafficking and efficacy a phenomenon observed using CAR T cells against epidermal growth factor receptor variant III (EGFRvIII) in adult glioma cells.⁷⁹ Analysis of brain tumor samples after administration demonstrates a wide variety in the expression of EGFRvIII along with immunosuppressive molecules, such as IDO1, PD-L1, and IL-10, from the tumor microenvironment.92 Antigenic heterogeneity within the same tumor cells often results in antigen escape and lessens the efficacy of CAR T-cell therapy.93 Current efforts aim to develop CAR T-cell therapies that target multiple antigens simultaneously to overcome tumor heterogeneity and reduce the risk of antigen escape. Development of a trivalent T-cell product containing CAR molecules targeting HER2, IL13Rα2, and EphA2, helped overcome interpatient antigenic variability glioblastoma sample cohort.93 Clinical trial (NCT05168423) developed a bivalent CART cell targeting both EGFR and IL13Rα2.94,95 Early results showed minimal neurotoxicity at two doses of CART-EGFR-IL13Ra2 cells, with limited cases of iCANS.94

Updated data demonstrated that the majority of patients experienced tumor regression, indicating that CART-EGFR-IL13Ra2 cells have significant anti-tumor effects. Solution NCT05660369 using CARv3-TEAM-E cells, which target EGFRVIII via a second-generation CART cell while secreting antibodies against wild-type EGFR. In three patients, the treatment showed no grade 3 + adverse effects and achieved rapid radiographic tumor regression within days, though responses were transient in two patients. The BrainChild-04 study (NCT05768880) is the first clinical trial using CART cells to target multiple antigens in pediatric CNS tumors is currently underway. Ongoing or recently completed clinical trials of CART cells pediatric brain tumors are targeting antigens such as EGFR806, HER2, GD2, and B7-H3 (Table 1).

Tumor Neoantigen Vaccine

The evolution of immunotherapy has occurred alongside the continued development of vaccines. See Cancer vaccines induce immunological memory by exposing immune cells, specifically CD8+T cells, to tumor-associated antigens. Se-100 Two main vaccine types explored and tested for the treatment of pediatric gliomas are dendritic cell (DC) and peptide vaccines (Table 2). See 100

Dendritic cells are antigen-presenting cells (APCs) that bridge innate and adaptive immunity by processing and presenting antigens to immune cells such as CD8 + and CD4 +T cells.98 In dendritic vaccines, autologous DCs are isolated via apheresis, matured, loaded with tumor-specific antigens, and administered to patients.98 These cells induce cytokine release and T-cell activation. 98,99 A phase Ib study of autologous dendritic cell vaccines (ADCV) in nine children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) after radiation therapy showed the vaccine was feasible, safe, and induced DIPG-specific immune responses in peripheral blood and cerebrospinal fluid. 100 These findings support ADCV as a promising option for future immunotherapies. 100 Furthermore, the cytomegalovirus (CMV) antigen pp65 in pediatric medulloblastoma and malignant glioma has received significant research interest. 98 A Phase I trial (NCT03299309) evaluated the safety of the peptide (PEP)-CMV dendritic vaccine, targeting the CMV pp65 antigen in children and young adults with recurrent malignant gliomas and medulloblastomas.98 Among 22 patients, the vaccine demonstrated no severe toxicities, elicited an immune response in 75% of patients, and showed stable disease or partial response in 6 of 11 evaluable cases.98

Peptide vaccines directly introduce tumor-associated antigens into circulation, allowing endogenous APCs

Table 1. Relevant CAR-T Cell Clinical Trials for Pediatric Gliomas								
NCT Number	Phase	Targets	Number of Patients	Glioma Type	Administration Route: Intravenous (IV), Intrathecal (IT), or Intracerebroventricular (ICV)	Status	Reference	
NCT03638167	1	EGFR806	11	recurrent or refractory EGFR-positive CNS tumors	ICV	Recruiting	Rao et al., 2022 ⁸⁹	
NCT03500991	1	HER2	10	recurrent or refractory HER2-positive CNS tumors	ICV	Active but not re- cruiting	Rao et al., 2022 ⁸⁹	
NCT04185038	1	B7-H3	90	DMG and B7-H3- positive refractory CNS tumors	ICV	Recruiting	Lin et al., 2022 ⁷⁹	
NCT04099797	1	GD2	37	GD2-positive DMG & HGG, medulloblastoma	ICV	Recruiting	Lin et al., 2022 ⁷⁹	
NCT05168423	1	EGFR, IL13Ra2	13	Adult recurrent glioblastoma	IT	Recruiting	Bagley et al., 2025 ⁹⁴	
NCT05660369	1	WT-EGFR, EGFRvIII	3	Adult recurrent glioblastoma	ICV	Recruiting	Choi et al. 2024 ⁹⁶	
NCT05768880	1	B7-H3, EGFR806, HER2, IL13- Zetakine	72	DMG and recurrent or refractory CNS tumors	ICV	Recruiting		

Table 2. Relevant Tumor Neoantigen Vaccine Clinical Trials for Pediatric Gliomas

NCT Number	Phase	Vaccine type	Number of Patients	GliomaType	Status	Reference
NCT02840123	1	Dendritic Cell	9	DMG	Unknown	Benitez-Ribas et al., 2018 ¹⁰¹
NCT01130077	1	Peptide	26	Brainstem and non- brainstem pHGGs	Completed	Pollack et al., 2014 ¹⁰²
NCT04808245	1	Peptide	15	H3K27M + DMG	Recruiting	Grassl et al., 2023 ¹⁰³
NCT04573140	1 & 2	Nucleic Acid (mRNA)	52	pHGG & adult glioblas- toma	Recruiting	Mendez-Gomez et al., 2024 ¹⁰⁴

to process them and activate lymphocytes.⁹⁸ In a phase I trial (NCT01130077), emulsified peptide epitopes of glioma-associated antigens, such as EphA2, interleukin-13 receptor alpha 2 (IL-13Ra2), and survivin, were administered to 26 pediatric patients with newly diagnosed brainstem gliomas or pHGGs.¹⁰² Five patients experienced pseudoprogression, which resolved with dexamethasone.¹⁰² 19 patients had stable disease, two showed partial responses, two had minor responses, and two remained disease-free for an extended period following surgery.¹⁰²

A significant discovery within peptide vaccine research is the H3K27M mutation, a point mutation/neoepitope in histone 3 that is highly prevalent in DMG.¹⁰⁵ A H3K27M peptide vaccine elicited robust cytotoxic T-cell and T-helper-1-cell-driven interferon gamma immune responses, indicating the peptide was properly processed and displayed by APCs.¹⁰⁵ A phase I clinical trial has tested this vaccine in adult patients with H3K27M + DMG and reported it to be safe, tolerable, and immunogenic, with radiographic improvement. 103 Other vaccine approaches include nucleic acid vaccines, which utilize mRNA or plasmid DNA to express tumor antigens through viral recombinant vectors.98 A current trial is testing mRNA vaccines against glioblastoma in adults, following canine studies showing RNA lipid particles enhance antigen presentation, interferon signaling, and cytotoxic activity. 104

Although vaccine development for pediatric gliomas has advanced, several challenges persist. The weak immunogenicity of current tumor vaccines results in inadequate CD8+T-cell responses. In addition, downregulation of tumor antigens, especially those presented by MHC class I, allows gliomas to evade immune detection. 104 As a result, glioma vaccines remain largely ineffective against the suppressive tumor microenvironment.

Oncolytic Virotherapy

Oncolytic virotherapy uses viruses to selectively infiltrate and terminate tumor cells. ^{101,106} One of the most studied viruses in the treatment of pediatric gliomas is herpes simplex virus-1 (HSV-1) G207. ¹⁰¹ Cerebellar inoculation of HSV-1 G207 effectively regressed medulloblastoma tumors without long-term persistence or toxicity. ¹⁰¹ In clinical trial PNOC020, treatment of pHGGs with the HSV-1 G207 led to a positive therapeutic response and increased infiltration of lymphocytes in tumor cells. ¹⁰⁶ Notably, this therapy strengthened immune response by converting historically immunological silent tumors to more immunogenic ones. ¹⁰⁶

Adenovirus is also highly utilized in oncolytic virotherapy. 107 DNX-2401, a genetically modified oncolytic adenovirus, demonstrated safety and increased survival rate in both immunodeficient and immunocompetent models of pHGGs and DMG.¹⁰⁷ In clinical trial NCT03178032, 12 pediatric patients with newly diagnosed DMG received two different doses of DNX-2401 followed by radiotherapy. While the administration of DNX-2401 led to either a reduction in or stabilization of tumor size, patients also reported serious adverse effects such as hemiparesis and tetraparesis. 107 In the first-in-human and first-in-child trial (NCT01844661), autologous mesenchymal stem cells carrying an oncolytic adenovirus were used in pediatric patients with relapsed or refractory solid tumors. 108 Repeated infusions caused only mild toxicities. such as fever, and adenovirus replication was confirmed by PCR in most patients. 108 Tumor stabilization was observed in 2 out 9 participants. 108

Other oncolytic viruses under investigation include polio virus and reovirus. 109,110 A major phase 1b clinical trial (NCT03043391) investigated the use of the Sabinrhinovirus poliovirus (PVSRIPO) for recurrent malignant pediatric gliomas. 109 Convection enhanced delivery, delivery of therapeutics directly to the brain, of the vaccine was safe and tolerable in subjects. 109 For reovirus, a phase I trial (NCT02444546) and viral clearance study confirmed that the sargramostim (reovirus) therapy was well-tolerated in pediatric patients with recurrent or refractory high-grade brain tumors with transient changes in immune cells. 110

While oncolytic virotherapy shows therapeutic potential, several challenges hinder its broader application in pediatric brain tumors. First, the blood-brain barrier significantly limits the delivery of oncolytic viruses, resulting in the need for alternative delivery methods like intratumoral or intracranial injection. 111,112 Second, the low somatic mutational burden of pediatric tumors results in limited tumor-associated antigens for immune cells to recognize. This ultimately limits the immune-mediated responses triggered by oncolytic viruses. 112 Finally, antiviral immunity, including neutralizing antibodies and innate immune responses, can eliminate the viruses before they can have therapeutic impact. 113 Table 3 summarizes oncolytic therapy clinical trials.

Microglial Replacement

Microglia are resident myeloid-derived immune cells of the CNS. 114 They start colonizing the neuroepithelium early in

Table 3. Mentioned Oncolytic Virotherapy Clinical Trials for Pediatric Gliomas							
NCT Number	Phase	VirotherapyType	Number of Pa- tients	GliomaType	Status	Reference	
NCT02457845	1	HSV-1	13	recurrent or progressive pHGG	Completed	Friedman et al., 2021 ¹⁰⁷	
NCT03178032	1	Adenovirus	12	DMG	Completed	Martínez-Vélez et al. 2022 ¹⁰⁸	
NCT01844661	2	Adenovirus	20	Metastatic and refractory solid tumors	Completed	Ruano et al. 2020 ¹⁰⁹	
NCT03043391	1	Poliovirus	8	Recurrent pHGG	Completed	Thompson et al., 2023 ¹¹⁰	
NCT02444546	1	Reovirus	6	pHGG	Completed	Schuelke et al., 2022 ¹¹¹	

fetal development. 115,116 During this early period, precursor microglial subsets with varying morphologies, molecular biomarkers, and function have been identified in different regions of the brain. 115 Since pediatric brain tumors are thought to arise during prenatal brain development, tumor development can potentially be affected by the immature microglia inhabiting a particular area of the brain. 115,116 For example, microglia reach peak concentrations in the midline brain, a region commonly associated with pediatric tumor development, such as DMG.¹¹⁶

The importance of microglia in pediatric glioma research has been highlighted by the results of several clinical studies. 117-119 Immature microglia in the cerebellum and corpus callosum exhibit high levels of insulin-like growth factor, promoting the expansion and survival of neural precursor cells in sonic hedgehog (SHH)-subtype medulloblastoma. 117 Myeloid cells from mature murine SHH medulloblastoma models enhanced tumor cell killing. 117 This leads to the implication that microglia can assume anti- or pro-tumor phenotypes based on their level of maturation. Microglia can also mimic epigenetic changes found in tumor cells. 118 Microglia can exhibit the loss of lysine 27 methylation that is typically observed in H3K27M+ DMG.119

The therapeutic potential of manipulating microglia is demonstrated by the recent development of microglial replacement therapy. 120,121 This bone marrow transplantation based method replaces microglia with donor circulationderived myeloid cells (CDMCs) with high efficiency. 120 Colony-stimulating factor 1 receptor (CSF1R) is essential for microglial survival, leading researchers to use CSF1R inhibitors such as PLX5622 to deplete resident microglia, followed by bone marrow transplantation to achieve effective microglial replacement. 120 This technique has shown promise in mice with experimental autoimmune encephalomyelitis, conferring a neuroprotective myeloid state, resulting in improvement of neurological deficits and reduced number of demyelinating lesions. 121

Microglial replacement shows promise for treating pediatric gliomas, but more research is needed to understand their role in CNS malignancies. Studies have demonstrated that tumors can "hijack" the genetic expression of microglial cells and trigger a pro-tumor state. 122 The variety in functions of these cells have made it difficult to predict their role in the tumor microenvironment.¹²² Studies also suggest that chemotherapy and radiotherapy alter the myeloid cells within the tumor microenvironment. 123 Furthermore, a recent study reported that triggering receptors expressed on myeloid cell 2 (TREM2), an important signaling molecule for microglial function, is upregulated in glioma-associated microglia and has a negative correlation with overall survival. 124 Investigating the interaction between signaling molecules likeTREM2 and microglia will enhance our understanding of microglial function within the tumor microenvironment. However, key biological and physiological barriers continue to limit the effectiveness of immunotherapies in pediatric cancer patients (Figure 2).

Modeling the TME

The distinct features of the pediatric glioma TME limit the effectiveness of immunotherapies developed for adult tumors, highlighting the need for pediatric-specific approaches. 125 Direct study of the TME is constrained by the limited number of patients eligible for clinical trials and preclinical testing. To bridge this gap, models are needed that accurately replicate both the tumor and its microenvironment to enable meaningful clinical translation. 126

Traditional in vitro models identify molecular characteristics and therapeutic targets, but struggle in capturing tumor heterogeneity and the dynamic TME.¹²⁷ In vivo models offer a more complex understanding of tumor growth within a living system, but are resource-intensive and limited in visualizing individual steps and controlling precise variables. 128 Computational and mathematical modeling serve as a bridge between in vitro and in vivo studies by integrating distinct tumor features and simulating complex interactions within the TME, without timeintensive experiments. 129

Discrete Models

Mathematical approaches to TME modeling are often divided into categories of either discrete, continuum, or hybrid.¹³⁰ Discrete models evaluate discrete interactions between individual cells, continuum models evaluate tumors through continuous processes like nutrient distribution, and hybrid models combine aspects of both for a more holistic view of the TME (Figure 3A).131

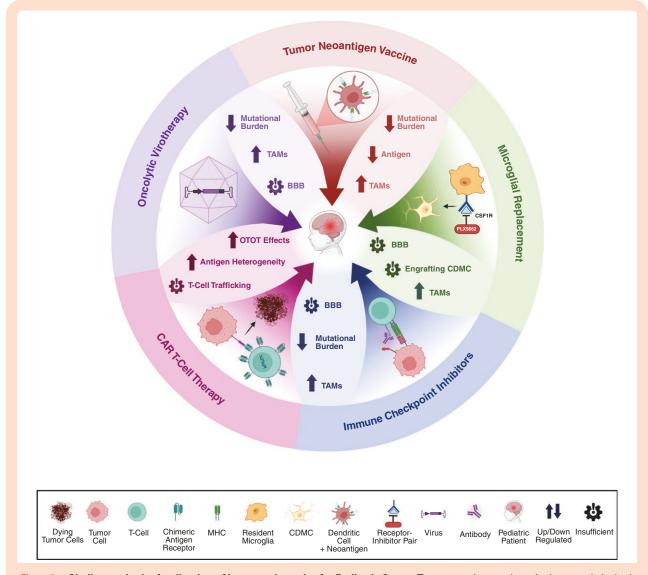


Figure 2. Challenges in the Application of Immunotherapies for Pediatric Cancer Treatment. Immunotherapies have revolutionized cancer treatment, but their application in pediatric patients presents unique challenges: Tumor Neoantigen Vaccines are limited by a lower mutational burden, reduced neoantigen availability, and elevated levels of tumor-associated macrophages (TAMs). Microglial Replacement Therapies face barriers including the blood-brain barrier (BBB), increased TAM infiltration, and difficulty in engrafting circulation-derived myeloid cells (CDMC). Approaches such as PLX5622, a selective CSF1R (colony-stimulating factor 1 receptor) inhibitor, are used to deplete endogenous microglia and facilitate engraftment of CDMCs. Immune Checkpoint Inhibitors are constrained by the BBB, low mutational burden, and high TAM prevalence. Chimeric Antigen Receptor (CAR) T-Cell Therapy is subject to increased on-target, off-tumor (0TOT) toxicity, antigen heterogeneity, and insufficient T-cell trafficking to tumor sites. Oncolytic Virotherapy encounters obstacles such as a low mutational burden, elevated TAM levels, and limited viral delivery across the BBB. This figure summarizes the key biological and physiological challenges that impede the effectiveness of immunotherapies in pediatric cancer patients, highlighting areas for further research. Created in BioRender. Kumar, K. (2025) https://BioRender.com/a8kon4y.

Agent-based modeling (ABM) is a form of discrete modeling that is used to simulate how specific "agents" behave and interact based on local conditions and system dynamics, where agents are biological entities such as cells or proteins (Figure 3A). 132 Agents are defined by properties and equations that determine their actions based on their own state, nearby entities, and environmental cues. 131 This approach can be used to understand how conditions of the TME may influence the interactions within it and reveal characteristics such as immune-tumor interactions,

immune evasion mechanisms, and drug resistance. ¹³² By representing healthy tissue and incorporating extracellular matrix proteins and tumor cells, the impact of factors such as hypoxia and cell density on tumor growth can be simulated. ¹³³ An ABM developed to evaluate adult glioblastoma response to a combined temozolomide and immune checkpoint blockade regimen found that tumors with high recruitment and infiltration of CD8 + T cells had better treatment responses. ¹³⁴ Another ABM combined oncolytic HSV and anti-PD-1 immunotherapy to examine the impact

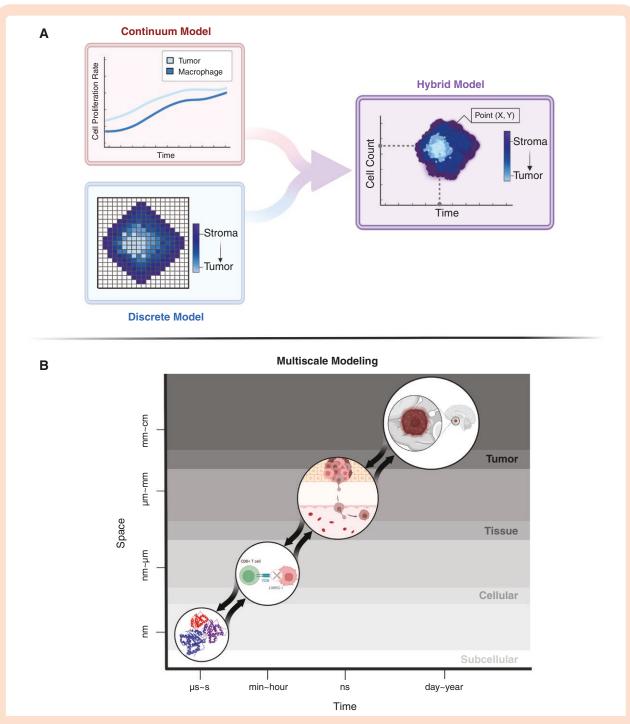


Figure 3. Approaches to Modeling the Tumor Microenvironment (TME) in pediatric cancers. (A) Mathematical Modeling Techniques for TMEs: Continuum Models treat tumor tissues as a continuous entity, using differential equations to simulate their dynamics. The graph illustrates tumor behavior over time, showing cancer cells (light blue line) and macrophage cells (dark blue line). These models are generally easier to parameterize and interpret compared to other approaches. Discrete Models focus on the behavior of individual cells and their interactions with the environment. In the figure, the dark blue areas represent the stroma, while the light blue areas indicate the tumor. This approach is particularly effective for studying cancer progression and cell plasticity at the single-cell level. Hybrid Models combine elements of continuum and discrete models to provide a more comprehensive understanding of tumor dynamics. The graph illustrates cell count over time alongside a point-based cell model (X, Y), where dark blue represents the stroma, and light blue depicts the tumor. This hybrid representation captures both tissue-scale dynamics and individual cell interactions. (B) Multiscale Modeling: Multiscale modeling links subcellular, cellular, and tissue-level processes to provide a holistic view of tumor development and the microenvironment. The figure illustrates a progression from a subcellular protein to a CD8 + T cell signaling pathway, then to tissue-level tumor growth, and finally to the macroscopic brain tumor. Created in BioRender. Kumar, K. (2025) https://BioRender.com/t9n35dn.

of spatial heterogeneity on dosing strategies for glioblastoma. The model showed that targeting areas with the highest tumor cell density was more effective than repeated dosing at a single site, underscoring the spatial advantages of computational modeling. The spatial advantages of computational modeling.

Continuum Models

Unlike discrete models like ABM, continuum models use differential equations to represent large-scale behaviors such as nutrient diffusion, fluid dynamics, and cell populations as continuous processes (Figure 3A). 136 These models efficiently simulate tumor-immune interactions on a largescale and offer increased scalability that may be computationally intensive for discrete models. 136 A 3D continuum mixture model representing the tumor as large tissue systems, simulating extravasation, chemotaxis, and immune cell interactions within the TME was developed. 137 The study isolated pre-existing immune cell effects and simulated both pro-tumor and anti-tumor environments. 137 To account for patient-specific tumor characteristics, a multiobjective evolutionary algorithm adjusts radiation dosing based on glioblastoma cell proliferation and diffusion, providing an optimized alternative to standard uniform dosing. A biologically-based continuum model for adult glioblastoma used patient-specific MRI data to simulate untreated tumor growth. 138 The model created virtual controls, enabling physicians to compare the predicted untreated tumor progression with actual therapeutic outcomes. 138

While ABM offers insights into cellular dynamics and heterogeneity, they are more computationally intensive due to increased equation complexity. Conversely, continuum models simplify dynamics using averaged properties, allowing researchers to capture large-scale interactions at lower computational cost.

Hybrid Models

Hybrid models combine discrete approaches like ABM with continuum models to capture detailed cell-cell interactions while still maintaining large spatial coverage. 136 Classical hybrid models often use discrete equations to represent tumor agents and continuous differential equations to capture changes in the TME (Figure 3A). 136 One hybrid model integrated continuous tumor growth with a discrete model of tumor-induced angiogenesis to examine immune cell infiltration under hypoxic conditions, identifying a "normalization window" for antiangiogenic therapy. 139 Another model simulated glioblastoma cell invasion by incorporating cellular phenotypes, the influence of oxygen on cell behavior, and flocking behavior in which cells move collectively in high-density clusters. 140 Hybrid models also address TME heterogeneity and immunotherapy effects. 136 A hybrid model showed that anti-angiogenic and anti-mitotic therapies led to a more heterogenous TME and increased glioblastoma invasiveness. 141 Targeting glioma stem cells (GSCs) and glioma endothelial cells (GECs) was found to be most effective when combined with antiangiogenic and anti-mitotic therapies, supporting a multitargeted approach for improved treatment outcomes.141 Hybrid models offer 2.4 times greater sensitivity and specificity in identifying tumor variants compared to PDX models, highlighting the potential to significantly improve molecular characterization models and preclinical studies in the pediatric population.¹⁴²

Multiscale Modeling

Multiscale modeling simulates tumor behavior across multiple biological levels, including subcellular, cellular, and tissue scales (Figure 3B). 143 The subcellular scale encompasses processes like DNA synthesis, the cellular scale captures interactions between cells and the tumor microenvironment, and the tissue scale addresses larger phenomena such as nutrient diffusion and metastasis. 143 This separation allows researchers to investigate how changes at each level may influence tumor growth and therapeutic response.¹⁴³ A 3D multiscale model of adult glioblastoma growth showed that GSCs receive positive feedback from vascular endothelial cells, promoting tumor growth and VEGF production.¹⁴⁴ Disrupting this crosstalk reduced tumor volume by 77% and may offer an alternative to traditional antiangiogenic therapy. 144 A single cell-based multiscale model of brain tumors simulated vascular tumor growth to investigate the role of angiogenesis in drug resistance. 145 The researchers modeled glioma growth under VEGFR inhibition, revealing how tumors respond to combined EGFR and VEGFR inhibition and identifying co-administration as a strategy to maximize tumor suppression.¹⁴⁵ A recent multiscale ABM of adult glioblastoma examined how gene mutations and angiogenesis influence tumor growth and drug resistance during tyrosine kinase inhibitor treatment. Although the therapy initially limited tumor growth, early mutations and close proximity to blood vessels eventually promoted tumor proliferation and resistance. 146

Computational Models and High-Throughput Data Integration

By isolating individual cells to examine gene expression at the single-cell level, scRNA-seq enables researchers to map cellular heterogeneity within the TME and identify tumor subpopulations (Figure 4A).147 In adult glioblastoma, transcriptomes were compared to those of normal fetal brain cells, revealing that tumor cells originate from a glial progenitor and retain conserved neurodevelopmental gene programs. 148 Comparative studies showed lower immune cell infiltration and greater myeloid heterogeneity in pediatric gliomas versus adult gliomas, highlighting differences that can be exploited in future immunotherapy.44 Multi-omic profiling of H3-K27M DMG tumors across different locations and age groups revealed the presence of OPC-like cells and the absence of neuronal-like cells in both pediatric and adult tumors. MES-like cells were also found to increase with age, correlating with TME differences, such as increased microglia pediatric DMGs and increased macrophages in adult DMGs.149

scRNA-seq also holds strong potential for identifying novel targets for future immunotherapies. 150 One study

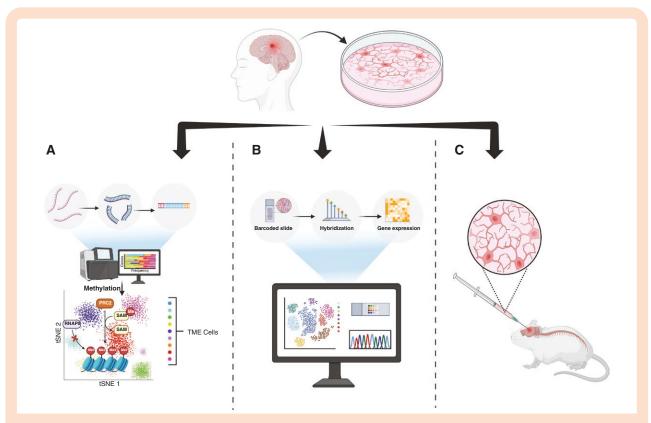


Figure 4. Techniques for Tumor Modeling and Microenvironment Analysis. (A) RNA Sequencing for Tumor Analysis: Tumor cells are collected from the patient, and RNA is isolated and converted into complementary DNA (cDNA). After adaptor ligation, the cDNA fragments are sequenced using next-generation sequencing technology. The resulting data may then be visualized through t-distributed stochastic neighbor embedding (t-SNE)172, a statistical method that maps high dimensional data into two or three dimensions for analysis. t-SNE shows different colors representing various types of TME cells. This analysis helps identify and categorize the diverse cellular components within the tumor microenvironment. (B) Spatial Transcriptomics for Tumor Analysis: Tumor sections are placed on barcoded slides that capture spatial information of RNA transcripts. Following hybridization, gene expression profiles are generated and analyzed to visualize the spatial organization of cell populations within the TME. (C) Xenografting for Tumor Modeling: Tumor cells are extracted from the patient, cultured in a petri dish, and subsequently injected into mice. This process enables researchers to study tumor progression and potential therapies in vivo. Created in BioRender. Kumar, K. (2025) https://BioRender.com/sbdlr21.

identified cancer-specific exons as potential targets of CAR T cells in pediatric brain tumors, categorizing the targets as either tier 1 or tier 2 based on minimal or increased expression, respectively.¹⁵¹ An analysis of the heterogeneity of immune cells from adult gliomas identified five myeloid subtype gene signatures that function as independent indicators of patient survival and found that phenotype differences among myeloid cells in the TME significantly influence cell-to-cell communication.¹⁵⁰ Applications of scRNA-seq have further expanded into lineage tracing, leading to the development of computational systems like ClonMapper, which integrates scRNA-seg with DNA barcoding to characterize clones within heterogeneous cancer populations and identify high survivorship clones that dominate post-chemotherapy treatment.¹⁵² scRNAseq has the ability to understand TME composition, tracking tumor evolution, and identifying pathways critical for tumor cell survival. 153

While scRNA seq provides insight into tumor heterogeneity, it is limited in its ability to capture the complex spatial organization of a tumor and the TME. 154 Spatial transcriptomics has recently emerged as a powerful

method to address this by preserving the spatial architecture of a tumor sample while profiling gene expression (Figure 4B).¹⁵⁴ Researchers can perform spatial transcriptomic profiling across all genes or apply targeted gene panels associated with specific cell types of biological pathways to improve tumor-specific analysis and immune profiling.¹⁵⁵ Glioma cells are known to cluster into spatially distinct niches with unique cellular components that influence tumor growth and therapeutic response, making spatial characterization a valuable addition that is missing in traditional scRNA-seq analyses. 156 Spatial profiling of DMG and glioblastoma identified four distinct spatial niches including hypoxic niche, vascular niche, invasive edge, and tumor core that may inform region-specific therapies.¹⁵⁶ Additionally, researchers found enrichment of radial-glial-like cells in the invasive niche in both DMG and glioblastoma samples, supporting their potential role in tumor invasion.¹⁵⁶ Spatial transcriptomics of pHGGs revealed dominance of the tumor immune microenvironment by immunosuppressive myeloid cells with reduced CD8 T cell proximity, offering novel insights into immune cell spatial dynamics.¹⁵⁷ Spatial transcriptomic analysis of pHGGs confirmed their immunologically cold nature by demonstrating < 0.5% T cell detection within tissue samples.¹⁵⁸ By preserving spatial context, the study revealed age-specific clustering and distinct proportions of myeloid cell types compared to adult HGGs, enabling high-resolution mapping of immune cell niches within and beyond the tumor core.¹⁵⁸

Mathematical and computational modeling play a crucial role in advancing our understanding of tumor biology and subcellular processes. Integrating computational data with in vivo models allows researchers to validate computational findings and confirm therapeutic targets identified through these models.

Patient-Derived Xenograft (PDX) and Genetically Engineered Models (GEM)

PDX models are considered one of the most effective preclinical models for evaluating anti-cancer therapies and drug-resistance mechanisms.¹⁵⁹ A key feature of PDX models is their ability to preserve the unique heterogeneity of the TME.¹⁵⁹To develop PDX models, a sample of either a primary or metastatic tumors is implanted into immunodeficient mice, preserving the morphology and architecture of the original tumor (**Figure 4C**). To prevent rejection, PDX models are usually created with immunocompromised mice.¹⁶⁰

PDX models are a widely utilized tool to understand tumor biology and tumor therapy due to its ability to precisely preserve the structure of the TME.¹⁶¹ Specifically, their ability to maintain high tumor heterogeneity, gene expression, and mutations makes it ideal for biomarker evaluation.¹⁵⁹ Many studies have highlighted its efficacy in pediatric brain tumor research.¹⁶² PDX models of pediatric DMG have been generated from stereotactic biopsies taken at diagnosis, successfully capturing key features of DMG, including its infiltrative nature, lack of tumor mass, and expression of the characteristic H3-K27M mutation.¹⁶³ High-throughput screening in PDX models of pHGGs found that in vitro results could predict in vivo responses to PI3K/mTOR and MEK pathway inhibitors.¹⁶⁴

The Children's Brain Tumor Network has developed a library of over 150 preclinical models, including cell lines and PDXs, to support pediatric brain tumor research. 165 These models contain molecular data, including wholegenome sequencing and RNA-seq, and have been utilized by over 50 research projects internationally. 165 While PDX models offer insight into tumor heterogeneity and therapeutic response, their use in immunocompromised mice limits their ability to model the immune microenvironment and tumor-immune interactions, which are both critical components of the TME. 166 Newer approaches include humanized mouse models, which use human cell-engrafted immunodeficient mice to simulate human immune responses, and syngeneic models, which implant tumors into immunocompetent mice to better assess tumorimmune interactions and the tumor microenvironment.¹⁶¹

Genetically engineered models (GEM) offer critical insight into pediatric glioma genesis by deliberate induction

of tumorigenic genomic alterations within an immunocompetent host, allowing researchers to study tumor-immune cell interactions and the influence of genetic drivers on the TME.¹⁶⁷ One widely used system is the replicationcompetent avian sarcoma-leukosis virus long terminal repeat with splice acceptor/tumor virus A (RCAS/tv-a) model in which the RCAS virus selectively delivers oncogenes into cells expressing the tv-a receptor. 127 The RCAS vector's limited penetration enables a low number of cells to uptake the target gene, enabling a close representation of events early in tumorigenesis. 127 In utero electroporation represents another approach in which oncogenic plasmids are delivered into the brains of developing mouse embryos and electroporated into neural progenitor cells, allowing for the study of glioma formation during normal brain development. 127 Another model widely used for pediatric gliomas is the Sleeping Beauty (SB) transposon delivery model in which DNA plasmids containing oncogenes are injected into cells using the SB transposase, allowing for controlled gene expression and identification of genetic drivers. 168

Discussion

The landscape of immunotherapy for pediatric gliomas is evolving based on the unique biological and immunological features that set them apart from their adult counterparts. Pediatric tumors exhibit an immunologically "cold" TME characterized by a low mutational burden, a limited presence of neoantigens, and decreased immune cell infiltration. These properties diminish the efficacy of immunotherapies that leverage immune functions, such as checkpoint inhibitors or CAR T-cell therapy. Cellular components within the TME also differ in pediatric populations. TAMs play divergent roles in pediatric versus adult gliomas, and while adult gliomas frequently exploit PD-L1mediated immune evasion, PD-L1 expression is low in pediatric gliomas. Furthermore, distinct epigenetic profiles, such as the H3K27M mutation and differing progenitor pathways, underscore the developmental origins of pediatric gliomas.

These findings question reliance on adult glioma research and highlight the need for pediatric-specific models and trials to develop age-appropriate immunotherapies. Barriers to conducting pediatric-specific clinical trials include recruitment difficulties, limited cohort sizes, and the need for child-specific tumor banks. Integrating highthroughput -omic technologies and advanced computational modeling presents a promising alternative to address these gaps. We emphasize these methods to highlight their underutilization in pediatric gliomas, with the hope that future researchers will adopt them. Among the current immunotherapy clinical trials in pediatric brain tumors, oncolytic viruses such as DNX-2401 and PVSRIPO have demonstrated promising early results and further advancement in the clinical trials process as compared to CART and neoantigen vaccine therapies. This suggests that viral-based therapies may be uniquely equipped to penetrate the immunosuppressive TME of pediatric gliomas. Computational modeling can be leveraged to further refine delivery methods, optimize dosing schedules, and predict the synergistic effects of combining across therapy types. Barriers to current immunotherapies, including penetrating the blood-brain barrier and the lack of neoantigen presentation can be overcome by creating spatial visualizations of the TME and modeling discrete cellular characters to identify therapeutic targets and weaknesses in the TMEs defenses that can be exploited. These strategies provide researchers with ways to bypass clinical trial limitations while advancing pediatric tumor therapies. Computational virtual models of pediatric brain tumors, validated with clinical imaging, could serve as surrogates for therapeutic testing.

While this study provides insights into the potential of computational modeling for pediatric gliomas, there are some limitations. The underutilization of these models in pediatric gliomas has limited the scope of current findings by relying on adult glioma data and data extrapolated from non-CNS tumors. Lack of integration between models and clinical data hinders translation of predictions into effective therapies. Another important constraint is the limited number of pediatric-specific clinical trials and datasets, which may restrict the generalizability of our findings across diverse patient populations. Future research efforts should incorporate more pediatric-specific datasets and developing computational models that integrate agespecific tumor biology. Despite limitations, this article advances understanding of the TME in pediatric gliomas and underscores the potential of computational modeling. Integrating in silico and in vivo approaches may enable patient-specific interventions and guide age-specific therapies to improve outcomes.

Keywords:

computational modeling | immunotherapy | pediatric glioma | tumor microenvironment.

Funding

This work was supported by start-up funds from the Department of Neurosurgery, Dell Medical School, The University of Texas at Austin awarded to K.K.K.

Conflict of interest statement. The authors have no conflict of interest to declare.

Affiliations

Department of Neurosurgery, The University of Texas at Austin, Dell Medical School, Austin, TX, USA (C.A., L.N., C.S.B., A.F., P.M., K.S., K.K.K.); UT Health Austin Pediatric Neurosciences, Dell Children's Medical Center, Austin, TX, USA (K.K.K.)

References

- Thorbinson C, Kilday JP. Childhood Malignant Brain Tumors: Balancing the Bench and Bedside. Cancers. 2021;13(23):6099.
- Patel T, Singh G, Goswami P. Recent updates in pediatric diffuse glioma classification: insights and conclusions from the WHO 5th edition. J Med Life. 2024;17(7):665–670.
- Dandapath I, Chakraborty R, Kaur K, et al. Molecular alterations of lowgrade gliomas in young patients: Strategies and platforms for routine evaluation. *Neurooncol. Pract.*. 2021;8(6):652–661.
- Toader C, Eva L, Costea D, et al. Low-grade gliomas: histological subtypes, molecular mechanisms, and treatment strategies. *Brain Sci.* 2023;13(12):1700.
- Cacciotti C, Tabori U, Hawkins C, Bennett J. Targeting the RAS/MAPK pathway in children with glioma. J Neurooncol. 2025;171(2):265–277.
- AlRayahi J, Alwalid O, Mubarak W, Maaz AUR, Mifsud W. Pediatric brain tumors in the molecular era: updates for the radiologist. Semin Roentgenol. 2023;58(1):47–66.
- Vanan MI, Eisenstat DD. Management of high-grade gliomas in the pediatric patient: past, present, and future. *Neurooncol. Pract.*. 2014;1(4):145–157.
- 8. Hatoum R, Chen JS, Lavergne P, et al. Extent of tumor resection and survival in pediatric patients with high-grade gliomas: a systematic review and meta-analysis. *JAMA Netw Open.* 2022;5(8):e2226551.
- Major N, Patel NA, Bennett J, et al. The current state of radiotherapy for pediatric brain tumors: an overview of post-radiotherapy neurocognitive decline and outcomes. J Pers Med. 2022;12(7):1050.
- Lassaletta A, Zapotocky M, Bouffet E. Chemotherapy in pediatric lowgrade gliomas (PLGG). Childs Nerv Syst. 2024;40(10):3229–3239.
- Gottardo NG, Gajjar A. Chemotherapy for malignant brain tumors of childhood. J Child Neurol. 2008;23(10):1149–1159.
- Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921–R925.
- Wang Q, Shao X, Zhang Y, et al. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023;12(10):11149–11165.
- Pathania AS. Immune microenvironment in childhood cancers: characteristics and therapeutic challenges. Cancers. 2024;16(12):2201.
- **15.** Yasinjan F, Xing Y, Geng H, et al. Immunotherapy: a promising approach for glioma treatment. *Front Immunol*. 2023;14:1255611.
- Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. *Cell Mol Immunol*. 2024;21(12):1354–1375.
- Yu JC, Khodadadi H, Malik A, et al. Innate immunity of neonates and infants. Front Immunol. 2018:9.
- Byer L, Kline C, Mueller S. Clinical trials in pediatric neuro-oncology: what is missing and how we can improve. CNS Oncol. 2016;5(4):233–239.
- Foss A, Pathania M. Pediatric glioma models provide insights into tumor development and future therapeutic strategies. *Dev Neurosci*. 2024;46(1):22–43.
- **20.** Rumberger Rivera L, Springer NL, Bailey K, et al. Opportunities in the translational pipeline for pediatric brain cancer therapies. *Pediatr Res.* 2025.
- Organisation mondiale de la santé, Centre international de recherche sur le cancer, eds. Central Nervous System Tumours. 5th ed. Lyon: International Agency for Research on Cancer; 2021.
- **22.** Gillard AG, Shin DH, Hampton LA, et al. Targeting innate immunity in glioma therapy. *Int J Mol Sci* . 2024;25(2):947.
- Hu A, Sun L, Lin H, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther. 2024;9(1).

- 24. Haase S, Banerjee K, Hartlage CS, et al. H3.3-G34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models. *J Clin Invest*. 2022;132(22):e154229.
- Najem H, Lea ST, Tripathi S, et al. STING agonist 8803 reprograms the immune microenvironment and increases survival in preclinical models of glioblastoma. J Clin Invest. 2024;134(12):e175033.
- Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol.J Hematol Oncol. 2021;14(1):176.
- Deng S, Zhu S, Qiao Y, et al. Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma. *Protein Cell*. 2014;5(12):899–911.
- Petitprez F, Meylan M, De Reyniès A, Sautès-Fridman C, Fridman WH.
 The tumor microenvironment in the response to immune checkpoint blockade therapies. Front Immunol. 2020:11:784.
- Levine AB, Nobre L, Das A, et al. Immuno-oncologic profiling of pediatric brain tumors reveals major clinical significance of the tumor immune microenvironment. Nat Commun. 2024;15(1):5790.
- Messiaen J, Jacobs SA, De Smet F. The tumor micro-environment in pediatric glioma: friend or foe? Front Immunol. 2023;14:1227126.
- Sarantopoulos A, Ene C, Aquilanti E. Therapeutic approaches to modulate the immune microenvironment in gliomas. npj Precis Oncol. 2024;8(1):241.
- Khan F, Pang L, Dunterman M, et al. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J Clin Invest. 2023;133(1):e163446.
- Chen Z, Feng X, Herting CJ, et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. *Cancer Res.* 2017;77(9):2266–2278.
- 34. Hao NB, Lü MH, Fan YH, et al. Macrophages in tumor microenvironments and the progression of tumors. *Clin Dev Immunol*. 2012;2012(1):1–11.
- Hao NB, Lü MH, Fan YH, et al. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;2012(1):948098.
- Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090.
- Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. *Prog Neurobiol*. 2015;131:65–86.
- Hallam S, Escorcio-Correia M, Soper R, Schultheiss A, Hagemann T. Activated macrophages in the tumour microenvironment—dancing to the tune of TLR and NF-κB. J Pathol. 2009;219(2):143–152.
- Frederico SC, Sharma N, Darling C, et al. Myeloid cells as potential targets for immunotherapy in pediatric gliomas. Front Pediatr. 2024;12:1346493.
- Zhang X, Zhao L, Zhang H, et al. The immunosuppressive microenvironment and immunotherapy in human glioblastoma. Front Immunol. 2022;13:1003651.
- Pu Y, Ji Q. Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 2022;13:874589.
- Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 2022;13:888713.
- Engler JR, Robinson AE, Smirnov I, et al. Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. *PLoS One*. 2012;7(8):e43339.
- Cao L, Xie W, Ma W, et al. The unique immune ecosystems in pediatric brain tumors: integrating single-cell and bulk RNA-sequencing. Front Immunol. 2023;14:1238684.
- Griesinger AM, Birks DK, Donson AM, et al. Characterization of distinct immunophenotypes across pediatric brain tumor types. *J Immunol*. 2013;191(9):4880–4888.

- Waziri A, Killory B, Ogden AT, et al. Preferential in situ CD4+CD56+ T cell activation and expansion within human glioblastoma. *J Immunol*. 2008;180(11):7673–7680.
- Lin H, Liu C, Hu A, et al. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol. 2024;17(1):31.
- Robinson MH, Vasquez J, Kaushal A, et al. Subtype and gradedependent spatial heterogeneity of T-cell infiltration in pediatric glioma. *J ImmunoTher Cancer*. 2020;8(2):e001066.
- Lieberman NAP, DeGolier K, Kovar HM, et al. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy. Neuro-Oncology. 2019;21(1):83–94.
- Plant AS, Koyama S, Sinai C, et al. Immunophenotyping of pediatric brain tumors: correlating immune infiltrate with histology, mutational load, and survival and assessing clonal T cell response. *J Neurooncol*. 2018;137(2):269–278.
- 51. Lin X, Kang K, Chen P, et al. Regulatory mechanisms of PD-1/PD-L1 in cancers. *Mol Cancer*. 2024;23(1):108.
- Litak J, Grajkowska W, Szumiło J, et al. PD-L1 expression correlated with p53 expression in pediatric glioblastoma multiforme. *Brain Sci.* 2021;11(2):262.
- Zhang L, Zhang B, Dou Z, et al. Immune checkpoint-associated locations of diffuse gliomas comparing pediatric with adult patients based on voxel-wise analysis. Front Immunol. 2021;12:582594.
- 54. Jiacheng D, Jiayue C, Ying G, et al. Research progress and challenges of the PD-1/PD-L1 axis in gliomas. *Cell Biosci*. 2024;14(1):123.
- Aggarwal P, Luo W, Pehlivan KC, et al. Pediatric versus adult high grade glioma: immunotherapeutic and genomic considerations. Front Immunol. 2022;13:1038096.
- **56.** Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. *Nat Rev Cancer*. 2014;14(10):651–661.
- Abedalthagafi M, Mobark N, Al-Rashed M, AlHarbi M. Epigenomics and immunotherapeutic advances in pediatric brain tumors. *npj Precis Oncol*. 2021;5(1):34.
- Jones C, Karajannis MA, Jones DTW, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. *Neuro-Oncol.* 2017;19(2):now101.
- Jones C, Karajannis MA, Jones DTW, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. *Neuro-Oncol.* 2016;19(2):153–161.
- Suri V, Das P, Jain A, et al. Pediatric glioblastomas: a histopathological and molecular genetic study. *Neuro-Oncology*. 2009;11(3):274–280.
- Neftel C, Laffy J, Filbin MG, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835–849.e21.
- **62.** Alcantara Llaguno SR, Parada LF. Cell of origin of glioma: biological and clinical implications. *Br J Cancer.* 2016;115(12):1445–1450.
- **63.** Jessa S, Blanchet-Cohen A, Krug B, et al. Stalled developmental programs at the root of pediatric brain tumors. *Nat Genet*. 2019;51(12):1702–1713.
- Okonechnikov K, Joshi P, Sepp M, et al. Mapping pediatric brain tumors to their origins in the developing cerebellum. *Neuro-Oncology*. 2023;25(10):1895–1909.
- Liu I, Alencastro Veiga Cruzeiro G, Bjerke L, et al. GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant. *Cancer Cell*. 2024;42(9):1528–1548. e17.
- 66. Williams EA, Brastianos PK, Wakimoto H, et al. A comprehensive genomic study of 390 H3F3A-mutant pediatric and adult diffuse high-grade gliomas, CNS WHO grade 4. Acta Neuropathol (Berl). 2023;146(3):515–525.

- Chen CCL, Deshmukh S, Jessa S, et al. Histone H3.3G34-mutant interneuron progenitors Co-opt PDGFRA for gliomagenesis. *Cell*. 2020;183(6):1617–1633.e22.
- 68. Pearson AD, Mueller S, Filbin MG, et al. Paediatric strategy forum for medicinal product development in diffuse midline gliomas in children and adolescents ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer. 2025;217:115230.
- Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174(3):561–569.
- Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the Pd-1 immunoinhibitory receptor by a Novel B7 family member leads to negative regulation of lymphocyte activation. *J Exp Med.* 2000;192(7):1027–1034.
- Kythreotou A, Siddique A, Mauri FA, Bower M, Pinato DJ. PD-L1. J Clin Pathol. 2018;71(3):189–194.
- Long AH, Morgenstern DA, Leruste A, Bourdeaut F, Davis KL. Checkpoint immunotherapy in pediatrics: here, gone, and back again. Am Soc Clin Oncol Educ Book. 2022;42:781–794.
- Blumenthal DT, Yalon M, Vainer GW, et al. Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors. J Neurooncol. 2016;129(3):453–460.
- Das A, Sudhaman S, Morgenstern D, et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. *Nat Med.* 2022;28(1):125–135.
- Dunkel IJ, Doz F, Foreman NK, et al. Nivolumab with or without ipilimumab in pediatric patients with high-grade CNS malignancies: safety, efficacy, biomarker, and pharmacokinetics—CheckMate 908. Neuro-Oncology. 2023;25(8):1530–1545.
- **76.** Ausejo-Mauleon I, Labiano S, de la Nava D, et al. TIM-3 blockade in diffuse intrinsic pontine glioma models promotes tumor regression and antitumor immune memory. *Cancer Cell*. 2023;41(11):1911–1926.e8.
- 77. Munn DH, Mellor AL. IDO in the tumor microenvironment: in-flammation, counter-regulation, and tolerance. *Trends Immunol.* 2016;37(3):193–207.
- Johnson TS, MacDonald TJ, Pacholczyk R, et al. Indoximod-based chemo-immunotherapy for pediatric brain tumors: a first-in-children phase I trial. Neuro-Oncology. 2024;26(2):348–361.
- Lin YJ, Mashouf LA, Lim M. CAR T cell therapy in primary brain tumors: current investigations and the future. Front Immunol. 2022;13:817296.
- Akhavan D, Alizadeh D, Wang D, et al. CAR T cells for brain tumors: lessons learned and road ahead. *Immunol Rev.* 2019;290(1):60–84.
- **81.** Jayaraman J, Mellody MP, Hou AJ, et al. CAR-T design: elements and their synergistic function. *EBioMedicine*. 2020;58:102931.
- Ismail FS, Gallus M, Meuth SG, et al. Current and future roles of chimeric antigen receptor T-cell therapy in neurology: a review. *JAMA Neurol.* 2025;82(1):93–103.
- Hong JJ, Rosenberg SA, Dudley ME, et al. Successful treatment of melanoma brain metastases with adoptive cell therapy. *Clin Cancer Res.* 2010;16(19):4892–4898.
- 84. Haydar D, Houke H, Chiang J, et al. Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. *Neuro-Oncology*. 2021;23(6):999–1011.
- **85.** Guo X, Chang M, Wang Y, Xing B, Ma W. B7-H3 in brain malignancies: immunology and immunotherapy. *Int J Biol Sci.* 2023;19(12):3762–3780.
- **86.** Tang X, Zhao S, Zhang Y, et al. B7-H3 as a Novel CAR-T therapeutic target for glioblastoma. *Mol Ther Oncolytics*. 2019;14:279–287.
- Mount CW, Majzner RG, Sundaresh S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. *Nat Med*. 2018;24(5):572–579.

- Majzner RG, Ramakrishna S, Yeom KW, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. *Nature*. 2022;603(7903):934–941.
- 89. Rao P, Furst L, Meyran D, et al. Advances in CAR T cell immunotherapy for paediatric brain tumours. *Front Oncol.* 2022;12:873722.
- Wang SS, Davenport AJ, Iliopoulos M, et al. HER2 chimeric antigen receptor T cell immunotherapy is an effective treatment for diffuse intrinsic pontine glioma. *Neurooncol. Adv.*. 2023;5(1).
- Karschnia P, Dietrich J. Neurological complications of CAR T cell therapy for cancers. Nat Rev Neurol. 2025;21:422–431.
- 92. O'Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. *Sci Transl Med.* 2017;9(399):eaaa0984.
- Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. *Neuro-Oncology*. 2018;20(4):506–518.
- Bagley SJ, Logun M, Fraietta JA, et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13R₀2 in recurrent glioblastoma: phase 1 trial interim results. *Nat Med.* 2024;30(5):1320–1329.
- 95. Bagley SJ, Desai AS, Fraietta JA, et al. Intracerebroventricular bivalent CAR T cells targeting EGFR and IL-13Ro2 in recurrent glioblastoma: a phase 1 trial. *Nat Med.* 2025;31(8):2778–2787.
- Choi BD, Gerstner ER, Frigault MJ, et al. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N Engl J Med. 2024;390(14):1290–1298.
- 97. Van Den Bent MJ, Geurts M, French PJ, et al. Primary brain tumours in adults. *Lancet (London, England)*. 2023;402(10412):1564–1579.
- Olsen HE, Lynn GM, Valdes PA, et al. Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies. Neurooncol. Adv. 2021;3(1):vdab027.
- Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. *Immunity*. 2008;29(3):319–324.
- Landi D, Archer G, Driscoll T, et al. EPCT-13. CMV PP65 RNA-pulsed dendritic cell vaccines for pediatric glioblastoma medulloblastoma: phase I trial results. Neuro-Oncol. 2020;22(Supplement _3):iii306—iii306.
- Bernstock JD, Vicario N, Li R, et al. Safety and efficacy of oncolytic HSV-1 G207 inoculated into the cerebellum of mice. *Cancer Gene Ther.* 2020;27(3-4):246–255.
- 102. Pollack IF, Jakacki RI, Butterfield LH, et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. *J Clin Oncol*. 2014;32(19):2050–2058.
- Grassl N, Poschke I, Lindner K, et al. A H3K27M-targeted vaccine in adults with diffuse midline glioma. Nat Med. 2023;29(10):2586–2592.
- 104. Mendez-Gomez HR, DeVries A, Castillo P, et al. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell. 2024;187(10):2521–2535.e21.
- 105. Chheda ZS, Kohanbash G, Okada K, et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2018;215(1):141–157.
- 106. Friedman GK, Johnston JM, Bag AK, et al. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med. 2021;384(17):1613–1622.
- Martínez-Vélez N, Garcia-Moure M, Marigil M, et al. The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. *Nat Commun.* 2019;10(1):2235.
- 108. Ruano D, López-Martín JA, Moreno L, et al. First-in-human, first-in-child trial of autologous MSCs carrying the oncolytic virus lcovir-5 in patients with advanced tumors. *Mol Ther*. 2020;28(4):1033–1042.

- **109.** Thompson EM, Landi D, Brown MC, et al. Recombinant polio—rhinovirus immunotherapy for recurrent paediatric high-grade glioma: a phase 1b trial. *Lancet Child Adolesc Health*. 2023;7(7):471–478.
- 110. Schuelke MR, Gundelach JH, Coffey M, et al. Phase I trial of sargramostim/pelareorep therapy in pediatric patients with recurrent or refractory high-grade brain tumors. *Neurooncol. Adv.*. 2022;4(1):vdac085.
- Ghajar-Rahimi G, Kang KD, Totsch SK, et al. Clinical advances in oncolytic virotherapy for pediatric brain tumors. *Pharmacol Ther.* 2022;239:108193.
- Rechberger JS, Toll SA, Biswas S, et al. Advances in the repurposing and blood-brain barrier penetrance of drugs in pediatric brain tumors. *Cancers*. 2025;17(3):439.
- Filley AC, Dey M. Immune system, friend or foe of oncolytic virotherapy? Front Oncol. 2017:7:106.
- Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. *Nat Neurosci.* 2016;19(1):20–27.
- Stratoulias V, Venero JL, Tremblay M, Joseph B. Microglial subtypes: diversity within the microglial community. EMBO J. 2019;38(17):e101997.
- du Chatinier A, Velilla IQ, Meel MH, et al. Microglia in pediatric brain tumors: The missing link to successful immunotherapy. *Cell Rep Med*. 2023;4(11):101246.
- Keane L, Cheray M, Blomgren K, Joseph B. Multifaceted microglia key players in primary brain tumour heterogeneity. *Nat Rev Neurol*. 2021;17(4):243–259.
- Bruschi M, Grill J, Guerrini-Rousseau L. Pediatric brain tumors as a developmental disease. Curr Opin Oncol. 2021;33(6):608–614.
- Cheray M, Joseph B. Epigenetics control microglia plasticity. Front Cell Neurosci. 2018;12:243.
- Shibuya Y, Kumar KK, Mader MMD, et al. Treatment of a genetic brain disease by CNS-wide microglia replacement. Sci Transl Med. 2022;14(636):eabl9945.
- Mader MMD, Napole A, Wu D, et al. Myeloid cell replacement is neuroprotective in chronic experimental autoimmune encephalomyelitis. Nat Neurosci. 2024;27(5):901–912.
- 122. Wu SY. The roles of microglia macrophages in tumor progression of brain cancer and metastatic disease. Front Biosci. 2017;22(10):1805–1829.
- Neophytou CM, Pierides C, Christodoulou MI, et al. The role of tumorassociated myeloid cells in modulating cancer therapy. Front Oncol. 2020;10:899.
- **124.** Chen X, Zhao Y, Huang Y, et al. TREM2 promotes glioma progression and angiogenesis mediated by microglia/brain macrophages. *Glia*. 2023;71(11):2679–2695.
- Hutzen B, Ghonime M, Lee J, et al. Immunotherapeutic Challenges for Pediatric Cancers. Mol Ther Oncolytics. 2019;15:38–48.
- **126.** Reyes-Aldasoro CC. Modelling the tumour microenvironment, but what exactly do we mean by "Model?". *Cancers*. 2023;15(15):3796.
- **127.** Grigore FN, Yang SJ, Chen CC, Koga T. Pioneering models of pediatric brain tumors. *Neoplasia*. 2023;36:100859.
- **128.** Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. *Front Bioeng Biotechnol.* 2016;4:12.
- 129. Mongeon B, Hébert-Doutreloux J, Surendran A, et al. Spatial computational modelling illuminates the role of the tumour microenvironment for treating glioblastoma with immunotherapies. npj Syst Biol Appl. 2024;10(1):91.
- Wang Z, Butner JD, Kerketta R, Cristini V, Deisboeck TS. Simulating cancer growth with multiscale agent-based modeling. Semin Cancer Biol. 2015;30:70–78.

- Weerasinghe HN, Burrage PM, Jr, Nicolau DV, Burrage K. Agent-based modeling for the tumor microenvironment (TME). *Math Biosci Eng.* 2024;21(11):7621–7647.
- Cogno N, Axenie C, Bauer R, Vavourakis V. Agent-based modeling in cancer biomedicine: applications and tools for calibration and validation. *Cancer Biol Ther.* 2024;25(1):2344600.
- Weerasinghe HN, Burrage PM, Adamatzky A, Nicolau DV. Agent-based modelling to study protocognition abilities of the tumour microenvironment (TME). AIP Conf Proc. 2022;2425(1):390007.
- 134. Surendran A, Jenner AL, Karimi E, et al. Agent-based modelling reveals the role of the tumor microenvironment on the short-term success of combination temozolomide/immune checkpoint blockade to treat glioblastoma. J Pharmacol Exp Ther. 2023;387(1):66–77.
- 135. Storey KM, Jackson TL. An agent-based model of combination oncolytic viral therapy and anti-PD-1 immunotherapy reveals the importance of spatial location when treating glioblastoma. *Cancers*. 2021;13(21):5314.
- Singh D, Paquin D. Modeling free tumor growth: discrete, continuum, and hybrid approaches to interpreting cancer development. *Math Biosci Eng.* 2024;21(7):6659–6693.
- **137.** Goodin DA, Frieboes HB. Evaluation of innate and adaptive immune system interactions in the tumor microenvironment via a 3D continuum model. *J Theor Biol.* 2023;559:111383.
- 138. Wang CH, Rockhill JK, Mrugala M, et al. Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. *Cancer Res*. 2009;69(23):9133–9140.
- 139. Hadjigeorgiou AG, Stylianopoulos T. Hybrid model of tumor growth, angiogenesis and immune response yields strategies to improve antiangiogenic therapy. Npj Biol Phys Mech. 2024;1(1):4.
- 140. Saucedo-Mora L, Sanz MA, Montáns FJ, Benítez JM. A simple agent-based hybrid model to simulate the biophysics of glioblastoma multiforme cells and the concomitant evolution of the oxygen field. Comput Methods Programs Biomed. 2024;246:108046.
- 141. Yan H, Romero-López M, Benitez LI, et al. 3D mathematical modeling of glioblastoma suggests that transdifferentiated vascular endothelial cells mediate resistance to current standard-of-care therapy. *Cancer Res*. 2017;77(15):4171–4184.
- 142. Hampton OA, Gundry MC, Kogiso M, et al. Abstract 3841: a hybrid mapping approach improves genomic and transcriptomic analysis of patient derived orthotropic xenograft (PDOX) models of pediatric CNS tumors. Cancer Res. 2017;77(13_Supplement):3841–3841.
- 143. Deisboeck TS, Wang Z, Macklin P, Cristini V. Multiscale cancer modeling. *Annu Rev Biomed Eng.* 2011;13:127–155.
- 144. Yan H, Romero-Lopez M, Frieboes HB, Hughes CCW, Lowengrub JS. Multiscale modeling of glioblastoma suggests that the partial disruption of vessel/cancer stem cell crosstalk can promote tumor regression without increasing invasiveness. *IEEE Trans Biomed Eng.* 2016;1(3):1–1.
- 145. Liang W, Zheng Y, Zhang J, Sun X. Multiscale modeling reveals angiogenesis-induced drug resistance in brain tumors and predicts a synergistic drug combination targeting EGFR and VEGFR pathways. BMC Bioinf. 2019;20(S7):203.
- 146. Yang H, Lin H, Sun X. Multiscale modeling of drug resistance in glioblastoma with gene mutations and angiogenesis. *Comput Struct Biotechnol J.* 2023;21:5285–5295.
- 147. Saliba AE, Westermann AJ, Gorski SA, Vogel J. Single-cell RNA-seq: advances and future challenges. *Nucleic Acids Res.* 2014;42(14):8845–8860.
- 148. Couturier CP, Ayyadhury S, Le PU, et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun. 2020;11(1):3406.

- 149. Liu I, Jiang L, Samuelsson ER, et al. The landscape of tumor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age and location. *Nat Genet*. 2022;54(12):1881–1894.
- 150. Abdelfattah N, Kumar P, Wang C, et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat Commun. 2022;13(1):767.
- 151. Shaw TI, Wagner J, Tian L, et al. Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression. *Nat Commun*. 2024;15(1):3732.
- 152. Gutierrez C, Al'Khafaji AM, Brenner E, et al. Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. *Nat Cancer*. 2021;2(7):758–772.
- Tirosh I, Suvà ML. Dissecting human gliomas by single-cell RNA sequencing. Neuro-Oncology. 2018;20(1):37–43.
- 154. Shireman JM, Cheng L, Goel A, et al. Spatial transcriptomics in glioblastoma: is knowing the right zip code the key to the next therapeutic breakthrough? Front Oncol. 2023;13:1266397.
- Zhang Y, Petukhov V, Biederstedt E, et al. Gene panel selection for targeted spatial transcriptomics. Genome Biol. 2024;25(1):35.
- 156. Ren Y, Huang Z, Zhou L, et al. Spatial transcriptomics reveals nichespecific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas. *Nat Commun*. 2023;14(1):1028
- 157. Van Den Broek TJM, Hoogendijk R, Kranendonk MEG, et al. Single-cell spatial analysis of pediatric high-grade glioma reveals a novel population of SPP1+/GPNMB+myeloid cells with immunosuppressive and tumor-promoting capabilities. *Neuro-Oncol Pediatr.* 2025;1(1):wuaf002.doi:10.1101/2025.03.18.643953
- 158. LaBelle JJ, Haase RD, Beck A, et al. Dissecting the immune landscape in pediatric high-grade glioma reveals cell state changes under therapeutic pressure. Cell Rep Med. 2025;6(5):102095.
- 159. Abdolahi S, Ghazvinian Z, Muhammadnejad S, et al. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med. 2022;20(1):206.

- Liu Y, Wu W, Cai C, et al. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther. 2023;8(1):160.
- Jin J, Yoshimura K, Sewastjanow-Silva M, Song S, Ajani JA. Challenges and prospects of patient-derived xenografts for cancer research. *Cancers*. 2023;15(17):4352.
- 162. Marques Da Costa ME, Zaidi S, Scoazec JY, et al. A biobank of pediatric patient-derived-xenograft models in cancer precision medicine trial MAPPYACTS for relapsed and refractory tumors. *Commun Biol.* 2023;6(1):949.
- **163.** Plessier A, Le Dret L, Varlet P, et al. New *in vivo* avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis. *Oncotarget*. 2017;8(32):52543–52559.
- 164. He C, Xu K, Zhu X, et al. Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. *Nat Commun.* 2021;12(1):4089.
- 165. Lilly JV, Rokita JL, Mason JL, et al. The children's brain tumor network (CBTN) Accelerating research in pediatric central nervous system tumors through collaboration and open science. *Neoplasia*. 2023;35:100846.
- 166. Haddad AF, Young JS, Amara D, et al. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. *Neurooncol. Adv.*. 2021;3(1):vdab100.
- 167. Kanvinde PP, Malla AP, Connolly NP, et al. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia. 2021;69(9): 2059–2076.
- 168. Garcia-Fabiani MB, Comba A, Kadiyala P, et al. Isolation and characterization of immune cells from the tumor microenvironment of genetically engineered pediatric high-grade glioma models using the sleeping beauty transposon system. In: *Methods in Enzymology*. Vol. 632. Cambridge, MA: Academic Press; 2020:369–388. doi:10.1016/bs.mie.2019.05.023