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DNA methylation profiling has emerged as a transformative tool in the diagnosis

and classification of central nervous system (CNS) tumors. Traditional

approaches like histology, immunohistochemistry, and targeted molecular

testing cannot fully capture the biological and clinical diversity of these

neoplasms. In contrast, genome-wide methylation analysis provides highly

reproducible epigenetic “fingerprints” that reflect both lineage and oncogenic

alterations, enabling objective tumor classification, refinement of existing

categories, and discovery of novel entities. This comprehensive review

summarizes the principles of DNA methylation, available platforms, and the

application of methylation-based classifiers across major CNS tumor groups,

including diffuse gliomas, medulloblastomas, ependymomas, and meningiomas.

We highlight how methylation profiling complements other molecular

techniques by simultaneously generating copy number profiles and promoter

methylation data, consolidating multiple diagnostic assays into a single platform.

Practical considerations such as tissue quality, bioinformatic pipelines,

interpretation thresholds, and cost are addressed, as are comparisons with

sequencing, RNA expression, and immunohistochemistry. Finally, we explore

future directions, including nanopore-based rapid testing, liquid biopsy, and

artificial intelligence, which promise to extend the reach and clinical utility of

methylation profiling. Collectively, these advances are establishing DNA

methylation analysis as a cornerstone of precision neuropathology, aligning

diagnostic and prognostic assessment with tumor biology to improve

patient care.
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Introduction

The diagnosis of central nervous system (CNS) tumors has

traditionally relied on microscopic evaluation of histological

features, supported by immunohistochemistry and, more recently,

targeted molecular assays (1). While these methods remain

indispensable, it has become increasingly evident that histology

alone cannot fully capture the biological diversity of CNS tumors

(2). Tumors that appear identical under the microscope may differ

profoundly in clinical behavior, prognosis, and therapeutic response

(2). Likewise, morphologically distinct tumors may share a common

molecular basis (3). Among the tools now available, DNA

methylation profiling has emerged as one of the most

transformative (4). DNA methylation is an epigenetic modification

that regulates gene expression and reflects both the cell of origin and

the genetic alterations driving tumor development (5). Each CNS

tumor type, and often each subtype, carries a characteristic

“methylation fingerprint” (6). These methylation signatures are

highly reproducible, stable across time, and measurable on a

genome-wide scale (7). The relevance of this approach extends

beyond improving diagnostic accuracy (8). DNA methylation

profiling has revealed new subgroups within established tumor

categories, clarified the boundaries between overlapping entities,

and even uncovered entirely novel tumor types (9). It has also

contributed valuable prognostic insights, as certain methylation

patterns correlate with clinical outcomes more strongly than

histological grade alone (10). In this way, methylation analysis not

only strengthens diagnosis but also enhances risk stratification

and guides patient management (10). Importantly, methylation

profiling does not stand in isolation but forms part of an integrated

diagnostic framework (11). Rather than replacing histology,

immunohistochemistry, or genetic testing, it complements them,

bringing an additional dimension that ties morphological and

molecular features together (12). This integrated approach improves

diagnostic confidence, reduces inter-observer variability, and provides

clinicians with a more reliable basis for treatment decisions (12). As

the field evolves, methylation profiling is steadily moving from

research into routine diagnostics (13). Its application is particularly

impactful in cases where morphology is ambiguous, available tissue is

limited, or standard molecular tests are inconclusive (14).

While methylation arrays can generate estimates of MGMT

promoter methylation and genome-wide copy-number profiles,

cIMPACT-NOW Update 9 emphasizes that these outputs must

be interpreted cautiously (15). Array-derived MGMT status can be

supportive of clinical decision-making but requires internal

laboratory validation against established methods (e.g.,

pyrosequencing) due to variability in probe performance, bisulfite

conversion efficiency, and algorithmic thresholds (16). Similarly,

copy-number profiles derived from array intensities provide

valuable contextual information—such as broad chromosomal

gains/losses or focal events—but should not replace dedicated

clinical-grade CNV assays unless validated locally (17).

Both MGMT methylation calls and CNV plots are particularly

vulnerable to compromised sample quality (18). Low tumor cell
Frontiers in Oncology 02
content, extensive necrosis, or high inflammatory background can

reduce probe detection rates and distort signal intensities, leading to

underestimation of methylation levels or unreliable segmentation of

copy-number states (19).

This review provides a comprehensive overview of the role of

DNA methylation profiling in neuropathological tumor diagnosis.

We will outline the principles underlying this approach, its clinical

applications across major CNS tumor categories, comparisons with

other molecular diagnostic methods, and the practical

considerations involved in its use. Finally, we will discuss current

limitations and future directions, highlighting how epigenomic

profiling is shaping a new era of precision neuropathology.
Fundamentals of DNA methylation

DNA methylation is the covalent addition of a methyl group

(CH3) to cytosine bases, typically within CpG dinucleotides (20).

Clusters of CpG sites, or CpG islands, often occur in gene promoter

regions where their methylation status strongly influences

transcription (21). Promoter hypermethylation is usually linked to

gene silencing, while gene-body methylation has more nuanced

effects (22). As a normal epigenetic mechanism, methylation

regulates embryonic development, X-chromosome inactivation,

and genomic imprinting (23). Each cell type carries a distinctive

methylation landscape reflecting its lineage and state of

differentiation (24).

In cancer, characteristic alterations arise such as the widespread

hypomethylation that contributes to genomic instability, or focal

promoter hypermethylation which silences tumor suppressor genes

(25, 26). Importantly, tumors also retain lineage-specific

methylation signatures from their cell of origin (27). The

resulting composite profile, part developmental imprint, part

oncogenic alteration, is highly robust, even in formalin-fixed

paraffin-embedded tissue, making it a reliable diagnostic

biomarker (28). For instance, IDH-mutant diffuse gliomas display

the CpG island methylator phenotype (G-CIMP), while

medulloblastomas, ependymomas, and meningiomas exhibit

distinct methylome patterns tied to their biology (29). These

tumor-specific epigenetic fingerprints often correlate more closely

with behavior and prognosis than morphology alone (30).

In addition to intrinsic tumor and lineage-specific epigenetic

features, the methylation profile generated by array-based platforms

also reflects the contribution of non-neoplastic cells within the

tumor microenvironment (31). Tumors with substantial immune

infiltration, such as those enriched with macrophages, microglia, or

lymphocytes, often display composite methylation signatures

influenced by these cell populations, and this can shape how the

classifier algorithm assigns them to a methylation class (32). These

microenvironment-derived methylation patterns are particularly

relevant in high-grade tumors with robust inflammatory

components and underscore the importance of interpreting

methylation results in the context of tumor purity and histologic

background (33).
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Genome-wide methylation profiling in clinical practice is most

often performed using microarrays (34). Tumor DNA is bisulfite-

treated, converting unmethylated cytosines to uracil while leaving

methylated cytosines intact, then hybridized to platforms such as

the Illumina HumanMethylation450 or EPIC 850K arrays (35).

These measure methylation at hundreds of thousands of CpG sites

spanning promoters, gene bodies, and regulatory elements enriched

for cancer-relevant loci (36). Data are generated as quantitative b-
values and analyzed bioinformatically to generate a tumor-specific

methylation profile (37). Alternative methods such as targeted

bisulfite sequencing or whole-genome bisulfite sequencing offer

higher resolution but remain less practical for routine use (38).

Arrays currently represent the best balance of coverage (~1–3% of

CpGs) and cost-effectiveness in diagnostics (39). Since the

introduction of the Illumina HumanMethylation450 (450K) array,

methylation microarray technology has undergone two major

updates aimed at expanding genomic coverage and improving

assay performance. The first transition replaced the 450K with the

MethylationEPIC v1 (EPIC 850K) array, which added >350,000

CpG loci enriched for enhancers and regulatory elements, while

maintaining broad backward compatibility with 450K-derived

datasets and classification frameworks (40). The most recent

iteration, the MethylationEPIC v2 (MEP v2) array, has further

refined probe chemistry, redistributed low-performing probes, and

improved representation of regulatory elements, while preserving

backward compatibility emphasized in cIMPACT-NOW Update 9

(41). This continuity allows laboratories to integrate new data with

historical 450K and EPIC v1 datasets and ensures ongoing

compatibility with widely used classifiers.

From a practical standpoint, cIMPACT-NOW 9 highlights the

importance of adequate DNA input, particularly for FFPE tissue

(15). While manufacturers may specify lower minimum amounts,

most diagnostic laboratories recommend ≥100 ng of high-quality

bisulfite-converted DNA to ensure robust signal performance,

sufficient probe detection rates, and reliable copy-number output,

especially in samples with variable FFPE preservation (42).

In addition to traditional bisulfite-based methods, several next-

generation enzymatic methylation sequencing platforms have

recently emerged. New England Biolabs’ Enzymatic Methyl-seq

(EM-seq) replaces bisulfite conversion with an enzymatic

oxidation/protection strategy that preserves DNA integrity,

enabling more accurate and less fragmented genome-wide

methylation profiling (43). Illumina’s 5-base sequencing

chemistry similarly allows simultaneous detection of methylated

cytosines and standard base substitutions during whole-genome

sequencing, providing an integrated readout of both epigenetic and

genetic alterations (44). These platforms represent an important

evolution in methylation technology and are likely to become

increasingly relevant as sequencing-based assays gain traction in

clinical molecular pathology.

Table 1 summarizes the major platforms currently used for

DNA methylation profiling in neuropathology, highlighting their

coverage, sample requirements, turnaround times, advantages,

and limitations.
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Principles of methylation-based tumor
classification

The most widely used algorithm for CNS tumor methylation

classification is the DKFZ/Heidelberg Molecular Neuropathology

(MNP) classifier, originally developed at the German Cancer

Research Center (DKFZ) and Heidelberg University. The current

clinical implementation of this classifier—now commercialized

through Heidelberg Epignostix—has expanded considerably

beyond the initial training cohort of approximately 2,800

reference cases, incorporating many thousands of additional well-

annotated tumors from both adult and pediatric populations (doi:

10.1101/2025.05.28.25328344). This expanded dataset has further

refined class boundaries, improved calibration behavior, and

strengthened the classifier’s ability to resolve rare or previously

ambiguous entities”.

“Recent advancements have also focused on extending the

versatility of methylation-based classification across platforms and

biospecimen types. Notably, the MNP-Flex model (doi: 10.1038/

s41591-025-03562-5) enables platform-agnostic methylation

profiling, allowing reliable class assignment from data generated

by different array designs and sequencing-based methylation assays.

Additional parallel developments include classifier frameworks

established at St. Jude Children’s Research Hospital (doi: 10.1038/

s41698-024-00718-3) and the NCI Laboratory of Pathology’s

Methylscape environment, both of which provide alternative

structures for CNS tumor classification, benchmarking, and

visualization. These complementary resources collectively broaden

the diagnostic and research applicability of methylation-based

tumor profiling.

Each CNS tumor type, defined by lineage and key genetic

drivers, exhibits a characteristic DNA methylation signature (45).

Comparing a tumor’s methylation profile to large reference datasets

enables objective assignment of class or subtype (46). The seminal

DKFZ classifier assembled a reference library of >2,800 brain

tumors spanning 82 methylation classes, covering most

recognized entities and several novel ones (6). Unsupervised

clustering of these references showed that histologically defined

tumors generally segregate into discrete epigenetic clusters (47).

Some clusters map one-to-one to WHO entities (Category 1),

others reveal molecularly distinct subgroups within single entities

(Category 2, e.g., ependymoma or medulloblastoma subtypes), and

still others merge previously separate pathologies or define entirely

new tumor groups (48).

Operationally, the classifier uses a Random Forest model

trained on these reference classes and returns calibrated scores

reflecting the probability of membership in each class (49). A single

top class typically emerges; scores ≥0.90 are considered confident

matches (50). Intermediate scores (≈0.5–0.89) indicate uncertainty

or support only a broader assignment to a methylation class family

(MCF), for example, families encompassing multiple glioblastoma

subclasses or medulloblastoma subtypes, so results can still be

informative when sibling subclasses are difficult to distinguish

(18, 51). Earlier versions of the classifier (e.g., v11b4 in the 2018
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validation study) suggested an exploratory cutoff of 0.84; however,

current practice and cIMPACT-NOW Update 9 endorse a ≥0.90

calibrated score as the general benchmark for high-confidence class

assignment. Scores below ~0.5 are generally deemed unclassifiable

and may reflect either truly novel biology absent from the reference

set or suboptimal sample quality (13).

Importantly, cIMPACT-NOW Update 9 emphasizes that

calibrated classifier scores exist on a continuum rather than

representing a binary ‘match’ or ‘no-match’ outcome (15).

Subthreshold scores, particularly those within a relevant

methylation class family, may still meaningfully support a

diagnosis when histology, immunophenotype, and molecular

findings are concordant (15). Thus, classifier results should be

interpreted within an integrated framework rather than rejected

solely because the calibrated value falls slightly below a

numerical threshold.

Different classifier implementations are currently in use,

including the DKFZ/Heidelberg classifier (e.g., versions 11b4

through 12.8) and the NCI/Bethesda classifier, each with

distinct training sets and class structures (52). Laboratories should

specify which classifier version was applied, as updates may refine

class boundaries, introduce new entities, or recalibrate

probability estimates.
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Current clinical practice follows classifier-specific interpretation

rules. For the Heidelberg/DKFZ MNP classifier (versions 11b4

through 12.x), a calibrated score ≥0.90 is considered a high-

confidence match to a specific methylation class. Scores between

0.50–0.89 support classification only at the methylation class family

level, while scores <0.50 are generally considered non-classifiable. In

contrast, the NCI/Bethesda Methylscape classifier uses a two-level

scoring system requiring both a high super-family score and a

sufficiently high class-level score for a definitive match. Specifically,

the super-family score must exceed the model-defined threshold

(typically ≥0.85), and the class-level score should be ≥0.90 for a

high-confidence call. If the super-family score is high but the class

score falls below threshold, the result should be reported as a super-

family assignment only. Because reporting rules differ between

classifiers, laboratories must follow the interpretation guidelines

of the specific classifier used and should explicitly document

classifier version, score thresholds, and match level (class, family,

or super-family) in the final integrated diagnosis.

As an example:

Histopathology: Posterior fossa tumor with classic ependymoma

morphology (perivascular pseudorosettes) and retained

EMA expression.

Methylation profiling (DKFZ/Heidelberg v12.x classifier):
TABLE 1 Current DNA methylation profiling platforms in neuropathology.

Platform/
method

Coverage of CpGs Typical
sample input

Turnaround
time

Key advantages Limitations/cost

Illumina 450K
BeadChip

~450,000 sites (promoters,
gene bodies, regulatory
elements)

≥250 ng FFPE
DNA

3–7 days Historic clinical use; backbone of early
classifier versions; moderate FFPE
tolerance

Superseded by EPIC arrays;
limited backward compatibility;
reduced performance on highly
fragmented FFPE DNA

Illumina EPIC
850K BeadChip
(EPIC v1)

~850,000 sites (enhanced
regulatory and enhancer
coverage)

≥250 ng FFPE
DNA

3–7 days Expanded genome-wide coverage;
robust compatibility with Heidelberg
classifier (v11–v12.8)

Higher cost than 450K; some
probe dropout in degraded
FFPE samples

Illumina
MethylationEPIC
v2 (MEP v2)

~935,000 sites (updated
probe chemistry; improved
enhancer representation;
reduced cross-reactive
probes)

≥100 ng high-
quality FFPE
DNA (per Update
9
recommendations)

3–7 days Improved probe performance on FFPE;
higher signal-to-noise; improved CNV
reconstruction; designed for backward
compatibility with 450K/EPIC datasets

FFPE quality still critical;
severely necrotic or low-tumor-
content samples may fail QC;
latest array has higher per-
sample cost

Targeted Bisulfite
Sequencing

Custom panels (hundreds–
thousands of CpGs)

10–100 ng DNA 2–5 days High depth at clinically relevant loci
(e.g., MGMT); excellent for low-input
FFPE

Limited genome-wide
information; cannot support
classifier-based diagnostics

Whole-Genome
Bisulfite
Sequencing

>95% of CpGs genome-
wide

≥500 ng high-
quality DNA

Multiple weeks Comprehensive methylome; research
gold standard

Not routine; resource-intensive;
low feasibility for FFPE samples

Oxford
Nanopore/Long-
read Platforms

Genome-wide native
methylation + long-range
CNV

50–250 ng DNA <48 hours Direct methylation detection without
bisulfite conversion; rapid turnaround;
promising for point-of-care diagnostics

Early-stage for clinical CNS use;
variable accuracy; requires local
validation; performance affected
by FFPE fragmentation

NEB Enzymatic
Methyl-seq (EM-
seq)

Genome-wide; comparable
to WGBS with improved
DNA preservation

50–200 ng DNA Several days Enzymatic conversion avoids DNA
degradation; high accuracy; compatible
with FFPE

Higher cost; requires high
sequencing depth

Illumina 5-Base
Whole-Genome
Sequencing

Genome-wide methylation
+ base substitutions (5mC/
5hmC)

≥200 ng high-
quality DNA

Several days to
weeks

Simultaneous methylation + mutation
detection; comprehensive epigenetic/
genetic profiling

Very high sequencing cost;
currently limited clinical
validation
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Fron
• Super-family: Posterior fossa ependymoma family

calibrated score 0.94

• Best-matching class: PFA calibrated score 0.87 (below class-

level match threshold; therefore reported as family-level

match only)

• Integrated diagnosis: Posterior fossa ependymoma, PFA

(family-level methylation support), WHO CNS5 criteria.
Diagnosis is based primarily on histopathologic findings and

supported by methylation profiling and H3K27me3 loss.

Beyond classification, methylation arrays yield genome-wide

copy number variation (CNV) profiles derived from probe

intensities (53). In a single assay, one can detect hallmark

alterations such as the 1p/19q codeletion in oligodendroglioma,

EGFR amplification in glioblastoma, MYCN amplification, or

CDKN2A/B homozygous deletions (54). This CNV layer

complements the class call and adds diagnostic and prognostic

value (e.g., confirming an IDH-mutant tumor with 1p/19q

codeletion as oligodendroglioma) (55). Arrays can also report

promoter methylation at clinically relevant loci, most notably

MGMT in glioblastoma, which informs temozolomide

responsiveness; although often performed by separate assays,

MGMT status can be extracted from array data (56).
cIMPACT-NOW update 9: practical
recommendations for diagnostic use

cIMPACT-NOWUpdate 9 provides detailed guidance on when

and how genome-wide DNA methylation profiling should be

incorporated into clinical neuropathology (15). The update

emphasizes that methylation profiling represents one diagnostic

layer within the WHO/ICCR integrated reporting framework, to be

interpreted alongside histology, immunophenotype, and targeted

molecular testing. Reports should explicitly document the classifier

version, calibrated score, and match level (“match,” “match within

family,” or “no match”), thereby ensuring transparency and

reproducibility across institutions (15).

The update also recommends the use of dimensionality-

reduction visualization tools, such as UMAP or t-SNE,

particularly for borderline or ambiguous cases (57). These plots

allow the queried tumor to be visually compared to reference

clusters, helping assess whether a subthreshold result is

nonetheless topologically consistent with a recognized class or

family (57).

Importantly, cIMPACT-NOW 9 clarifies the relationship

between methylation classes and WHO tumor types, noting that

some classes map directly to WHO entities while others represent

biologically meaningful subgroups or families that require

integration with additional data (see update 9 Tables 1–3) (15).

Thus, classification should not be used in isolation but incorporated

into a layered diagnostic model that clearly communicates the

degree of confidence and any limitations.

A practical workflow aligned with update 9 includes:

1. When to order profiling:
tiers in Oncology 05
• When histopathological findings and/or other molecular

tests (IHC, targeted sequencing, FISH) are ambiguous,

discordant, or insufficient to reach a confident diagnosis.

• When the differential diagnosis includes entities where

methylation profiling provides essential diagnostic or

prognostic stratification (e.g., PFA vs PFB ependymoma,

pediatric-type diffuse high-grade gliomas, rare methylation-

defined CNS tumors).

• When conventional molecular biomarkers are negative,

equivocal, or fail to explain the observed histologic features.
2. How to integrate results into layered reporting:
• Include classifier version (e.g., DKFZ/Heidelberg v12.8,

NCI/Bethesda), calibrated score, match level;

• Add visualization output (UMAP/t-SNE) when results

are borderline;

• Clearly state whether the methylation class corresponds to a

WHO entity or to a broader class family.
3. Management of low-confidence or discordant results:

1. Reassess technical quality and tumor purity.

Low tumor content, FFPE degradation, necrosis, or poor probe

detection can all produce subthreshold classifier scores. Re-

examining the selected tissue block and repeating extraction or

macrodissection is often necessary.

2. Evaluate biological concordance with histology,

immunophenotype, and known driver alterations.

This step is of primary importance. A methylation result—

especially a low-confidence or borderline one—must be interpreted

in light of the tumor’s morphology, IHC profile (e.g., IDH1 R132H,

H3K27me3, SMARCB1), and molecular findings (e.g., IDH mutation,

1p/19q codeletion, ZFTA/YAP1 fusion). Concordance or discordance

here strongly determines the validity of the classifier output.

3. Manually review the CNV profile for consistency with the

suspected entity and other diagnostic data.

CNV plots derived from methylation arrays must be interpreted

manually, as no automated scoring or decision system exists. The goal is

to assess whether observed chromosomal alterations (e.g., 1p/19q

codeletion, +7/–10, CDKN2A/B homozygous deletion, MYCN

amplification) support or contradict the histology and methylation class

family. This is a correlation exercise—not an automated validation step.

4. If discordance persists, report the case transparently as low-

confidence or uncertain.

Following WHO/ICCR layered reporting and cIMPACT-NOW

9, such cases should be documented with explicit mention of which

diagnostic layers are supportive, conflicting, or inconclusive.
Clinical applications in
neuropathology

Diffuse gliomas

Diffuse gliomas comprise adult-type astrocytomas and

oligodendrogliomas, as well as pediatric-type diffuse gliomas (58).
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WHO 2021 stratifies them by key alterations such as IDHmutation,

1p/19q codeletion, and histone mutations (1). Methylation profiling

provides strong support for this framework (59). Adult-type

gliomas segregate into three entities: astrocytoma, IDH-mutant;

oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and

glioblastoma, IDH-wildtype (60). The classifier distinguishes these

with high fidelity, since IDH mutations induce a CpG island

methylator phenotype absent in IDH-wildtype glioblastomas (61).

Oligodendrogliomas form a separate cluster, reinforced by

detection of the 1p/19q codeletion on copy number plots (62).

IDH-mutant astrocytomas often display a “G-CIMP-high” profile,

correlating with favorable prognosis (63). Table 2 summarizes the

characteristic methylation signatures and ancillary genetic

hallmarks of major CNS tumor entities currently defined by the

2021 WHO classification.

In glioblastomas, methylation has revealed biologically distinct

subgroups such as RTK I, RTK II, and Mesenchymal, which parallel

transcriptional subtypes (64). While not yet guiding therapy, these

have prognostic trends and may influence future management (65).

Methylation profiling is particularly useful for identifying IDH-

wildtype tumors that histologically resemble lower-grade

astrocytomas but biologically align with glioblastoma. According
Frontiers in Oncology 06
to WHO CNS5, if methylation profiling and integrated diagnostic

data support a glioblastoma-type methylation class or demonstrate

characteristic glioblastoma-associated molecular alterations, the

tumor should be designated as ‘Glioblastoma, IDH-wildtype,

WHO grade 4,’ rather than ‘Diffuse astrocytic glioma, IDH-

wildtype, with molecular features of glioblastoma.’ The latter

terminology is obsolete and no longer used in contemporary

practice (66). The classifier can also act as a surrogate when

genetic testing is unavailable, though confirmation of critical

mutations remains advisable (66).

In pediatric gliomas, methylation profiling defined entities such

as diffuse midline glioma, H3 K27-altered, and diffuse hemispheric

glioma, H3 G34-mutant (67). It also contributed to delineating the

broader group of pediatric high-grade gliomas, which contain

multiple methylation-based subsets under study (68). Even in

low-grade pediatric gliomas, methylation aids in clarifying

diagnosis (69). For example, distinguishing BRAF fusion positive

diffuse low-grade glioma from more aggressive infant-type

hemispheric gliomas with RTK fusions (70, 71).

Recent methylation analyses have shown that diffuse midline

gliomas, H3K27-altered, segregate into at least two robust

methylation subgroups (DMG-K27A and DMG-K27B), with
TABLE 2 Characteristic methylation signatures of major CNS tumor entities.

Tumor entity (WHO CNS5) Defining methylation features/
subgroups

Correlated copy-number features
(Ancillary)

Astrocytoma, IDH-mutant G-CIMP profile; distinct from oligodendroglioma
cluster

No 1p/19q codeletion; frequent ATRX loss patterns;
occasional chr7 gain/chr10 loss absent

Oligodendroglioma, IDH-mutant, 1p/19q-codeleted Highly stable oligodendroglial methylation cluster Canonical whole-arm 1p/19q codeletion; TERTp-
associated CNV patterns

Glioblastoma, IDH-wildtype RTK I, RTK II, Mesenchymal methylation classes +7/–10 signature; EGFR amp (RTK I); CDKN2A/B
homozygous deletion

Diffuse midline glioma, H3K27-altered Two methylation groups: DMG-K27A and DMG-
K27B

PDGFRA gain (subset); focal 1q gain; absence of IDH
mutation

Pediatric-type diffuse HGG, H3-WT/IDH-WT Multiple methylation subgroups (e.g., RTK1, RTK2,
MES, HPAP) – required for diagnosis per cIMPACT-
NOW 11

PDGFRA/KIT/KDR amplifications (RTK2); broad 1q
gain (HPAP)

Diffuse hemispheric glioma, H3G34-mutant Distinct G34 methylation cluster PDGFRA amp; chr17p loss; chr3q gain

High-grade astrocytoma with piloid features (HGAP) Unique HGAP methylation class between PXA and
HGG

CDKN2A/B deletion frequent

Medulloblastoma, WNT Tight WNT methylation cluster Monosomy 6; CTNNB1 mutation ancillary

Medulloblastoma, SHH SHH methylation cluster; age-related SHH-a/b/g/d
subgrouping

Chr9q loss (subset); MYCN/GLI2 amp

Medulloblastoma, Groups 3 & 4 Robust methylation-defined separation; multiple
intermediate META-subtypes

MYC amp (Group 3); isochromosome 17q (Group 4)

Posterior fossa ependymoma, PFA Hypermethylated PFA cluster; global H3K27me3 loss 1q gain (subset); CXorf67-negative

Posterior fossa ependymoma, PFB Distinct PFB methylation cluster Balanced genomes overall; fewer CNVs

Supratentorial ependymoma, ZFTA-fusion Defined ZFTA methylation class Focal CNVs variable

Supratentorial ependymoma, YAP1-fusion Distinct YAP1 methylation class Few CNVs; predominantly stable

Meningioma (methylation groups) Four reproducible methylation risk classes: benign-1,
benign-2, intermediate, malignant (not WHO entities;
prognostic groups)

NF2 loss (malignant groups); CDKN2A/B loss;
TERTp mutation associated
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distinct developmental and clinical implications (72). These

refinements are not captured by histopathology or single-gene

assays, emphasizing the essential role of methylation profiling for

accurate subclassification.
Medulloblastomas

The application of DNA methylation-based classification to

medulloblastoma exemplifies how epigenomic profiling can

profoundly reshape tumor taxonomy (73). WHO now recognizes

four core molecular subgroups: WNT-activated, SHH-activated

(TP53-wildtype or mutant), Group 3, and Group 4 (74).

Methylation profiling robustly assigns tumors to these subgroups

and consistently outperforms immunohistochemical surrogates (75).

WNT-activated tumors, which frequently harbor CTNNB1

mutations and monosomy 6, form a tight epigenetic cluster and

have an excellent prognosis, supporting treatment de-escalation

strategies (76). SHH-activated tumors, driven by pathway

alterations and further subdivided by TP53 status, demonstrate

variable outcomes; TP53-mutant pediatric SHH tumors in

particular carry a poor prognosis (77). Within the SHH group,

additional methylation-defined subclusters (a–d) capture age-
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related and genetic differences, although these remain

investigational (78).

Group 3 and Group 4 tumors—historically merged under a

single category—were first differentiated by methylation profiling,

which revealed distinct biological and clinical behaviors (79). Group

3 tumors, often characterized by MYC amplification, have the worst

prognosis, whereas Group 4 tumors, frequently associated with

features such as isochromosome 17q, are more common and exhibit

intermediate outcomes (80).

It is important to note that the foundational subdivision of

medulloblastoma into WNT, SHH, Group 3, and Group 4 was

initially established through integrative transcriptomic and copy-

number analyses, particularly via gene-expression array profiling

(81). Subsequent DNA methylation-based classification reproduced

these biologically meaningful subgroups with high fidelity and

provided a more stable, clinically scalable framework for

diagnostic subgroup assignment.
Ependymomas

DNA methylation profiling was central to establishing the

modern molecular taxonomy of ependymomas, enabling the
TABLE 3 Diagnostic vs prognostic utility of methylation profiling.

Tumor/subgroup Diagnostic added value of methylation profiling Prognostic/clinical added value

Astrocytoma, IDH-mutant Confirms G-CIMP methylation profile; differentiates astrocytoma vs
oligodendroglioma when histology/IHC are insufficient

G-CIMP–high associated with better prognosis

Oligodendroglioma, IDH-mutant, 1p/19q-
codeleted

Distinct oligodendroglial methylation class confirms diagnosis when
FISH/NGS results are equivocal

Stable epigenetic class with favorable outcome

Glioblastoma, IDH-WT Distinguishes true GBM from histologically lower-grade IDH-WT
tumors; differentiates RTK I/RTK II/MES methylation classes

Subclasses show outcome trends; CDKN2A/B
loss, EGFRamp correlate with poor prognosis

Diffuse Midline Glioma, H3K27-altered Defines two robust methylation subgroups (DMG-K27A/DMG-
K27B), not distinguishable by histology alone

DMG-K27B associated with inferior survival

Pediatric-type Diffuse High-Grade Glioma,
H3-WT/IDH-WT (cIMPACT-NOW 11)

Diagnosis requires methylation profiling. Separates RTK1, RTK2,
MES, MYCN classes

Prognostic stratification: e.g., RTK2 often poorer
outcome; MYCN class distinct biology

Diffuse Hemispheric Glioma, H3-G34
mutant

Unique methylation class confirming diagnosis when sequencing
ambiguous

Distinct young-adult tumor type with
intermediate outcome

High-grade Astrocytoma with Piloid Features
(HGAP)

Requires methylation profiling to distinguish HGAP from anaplastic
pilocytic astrocytoma or GBM

Prognosis worse than pilocytic astrocytoma

Medulloblastoma – WNT Perfectly delineated methylation class; superior to IHC surrogate
markers

Excellent prognosis, therapy de-escalation

Medulloblastoma – SHH (a/b/g/d) Methylation defines biologically relevant subclusters TP53-mutant SHH has poor prognosis

Medulloblastoma – Groups 3 & 4 Methylation profiling distinguishes these entities and their
intermediate META-subtypes

Group 3: worst prognosis; Group 4: intermediate

Ependymoma – PFA Methylation required to distinguish PFA vs PFB; identifies PFA1/
PFA2

PFA universally worse prognosis vs PFB

Ependymoma – PFB Distinct PFB methylation classes More favorable outcomes

Ependymoma – ZFTA fusion Methylation confirms ZFTA class, important when fusion assays
inconclusive

Distinct biological behavior

Ependymoma – YAP1 fusion Identified by methylation cluster Generally favorable prognosis

Meningioma (methylation risk groups) Methylation grouping outperforms WHO grading for risk prediction Identifies high-risk and benign epigenetic classes
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separation of posterior fossa tumors into the biologically distinct

PFA and PFB groups and redefining several supratentorial

categories (82). In the supratentorial compartment, methylation

distinguished ZFTA fusion–positive tumors from YAP1 fusion–

positive ones, which differ in biology and prognosis (83). In the

posterior fossa, methylation studies identified two major groups:

PFA, hypermethylated and aggressive with H3K27me3 loss, and

PFB, associated with older patients and better outcomes (84). These

cannot be separated reliably by histology, making DNAmethylation

the diagnostic gold standard (84).

It is important to note that the original separation of posterior

fossa ependymomas into the PFA and PFB subgroups was first

identified through transcriptome-based stratification using

expression array profiling (85). Subsequent DNA methylation

profi ling reproduced these two core groups with high

concordance and provided a more robust, reproducible, and

clinically applicable framework for classification (85). This

alignment between expression-based and DNA methylation–

based clustering helped establish PFA and PFB as biologically and

clinically distinct disease entities.

Spinal ependymomas usually show NF2 alterations, but

methylation identified a distinct, aggressive MYCN-amplified

subtype, now a separate WHO entity (86). Importantly,

methylation arrays simultaneously detect fusion status, CNVs,

and subgroup assignment, often resolving diagnostic

ambiguities (87).

DNA methylation profiling is essential for accurately

distinguishing PFA from PFB posterior fossa ependymomas, a

separation that cannot be reliably achieved by histology,

immunohistochemistry, or targeted sequencing alone (88). PFA

tumors show a characteristic hypermethylated profile and loss of

H3K27me3, whereas PFB tumors cluster separately and maintain

H3K27me3 expression (89). However, classifier accuracy is highly

dependent on tumor purity: low-cellularity samples, biopsies with

abundant reactive tissue, or tumors with extensive necrosis

frequently produce subthreshold scores or ambiguous class-family

assignments (90). Furthermore, cIMPACT-NOW Update 11

provides updated diagnostic criteria for both posterior fossa

ependymoma and pediatric-type diffuse high-grade gliomas

(IDH-wt, H3-wt), emphasizing the importance of integrated

molecular–methylation analysis for entities previously categorized

as “NOS” or “NEC” (91).
Meningiomas

Histologic grading has limited predictive power for

meningiomas, as some grade 1 tumors recur aggressively while

others remain indolent (92). Methylation studies have proposed

biologically driven risk groups, now confirmed across multiple

cohorts (93). Classes include benign Merlin-intact tumors with

low recurrence risk, immune-enriched tumors with intermediate

behavior, and proliferative or hypermetabolic tumors with poor
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prognosis (94). These classes align partly with genetic features such

as NF2, CDKN2A/B, and TERT promoter mutations (95).

Methylation-based stratification predicts recurrence more

accurately than histologic grade alone, especially within grade 2

meningiomas, where outcomes vary widely (96). This has major

clinical implications for postoperative management, influencing

decisions regarding surveillance or adjuvant therapy (97). While

not yet formalized in WHO 2021, methylation groups are likely to

be incorporated into future classification systems, given their

superior prognostic performance and therapeutic relevance (15).

Recent studies further demonstrate that methylation-based risk

groups consistently outperform conventional WHO grading in

predicting recurrence, even when adjusting for extent of resection

(96). These risk groups should be interpreted in conjunction with

key molecular alterations, most notably CDKN2A/B homozygous

deletion and TERT promoter mutations, both of which designate

WHO grade 3 irrespective of histology and strongly correlate with

high-risk methylation classes (98).

In addition, cIMPACT-NOW Update 8 reinforces the central

role of DNAmethylation profiling in meningioma classification and

recommends its integration into routine diagnostic practice,

particularly for tumors with borderline histologic features or

discordant clinical behavior (99).
Rare and ambiguous CNS tumors

Methylation profiling is particularly powerful in rare or

diagnostically uncertain tumors (59). Historically vague

categories, such as CNS primitive neuro-ectodermal tumors, have

been redefined through methylome analysis into distinct entities

like CNS neuroblastoma, FOXR2-activated, and CNS tumor with

BCOR internal tandem duplication (100). Similarly, astroblastoma,

MN1-altered, and several pediatric glioneuronal tumors (e.g.,

PLNTY, DGONC) were delineated through methylation-based

clustering (101).

The approach also refined existing categories, as with atypical

teratoid/rhabdoid tumors (AT/RT), where methylation identified

TYR, SHH, and MYC subgroups with different clinical associations

(102). For diagnostically ambiguous or “NOS” cases, methylation

often provides a definitive match, guiding clinical management

(103). Even when no exact class match is achieved, methylation data

can place tumors within a broader family, offering useful diagnostic

direction (104). Importantly, many new CNS tumor types

recognized in WHO 2021 originated from such “no match”

clusters in methylation space, underscoring the method’s role in

discovery as well as diagnosis (6).

Collectively, these examples demonstrate how methylation

profiling not only clarifies histologic diagnosis but also provides

prognostic and sometimes predictive information across tumor

types. Table 3 summarizes the diagnostic and prognostic

contributions of methylation profiling across key CNS

tumor entities.
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Practical considerations in the
diagnostic workflow

Implementing DNA methylation profiling in diagnostic

neuropathology requires attention to technical, logistical, and

interpretive aspects (4). Adequate tissue and DNA quality are

fundamental (4). While methylation arrays can be performed on

Formalin-Fixed Paraffin-Embedded (FFPE) tissue, the DNA must

not be too degraded and should be available in sufficient quantity,

typically >250 ng for the Illumina EPIC 850K array (105). Low

tumor content poses difficulties, as background signal from non-

neoplastic brain or inflammatory cells can obscure the tumor profile

(106). Small biopsies or diffuse gliomas with sparse cellularity are

especially problematic (68). Macrodissection of slides to enrich

tumor tissue is therefore recommended before DNA extraction

(107). Figure 1 provides a simplified overview of where DNA

methylation profiling fits within the broader diagnostic workflow,

illustrating how histopathology, immunohistochemistry, targeted

sequencing, and methylation-based classification are integrated into

routine practice.

The standard workflow includes DNA extraction, bisulfite

conversion, amplification and hybridization to the array, scanning

and data processing, and classification (108). In practice, this takes

3–7 days, with final reports available in 1–2 weeks (108). Some

laboratories batch samples for efficiency, which may introduce

minor delays (109). As a result, methylation profiling generally

informs the finalized diagnostic report and postoperative planning,

rather than intraoperative decisions (110). Efforts are underway to

shorten turnaround times using nanopore sequencing, which can

generate methylation data within hours or days, though this is not

yet routine in clinical laboratories (111).

Cost and availability remain important considerations (112). A

single array test may cost several hundred to over one thousand US

dollars, and not all hospitals have access to on-site facilities (113).

Consequently, many samples are referred to specialized centers (113).

Each array includes probes that monitor bisulfite conversion

efficiency and hybridization quality, and laboratories must ensure

these falls within acceptable limits (114). Batch effects are another

challenge, as running samples at different times or on different array

models can introduce minor variations (115). Although the

classifier is designed to accommodate these, best practice is to run

samples in consistent batches with controls (116). Bioinformatics

support may still be needed for data handling and quality control,

but the Heidelberg and Methylscape classifiers automatically

generate key outputs, including copy-number plots, so manual

CNV computation is generally not required (117). Many centers

have automated pipelines to standardize analysis and reduce

variability (118).

Interpretation of classifier results is essential for determining

whether the DNA methylation profile reliably supports a specific

CNS tumor class and for integrating this information with

morphology, immunohistochemistry, and molecular findings

(119, 120). The output from the DKFZ/Heidelberg Molecular

Neuropathology (MNP) classifier, currently the most widely used

diagnostic tool, is provided as a set of calibrated scores representing
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the confidence of assignment to each reference methylation class

(18). These calibrated scores form a continuum of classifier

confidence rather than a strict binary decision, and their

interpretation requires attention to class-specific thresholds,

match levels, and ancillary data (18). Because subsequent steps in

the diagnostic workflow (including reporting of match level and the

use of score cutoffs) depend directly on this classifier behavior, clear

understanding of the classifier’s output structure is critical (14).

A score ≥0.90 is typically considered a confident assignment,

while scores between 0.5 and 0.89 suggest a possible but less certain

match, often only at the level of a broader methylation class family

(120). Scores below 0.5 are usually regarded as unclassifiable,

possibly indicating novel biology or poor sample quality (18).

Importantly, the relative distribution of scores matters: a top

score of 0.93 with all others near zero provides strong confidence,

whereas similar scores across multiple classes indicate uncertainty

or a tumor with intermediate features (121).

Despite its robustness, classifier output must always be

interpreted within clinical and histopathologic context (122).

Even a high score can occasionally be misleading, especially in

cases with heavy inflammatory infiltration or unusual morphology

(123). The cIMPACT-NOW consortium emphasizes integration,

recommending that methylation findings be reported alongside

histology, immunohistochemistry, and molecular data (15).

Finally, the integration of methylation profiling requires a

multidisciplinary approach. Molecular tumor boards increasingly

review methylation findings in conjunction with genomic and

histopathologic data (124). Pathologists often present classifier

scores, copy number profiles, and clustering results to explain

diagnostic changes to oncologists and neurosurgeons (14). This

collaborative discussion builds confidence in the method and

facilitates clinical translation (14). As experience grows,

methylation profiling is transitioning from a research tool to an

essential diagnostic pillar, particularly for difficult cases and novel

entities (14).
Comparisons with other molecular
diagnostic approaches

DNA methylation profiling is a powerful diagnostic tool that

complements rather than replaces other molecular techniques (59).

Sequencing remains essential for detecting specific mutations such

as IDH1/2, TERT promoter, BRAF V600E or rare fusions, which

drive therapy choices and clinical trial eligibility (125). Methylation

arrays do not directly identify sequence changes but reveal the

downstream epigenetic effects of genetic events and can reclassify

tumors when conventional tests give ambiguous or conflicting

results (126). For example, IDH1 immunostaining and 1p/19q

FISH may suffice for classic oligodendroglioma, but methylation

profiling helps resolve contradictory findings or uncover

unexpected entities such as ependymoma profiles in presumed

glioblastoma (127).

Compared with RNA expression profiling, methylation analysis

is more stable and reproducible, especially in FFPE tissue, and
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provides additional copy number information (128). While

expression data can still be useful for pathway analysis,

methylation has largely replaced expression arrays for CNS tumor

classification, with integrated approaches that combine

methylation, mutation, and expression now under study (6).

Methylation arrays also yield genome-wide copy number plots

with high concordance to traditional cytogenetic techniques,

reliably detecting hallmark alterations such as 1p/19q codeletion,

+7/–10, EGFR amplification, or CDKN2A/B deletion (129). This

often reduces the need for separate FISH or chromosomal

microarray testing, although focal or cryptic alterations may still

require targeted assays (130). Immunohistochemistry, meanwhile,

remains indispensable for rapid, inexpensive detection of protein-

level changes like IDH1 p.R132H, H3K27M, or SMARCB1 loss, but

methylation offers more objective classification and deeper

subclassification when staining is equivocal (131).

Emerging single-cel l and spatial methods promise

unprecedented resolution of intratumoral heterogeneity and

epigenetic diversity but are not yet part of routine diagnostics

(132). Currently, methylation profiling serves as a practical

“broad brush” tool, consolidating classification, copy number

analysis, and some immunohistochemical surrogates in a single
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assay, while sequencing adds precise mutational data (133).

Together these technologies are moving the field toward

integrated molecular neuropathology reports that unite genotype

and epigenotype to guide diagnosis, prognosis, and treatment

planning (129, 130, 132). Table 4 compares methylation profiling

with sequencing panels, RNA expression profiling, and

immunohistochemistry, emphasizing their respective strengths

and limitations in clinical neuropathology.
Practical summary of best-practice
recommendations for diagnostic
methylation profiling

1. Ensure adequate tissue and DNA quality.

Optimal performance of methylation arrays requires sufficient

material and high-quality DNA (134). For EPIC v1 and v2

platforms, at least 100 ng of well-preserved FFPE DNA is

generally recommended, as suboptimal or heavily degraded DNA

is associated with low-confidence classifier outputs (41). Tissue

regions used for extraction should contain a high proportion of
FIGURE 1

Schematic overview of how DNA methylation profiling is implemented in clinical neuropathology. DNMT, DNA methyltransferase; SAM, S-adenosyl-
methionine; MGMT, O-6-methylguanine-DNA methyltransferase; RNA Pol II, RNA polymerase II; Me, methyl group.
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viable tumor cells, ideally 70% or greater, because excessive non-

neoplastic tissue, treatment effect, or necrosis reduces the tumor

signal and undermines both calibrated scores and CNV

profiles (135).

2. Use macrodissection to enhance tumor enrichment.

Guided macrodissection of H&E-marked slides remains a

simple but essential step for ensuring tumor purity (107).

Removing admixed normal brain, vascular tissue, calcifications,

hemorrhage, or necrotic areas helps maintain epigenetic signal

quality and prevents dilution of the tumor-specific profile (136).

In infiltrative gliomas, selecting regions with cytologic atypia or

increased proliferation improves classifier performance and

minimizes the risk of underrepresentation of the neoplastic

component (136).

3. Apply rigorous pre-analytical quality control.

Pre-array quality control measures, including DCt thresholding,
assessment of bisulfite conversion efficiency, and evaluation of DNA

integrity, are crucial for determining whether a sample is suitable

for reliable methylation analysis (134). Poor-quality DNA

frequently leads to subthreshold calibrated scores or

uninterpretable profiles (137). When QC metrics fall below

acceptable levels, repeating the extraction or selecting an

alternative block is preferable to proceeding with technically

inadequate material (138).

4. Select cases thoughtfully to maximize clinical utility.

Methylation profiling should be applied selectively in cases

where it is expected to change diagnostic interpretation (139).

It is most valuable in scenarios where morphology and

immunohistochemistry are ambiguous or conflicting, where

essential molecular biomarkers yield negative or indeterminate

results, or where the differential diagnosis includes pediatric-type

high-grade gliomas, posterior fossa ependymoma subgroups, or

rare and emerging methylation-defined entities such as HGAP,

HPAP, or BCOR-altered tumors (89). Conversely, when a diagnosis

is straightforward based on morphology, immunophenotype, and

targeted sequencing, or when the biopsy is too small or dominated

by necrosis, methylation profiling offers limited benefit and may not

be appropriate (140).

5. Interpret results within a layered and integrated

diagnostic framework.
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Methylation classifier outputs should be interpreted within the

WHO/ICCR layered reporting structure and understood as a

continuum rather than a binary outcome (46). Each report should

specify the classifier version used (for example, Heidelberg v12.8 or

NCI/Bethesda), the calibrated score, and the level of match

achieved, whether “match,” “family match,” or “no-match” (15).

In borderline cases or subthreshold matches, dimensionality-

reduction tools such as UMAP or t-SNE can help visualize

relationships to reference classes (141). Ultimately, the

methylation result must be reconciled with morphology,

immunohistochemistry, targeted sequencing, and tumor location

to achieve a coherent integrated diagnosis (142).

6. Maintain expert neuropathologic oversight.

Despite the increasing diagnostic power of methylation

profiling, expert pathology review remains indispensable (143).

Array results cannot substitute for comprehensive assessment of

histology and ancillary molecular data (143). In cases where the

classifier output conflicts with morphologic or genetic findings, the

final interpretation should prioritize integrated reasoning rather

than a single modality (144). The role of the neuropathologist is

therefore central to ensuring that methylation data complements,

rather than replaces, traditional diagnostic expertise. As summary,

Table 5 presents common pitfalls in methylation profiling and

troubleshooting approaches.

The central role of the neuropathologist in synthesizing

histologic, immunophenotypic, molecular, and methylation data

is outlined in Figure 2.
Future directions

The field of methylation profiling in neuropathology is advancing

rapidly, promising greater diagnostic precision and broader clinical use

(145). As more CNS tumors, including rare and underrepresented

types, are profiled worldwide, reference libraries will expand, enabling

classifiers to add new tumor categories and refine existing groups into

more homogeneous subtypes (146). Larger datasets will also improve

discrimination between closely related entities, provided that new

array- or sequencing-based platforms maintain backward

compatibility with existing data (147).
TABLE 4 Comparison of methylation profiling with other molecular approaches.

Feature Methylation profiling Sequencing panels RNA expression Immunohistochemistry

Primary Data Epigenetic signature (CpG b-
values) + CNV

DNA mutations/fusions Gene expression levels Protein expression

Sample Stability High in FFPE High Moderate (RNA degradation) High

Scope Genome-wide classification +
CNV + promoter methylation

Targeted mutations/fusions Pathway activity/subtypes Single protein targets

Turnaround Time 1–2 weeks (arrays) 5–10 days Variable Hours–days

Key Strength Objective tumor class
assignment

Direct mutational status for
therapy

Pathway insights Rapid, inexpensive screening

Key Limitation Cannot call mutations directly Limited to panel content Less reproducible in FFPE Surrogates may be equivocal
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Emerging sequencing-based methylation technologies are likely

to broaden the diagnostic utility of methylation profiling in the near

future. Enzymatic Methyl-seq (EM-seq), by avoiding bisulfite-

induced DNA damage, offers higher-quality data from FFPE

samples and may become a preferred approach for genome-wide
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methylation profiling (148). As these technologies mature and

undergo clinical validation, they may provide a unified workflow

for comprehensive molecular diagnostics.

While methylation arrays remain the current standard,

sequencing approaches are gaining momentum (149). Whole-
TABLE 5 Common pitfalls in methylation profiling and troubleshooting approaches.

Pitfall Impact on result How to recognize It Recommended
troubleshooting

Low Tumor Purity Low calibrated scores, “no-match,”
distorted CNV profile

Failure of expected markers; widespread
flat CNV

Repeat macrodissection; use a block
with higher tumor content; consider
complementary NGS

Poor DNA Quality/Degradation Failed bisulfite conversion; high DCt;
array failure

QC warnings; high failure probes Re-extract DNA; choose alternative
block; avoid heavily necrotic tissue

Batch Effects Shifts in UMAP/t-SNE position leading
to false “family match”

Sample clusters away from expected
class

Ensure uniform processing; include
controls; interpret with pathologic
features

Classifier Version Mismatch Inconsistent results compared to prior
cases

Reported version differs (e.g., v12.5 vs
v12.8)

Always document classifier version; re-
run with most current release

Overreliance on Single Modalities Misclassification, especially in
borderline scores

Discordance with histology/IHC Integrate morphology + IHC + NGS;
treat classifier as one diagnostic layer

Small Biopsies/Limited Tissue Non-diagnostic output; low DNA Often high background noise Reserve methylation profiling for cases
where sufficient tissue is available

Unusual Entities Not in Classifier “No-match” or ambiguous placement Low or intermediate calibrated score Consult emerging-entity literature; use
WHO/ICCR layered reporting
FIGURE 2

Practical diagnostic workflow illustrating how histopathology, immunohistochemistry, targeted molecular testing, and DNA methylation profiling are
combined in routine neuropathology practice.
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genome bisulfite sequencing offers comprehensive coverage but is

resource-intensive, whereas reduced-representation or targeted

bisulfite sequencing may provide efficient coverage of key CpGs

(150). Long-read platforms such as Oxford Nanopore can directly

detect methylation without bisulfite conversion, potentially

integrating methylation class, copy number, and mutational data

within 24–48 hours (151). With falling costs and more mature

bioinformatics pipelines, sequencing-based methylation may

supplant arrays over the next decade (152).

Liquid biopsy is another frontier (153). Because each tumor

class exhibits a distinctive methylation signature, sensitive assays

applied to plasma or cerebrospinal fluid could allow diagnosis

without surgical biopsy and enable non-invasive monitoring

(154). Early studies in gliomas and medulloblastomas show that

CSF-derived DNA can be classified successfully, particularly

valuable for high-risk lesions such as diffuse midline gliomas,

although detecting low-abundance tumor DNA remains

challenging (155).

Moreover, Deep-learning models trained on routine H&E slides

already predict some mutations and could be extended to infer

methylation classes directly from morphology, offering rapid triage

or screening (156). Beyond reproducing current classifiers, AI may

identify novel prognostic methylation features and integrate them

into digital pathology workflows to enhance precision (157).

Finally, methylation-defined subgroups open opportunities for

therapeutic stratification (158). Epigenetically defined glioblastoma

or medulloblastoma subtypes may respond differently to targeted or

immune therapies, just as MGMT promoter methylation predicts

temozolomide response (159). The success of CNS classifiers is

spurring development in other tumor systems, including pediatric

sarcomas, renal tumors, and nerve-sheath tumors, with the longer-

term goal of pan-cancer methylation classifiers that can pinpoint

tissue of origin or distinguish primary CNS tumors from

metastases (6).
Conclusions

DNA methylation profiling has transformed neuropathological

diagnosis by providing an objective and reproducible method for

classifying CNS tumors. Unique epigenetic signatures now define

more than a hundred tumor types; many incorporated into WHO

classifications. This approach improves diagnostic accuracy,

clarifies ambiguous cases, and enhances prognostic stratification,

with clear benefits shown in gliomas, medulloblastomas,

ependymomas, and meningiomas. Its greatest strength lies in an

integrated framework, where methylation complements histology,

immunohistochemistry, and sequencing. Beyond classification,

arrays deliver valuable ancillary data such as copy number and

promoter methylation, consolidating multiple analyses into one.

Methylation profiling occupies a distinct niche: it does not replace

mutation testing or rapid immunohistochemistry, but it provides a
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genome-wide epigenetic context that unifies diverse findings into a

coherent diagnosis. Looking forward, advances in sequencing,

liquid biopsy, and AI will expand its speed, accessibility, and

clinical relevance. Ultimately, methylation profiling is establishing

itself as a core pillar of precision neuropathology, aligning diagnosis

and prognosis with tumor biology to improve patient care.
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Domıńguez R, Alcántara-Domıńguez C, et al. Transcriptomics and epigenomics
datasets of primary brain cancers in formalin-fixed paraffin embedded format. Sci
Data. (2025) 12:273. doi: 10.1038/s41597-025-04597-6

137. Hellicar AD, Rahman A, Smith DV, Henshall JM. Machine learning approach
for pooled DNA sample calibration. BMC Bioinf. (2015) 16:214. doi: 10.1186/s12859-
015-0593-1

138. Haake J, Steenpass L. Chromosomal quality control in hPSCs: A practical guide
to SNP array analysis with GenomeStudio. Front Cell Dev Biol. (2025) 13:1599923.
doi: 10.3389/fcell.2025.1599923

139. Barros-Silva D, Marques CJ, Henrique R, Jerónimo C. Profiling DNA
Methylation Based on Next-Generation Sequencing Approaches: New Insights and
Clinical Applications. Genes (Bsl). (2018) 9:429. doi: 10.3390/genes9090429

140. Uhl C, Ayoub N, Faust K, Vajkoczy P, Schweizer L, Radke J, et al. DNA
methylation-based profiling is an effective asset for identification of tumors in
suspected, yet immunohistochemically, unspecified neuro-oncological cases. Brain
Spine. (2025) 5:104256. doi: 10.1016/j.bas.2025.104256

141. Dorrity MW, Saunders LM, Queitsch C, Fields S, Trapnell C. Dimensionality
reduction by UMAP to visualize physical and genetic interactions. Nat Commun.
(2020) 11:1537. doi: 10.1038/s41467-020-15351-4
frontiersin.org

https://doi.org/10.1200/JCO.21.00784
https://doi.org/10.1093/neuonc/noae236
https://doi.org/10.1186/s40478-024-01739-6
https://doi.org/10.3390/biomedicines12102256
https://doi.org/10.1093/neuonc/noae170
https://doi.org/10.1016/j.cell.2016.01.015
https://doi.org/10.3389/fnmol.2024.1268038
https://doi.org/10.1093/neuonc/noz235
https://doi.org/10.1093/neuonc/noab227
https://doi.org/10.2217/epi.13.26
https://doi.org/10.1080/15592294.2022.2051861
https://doi.org/10.1080/15592294.2022.2051861
https://doi.org/10.1186/s12987-025-00618-z
https://doi.org/10.3791/62961-v
https://doi.org/10.1186/s12935-024-03405-2
https://doi.org/10.1080/15592294.2023.2230686
https://doi.org/10.1080/15592294.2023.2230686
https://doi.org/10.1097/SLA.0000000000003935
https://doi.org/10.1097/SLA.0000000000003935
https://doi.org/10.1002/mco2.316
https://doi.org/10.1002/mco2.316
https://doi.org/10.1186/s12864-024-10605-7
https://doi.org/10.1001/jamainternmed.2013.232
https://doi.org/10.1101/gr.095190.109
https://doi.org/10.1186/s12859-020-03559-6
https://doi.org/10.1016/j.csbj.2022.08.022
https://doi.org/10.3390/genes15081036
https://doi.org/10.1186/s12864-015-1376-9
https://doi.org/10.1186/s12935-019-0900-4
https://doi.org/10.1111/nan.12610
https://doi.org/10.1111/nan.12610
https://doi.org/10.1073/pnas.0910140107
https://doi.org/10.1073/pnas.0910140107
https://doi.org/10.1016/j.csbj.2024.12.033
https://doi.org/10.17712/nsj.2024.3.20230108
https://doi.org/10.1093/noajnl/vdad076
https://doi.org/10.14791/btrt.2023.0036
https://doi.org/10.1186/s13059-025-03650-2
https://doi.org/10.1007/s11060-023-04250-5
https://doi.org/10.1016/j.jmoldx.2015.02.002
https://doi.org/10.1016/j.jmoldx.2015.02.002
https://doi.org/10.1186/s13073-025-01427-7
https://doi.org/10.1055/s-0036-1584306
https://doi.org/10.1007/s11060-024-04897-8
https://doi.org/10.1007/s11060-024-04897-8
https://doi.org/10.1097/HS9.0000000000000734
https://doi.org/10.1097/PAS.0b013e3181a1ef36
https://doi.org/10.1097/PAS.0b013e3181a1ef36
https://doi.org/10.3390/biology5010003
https://doi.org/10.18632/oncotarget.17199
https://doi.org/10.1038/s41597-025-04597-6
https://doi.org/10.1186/s12859-015-0593-1
https://doi.org/10.1186/s12859-015-0593-1
https://doi.org/10.3389/fcell.2025.1599923
https://doi.org/10.3390/genes9090429
https://doi.org/10.1016/j.bas.2025.104256
https://doi.org/10.1038/s41467-020-15351-4
https://doi.org/10.3389/fonc.2025.1720458
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Al Sharie et al. 10.3389/fonc.2025.1720458
142. Handoko H, Susanto E, Aman RA, Aninditha T, Wibowo H, Permata TBM,
et al. Conserved methylation signature accurately predicts heavily irradiated CNS
tumour with perplexing histopathology: A case report. BioMed Rep. (2025) 23:165.
doi: 10.3892/br.2025.2043

143. Aref-Eshghi E, Abadi AB, Farhadieh ME, Hooshmand A, Ghasemi F,
Youssefian L, et al. DNA methylation and machine learning: challenges and
perspective toward enhanced clinical diagnostics. Clin Epigenet. (2025) 17:170.
doi: 10.1186/s13148-025-01967-0

144. Abugabah A, Shukla PK, Shukla PK, Pandey A. An intelligent healthcare
system for rare disease diagnosis utilizing electronic health records based on a
knowledge-guided multimodal transformer framework. BioDat Min. (2025) 18:70.
doi: 10.1186/s13040-025-00487-0

145. Bertero L, Mangherini L, Ricci AA, Cassoni P, Sahm F. Molecular
neuropathology: an essential and evolving toolbox for the diagnosis and clinical
management of central nervous system tumors. Virchows Arch. (2024) 484:181–94.
doi: 10.1007/s00428-023-03632-4

146. Mittelbronn M. Neurooncology: 2023 update. Free Neuropathol. (2023) 4:4.
doi: 10.17879/freeneuropathology-2023-4692

147. Yassi M, Chatterjee A, Parry M. Application of deep learning in cancer
epigenetics through DNA methylation analysis. Brief Bioinform. (2023) 24:bbad411.
doi: 10.1093/bib/bbad411

148. Yang Y, Wen X, Wang L. Advancements in DNAmethylation technologies and
their application in cancer diagnosis. Epigenetics. (2025) 20:2539995. doi: 10.1080/
15592294.2025.2539995

149. Sahoo K, Sundararajan V. Methods in DNA methylation array dataset
analysis: A review. Comput Struct Biotechnol J. (2024) 23:2304–25. doi: 10.1016/
j.csbj.2024.05.015

150. Masser DR, Stanford DR, Hadad N, Giles CB, Wren JD, Sonntag WE, et al.
Bisulfite oligonucleotide-capture sequencing for targeted base- and strand-specific
absolute 5-methylcytosine quantitation. Ag (Dordr). (2016) 38:49. doi: 10.1007/
s11357-016-9914-1
Frontiers in Oncology 17
151. Liu Y, Rosikiewicz W, Pan Z, Jillette N, Wang P, Taghbalout A, et al. DNA
methylation-calling tools for Oxford Nanopore sequencing: a survey and human
epigenome-wide evaluation. Genome Biol. (2021) 22:295. doi: 10.1186/s13059-021-
02510-z

152. De Abreu AR, Ibrahim J, Lemonidis V, Mateiu L, Van Camp G, Op De Beeck K.
Comparison of current methods for genome-wide DNAmethylation profiling. Epigenet
Chromat. (2025) 18:57. doi: 10.1186/s13072-025-00616-3

153. Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, et al. Liquid biopsy in cancer:
current status, challenges and future prospects. Signal Transduct Targ Ther. (2024)
9:336. doi: 10.1038/s41392-024-02021-w

154. Zhou H, Zhu L, Song J, Wang G, Li P, Li W, et al. Liquid biopsy at the frontier
of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer.
(2022) 21:86. doi: 10.1186/s12943-022-01556-2

155. Xiao F, Lv S, Zong Z, Wu L, Tang X, Kuang W, et al. Cerebrospinal fluid
biomarkers for brain tumor detection: clinical roles and current progress. Am J Transl
Res. (2020) 12:1379–96.

156. Frascarelli C, Venetis K, Marra A, Mane E, Ivanova M, Cursano G, et al. Deep
learning algorithm on H&E whole slide images to characterize TP53 alterations
frequency and spatial distribution in breast cancer. Comput Struct Biotechnol J.
(2024) 23:4252–9. doi: 10.1016/j.csbj.2024.11.037

157. Sahoo K, Lingasamy P, Khatun M, Sudhakaran SL, Salumets A, Sundararajan
V, et al. Artificial Intelligence in cancer epigenomics: a review on advances in pan-
cancer detection and precision medicine. Epigenet Chromat. (2025) 18:35. doi: 10.1186/
s13072-025-00595-5

158. Rombaut D, Sandmann S, Tekath T, Crouch S, de Graaf AO, Smith A, et al. Somatic
mutations and DNA methylation identify a subgroup of poor prognosis within lower-risk
myelodysplastic syndromes. Hemasphere. (2025) 9:e70073. doi: 10.1002/hem3.70073

159. Buonaiuto M, Cuomo M, Costabile D, Trio F, Ferraro S, Affinito O, et al. DNA
methylation remodeling in temozolomide resistant recurrent glioblastoma: comparing
epigenetic dynamics in vitro and in vivo. J Transl Med. (2025) 23:779. doi: 10.1186/
s12967-025-06767-x
frontiersin.org

https://doi.org/10.3892/br.2025.2043
https://doi.org/10.1186/s13148-025-01967-0
https://doi.org/10.1186/s13040-025-00487-0
https://doi.org/10.1007/s00428-023-03632-4
https://doi.org/10.17879/freeneuropathology-2023-4692
https://doi.org/10.1093/bib/bbad411
https://doi.org/10.1080/15592294.2025.2539995
https://doi.org/10.1080/15592294.2025.2539995
https://doi.org/10.1016/j.csbj.2024.05.015
https://doi.org/10.1016/j.csbj.2024.05.015
https://doi.org/10.1007/s11357-016-9914-1
https://doi.org/10.1007/s11357-016-9914-1
https://doi.org/10.1186/s13059-021-02510-z
https://doi.org/10.1186/s13059-021-02510-z
https://doi.org/10.1186/s13072-025-00616-3
https://doi.org/10.1038/s41392-024-02021-w
https://doi.org/10.1186/s12943-022-01556-2
https://doi.org/10.1016/j.csbj.2024.11.037
https://doi.org/10.1186/s13072-025-00595-5
https://doi.org/10.1186/s13072-025-00595-5
https://doi.org/10.1002/hem3.70073
https://doi.org/10.1186/s12967-025-06767-x
https://doi.org/10.1186/s12967-025-06767-x
https://doi.org/10.3389/fonc.2025.1720458
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Methylation profiling in neuropathological tumors diagnosis: a comprehensive review
	Introduction
	Fundamentals of DNA methylation
	Principles of methylation-based tumor classification
	cIMPACT-NOW update 9: practical recommendations for diagnostic use
	Clinical applications in neuropathology
	Diffuse gliomas
	Medulloblastomas
	Ependymomas
	Meningiomas
	Rare and ambiguous CNS tumors

	Practical considerations in the diagnostic workflow
	Comparisons with other molecular diagnostic approaches
	Practical summary of best-practice recommendations for diagnostic methylation profiling
	Future directions
	Conclusions
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References




