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DNA methylation profiling has emerged as a transformative tool in the diagnosis
and classification of central nervous system (CNS) tumors. Traditional
approaches like histology, immunohistochemistry, and targeted molecular
testing cannot fully capture the biological and clinical diversity of these
neoplasms. In contrast, genome-wide methylation analysis provides highly
reproducible epigenetic “fingerprints” that reflect both lineage and oncogenic
alterations, enabling objective tumor classification, refinement of existing
categories, and discovery of novel entities. This comprehensive review
summarizes the principles of DNA methylation, available platforms, and the
application of methylation-based classifiers across major CNS tumor groups,
including diffuse gliomas, medulloblastomas, ependymomas, and meningiomas.
We highlight how methylation profiling complements other molecular
techniques by simultaneously generating copy number profiles and promoter
methylation data, consolidating multiple diagnostic assays into a single platform.
Practical considerations such as tissue quality, bioinformatic pipelines,
interpretation thresholds, and cost are addressed, as are comparisons with
sequencing, RNA expression, and immunohistochemistry. Finally, we explore
future directions, including nanopore-based rapid testing, liquid biopsy, and
artificial intelligence, which promise to extend the reach and clinical utility of
methylation profiling. Collectively, these advances are establishing DNA
methylation analysis as a cornerstone of precision neuropathology, aligning
diagnostic and prognostic assessment with tumor biology to improve
patient care.
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Introduction

The diagnosis of central nervous system (CNS) tumors has
traditionally relied on microscopic evaluation of histological
features, supported by immunohistochemistry and, more recently,
targeted molecular assays (1). While these methods remain
indispensable, it has become increasingly evident that histology
alone cannot fully capture the biological diversity of CNS tumors
(2). Tumors that appear identical under the microscope may differ
profoundly in clinical behavior, prognosis, and therapeutic response
(2). Likewise, morphologically distinct tumors may share a common
molecular basis (3). Among the tools now available, DNA
methylation profiling has emerged as one of the most
transformative (4). DNA methylation is an epigenetic modification
that regulates gene expression and reflects both the cell of origin and
the genetic alterations driving tumor development (5). Each CNS
tumor type, and often each subtype, carries a characteristic
“methylation fingerprint” (6). These methylation signatures are
highly reproducible, stable across time, and measurable on a
genome-wide scale (7). The relevance of this approach extends
beyond improving diagnostic accuracy (8). DNA methylation
profiling has revealed new subgroups within established tumor
categories, clarified the boundaries between overlapping entities,
and even uncovered entirely novel tumor types (9). It has also
contributed valuable prognostic insights, as certain methylation
patterns correlate with clinical outcomes more strongly than
histological grade alone (10). In this way, methylation analysis not
only strengthens diagnosis but also enhances risk stratification
and guides patient management (10). Importantly, methylation
profiling does not stand in isolation but forms part of an integrated
diagnostic framework (11). Rather than replacing histology,
immunohistochemistry, or genetic testing, it complements them,
bringing an additional dimension that ties morphological and
molecular features together (12). This integrated approach improves
diagnostic confidence, reduces inter-observer variability, and provides
clinicians with a more reliable basis for treatment decisions (12). As
the field evolves, methylation profiling is steadily moving from
research into routine diagnostics (13). Its application is particularly
impactful in cases where morphology is ambiguous, available tissue is
limited, or standard molecular tests are inconclusive (14).

While methylation arrays can generate estimates of MGMT
promoter methylation and genome-wide copy-number profiles,
cIMPACT-NOW Update 9 emphasizes that these outputs must
be interpreted cautiously (15). Array-derived MGMT status can be
supportive of clinical decision-making but requires internal
laboratory validation against established methods (e.g.,
pyrosequencing) due to variability in probe performance, bisulfite
conversion efficiency, and algorithmic thresholds (16). Similarly,
copy-number profiles derived from array intensities provide
valuable contextual information—such as broad chromosomal
gains/losses or focal events—but should not replace dedicated
clinical-grade CNV assays unless validated locally (17).

Both MGMT methylation calls and CNV plots are particularly
vulnerable to compromised sample quality (18). Low tumor cell
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content, extensive necrosis, or high inflammatory background can
reduce probe detection rates and distort signal intensities, leading to
underestimation of methylation levels or unreliable segmentation of
copy-number states (19).

This review provides a comprehensive overview of the role of
DNA methylation profiling in neuropathological tumor diagnosis.
We will outline the principles underlying this approach, its clinical
applications across major CNS tumor categories, comparisons with
other molecular diagnostic methods, and the practical
considerations involved in its use. Finally, we will discuss current
limitations and future directions, highlighting how epigenomic
profiling is shaping a new era of precision neuropathology.

Fundamentals of DNA methylation

DNA methylation is the covalent addition of a methyl group
(CHj3) to cytosine bases, typically within CpG dinucleotides (20).
Clusters of CpG sites, or CpG islands, often occur in gene promoter
regions where their methylation status strongly influences
transcription (21). Promoter hypermethylation is usually linked to
gene silencing, while gene-body methylation has more nuanced
effects (22). As a normal epigenetic mechanism, methylation
regulates embryonic development, X-chromosome inactivation,
and genomic imprinting (23). Each cell type carries a distinctive
methylation landscape reflecting its lineage and state of
differentiation (24).

In cancer, characteristic alterations arise such as the widespread
hypomethylation that contributes to genomic instability, or focal
promoter hypermethylation which silences tumor suppressor genes
(25, 26). Importantly, tumors also retain lineage-specific
methylation signatures from their cell of origin (27). The
resulting composite profile, part developmental imprint, part
oncogenic alteration, is highly robust, even in formalin-fixed
paraffin-embedded tissue, making it a reliable diagnostic
biomarker (28). For instance, IDH-mutant diffuse gliomas display
the CpG island methylator phenotype (G-CIMP), while
medulloblastomas, ependymomas, and meningiomas exhibit
distinct methylome patterns tied to their biology (29). These
tumor-specific epigenetic fingerprints often correlate more closely
with behavior and prognosis than morphology alone (30).

In addition to intrinsic tumor and lineage-specific epigenetic
features, the methylation profile generated by array-based platforms
also reflects the contribution of non-neoplastic cells within the
tumor microenvironment (31). Tumors with substantial immune
infiltration, such as those enriched with macrophages, microglia, or
lymphocytes, often display composite methylation signatures
influenced by these cell populations, and this can shape how the
classifier algorithm assigns them to a methylation class (32). These
microenvironment-derived methylation patterns are particularly
relevant in high-grade tumors with robust inflammatory
components and underscore the importance of interpreting
methylation results in the context of tumor purity and histologic
background (33).
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Genome-wide methylation profiling in clinical practice is most
often performed using microarrays (34). Tumor DNA is bisulfite-
treated, converting unmethylated cytosines to uracil while leaving
methylated cytosines intact, then hybridized to platforms such as
the Illumina HumanMethylation450 or EPIC 850K arrays (35).
These measure methylation at hundreds of thousands of CpG sites
spanning promoters, gene bodies, and regulatory elements enriched
for cancer-relevant loci (36). Data are generated as quantitative 3-
values and analyzed bioinformatically to generate a tumor-specific
methylation profile (37). Alternative methods such as targeted
bisulfite sequencing or whole-genome bisulfite sequencing offer
higher resolution but remain less practical for routine use (38).
Arrays currently represent the best balance of coverage (~1-3% of
CpGs) and cost-effectiveness in diagnostics (39). Since the
introduction of the Illumina HumanMethylation450 (450K) array,
methylation microarray technology has undergone two major
updates aimed at expanding genomic coverage and improving
assay performance. The first transition replaced the 450K with the
MethylationEPIC v1 (EPIC 850K) array, which added >350,000
CpG loci enriched for enhancers and regulatory elements, while
maintaining broad backward compatibility with 450K-derived
datasets and classification frameworks (40). The most recent
iteration, the MethylationEPIC v2 (MEP v2) array, has further
refined probe chemistry, redistributed low-performing probes, and
improved representation of regulatory elements, while preserving
backward compatibility emphasized in cIMPACT-NOW Update 9
(41). This continuity allows laboratories to integrate new data with
historical 450K and EPIC vl datasets and ensures ongoing
compatibility with widely used classifiers.

From a practical standpoint, IMPACT-NOW 9 highlights the
importance of adequate DNA input, particularly for FFPE tissue
(15). While manufacturers may specify lower minimum amounts,
most diagnostic laboratories recommend =100 ng of high-quality
bisulfite-converted DNA to ensure robust signal performance,
sufficient probe detection rates, and reliable copy-number output,
especially in samples with variable FFPE preservation (42).

In addition to traditional bisulfite-based methods, several next-
generation enzymatic methylation sequencing platforms have
recently emerged. New England Biolabs’ Enzymatic Methyl-seq
(EM-seq) replaces bisulfite conversion with an enzymatic
oxidation/protection strategy that preserves DNA integrity,
enabling more accurate and less fragmented genome-wide
methylation profiling (43). Illumina’s 5-base sequencing
chemistry similarly allows simultaneous detection of methylated
cytosines and standard base substitutions during whole-genome
sequencing, providing an integrated readout of both epigenetic and
genetic alterations (44). These platforms represent an important
evolution in methylation technology and are likely to become
increasingly relevant as sequencing-based assays gain traction in
clinical molecular pathology.

Table 1 summarizes the major platforms currently used for
DNA methylation profiling in neuropathology, highlighting their
coverage, sample requirements, turnaround times, advantages,
and limitations.
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Principles of methylation-based tumor
classification

The most widely used algorithm for CNS tumor methylation
classification is the DKFZ/Heidelberg Molecular Neuropathology
(MNP) classifier, originally developed at the German Cancer
Research Center (DKFZ) and Heidelberg University. The current
clinical implementation of this classifier—now commercialized
through Heidelberg Epignostix—has expanded considerably
beyond the initial training cohort of approximately 2,800
reference cases, incorporating many thousands of additional well-
annotated tumors from both adult and pediatric populations (doi:
10.1101/2025.05.28.25328344). This expanded dataset has further
refined class boundaries, improved calibration behavior, and
strengthened the classifier’s ability to resolve rare or previously
ambiguous entities”.

“Recent advancements have also focused on extending the
versatility of methylation-based classification across platforms and
biospecimen types. Notably, the MNP-Flex model (doi: 10.1038/
s41591-025-03562-5) enables platform-agnostic methylation
profiling, allowing reliable class assignment from data generated
by different array designs and sequencing-based methylation assays.
Additional parallel developments include classifier frameworks
established at St. Jude Children’s Research Hospital (doi: 10.1038/
$41698-024-00718-3) and the NCI Laboratory of Pathology’s
Methylscape environment, both of which provide alternative
structures for CNS tumor classification, benchmarking, and
visualization. These complementary resources collectively broaden
the diagnostic and research applicability of methylation-based
tumor profiling.

Each CNS tumor type, defined by lineage and key genetic
drivers, exhibits a characteristic DNA methylation signature (45).
Comparing a tumor’s methylation profile to large reference datasets
enables objective assignment of class or subtype (46). The seminal
DKFZ classifier assembled a reference library of >2,800 brain
tumors spanning 82 methylation classes, covering most
recognized entities and several novel ones (6). Unsupervised
clustering of these references showed that histologically defined
tumors generally segregate into discrete epigenetic clusters (47).
Some clusters map one-to-one to WHO entities (Category 1),
others reveal molecularly distinct subgroups within single entities
(Category 2, e.g., ependymoma or medulloblastoma subtypes), and
still others merge previously separate pathologies or define entirely
new tumor groups (48).

Operationally, the classifier uses a Random Forest model
trained on these reference classes and returns calibrated scores
reflecting the probability of membership in each class (49). A single
top class typically emerges; scores >0.90 are considered confident
matches (50). Intermediate scores (=0.5-0.89) indicate uncertainty
or support only a broader assignment to a methylation class family
(MCEF), for example, families encompassing multiple glioblastoma
subclasses or medulloblastoma subtypes, so results can still be
informative when sibling subclasses are difficult to distinguish
(18, 51). Earlier versions of the classifier (e.g., v11b4 in the 2018
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TABLE 1 Current DNA methylation profiling platforms in neuropathology.

10.3389/fonc.2025.1720458

Platform/ Coverage of CpGs Typical Turnaround Key advantages Limitations/cost

method sample input time

Iumina 450K ~450,000 sites (promoters, | >250 ng FFPE 3-7 days Historic clinical use; backbone of early Superseded by EPIC arrays;

BeadChip gene bodies, regulatory DNA classifier versions; moderate FFPE limited backward compatibility;
elements) tolerance reduced performance on highly

fragmented FFPE DNA

Illumina EPIC ~850,000 sites (enhanced 2250 ng FFPE 3-7 days Expanded genome-wide coverage; Higher cost than 450K; some

850K BeadChip regulatory and enhancer DNA robust compatibility with Heidelberg probe dropout in degraded

(EPIC v1) coverage) classifier (v11-v12.8) FFPE samples

Mumina ~935,000 sites (updated >100 ng high- 3-7 days Improved probe performance on FFPE; | FFPE quality still critical;

MethylationEPIC | probe chemistry; improved | quality FFPE higher signal-to-noise; improved CNV severely necrotic or low-tumor-

v2 (MEP v2) enhancer representation; DNA (per Update reconstruction; designed for backward content samples may fail QC;
reduced cross-reactive 9 compatibility with 450K/EPIC datasets | latest array has higher per-
probes) recommendations) sample cost

Targeted Bisulfite | Custom panels (hundreds- | 10-100 ng DNA 2-5 days High depth at clinically relevant loci Limited genome-wide

Sequencing

thousands of CpGs)

(e.g., MGMT); excellent for low-input
FFPE

information; cannot support
classifier-based diagnostics

Whole-Genome

>95% of CpGs genome-

2500 ng high-

Multiple weeks

Comprehensive methylome; research

Not routine; resource-intensive;

read Platforms

CNV

Bisulfite wide quality DNA gold standard low feasibility for FFPE samples
Sequencing

Oxford Genome-wide native 50-250 ng DNA <48 hours Direct methylation detection without Early-stage for clinical CNS use;
Nanopore/Long- methylation + long-range bisulfite conversion; rapid turnaround; variable accuracy; requires local

promising for point-of-care diagnostics

validation; performance affected
by FFPE fragmentation

NEB Enzymatic
Methyl-seq (EM-
seq)

Genome-wide; comparable
to WGBS with improved
DNA preservation

50-200 ng DNA

Several days

Enzymatic conversion avoids DNA
degradation; high accuracy; compatible
with FFPE

Higher cost; requires high
sequencing depth

Illumina 5-Base
Whole-Genome
Sequencing

Genome-wide methylation
+ base substitutions (5mC/
5hmC)

>200 ng high-
quality DNA

Several days to
weeks

Simultaneous methylation + mutation
detection; comprehensive epigenetic/

genetic profiling

Very high sequencing cost;
currently limited clinical
validation

validation study) suggested an exploratory cutoff of 0.84; however,
current practice and cIMPACT-NOW Update 9 endorse a 20.90
calibrated score as the general benchmark for high-confidence class
assignment. Scores below ~0.5 are generally deemed unclassifiable
and may reflect either truly novel biology absent from the reference
set or suboptimal sample quality (13).

Importantly, cIMPACT-NOW Update 9 emphasizes that
calibrated classifier scores exist on a continuum rather than
representing a binary ‘match’ or ‘no-match’ outcome (15).
Subthreshold scores, particularly those within a relevant
methylation class family, may still meaningfully support a
diagnosis when histology, immunophenotype, and molecular
findings are concordant (15). Thus, classifier results should be
interpreted within an integrated framework rather than rejected
solely because the calibrated value falls slightly below a
numerical threshold.

Different classifier implementations are currently in use,
including the DKFZ/Heidelberg classifier (e.g., versions 11b4
through 12.8) and the NCI/Bethesda classifier, each with
distinct training sets and class structures (52). Laboratories should
specify which classifier version was applied, as updates may refine
class boundaries, introduce new entities, or recalibrate
probability estimates.

Frontiers in Oncology

Current clinical practice follows classifier-specific interpretation
rules. For the Heidelberg/DKFZ MNP classifier (versions 11b4
through 12.x), a calibrated score >0.90 is considered a high-
confidence match to a specific methylation class. Scores between
0.50-0.89 support classification only at the methylation class family
level, while scores <0.50 are generally considered non-classifiable. In
contrast, the NCI/Bethesda Methylscape classifier uses a two-level
scoring system requiring both a high super-family score and a
sufficiently high class-level score for a definitive match. Specifically,
the super-family score must exceed the model-defined threshold
(typically 20.85), and the class-level score should be 20.90 for a
high-confidence call. If the super-family score is high but the class
score falls below threshold, the result should be reported as a super-
family assignment only. Because reporting rules differ between
classifiers, laboratories must follow the interpretation guidelines
of the specific classifier used and should explicitly document
classifier version, score thresholds, and match level (class, family,
or super-family) in the final integrated diagnosis.

As an example:

Histopathology: Posterior fossa tumor with classic ependymoma
morphology (perivascular pseudorosettes) and retained
EMA expression.

Methylation profiling (DKFZ/Heidelberg v12.x classifier):
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* Super-family: Posterior fossa ependymoma family
calibrated score 0.94

* Best-matching class: PFA calibrated score 0.87 (below class-
level match threshold; therefore reported as family-level
match only)

+ Integrated diagnosis: Posterior fossa ependymoma, PFA
(family-level methylation support), WHO CNS5 criteria.

Diagnosis is based primarily on histopathologic findings and
supported by methylation profiling and H3K27me3 loss.

Beyond classification, methylation arrays yield genome-wide
copy number variation (CNV) profiles derived from probe
intensities (53). In a single assay, one can detect hallmark
alterations such as the 1p/19q codeletion in oligodendroglioma,
EGFR amplification in glioblastoma, MYCN amplification, or
CDKN2A/B homozygous deletions (54). This CNV layer
complements the class call and adds diagnostic and prognostic
value (e.g., confirming an IDH-mutant tumor with 1p/19q
codeletion as oligodendroglioma) (55). Arrays can also report
promoter methylation at clinically relevant loci, most notably
MGMT in glioblastoma, which informs temozolomide
responsiveness; although often performed by separate assays,
MGMT status can be extracted from array data (56).

cIMPACT-NOW update 9: practical
recommendations for diagnostic use

cIMPACT-NOW Update 9 provides detailed guidance on when
and how genome-wide DNA methylation profiling should be
incorporated into clinical neuropathology (15). The update
emphasizes that methylation profiling represents one diagnostic
layer within the WHO/ICCR integrated reporting framework, to be
interpreted alongside histology, immunophenotype, and targeted
molecular testing. Reports should explicitly document the classifier
version, calibrated score, and match level (“match,” “match within
family,” or “no match”), thereby ensuring transparency and
reproducibility across institutions (15).

The update also recommends the use of dimensionality-
reduction visualization tools, such as UMAP or t-SNE,
particularly for borderline or ambiguous cases (57). These plots
allow the queried tumor to be visually compared to reference
clusters, helping assess whether a subthreshold result is
nonetheless topologically consistent with a recognized class or
family (57).

Importantly, cIMPACT-NOW 9 clarifies the relationship
between methylation classes and WHO tumor types, noting that
some classes map directly to WHO entities while others represent
biologically meaningful subgroups or families that require
integration with additional data (see update 9 Tables 1-3) (15).
Thus, classification should not be used in isolation but incorporated
into a layered diagnostic model that clearly communicates the
degree of confidence and any limitations.

A practical workflow aligned with update 9 includes:

1. When to order profiling:
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* When histopathological findings and/or other molecular
tests (IHC, targeted sequencing, FISH) are ambiguous,
discordant, or insufficient to reach a confident diagnosis.

* When the differential diagnosis includes entities where
methylation profiling provides essential diagnostic or
prognostic stratification (e.g., PFA vs PFB ependymoma,
pediatric-type diffuse high-grade gliomas, rare methylation-
defined CNS tumors).

* When conventional molecular biomarkers are negative,
equivocal, or fail to explain the observed histologic features.

2. How to integrate results into layered reporting:

* Include classifier version (e.g., DKFZ/Heidelberg v12.8,
NCI/Bethesda), calibrated score, match level;

* Add visualization output (UMAP/t-SNE) when results
are borderline;

¢ Clearly state whether the methylation class corresponds to a
WHO entity or to a broader class family.

3. Management of low-confidence or discordant results:

1. Reassess technical quality and tumor purity.

Low tumor content, FFPE degradation, necrosis, or poor probe
detection can all produce subthreshold classifier scores. Re-
examining the selected tissue block and repeating extraction or
macrodissection is often necessary.

2. Evaluate biological concordance with histology,
immunophenotype, and known driver alterations.

This step is of primary importance. A methylation result—
especially a low-confidence or borderline one—must be interpreted
in light of the tumor’s morphology, IHC profile (e.g, IDHI R132H,
H3K27me3, SMARCBI), and molecular findings (e.g, IDH mutation,
1p/19q codeletion, ZFTA/YAPI fusion). Concordance or discordance
here strongly determines the validity of the classifier output.

3. Manually review the CNV profile for consistency with the
suspected entity and other diagnostic data.

CNV plots derived from methylation arrays must be interpreted
manually, as no automated scoring or decision system exists. The goal is
to assess whether observed chromosomal alterations (e.g., 1p/19q
codeletion, +7/-10, CDKN2A/B homozygous deletion, MYCN
amplification) support or contradict the histology and methylation class
family. This is a correlation exercise—not an automated validation step.

4. If discordance persists, report the case transparently as low-
confidence or uncertain.

Following WHO/ICCR layered reporting and cIMPACT-NOW
9, such cases should be documented with explicit mention of which
diagnostic layers are supportive, conflicting, or inconclusive.

Clinical applications in
neuropathology

Diffuse gliomas

Diffuse gliomas comprise adult-type astrocytomas and
oligodendrogliomas, as well as pediatric-type diffuse gliomas (58).
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WHO 2021 stratifies them by key alterations such as IDH mutation,
1p/19q codeletion, and histone mutations (1). Methylation profiling
provides strong support for this framework (59). Adult-type
gliomas segregate into three entities: astrocytoma, IDH-mutant;
oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and
glioblastoma, IDH-wildtype (60). The classifier distinguishes these
with high fidelity, since IDH mutations induce a CpG island
methylator phenotype absent in IDH-wildtype glioblastomas (61).
Oligodendrogliomas form a separate cluster, reinforced by
detection of the 1p/19q codeletion on copy number plots (62).
IDH-mutant astrocytomas often display a “G-CIMP-high” profile,
correlating with favorable prognosis (63). Table 2 summarizes the
characteristic methylation signatures and ancillary genetic
hallmarks of major CNS tumor entities currently defined by the
2021 WHO classification.

In glioblastomas, methylation has revealed biologically distinct
subgroups such as RTK I, RTK II, and Mesenchymal, which parallel
transcriptional subtypes (64). While not yet guiding therapy, these
have prognostic trends and may influence future management (65).
Methylation profiling is particularly useful for identifying IDH-
wildtype tumors that histologically resemble lower-grade
astrocytomas but biologically align with glioblastoma. According

TABLE 2 Characteristic methylation signatures of major CNS tumor entities.

Tumor entity (WHO CNS5)

subgroups

Defining methylation features/

10.3389/fonc.2025.1720458

to WHO CNSS5, if methylation profiling and integrated diagnostic
data support a glioblastoma-type methylation class or demonstrate
characteristic glioblastoma-associated molecular alterations, the
tumor should be designated as ‘Glioblastoma, IDH-wildtype,
WHO grade 4, rather than ‘Diffuse astrocytic glioma, IDH-
wildtype, with molecular features of glioblastoma.” The latter
terminology is obsolete and no longer used in contemporary
practice (66). The classifier can also act as a surrogate when
genetic testing is unavailable, though confirmation of critical
mutations remains advisable (66).

In pediatric gliomas, methylation profiling defined entities such
as diffuse midline glioma, H3 K27-altered, and diffuse hemispheric
glioma, H3 G34-mutant (67). It also contributed to delineating the
broader group of pediatric high-grade gliomas, which contain
multiple methylation-based subsets under study (68). Even in
low-grade pediatric gliomas, methylation aids in clarifying
diagnosis (69). For example, distinguishing BRAF fusion positive
diffuse low-grade glioma from more aggressive infant-type
hemispheric gliomas with RTK fusions (70, 71).

Recent methylation analyses have shown that diffuse midline
gliomas, H3K27-altered, segregate into at least two robust
methylation subgroups (DMG-K27A and DMG-K27B), with

Correlated copy-number features
(Ancillary)

Astrocytoma, IDH-mutant
cluster

G-CIMP profile; distinct from oligodendroglioma

No 1p/19q codeletion; frequent ATRX loss patterns;
occasional chr7 gain/chr10 loss absent

Oligodendroglioma, IDH-mutant, 1p/19q-codeleted

Highly stable oligodendroglial methylation cluster

Canonical whole-arm 1p/19q codeletion; TERTp-
associated CNV patterns

Glioblastoma, IDH-wildtype

RTK I, RTK II, Mesenchymal methylation classes

+7/-10 signature; EGFR amp (RTK I); CDKN2A/B
homozygous deletion

Diftuse midline glioma, H3K27-altered
K27B

Two methylation groups: DMG-K27A and DMG-

PDGFRA gain (subset); focal 1q gain; absence of IDH
mutation

Pediatric-type diffuse HGG, H3-WT/IDH-WT

NOW 11

Multiple methylation subgroups (e.g., RTK1, RTK2,
MES, HPAP) - required for diagnosis per cIMPACT-

PDGFRA/KIT/KDR amplifications (RTK2); broad 1q
gain (HPAP)

Diftuse hemispheric glioma, H3G34-mutant

Distinct G34 methylation cluster

PDGFRA amp; chr17p loss; chr3q gain

High-grade astrocytoma with piloid features (HGAP)
HGG

Unique HGAP methylation class between PXA and

CDKN2A/B deletion frequent

Medulloblastoma, WNT

Tight WNT methylation cluster

Monosomy 6; CTNNB1 mutation ancillary

Medulloblastoma, SHH
subgrouping

SHH methylation cluster; age-related SHH-0t/B/7/3

Chr9q loss (subset); MYCN/GLI2 amp

Medulloblastoma, Groups 3 & 4

Robust methylation-defined separation; multiple
intermediate META-subtypes

MYC amp (Group 3); isochromosome 17q (Group 4)

Posterior fossa ependymoma, PFA

Hypermethylated PFA cluster; global H3K27me3 loss

1q gain (subset); CXorf67-negative

Posterior fossa ependymoma, PFB

Distinct PFB methylation cluster

Balanced genomes overall; fewer CNVs

Supratentorial ependymoma, ZFTA-fusion

Defined ZFTA methylation class

Focal CNVs variable

Supratentorial ependymoma, YAP1-fusion

Distinct YAP1 methylation class

Few CNVs; predominantly stable

Meningioma (methylation groups) Four reproducible methylation risk classes: benign-1,
benign-2, intermediate, malignant (not WHO entities;

prognostic groups)

NE2 loss (malignant groups); CDKN2A/B loss;
TERTp mutation associated
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distinct developmental and clinical implications (72). These
refinements are not captured by histopathology or single-gene
assays, emphasizing the essential role of methylation profiling for
accurate subclassification.

Medulloblastomas

The application of DNA methylation-based classification to
medulloblastoma exemplifies how epigenomic profiling can
profoundly reshape tumor taxonomy (73). WHO now recognizes
four core molecular subgroups: WNT-activated, SHH-activated
(TP53-wildtype or mutant), Group 3, and Group 4 (74).
Methylation profiling robustly assigns tumors to these subgroups
and consistently outperforms immunohistochemical surrogates (75).

WNT-activated tumors, which frequently harbor CTNNBI
mutations and monosomy 6, form a tight epigenetic cluster and
have an excellent prognosis, supporting treatment de-escalation
strategies (76). SHH-activated tumors, driven by pathway
alterations and further subdivided by TP53 status, demonstrate
variable outcomes; TP53-mutant pediatric SHH tumors in
particular carry a poor prognosis (77). Within the SHH group,
additional methylation-defined subclusters (0-8) capture age-

TABLE 3 Diagnostic vs prognostic utility of methylation profiling.

Tumor/subgroup

Diagnostic added value of methylation profiling

10.3389/fonc.2025.1720458

related and genetic differences, although these remain
investigational (78).

Group 3 and Group 4 tumors—historically merged under a
single category—were first differentiated by methylation profiling,
which revealed distinct biological and clinical behaviors (79). Group
3 tumors, often characterized by MYC amplification, have the worst
prognosis, whereas Group 4 tumors, frequently associated with
features such as isochromosome 17q, are more common and exhibit
intermediate outcomes (80).

It is important to note that the foundational subdivision of
medulloblastoma into WNT, SHH, Group 3, and Group 4 was
initially established through integrative transcriptomic and copy-
number analyses, particularly via gene-expression array profiling
(81). Subsequent DNA methylation-based classification reproduced
these biologically meaningful subgroups with high fidelity and
provided a more stable, clinically scalable framework for
diagnostic subgroup assignment.

Ependymomas

DNA methylation profiling was central to establishing the
modern molecular taxonomy of ependymomas, enabling the

Prognostic/clinical added value

Astrocytoma, IDH-mutant

Confirms G-CIMP methylation profile; differentiates astrocytoma vs
oligodendroglioma when histology/THC are insufficient

G-CIMP-high associated with better prognosis

Oligodendroglioma, IDH-mutant, 1p/19q-

codeleted FISH/NGS results are equivocal

Distinct oligodendroglial methylation class confirms diagnosis when

Stable epigenetic class with favorable outcome

Glioblastoma, IDH-WT

Distinguishes true GBM from histologically lower-grade IDH-WT
tumors; differentiates RTK I/RTK II/MES methylation classes

Subclasses show outcome trends; CDKN2A/B
loss, EGFRamp correlate with poor prognosis

Diffuse Midline Glioma, H3K27-altered

Defines two robust methylation subgroups (DMG-K27A/DMG-
K27B), not distinguishable by histology alone

DMG-K27B associated with inferior survival

Pediatric-type Diffuse High-Grade Glioma,

H3-WT/IDH-WT (cIMPACT-NOW 11) MES, MYCN classes

Diagnosis requires methylation profiling. Separates RTK1, RTK2,

Prognostic stratification: e.g., RTK2 often poorer
outcome; MYCN class distinct biology

Diffuse Hemispheric Glioma, H3-G34

mutant ambiguous

Unique methylation class confirming diagnosis when sequencing

Distinct young-adult tumor type with
intermediate outcome

High-grade Astrocytoma with Piloid Features

(HGAP) pilocytic astrocytoma or GBM

Requires methylation profiling to distinguish HGAP from anaplastic

Prognosis worse than pilocytic astrocytoma

Medulloblastoma - WNT
markers

Perfectly delineated methylation class; superior to IHC surrogate

Excellent prognosis, therapy de-escalation

Medulloblastoma - SHH (ot/B/y/8)

Methylation defines biologically relevant subclusters

TP53-mutant SHH has poor prognosis

Medulloblastoma - Groups 3 & 4
intermediate META-subtypes

Methylation profiling distinguishes these entities and their

Group 3: worst prognosis; Group 4: intermediate

Ependymoma - PFA
PFA2

Methylation required to distinguish PFA vs PFB; identifies PFA1/

PFA universally worse prognosis vs PFB

Ependymoma - PFB Distinct PFB methylation classes

More favorable outcomes

Ependymoma — ZFTA fusion
inconclusive

Methylation confirms ZFTA class, important when fusion assays

Distinct biological behavior

Ependymoma - YAPI fusion Identified by methylation cluster

Generally favorable prognosis

Meningioma (methylation risk groups)

Methylation grouping outperforms WHO grading for risk prediction

Identifies high-risk and benign epigenetic classes
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separation of posterior fossa tumors into the biologically distinct
PFA and PFB groups and redefining several supratentorial
categories (82). In the supratentorial compartment, methylation
distinguished ZFTA fusion-positive tumors from YAPI fusion-
positive ones, which difter in biology and prognosis (83). In the
posterior fossa, methylation studies identified two major groups:
PFA, hypermethylated and aggressive with H3K27me3 loss, and
PFB, associated with older patients and better outcomes (84). These
cannot be separated reliably by histology, making DNA methylation
the diagnostic gold standard (84).

It is important to note that the original separation of posterior
fossa ependymomas into the PFA and PFB subgroups was first
identified through transcriptome-based stratification using
expression array profiling (85). Subsequent DNA methylation
profiling reproduced these two core groups with high
concordance and provided a more robust, reproducible, and
clinically applicable framework for classification (85). This
alignment between expression-based and DNA methylation-
based clustering helped establish PFA and PFB as biologically and
clinically distinct disease entities.

Spinal ependymomas usually show NF2 alterations, but
methylation identified a distinct, aggressive MYCN-amplified
subtype, now a separate WHO entity (86). Importantly,
methylation arrays simultaneously detect fusion status, CNVs,
and subgroup assignment, often resolving diagnostic
ambiguities (87).

DNA methylation profiling is essential for accurately
distinguishing PFA from PFB posterior fossa ependymomas, a
separation that cannot be reliably achieved by histology,
immunohistochemistry, or targeted sequencing alone (88). PFA
tumors show a characteristic hypermethylated profile and loss of
H3K27me3, whereas PFB tumors cluster separately and maintain
H3K27me3 expression (89). However, classifier accuracy is highly
dependent on tumor purity: low-cellularity samples, biopsies with
abundant reactive tissue, or tumors with extensive necrosis
frequently produce subthreshold scores or ambiguous class-family
assignments (90). Furthermore, cIMPACT-NOW Update 11
provides updated diagnostic criteria for both posterior fossa
ependymoma and pediatric-type diffuse high-grade gliomas
(IDH-wt, H3-wt), emphasizing the importance of integrated
molecular-methylation analysis for entities previously categorized
as “NOS” or “NEC” (91).

Meningiomas

Histologic grading has limited predictive power for
meningiomas, as some grade 1 tumors recur aggressively while
others remain indolent (92). Methylation studies have proposed
biologically driven risk groups, now confirmed across multiple
cohorts (93). Classes include benign Merlin-intact tumors with
low recurrence risk, immune-enriched tumors with intermediate
behavior, and proliferative or hypermetabolic tumors with poor
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prognosis (94). These classes align partly with genetic features such
as NF2, CDKN2A/B, and TERT promoter mutations (95).

Methylation-based stratification predicts recurrence more
accurately than histologic grade alone, especially within grade 2
meningiomas, where outcomes vary widely (96). This has major
clinical implications for postoperative management, influencing
decisions regarding surveillance or adjuvant therapy (97). While
not yet formalized in WHO 2021, methylation groups are likely to
be incorporated into future classification systems, given their
superior prognostic performance and therapeutic relevance (15).

Recent studies further demonstrate that methylation-based risk
groups consistently outperform conventional WHO grading in
predicting recurrence, even when adjusting for extent of resection
(96). These risk groups should be interpreted in conjunction with
key molecular alterations, most notably CDKN2A/B homozygous
deletion and TERT promoter mutations, both of which designate
WHO grade 3 irrespective of histology and strongly correlate with
high-risk methylation classes (98).

In addition, cIMPACT-NOW Update 8 reinforces the central
role of DNA methylation profiling in meningioma classification and
recommends its integration into routine diagnostic practice,
particularly for tumors with borderline histologic features or
discordant clinical behavior (99).

Rare and ambiguous CNS tumors

Methylation profiling is particularly powerful in rare or
diagnostically uncertain tumors (59). Historically vague
categories, such as CNS primitive neuro-ectodermal tumors, have
been redefined through methylome analysis into distinct entities
like CNS neuroblastoma, FOXR2-activated, and CNS tumor with
BCOR internal tandem duplication (100). Similarly, astroblastoma,
MN1I-altered, and several pediatric glioneuronal tumors (e.g.,
PLNTY, DGONC) were delineated through methylation-based
clustering (101).

The approach also refined existing categories, as with atypical
teratoid/rhabdoid tumors (AT/RT), where methylation identified
TYR, SHH, and MYC subgroups with different clinical associations
(102). For diagnostically ambiguous or “NOS” cases, methylation
often provides a definitive match, guiding clinical management
(103). Even when no exact class match is achieved, methylation data
can place tumors within a broader family, offering useful diagnostic
direction (104). Importantly, many new CNS tumor types
recognized in WHO 2021 originated from such “no match”
clusters in methylation space, underscoring the method’s role in
discovery as well as diagnosis (6).

Collectively, these examples demonstrate how methylation
profiling not only clarifies histologic diagnosis but also provides
prognostic and sometimes predictive information across tumor
types. Table 3 summarizes the diagnostic and prognostic
contributions of methylation profiling across key CNS
tumor entities.
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Practical considerations in the
diagnostic workflow

Implementing DNA methylation profiling in diagnostic
neuropathology requires attention to technical, logistical, and
interpretive aspects (4). Adequate tissue and DNA quality are
fundamental (4). While methylation arrays can be performed on
Formalin-Fixed Paraffin-Embedded (FFPE) tissue, the DNA must
not be too degraded and should be available in sufficient quantity,
typically >250 ng for the Illumina EPIC 850K array (105). Low
tumor content poses difficulties, as background signal from non-
neoplastic brain or inflammatory cells can obscure the tumor profile
(106). Small biopsies or diffuse gliomas with sparse cellularity are
especially problematic (68). Macrodissection of slides to enrich
tumor tissue is therefore recommended before DNA extraction
(107). Figure 1 provides a simplified overview of where DNA
methylation profiling fits within the broader diagnostic workflow,
illustrating how histopathology, immunohistochemistry, targeted
sequencing, and methylation-based classification are integrated into
routine practice.

The standard workflow includes DNA extraction, bisulfite
conversion, amplification and hybridization to the array, scanning
and data processing, and classification (108). In practice, this takes
3-7 days, with final reports available in 1-2 weeks (108). Some
laboratories batch samples for efficiency, which may introduce
minor delays (109). As a result, methylation profiling generally
informs the finalized diagnostic report and postoperative planning,
rather than intraoperative decisions (110). Efforts are underway to
shorten turnaround times using nanopore sequencing, which can
generate methylation data within hours or days, though this is not
yet routine in clinical laboratories (111).

Cost and availability remain important considerations (112). A
single array test may cost several hundred to over one thousand US
dollars, and not all hospitals have access to on-site facilities (113).
Consequently, many samples are referred to specialized centers (113).

Each array includes probes that monitor bisulfite conversion
efficiency and hybridization quality, and laboratories must ensure
these falls within acceptable limits (114). Batch effects are another
challenge, as running samples at different times or on different array
models can introduce minor variations (115). Although the
classifier is designed to accommodate these, best practice is to run
samples in consistent batches with controls (116). Bioinformatics
support may still be needed for data handling and quality control,
but the Heidelberg and Methylscape classifiers automatically
generate key outputs, including copy-number plots, so manual
CNV computation is generally not required (117). Many centers
have automated pipelines to standardize analysis and reduce
variability (118).

Interpretation of classifier results is essential for determining
whether the DNA methylation profile reliably supports a specific
CNS tumor class and for integrating this information with
morphology, immunohistochemistry, and molecular findings
(119, 120). The output from the DKFZ/Heidelberg Molecular
Neuropathology (MNP) classifier, currently the most widely used
diagnostic tool, is provided as a set of calibrated scores representing
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the confidence of assignment to each reference methylation class
(18). These calibrated scores form a continuum of classifier
confidence rather than a strict binary decision, and their
interpretation requires attention to class-specific thresholds,
match levels, and ancillary data (18). Because subsequent steps in
the diagnostic workflow (including reporting of match level and the
use of score cutoffs) depend directly on this classifier behavior, clear
understanding of the classifier’s output structure is critical (14).

A score 20.90 is typically considered a confident assignment,
while scores between 0.5 and 0.89 suggest a possible but less certain
match, often only at the level of a broader methylation class family
(120). Scores below 0.5 are usually regarded as unclassifiable,
possibly indicating novel biology or poor sample quality (18).
Importantly, the relative distribution of scores matters: a top
score of 0.93 with all others near zero provides strong confidence,
whereas similar scores across multiple classes indicate uncertainty
or a tumor with intermediate features (121).

Despite its robustness, classifier output must always be
interpreted within clinical and histopathologic context (122).
Even a high score can occasionally be misleading, especially in
cases with heavy inflammatory infiltration or unusual morphology
(123). The cIMPACT-NOW consortium emphasizes integration,
recommending that methylation findings be reported alongside
histology, immunohistochemistry, and molecular data (15).

Finally, the integration of methylation profiling requires a
multidisciplinary approach. Molecular tumor boards increasingly
review methylation findings in conjunction with genomic and
histopathologic data (124). Pathologists often present classifier
scores, copy number profiles, and clustering results to explain
diagnostic changes to oncologists and neurosurgeons (14). This
collaborative discussion builds confidence in the method and
facilitates clinical translation (14). As experience grows,
methylation profiling is transitioning from a research tool to an
essential diagnostic pillar, particularly for difficult cases and novel
entities (14).

Comparisons with other molecular
diagnostic approaches

DNA methylation profiling is a powerful diagnostic tool that
complements rather than replaces other molecular techniques (59).
Sequencing remains essential for detecting specific mutations such
as IDH1/2, TERT promoter, BRAF V600E or rare fusions, which
drive therapy choices and clinical trial eligibility (125). Methylation
arrays do not directly identify sequence changes but reveal the
downstream epigenetic effects of genetic events and can reclassify
tumors when conventional tests give ambiguous or conflicting
results (126). For example, IDH1 immunostaining and 1p/19q
FISH may suffice for classic oligodendroglioma, but methylation
profiling helps resolve contradictory findings or uncover
unexpected entities such as ependymoma profiles in presumed
glioblastoma (127).

Compared with RNA expression profiling, methylation analysis
is more stable and reproducible, especially in FFPE tissue, and
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provides additional copy number information (128). While
expression data can still be useful for pathway analysis,
methylation has largely replaced expression arrays for CNS tumor
classification, with integrated approaches that combine
methylation, mutation, and expression now under study (6).

Methylation arrays also yield genome-wide copy number plots
with high concordance to traditional cytogenetic techniques,
reliably detecting hallmark alterations such as 1p/19q codeletion,
+7/-10, EGFR amplification, or CDKN2A/B deletion (129). This
often reduces the need for separate FISH or chromosomal
microarray testing, although focal or cryptic alterations may still
require targeted assays (130). Immunohistochemistry, meanwhile,
remains indispensable for rapid, inexpensive detection of protein-
level changes like IDH1 p.R132H, H3K27M, or SMARCBI loss, but
methylation offers more objective classification and deeper
subclassification when staining is equivocal (131).

Emerging single-cell and spatial methods promise
unprecedented resolution of intratumoral heterogeneity and
epigenetic diversity but are not yet part of routine diagnostics
(132). Currently, methylation profiling serves as a practical
“broad brush” tool, consolidating classification, copy number
analysis, and some immunohistochemical surrogates in a single
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Schematic overview of how DNA methylation profiling is implemented in clinical neuropathology. DNMT, DNA methyltransferase; SAM, S-adenosyl-
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assay, while sequencing adds precise mutational data (133).
Together these technologies are moving the field toward
integrated molecular neuropathology reports that unite genotype
and epigenotype to guide diagnosis, prognosis, and treatment
planning (129, 130, 132). Table 4 compares methylation profiling
with sequencing panels, RNA expression profiling, and
immunohistochemistry, emphasizing their respective strengths
and limitations in clinical neuropathology.

Practical summary of best-practice
recommendations for diagnostic
methylation profiling

1. Ensure adequate tissue and DNA quality.

Optimal performance of methylation arrays requires sufficient
material and high-quality DNA (134). For EPIC vl and v2
platforms, at least 100 ng of well-preserved FFPE DNA is
generally recommended, as suboptimal or heavily degraded DNA
is associated with low-confidence classifier outputs (41). Tissue
regions used for extraction should contain a high proportion of
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viable tumor cells, ideally 70% or greater, because excessive non-
neoplastic tissue, treatment effect, or necrosis reduces the tumor
signal and undermines both calibrated scores and CNV
profiles (135).

2. Use macrodissection to enhance tumor enrichment.

Guided macrodissection of H&E-marked slides remains a
simple but essential step for ensuring tumor purity (107).
Removing admixed normal brain, vascular tissue, calcifications,
hemorrhage, or necrotic areas helps maintain epigenetic signal
quality and prevents dilution of the tumor-specific profile (136).
In infiltrative gliomas, selecting regions with cytologic atypia or
increased proliferation improves classifier performance and
minimizes the risk of underrepresentation of the neoplastic
component (136).

3. Apply rigorous pre-analytical quality control.

Pre-array quality control measures, including ACt thresholding,
assessment of bisulfite conversion efficiency, and evaluation of DNA
integrity, are crucial for determining whether a sample is suitable
for reliable methylation analysis (134). Poor-quality DNA
frequently leads to subthreshold calibrated scores or
uninterpretable profiles (137). When QC metrics fall below
acceptable levels, repeating the extraction or selecting an
alternative block is preferable to proceeding with technically
inadequate material (138).

4. Select cases thoughtfully to maximize clinical utility.

Methylation profiling should be applied selectively in cases
where it is expected to change diagnostic interpretation (139).
It is most valuable in scenarios where morphology and
immunohistochemistry are ambiguous or conflicting, where
essential molecular biomarkers yield negative or indeterminate
results, or where the differential diagnosis includes pediatric-type
high-grade gliomas, posterior fossa ependymoma subgroups, or
rare and emerging methylation-defined entities such as HGAP,
HPAP, or BCOR-altered tumors (89). Conversely, when a diagnosis
is straightforward based on morphology, immunophenotype, and
targeted sequencing, or when the biopsy is too small or dominated
by necrosis, methylation profiling offers limited benefit and may not
be appropriate (140).

5. Interpret results within a layered and integrated
diagnostic framework.

10.3389/fonc.2025.1720458

Methylation classifier outputs should be interpreted within the
WHO/ICCR layered reporting structure and understood as a
continuum rather than a binary outcome (46). Each report should
specify the classifier version used (for example, Heidelberg v12.8 or
NCI/Bethesda), the calibrated score, and the level of match
achieved, whether “match,” “family match,” or “no-match” (15).
In borderline cases or subthreshold matches, dimensionality-
reduction tools such as UMAP or t-SNE can help visualize
relationships to reference classes (141). Ultimately, the
methylation result must be reconciled with morphology,
immunohistochemistry, targeted sequencing, and tumor location
to achieve a coherent integrated diagnosis (142).

6. Maintain expert neuropathologic oversight.

Despite the increasing diagnostic power of methylation
profiling, expert pathology review remains indispensable (143).
Array results cannot substitute for comprehensive assessment of
histology and ancillary molecular data (143). In cases where the
classifier output conflicts with morphologic or genetic findings, the
final interpretation should prioritize integrated reasoning rather
than a single modality (144). The role of the neuropathologist is
therefore central to ensuring that methylation data complements,
rather than replaces, traditional diagnostic expertise. As summary,
Table 5 presents common pitfalls in methylation profiling and
troubleshooting approaches.

The central role of the neuropathologist in synthesizing
histologic, immunophenotypic, molecular, and methylation data
is outlined in Figure 2.

Future directions

The field of methylation profiling in neuropathology is advancing
rapidly, promising greater diagnostic precision and broader clinical use
(145). As more CNS tumors, including rare and underrepresented
types, are profiled worldwide, reference libraries will expand, enabling
classifiers to add new tumor categories and refine existing groups into
more homogeneous subtypes (146). Larger datasets will also improve
discrimination between closely related entities, provided that new
array- or sequencing-based platforms maintain backward
compatibility with existing data (147).

TABLE 4 Comparison of methylation profiling with other molecular approaches.

Feature

Methylation profiling

Sequencing panels

RNA expression Immunohistochemistry

Primary Data

Epigenetic signature (CpG B-
values) + CNV

DNA mutations/fusions

Gene expression levels

Protein expression

Sample Stability

High in FFPE

High

Moderate (RNA degradation)

High

Scope

Genome-wide classification +
CNV + promoter methylation

Targeted mutations/fusions

Pathway activity/subtypes

Single protein targets

Turnaround Time

1-2 weeks (arrays)

5-10 days

Variable

Hours-days

Key Strength

Objective tumor class
assignment

Direct mutational status for
therapy

Pathway insights

Rapid, inexpensive screening

Key Limitation

Cannot call mutations directly

Limited to panel content

Less reproducible in FFPE

Surrogates may be equivocal

Frontiers in Oncology

11

frontiersin.org



https://doi.org/10.3389/fonc.2025.1720458
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Al Sharie et al. 10.3389/fonc.2025.1720458

TABLE 5 Common pitfalls in methylation profiling and troubleshooting approaches.

Pitfall Impact on result How to recognize It Recommended
troubleshooting
Low Tumor Purity Low calibrated scores, “no-match,” Failure of expected markers; widespread | Repeat macrodissection; use a block
distorted CNV profile flat CNV with higher tumor content; consider
complementary NGS
Poor DNA Quality/Degradation Failed bisulfite conversion; high ACt; QC warnings; high failure probes Re-extract DNA; choose alternative
array failure block; avoid heavily necrotic tissue
Batch Effects Shifts in UMAP/t-SNE position leading | Sample clusters away from expected Ensure uniform processing; include
to false “family match” class controls; interpret with pathologic
features
Classifier Version Mismatch Inconsistent results compared to prior Reported version differs (e.g., v12.5 vs Always document classifier version; re-
cases v12.8) run with most current release
Overreliance on Single Modalities Misclassification, especially in Discordance with histology/THC Integrate morphology + THC + NGS;
borderline scores treat classifier as one diagnostic layer
Small Biopsies/Limited Tissue Non-diagnostic output; low DNA Often high background noise Reserve methylation profiling for cases
where sufficient tissue is available
Unusual Entities Not in Classifier “No-match” or ambiguous placement Low or intermediate calibrated score Consult emerging-entity literature; use
WHO/ICCR layered reporting

Emerging sequencing-based methylation technologies are likely =~ methylation profiling (148). As these technologies mature and
to broaden the diagnostic utility of methylation profiling in the near ~ undergo clinical validation, they may provide a unified workflow
future. Enzymatic Methyl-seq (EM-seq), by avoiding bisulfite-  for comprehensive molecular diagnostics.
induced DNA damage, offers higher-quality data from FFPE While methylation arrays remain the current standard,
samples and may become a preferred approach for genome-wide  sequencing approaches are gaining momentum (149). Whole-
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FIGURE 2
Practical diagnostic workflow illustrating how histopathology, immunohistochemistry, targeted molecular testing, and DNA methylation profiling are
combined in routine neuropathology practice.
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genome bisulfite sequencing offers comprehensive coverage but is
resource-intensive, whereas reduced-representation or targeted
bisulfite sequencing may provide efficient coverage of key CpGs
(150). Long-read platforms such as Oxford Nanopore can directly
detect methylation without bisulfite conversion, potentially
integrating methylation class, copy number, and mutational data
within 24-48 hours (151). With falling costs and more mature
bioinformatics pipelines, sequencing-based methylation may
supplant arrays over the next decade (152).

Liquid biopsy is another frontier (153). Because each tumor
class exhibits a distinctive methylation signature, sensitive assays
applied to plasma or cerebrospinal fluid could allow diagnosis
without surgical biopsy and enable non-invasive monitoring
(154). Early studies in gliomas and medulloblastomas show that
CSF-derived DNA can be classified successfully, particularly
valuable for high-risk lesions such as diffuse midline gliomas,
although detecting low-abundance tumor DNA remains
challenging (155).

Moreover, Deep-learning models trained on routine H&E slides
already predict some mutations and could be extended to infer
methylation classes directly from morphology, offering rapid triage
or screening (156). Beyond reproducing current classifiers, AI may
identify novel prognostic methylation features and integrate them
into digital pathology workflows to enhance precision (157).

Finally, methylation-defined subgroups open opportunities for
therapeutic stratification (158). Epigenetically defined glioblastoma
or medulloblastoma subtypes may respond differently to targeted or
immune therapies, just as MGMT promoter methylation predicts
temozolomide response (159). The success of CNS classifiers is
spurring development in other tumor systems, including pediatric
sarcomas, renal tumors, and nerve-sheath tumors, with the longer-
term goal of pan-cancer methylation classifiers that can pinpoint
tissue of origin or distinguish primary CNS tumors from
metastases (6).

Conclusions

DNA methylation profiling has transformed neuropathological
diagnosis by providing an objective and reproducible method for
classifying CNS tumors. Unique epigenetic signatures now define
more than a hundred tumor types; many incorporated into WHO
classifications. This approach improves diagnostic accuracy,
clarifies ambiguous cases, and enhances prognostic stratification,
with clear benefits shown in gliomas, medulloblastomas,
ependymomas, and meningiomas. Its greatest strength lies in an
integrated framework, where methylation complements histology,
immunohistochemistry, and sequencing. Beyond classification,
arrays deliver valuable ancillary data such as copy number and
promoter methylation, consolidating multiple analyses into one.
Methylation profiling occupies a distinct niche: it does not replace
mutation testing or rapid immunohistochemistry, but it provides a
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genome-wide epigenetic context that unifies diverse findings into a
coherent diagnosis. Looking forward, advances in sequencing,
liquid biopsy, and AI will expand its speed, accessibility, and
clinical relevance. Ultimately, methylation profiling is establishing
itself as a core pillar of precision neuropathology, aligning diagnosis
and prognosis with tumor biology to improve patient care.
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