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Simple Summary

Diffuse midline glioma is a malignant brain tumor with no effective treatment. These
tumors often harbor a Histone H3 K27M mutation, associated with a more aggressive
clinical course and poorer response to treatment. Standard-of-care treatment is radiation
therapy, but disease typically recurs or progresses despite treatment and there is a paucity
of the literature specific to the features and outcomes of recurrent disease. Given this, our
group sought to explore what factors may be associated with disease progression and
clinical outcomes to guide disease management and prognosis. Through a multicenter
retrospective analysis of clinical data from patients with recurrent midline glioma and
H3 K27M-mutant diffuse glioma, we identified features associated with poorer overall
survival following progression following frontline therapy. Taken together, these data
provide insight into tumor biology and clinical outcomes, potentially informing future
clinical trials.
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Abstract

Background/Objectives: Midline glioma is a frequently morbid primary brain tumor often
characterized by the histone mutation H3 K27M. The standard-of-care treatment is radiation
therapy in the frontline setting, though effective treatment remains elusive and there is no
established therapy in the second line or later setting. Here, we present the results of a
multicenter, observational, retrospective study of the natural history of this disease in the
recurrent setting when managed via standard-of-care interventions. Methods: Forty-four
patients with recurrent H3 K27M-mutant and/or midline glioma after standard-of-care
treatment were identified across 11 clinical centers in the United States who met inclusion
criteria for evaluation. Data collected were analyzed by tumor radiographic appearance,
age, anatomic location, and H3 K27M status, with factors contributing to overall survival
(OS) identified. Results: Overall, median OS from time of first recurrence was 5.1 months
(95% CI, 3.9 to 7.7%). In a subgroup analysis, survival was dismal across primary tumor
locations, with a median OS of 3.7 months (95% CI: 0.7 to 9.8 months), 3.5 months (95% CI,
0.9 to not reached) for primary spinal, 5.1 months (95% CI to 0.2 not reached) for primary
infratentorial, and 5.9 months (95% CI 4.4 to 14.7) for primary supratentorial tumors. In a
multivariate analysis, DIPG and primary spinal tumor were associated with a higher risk
of death. Conclusions: Taken together, these results shed light on prognostic factors and
natural disease progression overtly related to recurrent midline and/or H3 K27M-mutant
diffuse glioma, providing insight that can prove valuable for development of future clinical
treatments for this recently defined disease.

Keywords: H3 K27M; diffuse glioma; diffuse midline glioma

1. Introduction
High-grade glial tumors represent the most morbid form of brain cancer [1]. Approxi-

mately 80% of midline gliomas and 5% of cerebral hemispheric gliomas harbor a K27M
mutation in the genes encoding isoforms of the Histone proteins H3.1 or H3.3 [2–9]. This
somatic missense mutation is known as H3 K27M, and is associated with loss of H3 K27
trimethylation, poorer response to standard therapy, and lower overall survival, especially
in younger patients [10]. To date, radiotherapy is the standard therapeutic intervention for
diffuse midline gliomas, but only provides a median six-month event-free survival, with
little effect on overall survival [5,10]. As such, the presence of an H3 K27M mutation in a
midline tumor now confers a WHO Grade 4 status [11–15]. Indeed, if untreated, patients
suffering from H3 K27M-mutant diffuse intrinsic pontine glioma (DIPG) have a median
survival of only 1–4.5 months from diagnosis [6,16–18]. Further research has since revealed
additional molecular characteristics of H3 K27M-mutant tumors, including distinct protein,
RNA, DNA methylation, and epigenetic profiles [15]. This recent work has shed some
light on a few novel prognostic factors in H3 K27M DMG, such as FGFR1 mutations that
are associated with a more favorable clinical prognosis. However, there remains limited
published information about prognostic factors and disease progression overtly related to
the H3 K27M mutation in glioma [19], particularly in the recurrent setting. Therefore, we
conducted a clinical history study that aimed to define outcomes and prognostic factors in
patients with recurrent H3 K27M-mutant and/or midline glioma.

2. Materials and Methods
We performed a multicenter, retrospective, descriptive, observational study in patients

with recurrent midline and/or H3 K27M-mutant glioma, to describe outcomes and prog-
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nostic factors associated with survival. Data were collected via retrospective chart reviews
from eleven clinical centers across the United States (Supplemental Table S1); the protocol
was approved by participating sites prior to study initiation. The clinical investigative
site primary investigator was responsible for reviewing the medical records of potential
patients. This retrospective, observational study was conducted with only the available
medical records and imaging scans. All patient data collected were pseudonymized in the
database. The primary objective for this analysis was to determine prognostic factors for
overall survival (OS). Of note, this study was terminated by the sponsor prior to activation
of all planned sites/countries and prior to achievement of complete enrollment in both
cohorts. The early termination was based on revised regulatory agency feedback related
to the utility of data from this study in regulatory decision-making, and resulted in lower
patient enrollment than initially planned.

A potential patient was required to have met all the following criteria to be eligible for
inclusion in the study:

1. Diagnosis of H3 K27M-mutant and/or midline glioma, initially diagnosed in 2012
or later.

2. Known tissue-proven H3 K27 status (H3 K27M-mutant or wild-type).
3. Medical records (including clinic notes and/or electronic databases) relating to glioma

diagnosis and treatments received must be available for review. (Minimum infor-
mation included demographics, disease characteristics, histology, disease history
[diagnosis, tumor location, recurrences], radiation and other treatment history, sur-
vival status, and death date if applicable.)

4. Presence of recurrent disease after standard-of-care therapy.
5. No Prior Treatment with ONC201 or ONC 206.

2.1. Patients

This study was intended to evaluate prognostic factors for survival in patients with
biopsy-proven recurrent H3 K27M-mutant and/or midline glioma. A total of 162 potential
patients were identified across participating institutions, with 44 patients with recurrent
disease meeting the criteria for this analysis (Figure 1). Primary reasons for exclusion from
analysis included treatment with ONC201 or ONC206 at any time (27.2%), insufficient
medical records available (17.9%), unknown H3 K27M status (8%), and either an unknown
date of death or <6 months survival follow-up from initial diagnosis (8%). One of the
forty-four patients had no follow-up after first recurrence and therefore was censored as of
first recurrence.

Glioma Patients Identified 
n=162

Met >1  Exclusion Criteria

No                                            
n=59 (36%)

History of Recurrent Disease

Yes                                        
n=44 (75%) Included for Study

No                                        
n=15 (25%) Excluded from Study

Yes                                      
n=103 (64%)

History of Imipridone Use           

n=44 (27%)

Unavailable Medical Records 
n=29 (18%)

Unknown H3 K27M status    
n=13 (8%)

Unknown Date of Death and 
<6 months of Follow Up    

n=13 (8%)

Other                                         
n=5 (3%)

Figure 1. Patient selection flowchart citing inclusion and exclusion criteria and numbers ultimately
yielding n = 44 patient records analyzed in the present study.
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2.2. Evaluation and Statistical Methods

OS was estimated from first recurrence using the Kaplan–Meier (KM) method with
median survival times and corresponding 95% confidence intervals (CIs) presented. KM
survival estimates are presented at 12 and 24 months with corresponding 95% CIs. Mul-
tivariate Cox proportional hazard models were used to assess the impact of factors on
survival. Final models following backward selection are presented with p-values, hazard
ratios, and 95% CIs for each factor. It should be noted for some comparisons, analysis is ex-
ploratory in nature due to small sample size and as reflected by wide confidence intervals.

3. Results
Of the 162 glioma patient records reviewed, a total of 44 patients met the specified

criteria and had evidence of recurrent/progressive disease (Figure 1): 30 patients (50.8%)
with one recurrence, 9 patients (15.3%) with two recurrences, and 5 patients (6.8%) with
≥three recurrences. H3 K27M mutation was present in 68.2% of patients with recurrent
disease (n = 30), with the remainder lacking the H3 K27M mutation (Table 1). Among
the patients with the H3 K27M mutation, four (9.1%) patients had non-midline primary
tumor locations, and the remainder had midline primary tumor locations. The median
age of patients analyzed was 28 years (range 4 to 68 years) with 16 (36.4%) being less than
18 years of age. An even number of patients were male (n = 22) and female (n = 22), while
the majority were White (68.2%) and not Hispanic or Latino (79.5%, Table 1).

Table 1. Patient demographic characteristics at first recurrence (N = 44) 1.

Demographic Feature Number of Patients (%)

Age (years), median (range) 28 (4–68)
Pediatric, (age < 18 y) 16 (36.4%)
Female 22 (50%)
Race

Asian
Black
White
Multiple
Not reported

5 (11.4%)
5 (11.4%)

30 (68.2%)
1 (2.3%)
3 (6.8%)

Ethnicity
Hispanic or Latino
Not Hispanic or Latino
Unknown
Not reported

7 (15.9%)
35 (79.5%)
1 (2.3%)
1 (2.3%)

Karnosfsky Performance Status (KPS)
100
90
80
70
60
50
40
Unknown

1 (2.3%)
3 (6.8%)
3 (6.8%)

10 (22.7%)
2 (4.5%)
3 (6.8%)
2 (4.5%

20 (45.5%)
H3 K27M mutation 30 (68.2%)
CSF dissemination * 5 (11.4%)
Leptomeningeal spread # 10 (22.7%)
Resection

Gross total resection
Near gross resection
Sub-total resection
None

2 (4.5%)
3 (6.8%)

16 (36.4%)
23 (52.3%)

Primary spinal tumor 5 (11.4%)
DIPG 12 (27.3%)
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Table 1. Cont.

Demographic Feature Number of Patients (%)

Multifocal disease † 12 (27.2%)
Number of recurrences

1
2
3
5

30 (68.2%)
9 (20.5%)
4 (9.1%)
1 (2.3%)

Contrast enhancement 36 (81.8%)
Steroid use (≥1.5 mg/day, dex) 18 (40.9%)

1 Key: Dex = dexamethasone; DIPG = diffuse intrinsic pontine glioma. * Defined as positive laboratory CSF
cytology results. # Defined as radiographic evidence of additional disease in the CNS. † Defined as ≥2 lesions.

All 44 patients analyzed had a tissue-proven diagnosis of glioma and received frontline
radiation therapy as required for study eligibility. A total of 21 (47.7%) of these patients
underwent a surgical procedure (sub, near, or gross total resection) in lieu of or in addition
to a diagnostic biopsy. In addition to frontline radiation therapy, a wide range of anticancer
agents were used as second-line therapy at the time of recurrence. The most common of these
included temozolomide in 25 patients (56.8%), and bevacizumab in 7 patients (15.9%, Supple-
mental Table S2). Seven patients (11.9%) received re-irradiation during their disease course.

The median OS from the time of first recurrence was 5.1 months (95% CI: 3.9 to
7.7 months, Figure 2A). Excluding patients with DIPG, leptomeningeal spread, CSF dis-
semination, or primary spinal tumors (n = 12), the median OS was also 5.1 months (95% CI
3.0–13.1 months) (Figure 2B). Of the 14 patients reported to have two or more instances of
recurrence, the median OS from second recurrence was 5.3 months (95% CI: 0.9 to 18.1 months)
(Figure 2C). Of the remaining five patients with at least three instances of disease recurrence,
the median OS from third recurrence was 4.7 months (95% CI: 0.1 to not reached) (Figure 2D).

 

A.
B.

C. D.

Figure 2. Overall survival (A) from first recurrence in all patients, (B) from first recurrence in patients
excluding DIPG, leptomeningeal spread, CSF dissemination, or primary spinal tumors, (C) from
second recurrence, and (D) from third recurrence. In general, OS was identical (5.1 months) from first
recurrence in all patients, and in the cohort of patients excluding DIPG, leptomeningeal spread, CSF
dissemination, and spinal tumors (A and B, respectively). Survival at second recurrence (5.3 months)
was slightly longer than that at third recurrence (4.7 months, C and D, respectively). Shaded areas
represent the 95% CI.
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Figure 2 shows patient survival after disease recurrence.

3.1. Analysis by H3 K27M Status

Patients with the H3 K27M mutation had a median overall survival of 4.9 months
(95% CI: 3.0 to 7.7 months). We observed a potential association between the presence of
H3 K27M mutation (n = 30) and shorter overall survival; however, this relationship was
not statistically significant (HR 1.8, 95% CI 0.8 to 3.8, p = 0.14, Figure 3A).

C. 

 

D. 

 

E. 

 

B. 
A. 

Figure 3. Cont.
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C. 

 

D. 

 

E. 

 

B. 
A. 

Figure 3. Overall survival by (A) H3 K27M mutation status, (B) DIPG versus other patients,
(C) primary spinal tumors, (D) infratentorial tumors excluding DIPG, and (E) supratentorial tu-
mors. Shaded areas represent the 95% CI.

3.2. Analysis by Tumor Anatomic Origin

Patients with DIPG had a median OS from the time of first disease recurrence of
3.7 months (95% CI: 0.7 to 9.8 months). Patients with DIPG exhibited a trend toward worse
survival compared to those patients without this diagnosis, although statistical significance
was not reached (HR: 1.8, 95% CI 0.8 to 3.8, p = 0.14, Figure 3B).

Among patients with primary spinal tumors, overall survival for patients with primary
spinal lesions from the time of first recurrence was 3.5 months (95% CI 0.9 to not reached,
Figure 3C). Patients with infratentorial tumors had an OS of 5.1 months from the time of
first recurrence (95% CI to 0.2 not reached Figure 3D). Patients with supratentorial lesions
had an OS from the time of first disease recurrence of 5.9 months (95% CI 4.4 to 14.7,
Figure 3E).

3.3. Multivariate Analysis

Multivariate Cox proportional hazard models conducted at first recurrence demon-
strated that DIPG and primary spinal tumor were associated with a higher risk of death.
HRs were 3.64 (95% CI: 1.41 to 9.45) and 4.69 (95% CI: 1.47 to 14.99), respectively (Table 2).
Sub-total resections (n = 16) demonstrated a trend toward lowered risk of death (HR:
0.43; 95% CI: 0.19 to 1.01; p = 0.052). Due to the small sample size of patients with
gross total resection (n = 2) and near gross resection (n = 3), the risk was inconclusive
(Supplemental Figure S1).

Table 2. Multivariate overall survival model, first recurrence final Cox model presented following
backward selection, removing factors with p > 0.20. Improved overall survival HR < 1.0. Factors con-
sidered: sex, H3 K27M status, pediatric/adult, performance status, tumor size, resection, multifocal
disease, DIPG/primary tumor location, contrast enhancement, steroid use, CSF dissemination, and
leptomeningeal spread.

Parameter Pr > ChiSq Hazard Ratio 95% CI for Hazard Ratio

Primary tumor location: DIPG 0.0078 3.64 1.41–9.45
Primary tumor location: Non-DIPG brainstem 0.44 0.53 0.11–2.66
Primary tumor location: Non-DIPG spinal tumor 0.0092 4.69 1.47–14.99
Extent of resection: Sub-total resection 0.052 0.43 0.19–1.01
Extent of resection: Near gross resection 0.21 2.30 0.63–8.40
Extent of resection: Gross total resection 0.39 1.96 0.42–9.12
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4. Discussion
Diffuse midline glioma is a highly morbid primary brain tumor, and despite recent

advances in our understanding of tumor biology and the study of more targeted therapies,
effective treatment remains elusive. While standard-of-care interventions, including radi-
ation +/− adjuvant therapy, are still the mainstay for DMG treatment, studies of novel
approaches are currently underway for both initial and recurrent disease, critical efforts
given the likelihood of disease progression and/or recurrence despite standard treatment.

For example, the role of re-irradiation and bevacizumab in the setting of recurrent
high-grade glioma has been studied, with some reports suggesting improved OS [20].
Re-irradiation alone for recurrent DMG is also reported to show some survival benefit and
improvement in neurologic deficits [21], but more studies are still needed to determine
which patients will benefit from these additional therapies. Recent studies have also focused
on more advanced and nuanced epigenetic features, including histone post-translational
modification patterns and 3D chromatin structure, as well as molecular subtyping and
prognostic modeling in H3 K27M gliomas [22–24]. These studies suggest novel potential
biomarkers for prediction of treatment response and disease recurrence, and therefore war-
rant further investigation. Indeed, a recent study of adult glioma highlights the prognostic
and predictive impact of key molecular alterations, such as IDH mutation and MGMT
promotor methylation status [25], suggesting using a molecular approach to guide therapy
is clinically relevant and feasible.

Yet despite these multiple ongoing and promising efforts, there remains a continued
need to better understand the factors that drive treatment response and disease recurrence
in patients with diffuse midline glioma. Here, we performed a multicenter, observational,
retrospective exploratory study of the natural history of recurrent disease after management
with standard-of-care interventions (radiation +/− adjuvant therapy). A variety of useful
observations were made through the analysis of these data, many substantiating prior
study findings of this tumor population, and others pointing to important factors for
consideration of clinical management of these patients.

Firstly, a tumor with a pontine epicenter and diffuse appearance on MRI, consistent
with diagnosis of DIPG, was associated with worse prognosis at first recurrence compared
to tumors arising primarily in other anatomic locations. These data are in line with other
reports suggesting that, when compared to patients with brainstem tumors, patients with
other lesions such as in the thalamus experience significantly better survival [26]. As
with previous reports in the literature, the presence of H3 K27M mutation in patients
with recurrent disease was found to be associated with a trend toward worse OS in our
study, though these findings were not statistically significant. The validity of this result is
likely undermined by our study being underpowered, secondary to issues with achieving
intended sample size and enrollment due to premature closure of the study. These factors
likely impacted the statistical significance of the detected effect of H3K27M-mutant status
on OS. To this end, Vuong et al. performed an extensive literature review comprising
26 studies and over 600 patients harboring H3.1 (n = 102) or H3.3 mutations (n = 529),
finding that the prognosis of H3 K27M mutation in DMG patients is modulated by patient
age, with poorer survival in children with the H3.3 mutation relative to adults [27]. Zheng
et al. also performed a retrospective review of a series of pediatric and adult patients with
diffuse midline gliomas harboring the H3 K27M mutation (n = 164), and found prognosis
was better for adult patients than the pediatric cohort [28]. The results of these studies and
our data suggest that the presence of H3 K27M mutation may be a greater prognostic factor
when patient age is considered.

One particularly unique dataset arising from this study is the measure of OS in the
setting of tumor recurrence. The median OS measured from first recurrence was 5.1 months.
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Importantly, prognosis at disease recurrence differed by disease location, with DIPG and
primary spinal tumor associated with a higher risk of death after first recurrence. Due to
the small sample size in this study, our analysis was not able to adequately determine any
survival benefit or the risk of death after gross total resection (n = 2) versus near gross
resection (n = 3). Other studies have shown that there is no survival benefit to greater
extent of resection with midline gliomas [29,30]. In contrast, in the same study, preoperative
KPS and adjuvant radiotherapy have been found to be independent clinical parameters
influencing OS [29]. Taken together, these studies suggest that multiple factors must be
considered when guiding patients regarding prognosis of recurrent disease.

Our study is not without limitations. Due to the early termination of the study, as
described above in the Methods section, we did not achieve the full enrollment, with only
11 centers enrolling and all within the United States. The large difference in anticipated
versus actual accrual limits the size of available subgroups in our subgroup analyses, and
some multivariate analyses resulted in wide confidence intervals due to low numbers in
comparison groups.

Another important point is that additional molecular features important to DMG
biology have recently been discovered. For example, the current WHO classification
now subsumes midline gliomas with H3 K27M mutations together with gliomas showing
aberrant EZHIP expression or with an EGFR mutation. However, the analyzed specimens
reported here were from patients initially diagnosed from 2012 to 2021, and hence not
tested for molecular features like EZHIP or EFGR, which have since been discovered to be
important in DMG biology.

5. Conclusions
There are limited data describing natural disease history and progression, as well

as prognostic factors, in H3 K27M-mutant glioma, particularly in the recurrent setting.
The outcomes described here, while exploratory in nature, shed some light on clinical
outcomes and prognostic factors in the recurrent setting. The small sample size reported
here highlights the crucial nature of multicenter collaborative studies for rare diseases.
Much work is left to be performed to identify treatment modalities that alter the natural
course of disease progression in H3 K27M-mutant glioma.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers17132107/s1, Supplemental Table S1: Second-line therapies
received. Table S2: Second Line Therapies Received. Supplemental Figure S1: Overall Survival after
Disease recurrence. Hazard ratio with 95% Confidence Interval (CI) depicted.
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