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ABSTRACT

Background: Glioblastoma (GBM) is an aggressive primary brain tumor with poor prognosis and low survival rates. Standard
treatments, such as surgery and radiotherapy, are limited by tumor infiltration and resistance. To review current vaccine strate-
gies for GBM, including peptide, virotherapy, cell-based, and genetic vaccines, with a focus on mRNA vaccines.

Methods: Relevant literature on GBM vaccines and immunotherapy was reviewed to summarize design, mechanisms, and
potential clinical applications.

Results: Cancer vaccines aim to activate the immune system to target tumor cells. mRNA vaccines are promising due to their
flexibility, rapid production, and strong immune activation, though clinical investigation is ongoing.

Conclusion: Vaccine-based therapies, particularly mRNA vaccines, hold potential for personalized GBM treatment, but further
studies are needed to confirm efficacy and optimize use.

Abbreviations: 5-FC, 5-flucytosine; 5-FU, 5-fluorouracil; Adv, adenoviruses; ANXAS5, Annexin A5; ARPCI1B, actin-related protein 2/3 complex subunit 1B; AV-GBM,
Aivita GBM vaccine; BBB, blood-brain barrier; C FLNC, Filamin; CD, cytosine deaminase; CEA, carcinoembryonic antigen; CGGA, Chinese Glioma Genome Atlas;
CMYV, human cytomegalovirus; COL1A2, collagen type I alpha 2 chains; CPM, carboxypeptidase M; CSF2RA, colony-stimulating factor 2 receptor; CTLs, cytotoxic T
lymphocytes; CYBA, cytochrome b-245 light chain; DCs, dendritic cells; DCV, dendritic cell vaccination; EGFR, epidermal growth factor receptor; EGFRVIII,
epidermal growth factor receptor I1I variant; FCGBP, Fc fragment of IgG binding protein; FDA, Food and Drug Administration; FKBP10, FKBP prolyl isomerase 10;
GBM, glioblastoma; GMCI, gene-mediated cytotoxic immunotherapy; GMP, good manufacturing procedures; HLA, human leukocyte antigen; hla-a, A-24 alpha chain;
hla-b, B-41 alpha chain; HSP, heat shock protein; HSV, herpes simplex virus; ICPIs, immune checkpoint inhibitors; IDH, isocitrate dehydrogenase; IFN, interferon; IS,
immune subtypes; KDR, Kinase insert domain receptor; KLH, keyhole limpet hemocyanin; LGG, low-grade glioma; LNPs, lipid nanoparticles; MDSCs, myeloid-
derived suppressor cells; MHC, histocompatibility complex; mOS, median overall survival; mPFS, median progression-free survival; MSN, moesin; MV, measles virus;
MVEdm, MV Edmonton strain; NCI, National Cancer Institute; NeoVax, neoantigen vaccine; nGBM, newly diagnosed glioblastoma; PAHA2, Prolyl 4-hydroxylase
subunit alpha 2; PAMPs, pathogen-associated molecular patterns; PPV, pneumococcal polysaccharide vaccine; PRRs, pattern recognition receptors; PTEN,
phosphatase and tensin; PYGL, glycogen phosphorylase L; RELL1, RELT-like protein 1; RIG-I, retinoic acid-inducible gene I; RRVSs, retroviral replicating vectors;
SAMDO, sterile alpha motif domain containing 9; SNPs, single nucleotide polymorphisms; SN'Vs, single nucleotide variants; ssSRNA, single-stranded RNA; TAAs,
tumor-associated antigens; TAMs, tumor-associated macrophages; TCGA, The Cancer Genome Atlas; TERT, telomerase reverse transcriptase; TICs, tumor-Initiating
Cells; TLR7, toll-like receptor 7; TME, tumor microenvironments; TMZ, temozolomide; Tregs, regulatory T cells; TSAs, tumor-specific antigens; WT1, Wilms tumor 1.

Sama Barati, Sahar Ghoflchi, Pejman Hosseinzadeh are equal contributors as first authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

© 2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd.

Cancer Medicine, 2025; 14:¢71187 1 of 28
https://doi.org/10.1002/cam4.71187


https://doi.org/10.1002/cam4.71187
https://doi.org/10.1002/cam4.71187
mailto:
mailto:
mailto:
https://orcid.org/0000-0002-1259-4593
mailto:hoseinihs@mums.ac.ir
mailto:mohammad.jalilinik@gmail.com
mailto:jalilinm@mums.ac.ir
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcam4.71187&domain=pdf&date_stamp=2025-09-15

1 | Introduction

Glioblastoma (GBM) is an aggressive and highly malignant pri-
mary brain tumor, known for its poor prognosis and low overall
survival rates despite extensive research and therapeutic ad-
vancements [1]. The median overall survival (mOS) for GBM pa-
tients with standard treatment is typically around 12-15 months,
and the 5-year survival rate is only about 45%. Survival is often
significantly shorter for patients who do not respond well to
treatment or experience early recurrence [2, 3].

Current therapeutic strategies have limitations; for instance,
surgical resection is the first-line treatment, but it is rarely cu-
rative due to the infiltrative nature of GBM [4]. Post-surgery,
patients typically receive radiotherapy to control local disease
progression. However, GBM often recurs, and radiation ther-
apy has limited efficacy over time [5]. Different therapeutic ap-
proaches such as photothermal therapy (PTT), Nanomedicines,
natural compounds, and targeted therapy also developed for
GBM [6-10]. The oral alkylating agent temozolomide (TMZ)
is the standard chemotherapy for GBM and is typically used
with radiotherapy [11, 12]. Unfortunately, it has limited effec-
tiveness, and tumors often develop resistance. Recent trials
have explored the use of targeted therapies such as targeting
vascular endothelial growth factor but have seen limited suc-
cess due to tumor heterogeneity [13]. GBM is characterized by
remarkable heterogeneity in genetic and molecular profile. This
complexity contributes to therapy resistance and complicates
treatment [14]. Additionally, GBM contains cancer stem cells
that are resistant to conventional therapies. These cells can re-
populate the tumor after treatment, leading to relapse and poor
long-term outcomes [15]. Also, the Blood-Brain Barrier (BBB)
restricts the delivery of systemic therapies to the brain, limit-
ing the effectiveness of many potential anticancer drugs [16, 17].
Even targeted therapies have trouble reaching the tumor cells at
sufficient concentrations. Therefore, the limitations in current
treatment strategies underscore the need for novel approaches
and combination therapies that can effectively target the genetic
complexity of GBM, improve drug delivery across the BBB, and
overcome tumor resistance.

Cancer vaccines provide a potential strategy in oncology, aiming
to stimulate the immune system to recognize and destroy can-
cer cells [18]. Unlike traditional vaccines that prevent diseases,
cancer vaccines are typically therapeutic, designed to treat ex-
isting cancer by enhancing the immune response of the body
[19]. Cancer vaccines can target specific cancer-related antigens,
allowing the immune system to recognize and attack cancer
cells while sparing healthy cells. Also, by training the immune
system, cancer vaccines may reduce the likelihood of cancer
recurrence by establishing long-lasting immune memory [20].
Additionally, cancer vaccinations may be integrated with other
therapies such as checkpoint inhibitors, to enhance the overall
effectiveness of treatment. Moreover, they can be tailored to in-
dividual patients, creating a more precise treatment by targeting
unique mutations found in a tumor [neoantigens] [21, 22].

mRNA vaccines represent one of the most promising advance-
ments in cancer immunotherapy. Unlike traditional vaccines,
mRNA vaccines use synthetic mRNA, which provides in-
structions to the cells of the body to produce specific proteins

[antigens] related to cancer [23, 24]. Once these proteins are ex-
pressed on the surface of cells, the immune system can recognize
them as foreign and mount an immune response against cancer
cells expressing these antigens [25]. The success of mRNA vac-
cines against COVID-19 caused interest in using them to target
cancer-specific antigens [26]. mRNA vaccines are still under in-
vestigation, but their adaptability, speed of production, and abil-
ity to activate a strong immune response make them a powerful
new tool in cancer immunotherapy [27-29]. This paper will
review the research conducted on cancer vaccines for GBM by
focusing on the mRNA vaccine.

2 | The Current Designed Vaccine for GBM

Designing an effective vaccine for GBM involves careful consid-
eration of the biology of tumors, immune evasion mechanisms,
and the unique challenges presented by the central nervous sys-
tem (CNS) [30, 31]. Recent publications categorize cancer vac-
cines into four primary types. The following is a brief report on
these types. The first type comprises peptide-based vaccinations
that use particular short protein fragments [peptides| target-
ing cancer cells to activate the immune system against them.
The second type is the viral vector vaccine, which utilizes a
non-harmful virus to transport cancer antigens to the immune
system. The third type is tumor cell and immune cell vaccines
that employ the tumor to educate the immune system to identify
cancer cells. The fourth type, nucleic acid-based vaccinations,
applies DNA or RNA to encode cancer antigens and deliver them
to the immune system (Figure 1) [32].

2.1 | Peptide Vaccines

Peptide vaccines usually consist of 8-30 amino acids and tar-
get tumor-specific antigens (TSAs) and tumor-associated anti-
gens (TAAs) [33, 34]. TSAs are particular to tumor cells and
may be patient-specific. Moreover, TSAs can result from on-
colytic viral infections or genetic changes that generate neo-
antigens. TAAs are more common in tumor cells than TSAs;
however, normal cells can express TAAs [35]. Administering
TAAs/TSAs via vaccines (e.g., mRNA or dendritic cell-based)
trains the immune system to attack tumors. TSAs potently ac-
tivate T-cells and synergize with checkpoint inhibitors (e.g.,
anti-PD-1) to overcome immune evasion, whereas TAAs re-
quire cautious selection to avoid autoimmunity [36]. Further,
adoptive T-cell therapies (CAR-T/TCR-T) targeting TSAs and
adjuvant combinations (e.g., cytokines) amplify cytotoxic re-
sponses, collectively enhancing antitumor immunity [37]. For
example, WT1 is a well-known TAA overexpressed in GBM
and other malignancies, but it is also detectable at low levels
in normal tissues such as kidney podocytes and hematopoietic
stem cells [38-40]. Similarly, survivin, another TAA, is highly
expressed in many tumor types but is also present in some
normal proliferating cells, including thymocytes and hema-
topoietic progenitor cells [41, 42]. This expression pattern un-
derlies the potential for autoimmunity and central tolerance,
complicating TAA-targeted vaccine design and necessitat-
ing careful antigen selection. Although TSAs and TAAs are
thought to trigger autoimmune reactions due to immune cells
targeting them, clinical trials have demonstrated that TAAs
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Vaccine for GBM
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FIGURE1 | An overview of different vaccines for GBM. EGFRVIII, epidermal growth factor receptor III variant; GBM, glioblastoma; HSP, heat
shock protein; IDH1, isocitrate dehydrogenase; TERT, telomerase reverse transcriptase; WT1, Wilms tumor 1.

evoke a more favorable response than TSAs. TSAs are partic-
ular to tumors and are derived from genetic changes, unlike
TAAs. TSAs targeting needs a customized strategy with low
collateral damage risk. They can also provoke strong im-
mune responses and are not susceptible to central tolerance.
TSA's cancer vaccines have shown encouraging early results;
nevertheless, a meaningful comparison between neoanti-
gen and TAA vaccines is impeded by a lack of clinical data
(Table 1) [43].

211 | WT1

Wilms tumor 1 (WT1) is identified as a GBM TAA that is related
to several solid tumors and leukemias, as well as promoting car-
cinogenesis. Immunotherapy against WT1 has been beneficial
in treating recurrent GBM, as most GBM specimens overexpress
WT1 [44]. The WT1 protein has been designated by the National
Cancer Institute (NCI) as the main validated target for the de-
velopment of cancer vaccines [45, 46]. Peptide vaccines against
WT1 have been used in several clinical trials, and the results
have shown a reduction in detectable WT1 transcript levels and
therapeutic effects [47]. WT1 expression can be seen at low levels
in normal cells, but it is increased in certain malignancies, in-
cluding GBM [48]. This suggests that responses from anti-WT1
T cells, especially those produced by high-avidity T cells, could
eventually become tolerogenic [49]. Researchers have recently
proposed that one way to help leukemia patients overcome im-
munological tolerance is by the production of low-avidity CTLs.
On the other hand, high-avidity T cells are more efficient in
eliminating CML than low-avidity TCRs for WT1-MHC. While
highly immunogenic, WT1 poses a challenge because it is also
expressed at low levels in healthy tissues (e.g., kidneys, hemato-
poietic precursors), leading to central tolerance—a process that
deletes or dampens high-affinity T cells reactive to self-antigens
like WT1 [48-55].

2.1.2 | Survivin

Survivin is an apoptosis-inhibitory protein that is associated
with a poor prognosis and a low overall survival rate in CNS

malignancies, including gliomas and other tumors [56]. Survivin
has the ability to interfere with apoptosis, boost cancer stem cell
proliferation, increase tumor cell invasion, and contribute to
chemotherapy resistance in cancer cells [57]. Strong tumor an-
tigen survivin binds to MHC class I molecules on cancer cell
surfaces to provide T lymphocytes with a stimulatory ligand;
that is, these modified peptides also stimulate higher-avidity
T-cell responses, overcoming preexisting tolerance and decreas-
ing T-cell exhaustion by enhancing tumor clearance and syn-
ergizing with checkpoint inhibitors [58, 59]. Vaccination boosts
this process by expanding low-affinity survivin-reactive T cells
and converting them into potent, durable effectors—effectively
transforming modest baseline immunity into robust antitumor
activity, and given the modest immunogenicity of wild-type
survivin, the vaccination may strengthen preexisting immunity
[60-62]. Compared to the matching wild-type survivin peptide,
SurVaxM (SVN53-67/M57-KLH), a recently developed peptide
vaccine made from the human survivin protein sequence (con-
taining amino acids 53-67), elicited a stronger antitumor im-
mune response against tumor cells [60]. In a phase Ila trial, the
safety, immunologic effects, and survival of newly diagnosed
GBM (nGBM) patients receiving adjuvant TMZ plus SurVaxM
after surgery and chemoradiation were assessed. SurVaxM was
shown to be well tolerated and safe [63]. For nGBM, the combi-
nation offers a viable treatment. When treating nGBM patients
in this way, progression-free survival (PFS) could be a suitable
overall survival (OS) substitute. This is based on the strong cor-
relation observed between prolonged PFS and improved OS in
the study population. Additionally, PFS offers an earlier and
less confounded measure of therapeutic efficacy in aggressive
cancers like GBM, where OS can be affected by postprogression
treatments and extended follow-up times [63, 64].

2.1.3 | IDH1

The metabolic enzymes known as Isocitrate dehydrogenase
1/2 (IDH1/2) are encoded by the IDH1 and IDH2 genes and
located on chromosomes 2 and 15, respectively [65]. IDH
has been considered a potential TSA since mutation in it
mainly occurs in tumor cells, not in normal human cells [66].
Mutations in IDH1, particularly the R132H variant, are found
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in approximately 80% of low-grade gliomas (LGG) and are a
hallmark of secondary GBM, but are rare in primary GBM. An
IDH]1 gene mutation suggests that the GBM is a low-grade sec-
ondary glioma [67]. Numerous human malignancies, includ-
ing gliomas, have been found to have mutations in the genes
encoding these enzymes [68]. These mutations cause oncom-
etabolite 2-hydroxyglutarate (2HG) synthesis, genomic insta-
bility, and neoplastic transformation, which are consistently
distributed in the catalytically active areas of these enzymes
[69]. Schumacher et al. initially attempted to create vaccina-
tions against mutant IDH. Mice were injected with a peptide
consisting of twenty amino acids, which covered a portion of
the altered catalytic pocket of the IDH enzyme. Mice were in-
jected with a 20-amino-acid peptide derived from the mutated
catalytic pocket of IDH (e.g., R132H), which drives cancer
via D-2HG production. Antigen-presenting cells (APCs) in-
ternalized and processed the peptide, presenting it on MHC
molecules to activate tumor-specific CD8+/CD4+ T cells. By
targeting the mutation-induced neoepitope—absent in wild-
type IDH—these T cells bypassed immune tolerance and
selectively killed IDH-mutant tumor cells, reducing D-2HG
levels. The peptide's length likely required in vivo trimming
to MHC-compatible epitopes (8-12-mers), with adjuvants
potentially enhancing APC priming. This approach mirrors
clinical vaccine strategies against IDH-mutant gliomas, where
mutant-IDH peptides induce cytotoxic responses without at-
tacking normal tissues. T-helper cells specific to this mutation
demonstrated a robust immunological response, according to
the findings [70]. Pellegatta et al. developed an immunolog-
ically viable glioma model of the R132H mutation. Their re-
sults revealed that peptide vaccination may delay otherwise
fatal intracranial glioma by about a month and, in a fraction
of cases, cure it [71]. The initial phase 1 trial in humans of the
IDH1 peptide vaccine was NOA-16 (NCT02454634). Patients
with grade 3 and 4 IDH1R132H astrocytoma who had just
been diagnosed were enrolled [72, 73].

2.1.4 | EGFRVIII

A distinct subset of tumor cells (about 33%) expresses the per-
manently active wild-type tyrosine kinase mutant known as
the epidermal growth factor receptor III variant (EGFRVIII).
It is a viable target for the creation of customized immuno-
therapies due to its level of specificity [74]. Mechanistically,
EGFRVIII promotes glioma invasion by activating HIF-1a in
a STAT3-dependent manner and by overexpressing the an-
tiapoptotic protein Bcl-xL [75]. EGFRVIII exhibits persistent
ligand-independent activity even in the absence of a functioning
ectodomain, which would otherwise confer ligand specificity.
In addition to increased carcinogenesis, dysregulated EGFR sig-
naling has been linked to metastasis, resistance to chemother-
apy and radiotherapy, and metastasis [76].

This oncogenic protein, EGFRVIII, is a very appealing tumor-
specific target for the development of a GBM vaccination since
it promotes proliferation [77]. The shortened extracellular do-
main produces a unique tumor neoantigen that is specific to
GBM cells in both mice and people [78]. This prompted the
creation of the peptide-based vaccination rindopepimut (CDX-
110). Rindopepimut is a peptide vaccination that kills GBM cells

that express EGFRVIII by including 14 amino acids from the
EGFRVIII fusion site [77-79]. Three discrete reasons emerged:
first, strong immunogenicity; second, low toxicity that is, KLH
has an excellent safety profile in humans, with only mild side
effects (e.g., transient fever or injection-site reactions); and third,
wide distribution, that is, KLH is commercially available, stan-
dardized, and compatible with clinical-grade manufacturing,
facilitating scalable vaccine production of keyhole limpet hemo-
cyanin (KLH). This vaccine is frequently used in conjunction
with it. In vivo, KLH stimulates immune responses that are
dependent on T and B cells, hence fostering antigenic immune
responses [80]. In fact, KLH enhances the immunogenicity of
EGFRvIII-targeted vaccines (e.g., rindopepimut) by acting as a
potent carrier protein. As a foreign T-cell-dependent antigen,
KLH stimulates robust CD4+ T-cell help, which in turn drives
both antibody production against EGFRVIII and cytotoxic CD8+
T-cell responses to eliminate EGFRvIII-expressing tumor cells.
Its low toxicity, commercial availability, and ability to break im-
mune tolerance make KLH an ideal partner for overcoming the
weak intrinsic immunogenicity of tumor-specific peptides like
EGFRUVIIIL. However, while KLH boosts antigen-specific immu-
nity, its efficacy in clinical settings may still require combina-
tion with other therapies to counteract tumor immune evasion
mechanisms.

Another study by Sampson et al. explored the mechanisms
underlying disease progression after prolonged survival with
EGFRvIII-targeted vaccination. EGFRVIII, a tumor-specific
mutation, is expressed in a subset of GBM and offers a target
for vaccine-based therapies. Patients achieving extended PFS
following EGFRVIII peptide vaccination were analyzed for
EGFRVIII expression and immune profiles. Tumor biopsies
and blood samples were evaluated to identify resistance mecha-
nisms. The outcome illustrated that tumor recurrence was asso-
ciated with the loss of EGFRVIII expression and immune evasion
strategies, such as T-cell exhaustion. These findings emphasize
the need for combinatorial approaches to overcome immune es-
cape [81]. In the same vein, the ACT IV trial investigated the ef-
ficacy of rindopepimut, an EGFRVIII-targeting peptide vaccine,
combined with TMZ. This randomized, double-blind, phase III
trial enrolled newly diagnosed EGFRVIII-expressing GBM pa-
tients. Participants received rindopepimut or placebo alongside
standard chemoradiotherapy. Outcomes included PFS and OS.
The most important clinically relevant finding was the vaccine
generated robust immune responses but did not improve OS or
PFS compared to the control group [82]. Although the immu-
notherapeutic targeting of EGFRVIII may effectively eradicate
neoplastic cells it might be impeded by concurrent myelosup-
pressive chemotherapy, such as TMZ, that offers a survival ad-
vantage in GBM. A phase II, multicenter study was conducted
to evaluate the immunogenicity of an investigational EGFRVIII-
targeted peptide vaccine in patients with GBM receiving therapy
with numerous cycles of standard-dose or dose-intensified TMZ.
The results indicated that EGFRvIII-specific immune responses
emerged in all patients receiving either treatment; however, the
DI TMZ regimen elicited a more pronounced amplitude of hu-
moral and delayed-type hypersensitivity reactions. Vaccination
targeting EGFRVIII elicits immune responses in patients de-
spite lymphopenia generated by TMZ therapy and eradicates
EGFRvIII-expressing tumor cells without causing autoimmu-
nity [83-86].
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2.1.5 | TERT

The telomerase reverse transcriptase (TERT) protein is an im-
portant enzyme complex in eukaryotic species that helps pre-
serve and lengthen telomeres, enhancing the possibility of cell
division [87]. Because TERT mutations reactivate the telomer-
ase enzyme and immortalize malignant cells, they have been
associated with the development of cancer, especially in the
promoter region of the gene [88, 89]. TERT promoter muta-
tions are common in GBM and are linked to varying progno-
ses based on additional genetic variables. For instance, in GBM
with IDH mutations, the presence of a TERT promoter muta-
tion is particularly linked to a better prognosis. Nonetheless,
patients with mutations in the TERT promoter and unmeth-
ylated MGMT promoters typically have the worst prognoses
[90-92]. To potentially treat TERT-related tumors, researchers
are presently investigating therapeutics that target TERT ac-
tivity, such as vaccinations and small-molecule inhibitors [93].
Amen et al. observed that cancer-cell-specific TERT inhibition
via GABPBIL decrease leads to short-term growth inhibitory
effects and a compromised DNA damage response, which sig-
nificantly raises the susceptibility of GBM tumors to frontline
chemotherapy. Additionally, their findings support the use of
TMZ chemotherapy in conjunction with GABPBIL peptide
suppression as a potentially effective treatment for GBM [93].
In another study, researchers paired this strategy with the use
of survivin-mRNA and hTERT-transfected DCs to aid in moni-
toring induced immunity and may serve as therapeutic targets.
Their findings imply that it is possible to establish autologous
cancer stem cell cultures under good manufacturing procedures
(GMP). 1t is clear that immunization against cancer stem cells
can increase the length of time without recurrence and is safe
and well-tolerated [94-98].

2.1.6 | HSP

A novel vaccination strategy called the heat Shock Protein (HSP)
vaccine works by using proteins with molecular chaperone ac-
tivity to stop biological macromolecules that are impacted by
ions, oxygen, and temperature from denaturing [99, 100]. HSPs
may be useful in tumor tissues where aberrant proteins are
abundant because they can reassemble misfolded proteins and
direct the breakdown of aberrant ones. Studies have revealed
that HSPs such as HSP96 can trigger potent immune responses
and are strongly linked to gliomas. Before brain tumor-derived
HSP96 is internalized and presented as an HSP96-chaperoned
tumor antigen on class I and class II MHC, the HSP96 complex
is first attached to CD91 on antigen-presenting cells (APCs),
resulting in robust immunogenicity. The advantage of the HSP
vaccine over other tumor vaccines is that it better induces CD4*
and CD8* T-cell immune responses due to its highly precise in-
teraction between HSP96 and APCs [101].

The HSP vaccine has the benefit of being selective in how it in-
teracts with antigen-presenting cells, which stimulates strong
T-cell immune responses [101]. The vaccination did not cause
any major adverse effects, and the most common adverse event
was minor injection site erythema. Similar to other studies, the
single-arm phase II trial that followed included 41 patients with
recurrent GBM and revealed that the mOS of the HSP96 group

was 42.6 weeks following vaccination without experiencing any
significant side effects (Table 1) [102-104].

2.1.7 | Personalized Peptide Vaccines

Personalized peptide vaccination (PPV), appropriate peptide
antigens for vaccination are screened and selected from a list
of vaccine candidates in each patient, based on preexisting host
immunity [105]. A phase III trial of PPV for HLA-A24+ recur-
rent GBM found that the trial met neither the primary nor sec-
ondary endpoints. Unfavorable factors for the mOS of 58 PPV
patients compared to 30 placebo patients included SART2-93
peptide selection, >70years old, >70kg body weight, and
performance status [106]. The mOS for PPV patients without
SART2-93 selection plus one of these three favorable factors was
significantly longer than that for the corresponding placebo pa-
tients. Preexisting immunity against all 12 warehouse peptides
was significantly depressed in patients with SART2-93 selection
compared to those without. Biomarkers correlating for favorable
OS included a lower percentage of CD11b+CD14+HLA-DR
low immunosuppressive monocytes and a higher percentage
of CD4+CD45RA-activated T cells. Another phase III study
utilizing personalized peptide vaccine (PPV) for HLA-A24+
recurrent GBM did not achieve the main or secondary goals.
Detrimental variables for the mOS of 58 patients receiving PPV
compared to 30 patients receiving placebo were SART2-93
peptide selection, age >70years, and body weight >70kg. The
mOS for PPV patients without SART2-93 selection, along with
one of three favorable characteristics, was considerably lon-
ger than that of the placebo. Preexisting immunity against all
12 peptides was considerably decreased in individuals with
SART2-93 selection compared to those without. Biomarkers as-
sociated with improved mOS included a reduced proportion of
CD11b+CD14+ HLA-DR reduced immunosuppressive mono-
cytes and an elevated proportion of CD4+CD45RA-activated
T cells. Taken together, the vaccine elicited tumor-specific im-
mune responses, with prolonged PFS in responders, highlight-
ing its potential in tailored immunotherapy [106-109].

2.2 | Virotherapies for Treatment of GBM
2.2.1 | Oncolytic Virus's Vaccines

The weak pathogenic (infectious) viruses with genetic modifi-
cation are made oncolytic viruses, which increase anticancer ef-
fects despite ceasing to destroy normal cells. The oncolytic effect
results from direct lysis of the cancer cells due to the virus self-
replication in host cancer cells [110, 111]. In recent years, mod-
ified viruses have become more widely used, opening the door
for their application in oncotherapy [112]. Viruses can activate
the immune system by inducing innate responses and enhanc-
ing specific responses to tumor antigens, thereby significantly
increasing the efficacy of vaccinations [113].

In clinical trials enrolling patients with glioma, Parvoviridae,
Picornaviridae, Retroviridae, Paramyxoviridae, Adenoviridae,
Reoviridae, and Herpesviridae are the most frequently utilized
viruses. However, the most important problem is that most
viruses, apart from Parvoviridae, cannot pass the BBB due to
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their lack of tropism; thus, issues have to be solved in this type
of therapy [114]. Additionally, the expansion of the extracellular
matrix is linked to a desmoplastic condition, one of the changes
tumor microenvironments (TME) endure [115]. Herpesviruses
rely on the tumor's surrounding microenvironment for entry,
particularly due to the elevated expression of integrins in glioma
cells, which facilitates their cellular access. However, the treat-
ment of GBM remains highly challenging because of the brain's
immune-privileged status and the strongly immunosuppressive
tumor microenvironment [116]. To overcome these obstacles, re-
search into novel delivery systems that can either penetrate the
BBB or inoculate directly into the tumor site is just as import-
ant as looking for therapies that stimulate an immune response
[117]. The subsequent properties of viruses and the research con-
ducted on them position them as viable candidates for oncolytic
viral treatment in GBM.

Adenoviruses (Adv) are non-enveloped, double-stranded DNA
viruses that have an icosahedral capsid. At least three oncolytic
viruses have been developed for the treatment of GBM, making
it one of the most often used oncolytic viruses [118]. Herpes sim-
plex virus (HSV)-1 is a virus containing double DNA strands in
its envelope that infects human neural tissues without warning.
Therefore, it shows potential as a viable choice for oncolytic vi-
rotherapy in GBM. Multiple modified oncolytic HSVs (0HSVs)
with varying attenuation levels have been developed for treat-
ing GBM, with six of them progressing to clinical trials. HSV-1
is among the most extensively studied oncolytic viruses (OV)
[119-121].

Poliovirus is an icosahedral virus that contains single-stranded
RNA (ssRNA) and is not enveloped. PVSRIPO, a genetically al-
tered version of the Sabin type 1 poliovirus, is the second on-
colytic virus to receive Food and Drug Administration (FDA)
breakthrough therapy status for recurrent GBM [122]. The nat-
ural target of PVS is the poliovirus receptor CD155, which is
found in APCs and is increased in GBM. The ability of the virus
to infect the nervous system is connected to its internal ribo-
some entry site, which is exchanged in the engineered version
with that of human rhinovirus type 2 [123-126].

Encased RNA viruses are known as retroviruses. The gamma-
retroviral vector Toca 511 can replicate itself and carries a yeast
cytosine deaminase (CD) gene. This gene catalyzes the transfor-
mation of 5-flucytosine (5-FC), an antifungal medication, into
5-fluorouracil (5-FU) that triggers a local antitumor response
[127]. In preclinical glioma models, Toca 511 has shown sig-
nificant oncolytic efficacy [127-129]. Additionally, it has been
demonstrated that Toca 511 at high local concentrations of 5-FU
depletes immunosuppressive myeloid cells in the TME, trigger-
ing the development of a T cell-mediated antitumor immune
response [130, 131]. Another clinical trial was conducted using
H-1PV, a DNA virus that infects rats, as a treatment for GBM.
The reason why cancer cells are susceptible to H1PV infection
is their high levels of essential components for viral replication
within the cell, although H-1PV does not pose any danger to hu-
mans [132].

The measles virus (MV), which belongs to the Paramyxovirus
family and is a negative single-stranded RNA virus, has been
shown to exhibit oncolytic properties in numerous types of

cancer. Naturally occurring oncolytic, weakened vaccine strains
of MV have been altered to enhance their specificity for tumors
and allow for tracking within living organisms [133, 134]. The
MV Edmonton strain (MVEdm) utilizes the carcinoembryonic
antigen (CEA) as a reporter gene to monitor viral activity within
the body [135]. Glioma animal models treated intratumorally
with MV-CEA showed noticeable tumor shrinkage [136, 137].

Another Oncolytic vaccine virus belongs to the Poxviridae fam-
ily of enveloped double-stranded DNA viruses. By incorporating
the suicide gene (FCU1) to enhance tumor specificity, TG6002
is a modified Oncolytic vaccine virus with mutations in the ri-
bonucleotide reductase and thymidine kinase genes [138]. In
preclinical studies, TG6002 has shown effectiveness in fighting
cancer and is currently being tested with 5-FC in a phase I/II
trial involving IV administration of the virus in 78 GBM patients
(NCTO032944386) [138, 139].

Human cytomegalovirus (CMV) nucleic acids and proteins are
initially detected in GBM tissues in over 90% of patients, but not
in the normal brain around the tumor [140, 141].

This discovery led researchers to create a peptide immunization
against this virus. The vaccination aims to focus on pp6537, the
main structural protein of CMV. Research has been done on
two methods of treatment: utilizing pp6537-stimulated DCs and
cultivating CM V-specific CD8" T cells (Table 1) [142-144]. The
study conducted by Reap et al. provides compelling evidence
that dendritic cell vaccination (DCV) can enhance the func-
tionality of adoptively transferred CM V-specific T cells. These T
cells exhibit increased polyfunctionality, characterized by con-
current expression of multiple effector molecules such as IFN-y,
TNF-a, and IL-2, suggesting improved antitumor efficacy. The
finding underscores the therapeutic potential of CMV-targeted
immunization strategies in GBM, as they have been shown to
potentiate T cell polyfunctionality and cytotoxic activity. These
approaches may mitigate the profound immunosuppression
of the GBM tumor microenvironment, thereby enhancing the
efficacy of adoptive and vaccine-based immunotherapies. By
augmenting polyfunctional T cell responses, these approaches
offer a promising avenue to strengthen antitumor immunity
in this highly immunoevasive malignancy [145]. In addition,
complementary evidence from the IMMU-04 clinical trial re-
inforces the therapeutic promise of CMV-targeted vaccination
in glioblastoma. In this investigation, nGBM patients were
administered a novel CMV peptide-based vaccine in conjunc-
tion with the standard-of-care chemotherapeutic agent TMZ,
demonstrating the feasibility and potential synergistic efficacy
of this combinatorial approach. The results demonstrated the
feasibility and safety of this combinatorial approach, and early
data indicated the induction of robust CMV-specific immune
responses. Notably, the use of CMV antigens, which are selec-
tively expressed in GBM tissues but not in surrounding normal
brain, offers a tumor-selective target that minimizes off-tumor
toxicity. These outcomes highlight the promise of CMV-directed
immunotherapies and warrant further investigation in larger,
controlled trials to validate clinical efficacy and inform optimi-
zation of vaccine design [146].

In another major study, Zadeh et al. found that oncolytic vi-
rotherapy combined with ICPIs represents a novel strategy for
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GBM. This study evaluated DNX-2401, a replicative oncolytic
adenovirus, with pembrolizumab in recurrent GBM. Patients
received DNX-2401 followed by pembrolizumab. Tumor re-
sponses and immune profiles were monitored. The findings
revealed that the combination was well-tolerated, with partial
responses observed in a subset of patients [147]. A phase I/11
trial evaluated the reliability of G47A, a triple-mutated onco-
lytic HSV-1, in patients with progressing GBM after radiation
and TMZ treatments. Thirteen patients completed treatment,
with 12 experiencing adverse events. The secondary endpoint
was efficacy, with a mOS of 7.3 months and a 1-year survival
rate of 38.5%. Median progression-free survival was 8days,
mostly attributable to the rapid expansion of the contrast-
enhanced region of the target lesion on MRI. Three patients
endured for over 46 months, and one entire response was ob-
served at 2years. Biopsies indicated postadministration MRI
characteristics probably represented tumor cell death by viral
multiplication and lymphocyte infiltration towards tumor
cells. The mechanism of immunological progression is in-
dicative of this treatment. This research shows that G47A is
suitable for treating recurrent GBM [148]. This collection of
studies highlights advancements in immunotherapy for GBM,
exploring vaccines targeting specific tumor antigens, such as
mutant IDH1, EGFRVIII, and survivin.

Approaches include peptide vaccines such as rindopepimut,
SurVaxM, autologous dendritic cell therapies, and oncolytic vi-
rotherapy (DNX-2401) combined with ICPIs. While trials such
as ACT IV and Audencel showed limited impact on survival,
others demonstrated immune activation and potential clinical
benefit, particularly in personalized or combination therapies.
These findings underscore the promise of immunotherapy in
GBM treatment while emphasizing the need for improved strat-
egies to overcome immune resistance and enhance therapeutic
efficacy. Also, an investigation revealed that another cause of
GBM may be a mutation in IDHI, so it is a promising target
for immunotherapy. A clinical trial was executed to assess the
immunogenicity and preliminary efficacy of the IDH1 peptide
vaccine. Patients with IDH1-mutant gliomas were registered
and obtained the vaccine with standard therapies. Immune
responses were evaluated using T-cell assays, and clinical out-
comes were monitored. The results of this study indicate that the
vaccine was well-tolerated and elicited strong, mutation-specific
T-cell responses. Early efficacy signals included stabilization of
disease in several patients, supporting the potential of this ap-
proach for IDH1-mutant gliomas [70].

2.2.2 | Viral Vector Vaccines

Viruses are used as carriers of therapeutic genes to improve
cell function or target abnormal cells, with retroviral replicat-
ing vectors (RRVs) and Adv being the most studied for GBM
[112, 149]. Recombinant viruses, as opposed to oncolytic vi-
ruses which kill tumor cells, are designed to safely transport
antigens. Without the use of extra adjuvants, these vectors can
infect target cells and create antigen peptides, inducing a potent
immune response. Viral vectors can strengthen the immune
system by utilizing pathogen-associated molecular patterns
(PAMPs); however, prolonged usage may develop antiviral im-
munity [150, 151]. For example, for the treatment of rodent GBM

models, researchers have created a bicistronic Adv vector con-
taining HSV-1 and a Tet-inducible expression cassette for FIt3
ligand. The vector has therapeutic efficacy, cytotoxic and immu-
nostimulatory effects, and no excess viral particle burden after
injection [152]. There is an ongoing phase I clinical trial that
combines immune-mediated killing triggered by the F1t3L gene
with direct destruction of tumor cells. Adv-tk plus an antiher-
petic prodrug are the two drugs used in gene-mediated cytotoxic
immunotherapy (GMCI), and it has demonstrated favorable
therapeutic effects on tumor cells [153]. Clinical trials on newly
diagnosed, recurring malignant and juvenile malignant gliomas
have shown survival advantages and low toxicity [154-156].

Moreover, powerful vehicles have been engineered using AAV, a
viral vector intimately connected to the immune system. To im-
prove T cell function, Ye et al. created a hybrid CRISPR screen-
ing system that can target and modify membrane proteins on
primary murine T cells in vivo [157]. A vector with VEGF-C was
developed to enhance CD8* T cell activation in mice models of
GBM. This vector could enhance antigen removal and change
the tumor microenvironment, potentially enhancing the effi-
cacy of immune checkpoint inhibitors (ICPIs) in GBM therapy
[158]. In addition to VEGF-C, GBM frequently displays changes
to the epidermal growth factor receptor (EGFR), suggesting that
this receptor is essential for the development and proliferation of
glial tumors. The RNA polymerase III-dependent H1 promoter
was incorporated into HSV-1-based amplicons to allow for the
expression of double-stranded hairpin RNA against EGFR at
two distinct sites (pHSVsiEGFR I and pHSVsiEGFR II). Human
GBM (gli36-luc) cell growth was inhibited both in vitro and
in vivo by this dose-dependent posttranscriptional gene silenc-
ing using vector-mediated RNA interference [159]. These find-
ings indicate that effective posttranscriptional gene silencing
can be achieved with HSV-1 amplicons.

Furthermore, RRVs that encode the CD gene can selectively
transfect neoplastic cells and convert the prodrug 5-FC into the
cytotoxic agent 5-FU [160]. Mitchell et al. conducted a study
examining the immunogenic properties of RRVs in murine gli-
oma models. Researchers revealed that Toca 511 in conjunction
with 5-FC can elicit a moderated and escalating immune acti-
vation. Post-treatment observations indicated an increase in the
expression levels of 41BB, CD40L, and PD-1, while there was a
reduction in the population of immunosuppressive cells. Mice
that achieved complete tumor eradication experienced extended
survival durations [131].

Recombinant parvoviruses have been utilized to influence the
immune response within GBM tumors. In a syngeneic murine
model, the transduction of CXCL10 and TNF-alpha cytokines
resulted in tumor regression. This synergistic interaction con-
tributed to a postponement of tumor proliferation in naive, pre-
established tumors; however, no regression was noted in naive
tumors [161]. Notwithstanding the demonstration of significant
therapeutic efficacy in clinical trials, viral-vector gene therapy
has yet to attain approval from the FDA. Further progress is re-
quired due to limited effectiveness, viral vector delivery, tumor
penetration, and safety issues. Even with these challenges, the
bright future of viral-vector gene therapies is supported by the
many creative solutions being explored in academia, biotechnol-
ogy, pharmaceuticals, and manufacturing industries [118].
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In addition to these approaches, several viral vector-based
strategies have been developed to deliver immunomodulatory
genes directly into the tumor microenvironment. These in-
clude inducible IL-12 expression systems using the RheoSwitch
Therapeutic System (RTS), allowing controlled immune stim-
ulation and minimizing systemic toxicity [162]. In this regard,
Rivera-Molina et al. engineered a GITRL-armed Delta-24-RGD
oncolytic adenovirus, which extended survival and induced an-
tiglioma immune memory in preclinical models [163]. Passaro
et al. constructed an oncolytic HSV-1 vector encoding a PD-1-
blocking scFv antibody, providing local checkpoint blockade
and improved immune infiltration [164]. In another study, King
et al. demonstrated that codelivery of FIt3L and thymidine ki-
nase (TK) via gene therapy led to eradication of multifocal
glioma in syngeneic models through combined immunostimu-
lation and direct cytotoxicity [165]. These strategies demonstrate
the expanding versatility of viral vectors in not only delivering
tumor-targeting genes but also enhancing antitumor immune
responses in glioma therapy.

2.3 | Cell-Based Vaccines
2.3.1 | Dendritic Cell Vaccination

One particular subset of APCs that regulates immunity and im-
munological tolerance is the DC. They are considered an inter-
esting goal for eliciting immune responses towards malignancy
because they are present in most tissues as immature (resting)
cells. They exhibit mature peptides on their human leukocyte
antigen (HLA) class I and II receptors after antigen collection
and processing, resulting in MHC-peptide complexes. Mature
activated DCs move from peripheral tissues to secondary lym-
phoid organs and lymph nodes in order to engage in physical
interactions and trigger T-cell responses [166].

There is much controversy regarding DCV as a therapeutic adju-
vant in GBM. Hundreds of GBM patients have received vaccina-
tions to induce an anticancer immune response through the use
of DCV as active immunotherapy in numerous clinical trials.
Effectiveness of DCV in GBM generally varies, from no clini-
cal response to notable responses [167]. DCVs increase tumor-
specific IFN-y, activate CTL, slow the growth of tumors, and
extend life expectancy. The vaccination seems to be safe, well-
tolerated, and free of major side effects (> grade 3) [168, 169].
Bota et al. A phase 2 trial evaluated the survival, adverse events,
and efficacy of the Aivita GBM vaccine (AV-GBM)-1, produced
by incubating autologous DCs with irradiated autologous
tumor-initiating cells, using autologous DCs. They determined
the treatment was well tolerated; however, there were several
treatment-emergent CNS adverse events (AEs). AV-GBM-1 was
reliably produced. Treatment was well tolerated. The median
Progression-Free Survival (mPFS) was longer than historical
benchmarks, but no mOS improvement was observed [170]. In
another study, researchers investigated the efficacy of the autol-
ogous tumor lysate-loaded Dc vaccine (DCVax-L) in the survival
of GBM patients. In this investigation, compared to matched,
contemporaneous external controls, adding DCVax-L to SOC
has been connected to a clinically relevant and statistically sig-
nificant improvement in mOS for patients with both nGBM and
recurrent GBM (Table 1) [171].

A phase III trial examined patients who received autologous
DC vaccines tailored to tumor antigens alongside standard
care. Researchers assessed the survival and immune responses.
While overall results were mixed, patients with robust immune
responses showed improved survival, underscoring the poten-
tial of individualized vaccines [172]. Combining dendritic cell
vaccines with radiochemotherapy may enhance immune re-
sponses in GBM. Inogés et al. in this phase II trial were evalu-
ated immune activation and survival outcomes. For this reason,
patients underwent fluorescence-guided surgery followed by
radio chemotherapy and autologous DC vaccination. The most
striking result to emerge from the data is that combination ther-
apy was safe and led to enhanced immune responses. Modest
survival benefits were observed, highlighting the potential of in-
tegrating DC vaccines into standard GBM treatment [173]. In an-
other study, Audencel, a DC-based vaccine, was evaluated for its
impact on GBM outcomes in a phase II trial. The nGBM patients
received Audencel alongside standard therapy. OS and PFS were
the primary endpoints. The vaccine showed no significant im-
pact on survival outcomes; therefore, the addition of Audencel
to the standard of care did not improve the clinical outcomes of
patients with primary GBM [174-176].

2.3.2 | Whole Tumor Cell Vaccines

TSAs and TAAs, which are categorized into five kinds based
on their expression in tumors, are used by the immune system
to identify cancers [177]. The main goals of the research are to
determine which TAA epitopes are the most immunogenic in
humans, to characterize the immunogenicity of TAAs, and to in-
vestigate their potential as tumor-defense antigens. A promising
strategy to induce a potent antitumor response and long-term
memory is to create vaccines from entire tumor cells, including
numerous TAAs recognized by CD8* cytotoxic T lymphocytes
(CTLs) and CD4* T helper cells. For efficient tumor regression,
this tactic seeks to stimulate the innate and adaptive immune
systems [178].

By targeting various tumor antigens and removing the indi-
vidual epitopes, whole tumor vaccination therapy presents a
promising approach to cancer treatment that can be used for
all patients, independent of their HLA type [179]. Allogeneic
vaccinations offer a more standardized and scalable approach
employing tumor cell lines from diverse tumors, whereas autol-
ogous vaccines using the tumor cells of patients give customized
treatment choices with distinct neo-tumor antigens. Allogeneic
vaccines provide advantages in terms of scalability and quality
control, while autologous vaccines have drawbacks regarding
reproducibility and tailored therapy [179, 180]. All things con-
sidered, whole tumor vaccination therapy offers promise for ef-
ficient and customized cancer immunotherapy [181-183].

2.4 | Genetic Vaccines for GBM

The fastest-growing field of vaccine technology is genetic vacci-
nations, known as gene-based. In this vaccine technology, cells
take nucleic acids like DNA [as plasmids] or RNA [as mRNA]
and convert them into proteins in line with the nucleic acid tem-
plate. Following this protocol may trigger an immune response
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specific to the tumor [184, 185]. Previous investigations revealed
that genetic vaccines such as live or attenuated viruses remark-
ably trigger MHC class I and class II pathways, enabling the ac-
tivation of CD8* and CD4+ T cells without the inherent danger
of live vaccinations [184, 186]. Furthermore, many of the prob-
lems associated with recombinant protein-based vaccinations,
including excessive manufacturing costs, challenges with puri-
fication, incorrect antigen folding, and inadequate CD8" T cell
activation, can be avoided using genetic vaccines [186].

2.4.1 | DNA Vaccine

A novel approach being studied in GBM patients is the produc-
tion of DNA vaccines. Viral origins were highlighted in earlier
research as a biological vector for introducing predetermined
antigens into host cells. The emphasis has now switched to plas-
mids made of synthetic DNA [187]. DNA vaccines are perfect for
developing cancer vaccines because of a number of their features.
Plasmid vaccines pose fewer risks regarding immunogenicity
and replication competency than other delivery systems (recom-
binant proteins and viral vectors). Additional benefits include
improved compatibility with people, stability, ease of large-scale
production, and lack of infectious agents [188]. Patients with re-
cently confirmed IDH1 or IDH2 mutations in GBM are partici-
pating in a phase I trial of a DNA vaccination. To treat patients
with this mutation, this trial makes use of two DNA plasmids:
one encoding the tumor-specific antigen GNOS-PVO01 and the
other containing a synthetic DNA plasmid generating the pro-
inflammatory cytokine interleukin-12, or INO-9012. Through
the promotion of the development of specialized T cells against
antigens particular to a patient, IL-12 functions as a molecular
adjuvant to activate the immune system [189]. mRNA vaccine
has been described in the following sections.

3 | mRNA Vaccine for Cancer: The State of Art and
the Mechanism of Action

mRNA vaccines are short RNA fragments that are delivered
to the body using various methods, including viral vectors like
lentiviruses, alphaviruses, and rhabdoviruses, or by encapsulat-
ing mRNA within lipid nanoparticles (LNPs) for direct delivery.
These mRNA fragments encode specific antigens that, once in-
side the body, initiate an immune response aimed at identifying
and eliminating cancer cells or viral pathogens.

The development of mRNA vaccines for GBM focused on iden-
tifying TAAs and TSAs [190, 191], particularly neoantigens
arising from somatic mutations that the immune system rec-
ognizes as foreign, thereby eliciting potent antitumor T cell
responses while avoiding autoimmune reactions [192-194].
These antigens are detected via assessments of gene expression
and genomic changes, such as overexpression [195], mutation
frequency [196], and copy number alterations [197]. Moreover,
these antigens are selected based on their links to poor prog-
nosis [198, 199] and their association with heightened infiltra-
tion of antigen-presenting cells (APCs) like dendritic cells and
macrophages [196, 199]. By delivering these antigens into the
body, mRNA vaccines enable APCs to process and display them
through MHC class I and II pathways [24], activating CD8+

cytotoxic T cells [200] and CD4+ helper T cells [24]. Dendritic
cells are crucial in bridging innate and adaptive immunity [201]
by capturing, processing, and presenting antigens, including
cross-presentation of extracellular tumor antigens [202-204].
This process generates tumor-specific T cells and triggers pro-
inflammatory cytokines that bolster CD8+ T cell activity, such
as Granzyme B, IL-2, IL-7, IL-12, and IL-15 secretion, leading to
better clinical results [205-207]. Personalized mRNA vaccines
are developed by sequencing individual tumor samples to iden-
tify unique neoantigens, with antigens showing high expression
emerging as promising candidates for effective GBM immuno-
therapy [198, 208].

After delivery, DCs in the body play a critical role in process-
ing the mRNA. DCs internalize the mRNA fragments through
endocytosis or phagocytosis, where ribosomes subsequently
decode the mRNA to produce the encoded antigens [209, 210].
These antigens represent parts of the cancer cell or viral struc-
tures, which the immune system would not normally recognize
as host cells. The antigens produced from mRNA translation
are further broken down by proteasomes into smaller peptides.
These peptide fragments are then bound by major histocompat-
ibility complex (MHC) molecules within the DCs and presented
on their cell surface. This MHC-antigen complex is essential to
activate DCs and prepare them for interaction with other im-
mune cells [211].

Once activated, DCs migrate to the lymph nodes, where they
present the antigens to T cells and B cells. In this phase, antigen-
presenting DCs engage with T-helper cells [CD4* cells] to stim-
ulate the adaptive immune response. Activated T cells, in turn,
initiate the production of antibodies by B cells. These antibodies
specifically target the antigens displayed by cancer cells or viral
pathogens, marking them for destruction [209]. In addition to
antibody production, CTLs are activated, especially CD8" cells.
These CTLs recognize and directly bind to cancer cells or in-
fected cells displaying the foreign antigens, inducing apoptosis
in these targeted cells. This action not only helps eliminate can-
cer cells but also generates immune memory, reducing the risk
of cancer recurrence [211].

Based on the above, mRNA vaccines stimulate both innate and
adaptive immunity. However, before the activation of adaptive
immunity, it is crucial to comprehend how cells detect non-self
mRNA and trigger signaling cascades via the interplay of mRNA,
pattern recognition receptors (PRRs), and pathogen-associated
molecular patterns (PAMPs). PRRs detect PAMPs either extra-
cellularly via cell surface/endosomal TLRs or intracellularly via
RLRs/NLRs [212]. The identification of RNA inside the endosome
is mediated by toll-like receptors (TLRs). Consolidated data indi-
cate that the TLR-MyD88-NFxB signaling pathway is often impli-
cated in PAMP identification [213]. TLR-3 identifies and attaches
to double-stranded RNA (dsRNA), influencing the activation of
the type I interferon (IFN) pathway and the release of cytokines
and chemokines [214]. Alternatively, ssRNA functions as a PAMP
by interacting with TLR-7 to activate nitric oxide synthase [215].
Cytosolic non-self RNA is identified by retinoic acid-inducible
gene I (RIG-I) receptors, nucleotide oligomerization domain-like
receptors, RNA-dependent protein kinase receptors, and oligoad-
enylate synthetase receptors. Activated RIG-I identifies a long
non-coding RNA in conjunction with TRIM25, an E3 ubiquitin

14 of 28

Cancer Medicine, 2025

85U8017 SUOWIWIOD BAIE8.D 8|qed! (dde 8Ly Aq peusenob 8@ seoile YO ‘8sn JO S9N 10} A%ug18UIIUO 8|1 UO (SUONIPUOD-PUB-SWIBI WD A8 | 1M AteIq Ul UO//:SANY) SUONIPUOD pue swie 1 84} 89S *[6Z0Z/0T/ST] U Akiqiauluo A8|iM elfeleueiyood Aq Z8TT. #Uied/z00T OT/I0p/wod Ae |m Areiqijeuljuo//sdiy woiy papeojumod ‘8T ‘5202 ‘vE9/502



ligase that facilitates K63-linked ubiquitination of RIG-I, to en-
hance RIG-I-mediated antiviral innate immunity [216]. Another
RNA sensor, protein kinase receptor, modulates the transcription
factor IRF1, inhibiting the cessation of the translational process
to combat the virus [217]. Regardless of the nature of the RNA
sensor, RNA-induced PRRs facilitate the generation of type I
IFNs. IFN-y augments the production of PKP and the subsequent
phosphorylation of eIF2a. Simultaneously, a negative feedback
loop is established to inhibit the production of IFN-y, impacting
mRNA translation and posttranslational modifications [218].
Furthermore, the overexpression of IFN enhances the interaction
of oligoadenylate synthetase and dsRNA, facilitating the pro-
duction of RNase L to destroy non-self RNA. Consequently, the
optimized mRNA vaccines must provide complete activation of
innate immunity to induce adaptive immunity. mRNA sequence
designers must refrain from excessive activation of innate immu-
nity that obstructs mRNA translation (Figure 2) [219]. In view of
all that has been mentioned so far, these mechanisms highlight
the innovative design of mRNA vaccines, which employ their
own cellular machinery and immune processes to recognize and
combat cancer.

3.1 | Transmission Mechanism
3.1.1 | InVivo and Ex Vivo
The delivery of mRNA vaccines can occur via two general ap-

proaches, including in vivo and ex vivo. Both approaches have
unique advantages and are chosen based on the specific type of
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cancer and the desired immune response [209, 210]. In vivo in-
volves direct administration of the mRNA vaccine into the pa-
tient, where it is taken up by immune cells such as DCs directly
within the tissues. Typically, mRNA is encapsulated in LNPs to
protect it from degradation and facilitate efficient cellular up-
take [220]. So, LNPs are typically designed to have a size and
surface charge that promote uptake by APCs, including DCs,
through endocytosis or micropinocytosis [221]. Also, after in-
tramuscular or subcutaneous injection, LNPs drain into lymph
nodes, where DCs are highly concentrated. Subsequently, the
LNPs enable the mRNA to enter cells and subsequently trans-
late into antigens, triggering an immune response. In vivo de-
livery is advantageous because it is relatively straightforward
and can lead to a rapid, systemic immune response [210].

In contrast, the ex vivo approach involves isolating specific
immune cells, often DCs, from the patient and modifying
them outside the body. In this process, patient-derived DCs
are extracted and transfected with mRNA in a controlled lab-
oratory setting. Once the DCs have successfully processed the
mRNA and presented the desired antigens, they are reintro-
duced into the patient [222, 223]. This approach offers greater
control over the activation of immune cells and is particularly
useful for personalized therapies where immune responses
must be tightly regulated [224]. Each approach has its ben-
efits. In vivo delivery is less invasive, and it is suitable for
broader applications. Despite this, ex vivo delivery allows for
a highly customized immune response tailored to individual
patients, which is especially advantageous in cancer immuno-
therapy [225].
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FIGURE2 | A summary of mRNA vaccine immunity performance. eIF-2, eukaryotic initiation factor 2; IFN-y, interferon; LNC-RNA, long non-

coding RNA; MHC-I, major histocompatibility complex; PKP, protein kinases; RIG-IR, retinoic acid-inducible gene I receptor; TLR, toll-like receptor
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3.1.2 | mRNA Delivery Systems to Cells in
the Vaccination

A key challenge in mRNA vaccine therapy is effective delivery
systems. RNA vaccination encounters hurdles such as over-
coming barriers that inhibit the entry of foreign nucleic acids
and breakdown by RNases. Additionally, the large size of RNA
hinders its diffusion within cells, increasing its detection and
destruction by the host [226, 227]. Therefore, proper delivery
systems are essential [227]. Traditional methods such as in vitro-
loaded DCs, polymer delivery, and mechanical techniques [gene
gun, electro injection| are complex, expensive, or unsuitable for
humans. Viral vectors are efficient for nucleic acid delivery but
face issues such as immunogenicity and manufacturing chal-
lenges [228, 229]. Nonviral vectors, while less efficient, are less
safe and can carry larger genetic loads, making them easier to
synthesize [230, 231]. LNPs are the most common method of
non-viral mRNA delivery [232]. These sub-micrometer solid
structures form an emulsion with solid lipids. LNPs usually have
a hydrophilic core and a lipid bilayer shell with different lipids
that play different roles. Most formulations use cationic lipids to
effectively complex with negatively charged RNA, while anionic
and neutral types have also been used. In fact, this electrical
charge difference helps to retain the mRNA in the nanoparticles
[233, 234]. Novel lipidoids with amine groups maintain a low
or neutral surface charge at physiological pH, reduce nonspe-
cific interactions, and facilitate oligonucleotide release into the
cytosol. In acidic endosomes, amine groups are ionized, form-
ing a hexagonal phase that disrupts the endosomal membrane
and facilitates the escape of mRNA into the cytoplasm (Table 2)
[235, 236].

3.2 | mRNA Vaccines in Glioma

Several studies have found suitable glioma antigens for mRNA
vaccine treatment by use of data collected from The Chinese
Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas
(TCGA), along with TIMER and cBioPortal. Subsequently, they
confirm gene modifications and identify immune-active sub-
types. Overall, more than 50 potential antigens have been found
for mRNA vaccine development (Table 3). Variations in antigens
identified are attributed to the employment of diverse tools and
datasets and the complexity of the TME [198].

There are various difficulties in using mRNA vaccines to treat
GBM, and their use is still in the initial stages, requiring more
research and clinical trials to fully understand their therapeutic
potential [201]. Significant challenges persist before their clinical
implementation [245], stemming from the aggressive nature of
GBM and its localization in critical brain regions, alongside in-
herent tumor characteristics like heterogeneity, a highly immu-
nosuppressive TME [245], and low mutational burden [246]. The
complex mix of cell types within GBM tumors poses a challenge
for universal vaccine development [245], and the immunosup-
pressive TME, influenced by elements like MDSCs and TAMs,
hinders immune responses [247]. Therapeutic agent distribution
to brain tumors is significantly limited by the BBB, which poses
a formidable challenge [248]. Furthermore, without an efficient
delivery route, the enormous size of mRNA molecules hinders
cellular uptake, and they are naturally unstable and prone to fast

destruction [227, 248, 249]. The absence of well-characterized,
highly immunogenic antigens that are uniquely produced in
GBM and that can trigger a robust immune response is another
obstacle [18, 250]. Although it is feasible to target TAAs, doing
so runs the risk of inducing autoimmunity [243]. There are addi-
tional technical challenges, such as creating effective circRNA
that expresses proteins or peptides and attaining repeatable,
large-scale production [251]. Investigations into their effective-
ness for precisely targeting tumor cells and generating a strong
immune response in GBM are still evolving, underscoring the
need for technological innovations and a more comprehensive
understanding of immune dynamics specific to GBM [201].
Additional research is essential to confirm and refine their
performance, particularly by addressing immune cell exhaus-
tion and refining patient selection methods based on immune
profiles [198].

As we mentioned above, BBB poses a significant obstacle, re-
stricting the effective transport of therapeutic agents, such as
mRNA vaccines, to brain tumors like GBM [252-254]. To ad-
dress this, advanced nanoscale systems are essential for pen-
etrating the BBB, precisely targeting GBM cells, and reducing
harm to surrounding healthy tissue [248, 255, 256]. Researchers
are investigating various nanoparticle-based platforms for con-
trolled and site-specific delivery [257, 258], including LNPs
[249], polymeric nanoparticles [259], liposomes [260], exosomes
[261], and biomimetic nanoparticles [262]. mRNA can be en-
capsulated by nanoparticles to prevent deterioration [248, 249]
and can be engineered with targeted ligands on their surfaces
to enhance BBB traversal and cellular uptake [263]. Notably,
biomimetic nanoparticles replicate natural biological struc-
tures, like cell membranes, allowing them to avoid immune
responses and efficiently breach the BBB [262]. Exploiting the
partial breakdown of the BBB in the core of GBM tumors, which
boosts permeability [262, 264], presents a viable strategy for
mRNA vaccine delivery. Nevertheless, the intact BBB at the
tumor's periphery continues to pose a significant barrier [265].
Other tactics involve direct local delivery techniques, such as
intracranial or intrathecal administration, to sidestep the BBB
entirely [266], as well as leveraging mRNA to stimulate lymph-
angiogenesis, thereby enhancing immune cell infiltration and
antigen transport to peripheral lymph nodes [267, 268]. Despite
their potential, these methods remain largely experimental or in
early clinical stages, with ongoing hurdles in refining delivery
mechanisms and production processes [201].

mRNA vaccines provide several key benefits compared to con-
ventional vaccine approaches, such as strong tolerability, no risk
of genomic integration, inability to induce infections, streamlined
and economical production, and the capacity to stimulate both cel-
lular and antibody-mediated immune responses [24]. In contrast
to peptide vaccines, which are limited to partial antigens and HLA
restrictions, mRNA vaccines can encode complete tumor antigens,
enabling a more diverse T-cell activation [208, 260]. Given the vari-
ability in GBM tumors, vaccines targeting a single antigen, as with
some peptide options, have yielded modest results [117], whereas
mRNA vaccines support the simultaneous delivery of multiple
antigens [187]. Cell-based DC vaccines have demonstrated safety
and practicality, with select trials showing extended patient sur-
vival [172], and mRNA can be leveraged to effectively load these
DCs [201]. Nonetheless, mRNA vaccines are hindered by issues
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TABLE 3 | Studies were conducted to identify appropriate tumor antigens for mRNA vaccination.

Tumor type Identified antigens References
Glioma Isocitrate dehydrogenase 1 (IDH1), transcription factor 12 (TCF12), [237]
protein p53 (TP53), complement component 3 (C3)
Glioma FKBP prolyl isomerase 10 (FKBP10), glycogen phosphorylase [238]
L (PYGL), annexin A5 (ANXAS5), moesin (MSN)
LGG Filamin C (FLNC), colony-stimulating factor 2 receptor (CSF2RA), Fc [239]
fragment of IgG binding protein (FCGBP), Toll-like receptor 7 (TLR7)
Diffuse Glioma Collagen type I alpha 2 chain (COL1A2), kinase insert domain receptor [240]
(KDR), sterile alpha modif domain containing 9 (SAMD9)
Glioblastoma Hexokinase 3 (HK3), Actin-related protein 2/3 complex subunit 1B (ARPC1B) [241]
Glioblastoma Cytochrome b-245 light chain (CYBA), RELT-like protein 1 (RELL1), [242]
major histocompatibility complex (MHC) class I proteins, EGFR
Glioma BRCA2, NR5A2, ZNF90, ZNF813, FRRS1, ERCC6L, GTF2H2C, GRAP, ABCB4, NAT1 [243]
Glioblastoma COL6A1, CYTH4,SAA2, ADAMTSL4, LILRB2, EGFLAM, ADAMTSL4, MPZL2, CTSL [198]
Glioblastoma MAN2BI1, PLB1, CLEC7A, ARHGAP30, ARPC1B, ARHGAP9 [199]
LGG IDO1, HOTAIR, RRM2, KIF20A, NR5A2 [244]

like inherent instability, rapid enzymatic breakdown [260], ex-
cessive immune reactivity, and inefficient delivery in the body,
which have constrained their clinical adoption [269]. Unlike ICIs
and CAR-T cell therapies, which have demonstrated substantial
efficacy in various other cancers [270-272], GBM introduces spe-
cific hurdles, such as a low mutational load, an immunosuppres-
sive tumor microenvironment, and the BBB [246, 273], that often
result in limited clinical responses in ICI studies [274]. Although
CAR-T therapies have shown promise against targets like 1L13
Ra2 and EGFRVIII, ongoing issues with uneven antigen distri-
bution and antigen escape continue to pose challenges [275-277].
In contrast, personalized mRNA vaccines targeting neoantigens
present a flexible and innovative option [278], capable of counter-
ing tumor variability and individual patient differences [279] while
potentially activating immune responses in “cold” tumor profiles,
such as the GBM IS1 subtype [198]. Continued studies are essential
to refine and confirm the role of mRNA vaccines in tackling this
aggressive disease.

Ma et al. detected suitable antigens and immune subtypes (IS) for
mRNA vaccine development against LGG and GBM. The associa-
tion between genes and immune cell infiltration, along with con-
firmation of gene modifications, was established via TIMER and
cBioPortal, respectively. This study determined four antigens, in-
cluding IDH1, transcription factor 12 (TCF12), protein p53 (TP53),
and complement component 3 (C3), as being potentially effective
for mRNA vaccine development. Additionally, this study cate-
gorized glioma into four immune subtypes (IS1-IS4), with each
subtype correlating with cellular, molecular, and clinical features.
The study found that the IS1 and IS4 subtypes, which have ele-
vated single-nucleotide polymorphisms (SNPs), single-nucleotide
variants (SNVs), total mutational number, and HLA molecule
expression, are more likely to be responsive to mRNA vaccines.
These subtypes have immune-active phenotypes due to higher
scores for activated B cells and CD8" T cells, while the IS2 and
1S3 subtypes have immune-suppressive phenotypes due to higher

scores for memory B cells and CD4* T cells [237]. Similarly, Zhong
et al. conducted a study to identify suitable candidates for glioma
mRNA vaccination using RNA sequence and clinical data from
CGGA and TCGA. They used cBioPortal for genetic modification
profile visualization and TIMER for APC infiltration calculation.
Four glioma antigens were identified, including FKBP prolyl isom-
erase 10 (FKBP10), glycogen phosphorylase L (PYGL), annexin
A5 (ANXAS), and moesin (MSN), which were correlated with
elevated APC infiltration and better prognoses. The study also
identified three ISs comprising IS1, IS2, and IS3. They found that
among them, IS2 was a suitable vaccine candidate [238]. Likewise,
Ye et al. conducted a study to identify potential LGG tumor an-
tigens and their corresponding immune groups for mRNA vacci-
nation. They used data from TIMER and identified four potential
antigens, including filamin C (FLNC), colony-stimulating factor 2
receptor (CSF2RA), Fc fragment of IgG binding protein (FCGBP),
and Toll-like receptor 7 (TLR7). They also identified three dis-
tinct ISs containing desert, immune inhibition, and inflamed.
Researchers found that inflamed subtypes were the most suitable
for LGG vaccination [280]. Zhou et al. used gene-expression pro-
files and clinical data from CGGA and TCGA datasets to identify
potential antigens and suitable IS for diffuse glioma vaccination.
They identified three potential antigens, including collagen type
I alpha 2 chains (COL1A2), kinase insert domain receptor (KDR),
and sterile alpha motif domain containing 9 (SAMD9). They also
identified three IS (IS1-IS3), with IS1 being an immunologically
cold phenomenon with a poorer prognosis and suggesting it as a
better target for immunotherapy [240]. In a parallel investigation,
Ye et al. performed a study to identify suitable tumor antigens
and ISs for GBM. They used genomic and clinical data from the
TCGA and TIMER to examine the association between immune
cell infiltration and detected antigens. They found hexokinase 3
and actin-related protein 2/3 complex subunit 1B (ARPC1B) to
be highly correlated with APCs in GBM. Immunophenotyping
identified two clinically distinct ISs: immune inhibition and im-
mune inflamed [241]. Furthermore, Rose et al. compared the

18 of 28

Cancer Medicine, 2025

85U8017 SUOWIWIOD BAIE8.D 8|qed! (dde 8Ly Aq peusenob 8@ seoile YO ‘8sn JO S9N 10} A%ug18UIIUO 8|1 UO (SUONIPUOD-PUB-SWIBI WD A8 | 1M AteIq Ul UO//:SANY) SUONIPUOD pue swie 1 84} 89S *[6Z0Z/0T/ST] U Akiqiauluo A8|iM elfeleueiyood Aq Z8TT. #Uied/z00T OT/I0p/wod Ae |m Areiqijeuljuo//sdiy woiy papeojumod ‘8T ‘5202 ‘vE9/502



surfaceomes of GBM with astrocyte cell lines to identify potential
GBM treatment targets. They used cell surface protein biotinyla-
tion, streptavidin beads purification, and shotgun proteomics
analysis. They identified 11 potential GBM targets, including five
mutated proteins, like cytochrome b-245 light chain (CYBA),
RELT-like protein 1 (RELL1), MHC class I, and EGFR. Seven of
these proteins, including CYBA, MHC class I, EGFR, B-41 alpha
chain (hla-b), A-24 alpha chain (hla-a), prolyl 4-hydroxylase sub-
unit alpha 2 (P4HA2), carboxypeptidase M (CPM), and HSPD1, are
currently targeting in clinical trials [242]. Furthermore, Chen et al.
employed the CGGA, TCGA-LGG, and TCGA-GBM databanks to
identify ten potential antigens for glioma vaccination, including
BRCA2, NR5A2, ZNF90, ZNF813, FRRS1, ERCC6L, GTF2H2C,
GRAP, ABCB4, and NAT1. They also identified five distinct ISs,
with the IS2A/2B subtype within the IS2 recommended for vacci-
nation [243]. Wu et al. investigated a study using RNA sequence,
clinical data, and microarray data to identify potential tumor
antigens and ISs of GBM patients for personalized vaccine devel-
opment. The study identified nine potential antigens correlated
with depressed APC infiltration and worse prognoses, includ-
ing COL6A1, CYTH4, SAA2, ADAMTSL4, LILRB2, EGFLAM,
ADAMTSL4, MPZL2, and CTSL. The study also identified four
distinct IS (IS1-1S4), with IS1 being immunologically inactive, IS3
being cold, IS4 having moderate TME, and IS2 exhibiting hot and
immunosuppressive properties. The authors suggested that the IS2
GBM group is more suitable for ICI therapy, while the IS1 group
is more suitable for mRNA vaccination [198]. Additionally, Lin
et al. identified six mutated tumor antigens using RNA sequence,
clinical data, and TIMER, GEPIA, and cBioPortal. They evalu-
ated genetic modifications and altered expression profiles of GBM
antigens. These include MAN2B1, PLB1, CLEC7A, ARHGAP30,
ARPC1B, and ARHGAP9. They also identified IS1, IS2, and IS3,
with immune-active, intermediate, and suppressive phenotypes,
respectively [199]. Also, Zhao et al. developed an mRNA vaccine
for LGG by ferroptosis-linked antigens. They used CGGA and
TCGA datasets to obtain genomic and clinical information. Five
ferroptosis-related gene-based antigens were identified, including
IDO1, HOTAIR, RRM2, KIF20A, and NR5A. Upregulation of
these genes was associated with poorer OS, progression-free sur-
vival, increased APCs, and B cell infiltration. LGG was classified
into four subtypes (FS1-FS4), with FS1 and FS3 being immuno-
logically hot phenotypes, and FS2 and FS4 being immunologically
cold phenotypes [244].

The studies on mRNA vaccines for GBM have limitations, in-
cluding the lack of large-scale clinical trials to validate their
therapeutic efficacy. The small sample size limits patient strat-
ification by age, gender, and pathological classifications, poten-
tially explaining the observed heterogeneity. Selection bias may
affect outcomes, and potential confounding factors must be ac-
knowledged. Despite these limitations, the preliminary results
of studies are crucial for further research.

4 | Current Status and Future Prospective

GBM is one of the most aggressive and treatment-resistant forms
of cancer, with limited treatment options and a poor prognosis
[281]. Over the years, the development of innovative therapies
has been a critical area of research, and mRNA vaccines have

emerged as a promising strategy for the treatment of GBM.
mRNA vaccines have shown potential in targeting TSAs and
enhancing immune responses against cancer cells. The suc-
cess of mRNA vaccines in combating other cancers, such as
melanoma, has provided a foundation for similar approaches
for GBM [282, 283]. Research has identified several glioma-
associated antigens, such as IL13Ra2 and EGFRVIII, that can
be targeted using mRNA vaccines. These vaccines stimulate
the immune system to recognize and destroy tumor cells ex-
pressing these antigens. Preclinical models have demonstrated
that mRNA vaccines can induce robust antitumor immune re-
sponses in GBM [284]. Early-phase clinical trials, including the
testing of personalized mRNA vaccines developed from the tu-
mor's specific genetic mutations, have shown promising results
in improving immune response and survival rates in some GBM
patients. However, effective delivery systems for mRNA vac-
cines remain a crucial challenge. LNPs have been widely used
as mRNA delivery vehicles and have shown promise in clinical
settings [232]. Also, new advancements in lipid nanoparticle for-
mulations and other delivery methods such as electroporation
and viral vectors have enhanced the stability and bioavailability
of mRNA vaccines, improving their efficacy [285].

However, despite the many advantages, there are still limita-
tions regarding these types of vaccines for GBM. While mRNA
vaccines targeting glioma-associated antigens show promise,
many of these antigens are not exclusive to GBM, and their ex-
pression is not uniform across all patients. This creates variabil-
ity in treatment outcomes. Moreover, the immunosuppressive
tumor microenvironment in GBM poses a significant barrier to
the effectiveness of mRNA vaccines. The presence of myeloid-
derived suppressor cells (MDSCs), regulatory T cells (Tregs),
and tumor-associated macrophages (TAMs) dampens immune
responses and limits the efficacy of the vaccine. Additionally,
effective delivery of mRNA vaccines to the tumor site remains
a major hurdle. Despite advances in lipid nanoparticles, many
patients still experience limited uptake and stability of mRNA
vaccines, which can impact therapeutic outcomes.

Accordingly, further research is needed to assess their long-term
safety, particularly in the context of a highly aggressive and met-
astatic cancer like GBM. Because a major knowledge gap lies in
the identification of universal or widely applicable tumor anti-
gens that could be targeted across all GBM patients. There is a
need for deeper exploration into the genetic and epigenetic pro-
file of GBM to uncover novel TSA. Also, while mRNA vaccines
can stimulate the immune system, they may not overcome the
immune evasion mechanisms employed by GBM. Additionally,
there is growing evidence that combining mRNA vaccines with
other treatment modalities, such as ICIPs, oncolytic viruses, or
chemotherapy, may enhance their efficacy.

The subsequent studies should concentrate on enhancing vaccine
design, improving delivery methods, and identifying novel anti-
genic targets. Additionally, overcoming the immunosuppressive
tumor microenvironment through combination therapies and en-
hancing the long-term persistence of immune responses will be
crucial for the development of effective vaccines. By addressing
these gaps, future studies could pave the way for novel, life-saving
treatments for patients with GBM. One of the most promising
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avenues for future mRNA vaccine development is the use of per-
sonalized cancer vaccines based on individual tumor mutations.
Advances in high-throughput sequencing technologies, such as
next-generation sequencing (NGS), will enable the identification
of unique neoantigens that are specific to the patient, ensuring
that the mRNA vaccine targets the most relevant TAAs. Also, the
future of mRNA vaccines for GBM treatment will depend on col-
laboration between multiple disciplines, including molecular bi-
ology, immunology, bioengineering, and computational biology.
Overall, the future of mRNA vaccines for GBM is bright, driven
by technological innovation, personalized treatment strategies,
and interdisciplinary collaboration. By overcoming current chal-
lenges related to antigen specificity, tumor microenvironment
immunosuppression, and vaccine delivery, we are poised to see
the advent of highly effective, targeted therapies that can dramat-
ically improve the survival and quality of life for GBM patients.
With continued advancements in immuno-oncology, precision
medicine, and regulatory policy, mRNA vaccines could become a
cornerstone of GBM therapy, marking a new era in the treatment
of this aggressive and devastating cancer.

5 | Conclusion

GBM, a highly aggressive and treatment-resistant form of can-
cer, has been the focus of research for years. Current research fo-
cuses on identifying and targeting GBM-specific antigens, such
as WT1, survivin, IDH1, EGFRvIII, TERT, and HSPs. These an-
tigens are crucial for stimulating a targeted immune response.
mRNA vaccines have surfaced as a possible approach for treat-
ing GBM by targeting TSAs and enhancing immune responses
against cancer cells. Research has identified several glioma-
associated antigens that can be targeted using mRNA vaccines,
stimulating the immune system to recognize and destroy tumor
cells expressing these antigens. Preclinical models have illus-
trated that mRNA vaccines can induce robust antitumor im-
mune responses in GBM. Early-phase clinical trials, including
the testing of personalized mRNA vaccines developed from the
tumor's specific genetic mutations, have shown promising re-
sults in improving immune response and survival rates in some
GBM patients. However, effective delivery systems for mRNA
vaccines remain a crucial challenge. LNPs have shown promise
in clinical settings, and new advancements in lipid nanoparticle
formulations and other delivery methods, such as electropora-
tion and viral vectors, have enhanced the stability and bioavail-
ability of mRNA vaccines. However, there are still limitations
regarding these types of vaccines for GBM, including the deliv-
ery of vaccines across the BBB, the induction of a strong and
sustained immune response, and the ability to overcome tumor
immune evasion mechanisms. In conclusion, overcoming cur-
rent challenges can dramatically enhance survival alongside the
standard of life for GBM patients.
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