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Abstract
Glioblastoma (GBM) remains a major clinical challenge due to limited therapeutic success despite standard 
treatments including surgery, radiotherapy, and temozolomide (TMZ). Recent evidence links hyperglycemia to 
cancer progression, and altered glucose metabolism has emerged as a key factor in GBM development. Metformin, 
an antidiabetic drug, has shown promise in improving survival in GBM patients, possibly due to its ability to cross 
the blood-brain barrier and target metabolic pathways involved in tumor growth. Preclinical studies suggest 
metformin may enhance TMZ efficacy by acting on glioma stem cells and overcoming resistance mechanisms. Its 
activation of AMPK and modulation of Wnt signaling further support its therapeutic potential. However, while 
early studies and clinical trials have explored metformin’s safety and efficacy, its direct impact on GBM survival 
remains unclear. Ongoing research aims to clarify its mechanisms and identify responsive patient subgroups. 
Novel strategies, including PPARγ agonists and nanoerythrosome-based drug delivery systems, are also under 
investigation to improve metformin’s therapeutic profile. Rigorous clinical trials and mechanistic studies are 
essential to determine the role of metformin as adjunct therapy in GBM treatment.
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Core Tip: Metformin shows promise as an adjunct therapy in glioblastoma by modulating glucose metabolism, enhancing 
temozolomide efficacy, and targeting glioma stem cells. Its ability to cross the blood-brain barrier and influence pathways 
such as AMPK and Wnt highlights its potential. However, its impact on survival remains unclear, requiring further clinical 
validation.
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INTRODUCTION
Cancer is a cellular-level disease characterized by alterations in cell cycle control mechanisms, involving uncontrolled cell 
division and avoidance of programmed cell death marked as apoptosis[1,2]. Damage to cellular DNA by endogenous or 
exogenous factors hinders DNA repair mechanisms, leading to insufficient control over programmed cell growth and 
promotes cancer development[3]. Cancer cells adapt metabolically to survive in the tumor microenvironment, relying on 
a constant nutrient and energy supply in unfavorable conditions[4]. Recently, hyperglycemia has been recognized as one 
of oncogenic factors for certain cancers, the direct impact of glucose on cancer cell behavior remains unclear[5]. The role 
of glucose metabolism has also been researched in the development of primary brain tumors. Classified under gliomas, 
primary brain tumors include astrocytic tumors like glioblastoma (GBM), oligodendrogliomas, ependymomas, and mixed 
gliomas[6,7]. GBM is a grade IV glioma that remains one of the most prevalent and severe solid tumors among primary 
brain tumors. Around 6 cases per 100000 people are diagnosed each year, accounting for approximately 45.2% of all brain 
cancers[1,2]. It is the most common and malignant astrocytoma with poor prognosis and an average survival of 14 to 
15 months from initial diagnosis[8,9].

Predominantly affecting the elderly and men, GBM symptoms include persistent headaches, nausea, vomiting, vision 
disturbances, and seizures[10]. The treatment of GBM, despite numerous researches, has very limited success. It still 
remains the most demanding task in clinical oncology, as the treatment of patients with GBM requires a multidisciplinary 
approach in terms of symptomatic treatment, surgical treatment, radiotherapy, and chemotherapy[10,11]. Although 
advances in surgical intervention, radiotherapy, and adjuvant chemotherapy have led to incremental improvements in 
survival and quality of life among patients with GBM, the overall prognosis remains poor. The current therapeutic 
standard comprises symptomatic management, including corticosteroids, along with surgical resection followed by 
radiotherapy and adjuvant chemotherapy with temozolomide (TMZ).

TMZ currently represents the gold standard chemotherapeutic agent for the treatment of GBM. Its cytotoxic effect is 
primarily mediated through DNA methylation at the N7 and O6 positions of guanine residues, as illustrated in Figure 1. 
This modification disrupts the DNA mismatch repair (MMR) system’s ability to locate a complementary base, resulting in 
persistent DNA strand breaks. These lesions trigger cell cycle arrest at the G2–M transition and ultimately induce 
apoptosis[12]. Elevated activity of O6-methylguanine-DNA methyltransferase (MGMT) in tumor cells has been associated 
with decreased responsiveness to TMZ. By repairing the DNA damage caused by TMZ, MGMT plays a critical role in 
decreasing the cytotoxic effects of TMZ and creating resistance. This is also influenced by other DNA repair processes, 
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Figure 1 The basic mechanism of action of temozolomide in the treatment of gliomas. Temozolomide reaches high-grade glioma cells after passing 
through the blood–brain barrier. The active molecule (MTIC), which methylates DNA bases, splits double-strand DNA, and triggers apoptosis. O6-methylguanine-DNA 
methyltransferase and other DNA repair pathways are in opposition to MTIC action. MTIC: 5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide; TMZ: Temozolomide; 
MGMT: O6-methylguanine-DNA methyltransferase; BBB: Blood-brain barrier. This figure was created by BioRender.com (Supplementary material).

including base excision repair and MMR. MGMT is a key DNA repair enzyme that protects tumor cells against the 
cytotoxicity of alkylating agents such as TMZ by reversing O6-methylguanine lesions. The methylation status of the 
MGMT gene promoter serves as a predictive biomarker of treatment response, with promoter hypermethylation 
correlating with increased TMZ sensitivity. Overall, various factors, such as improved DNA repair, altered cellular 
signaling, mitochondrial malfunction, and metabolic alterations contribute to the complexity of TMZ resistance in GBM
[13-16].

The main aim of this review is to investigate the association between glucose metabolism, antidiabetic therapy and 
TMZ resistance in GBM. As GBM remains largely incurable despite various common therapeutic approaches, un-
derstanding how glucose levels and antidiabetic medications influence resistance to TMZ is crucial. According to the 
findings of recent studies, influencing the metabolism and microenvironment of GBM cells is a potential novel treatment 
approach for GBM. Maintaining low physiological glycemia levels and regularly controlling glycemia in GBM patients 
could help to modulate the efficiency of anticancer medications like dexamethasone (DXM) and TMZ. This highlights the 
urgent need for larger clinical trials aiming to decipher mechanisms of action of the different antidiabetic medications, 
such as metformin. Therefore, recent studies investigated the synergistic effects of combining TMZ with drugs that 
control glucose uptake and metabolism. Further studies should confirm that targeting glucose metabolism and its related 
pathways could offer novel therapeutic methods to overcome TMZ resistance in GBM.

COMPLEX RELATIONSHIP BETWEEN ALTERED GLUCOSE METABOLISM AND GBM DEVELOPMENT
Recent evidence suggests that disrupted glucose metabolism significantly contributes to the invasiveness and prolif-
eration of hypoxic tumors such as GBM[9-12]. DXM, commonly administered to manage cerebral edema in GBM patients, 
appears to enhance cellular energy metabolism by promoting viability and proliferation under low-oxygen conditions. 
This metabolic support may facilitate the development of resistance to TMZ, thereby contributing to tumor recurrence in 
this highly aggressive malignancy[13]. Glucose serves as the principal energy substrate for cancer cells, and variations in 
its concentration are critical to sustaining their tumorigenic potential. This metabolic reprogramming is often described 
by the Warburg effect, which denotes the preferential shift of GBM cells toward aerobic glycolysis. Aerobic glycolysis is 
highly dependent on glucose metabolism, as shown in Figure 2, and this metabolic change promotes GBM cells' fast 
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Figure 2 Illustration of glucose metabolism metabolized in a tumoral cell. The Warburg effect, also known as aerobic glycolysis, marks the process of 
glucose conversion to pyruvate and then to lactate, despite cancer cells having a fully functional respiratory chain. In addition to increasing the amount of lactate and 
protons secreted into the extracellular space, an enhanced glycolytic pathway also makes glycolysis intermediates more readily available. This enables the increased 
flow of substrates to the one-carbon cycle and pentose phosphate pathway, which supports lipid and nucleotide synthesis and preserves redox homeostasis. 1,3-
biPG: 1,3-biphosphoglycerate; 2-PG: 2-phosphoglicerate; 3-PG: 3-phosphoglicerate; ADP: Adenosine diphosphate; aKG: Alpha-ketoglutarate; ALDO: Aldolase; ATP: 
Adenosine triphosphate; DHAP: Dihydroxyacetone phosphate; ENO: Enolase; FAD+: Flavin adenine dinucleotide; G6PD: Glucose-6-phosphate dehydrogenase; 
GA3P: Glyceraldehyde 3-phosphate; GAPDH: Glyceraldehyde 3-phosphate; GDP: Guanosine diphosphate; GLUT1: Glucose transporter 1; GSH: Glutathione; GTP: 
Guanosine triphosphate; HCy: Homocysteine; HK: Hexokinase, LDH: Lactate dehydrogenase; MCT4: Monocarboxylate transporter 4; Met: Methionine; NAD+: 
Nicotinamide adenine dinucleotide; NADP: Nicotinamide adenine dinucleotide phosphate; OAA: Oxaloacetic acid; PEP: Phosphoenolpyruvate; PFK: 
Phosphofructokinase; PGAM: Phosphoglycerate mutase; PGI: Phosphoglucoisomerase; PGK: Phosphoglycerate kinase; PK: Pyruvate kinase; SucCoa: Succinyl-
coA; THF: Tetrahydrofolate. This figure was created by BioRender.com (Supplementary material).

growth and survival, which strengthens their resistance to TMZ[10].
In various in vivo models and clinical studies, it has been shown that limited availability of glucose with increased 

production of ketone bodies prolongs survival of cancer patients[9,11]. According to a study by Bielecka-Wajdman et al[4] 
that investigated the effect of hyperglycemia on human GBM cell growth, it was concluded that high glucose (HG) levels 
promote the progression of GBM. The proposed mechanism underlying this phenomenon involves the enhanced activity 
of chemoattractant and growth factor receptors, alongside increased proliferation and reduced apoptosis in U87 GBM 

https://f6publishing.blob.core.windows.net/26012049-d08b-4238-82e8-8192611f32e7/108112-supplementary-material.pdf
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cells under HG conditions[3]. Mechanistically, HG has been shown to upregulate both the expression and function of the 
G-protein-coupled receptor formyl peptide receptor 1 (FPR1) and the epidermal growth factor receptor (EGFR), thereby 
facilitating GBM cell migration and proliferation in response to their respective agonists[3]. Furthermore, HG promotes 
the invasiveness of U87 cells and augments vascular endothelial growth factor production, effects largely mediated 
through FPR1 and EGFR signaling. A range of in vitro models, preclinical animal studies, and clinical observations 
support a positive association between elevated glucose levels and GBM aggressiveness[3,6]. Additional evidence 
includes enhanced tumorigenic potential and the accelerated growth of xenograft tumors derived from GBM cells in 
diabetic nude mice models[5]. Although prior investigations have largely concentrated on the molecular characteristics of 
GBM, the influence of the tumor microenvironment, particularly metabolic factors such as glucose, on its malignant 
behavior remains insufficiently explored[13-17]. However, based on the results of recent studies, it can be assumed that 
influencing the metabolism and microenvironment of GBM cells can be a universal therapeutic strategy for all GBM 
tumors. This area necessitates further investigation to elucidate the mechanisms of action of antidiabetic agents, partic-
ularly in the context of GBM. Moreover, consistent glycemic monitoring and the maintenance of low physiological blood 
glucose levels have been shown to influence the efficacy of anticancer therapies such as TMZ and DXM[18]. Accordingly, 
glycemic assessment and its appropriate modulation should be considered essential components of standard oncologic 
treatment strategies in GBM management.

POTENTIAL ROLE OF ANTIDIABETIC THERAPY IN GBM TREATMENT
Type 2 diabetes mellitus (T2DM) is a disease associated with insulin resistance, hyperglycemic state, impaired levels of 
insulin-like growth factor-1 (IGF-1), as well as chronic inflammation, which can promote the growth of cancer[19]. Many 
studies suggest that T2DM has an important role in carcinogenesis, especially in GBM[4,20]. The limited success of 
standard therapies in newly diagnosed GBM multiforme has stimulated interest in exploring alternative therapeutic 
strategies. Current treatment is largely based on the Stupp protocol, which involves maximal surgical resection of the 
tumor, followed by adjuvant radiotherapy in combination with TMZ, and subsequent maintenance chemotherapy with 
TMZ and DXM. Therefore, the potential use of antidiabetic therapy for GBM treatment has been supported by recent 
studies that noted its inhibitory effects on the growth of cancer cells[21,22]. Pharmacologic treatment options for T2DM 
encompass several classes of antidiabetic agents, including thiazolidinediones (e.g., rosiglitazone), biguanides (e.g., 
metformin), sulfonylureas, meglitinides, α-glucosidase inhibitors, amylin analogs, dipeptidyl peptidase-4 inhibitors, 
incretin-based therapies such as exenatide, and various insulin formulations[19]. However, biguanides and thiazolidine-
diones are currently the most investigated drugs with potential use for GBM treatment, which was recently shown in in 
vitro and animal models[23-32].

For example, thiazolidinediones have anti-tumor effects and up-regulate PTEN, thus promoting apoptosis in cancer 
cells[33]. Thiazolidinediones demonstrate antitumor potential through the activation of multiple signaling cascades, 
including peroxisome PPARγ, MAPK, inflammatory mediators, and transforming growth factor-beta pathways[22]. 
Recent study conducted by Zander et al[34] investigated the effects of the ligand-activated nuclear receptor PPARγ on the 
proliferation and growth of GBM cells, as well as their potential to promote apoptosis of tumor cells. Authors noted that 
three PPARγ agonists, LY171 833, ciglitazone, and prostaglandin-J2, promoted apoptosis in human and rat glioma cells. 
This was connected with the up-regulation of Bax and Bad protein levels. Therefore, the PPARγ agonists have the 
potential to be used as a part of the therapeutic regimen for GBM. Insulin functions not only as a key metabolic hormone 
but also as a growth factor that can facilitate tumor progression, including in colorectal cancer, where it has been shown 
to enhance tumor growth, reduce CD8+ T cell infiltration, and diminish the efficacy of anti-PD1 immunotherapy. 
Hyperinsulinemia has been implicated in the development of multiple malignancies, such as pancreatic, hepatic, renal, 
gastric, pulmonary, breast, and colorectal cancers. Further clinical studies are required to establish clear guidelines 
regarding the use of insulin in GBM patients undergoing immunotherapeutic interventions[35].

Nevertheless, control of glycemia levels in the blood is desirable due to enhancing the effectiveness of chemotherapy
[19]. Glimepiride, a third-generation sulfonylurea, is an oral hypoglycemic agent commonly prescribed for the ma-
nagement of T2DM[36]. However, its impact on tumor biology remains a subject of ongoing debate. Some recent studies 
suggest that glimepiride increases the risk of the development of tumors, such as colorectal carcinoma and hepatocellular 
carcinoma[37]. On the other hand, in the orthotopic xenograft mouse model, the combination of ra-diotherapy and 
glimepiride in GBM was shown to effectively decrease the growth of GBM cells[38,39]. Kang et al[40] reported the 
potential effect of glimepiride for radio resistance and overcoming recurrence. Larger clinical trials are necessary to 
further elucidate these findings.

Also, it is well-known that increased levels of circulating insulin/IGF1 and an increase in the insulin/IGF receptor 
signaling can promote the progression of many types of cancer, including GBM[41,42]. It is noted that increased food 
consumption promotes the production of IGF-1 in the liver, which acts similarly to insulin and binds to the insulin 
receptor and IGF-1 receptor. Downstream of insulin receptor activation, signaling is relayed via insulin receptor substrate 
to PI3K and subsequently to Akt/protein kinase B, which in turn indirectly stimulates mTOR complex 1 (mTORC1). In 
parallel, the insulin receptor also engages growth factor receptor-bound protein 2, leading to activation of the Ras/Raf/
ERK signaling cascade. Collectively, these pathways drive oncogenic processes by enhancing cancer cell proliferation[43-
47]. Metformin is the antidiabetic drug from the group of biguanides that has the potential ability to reverse these 
metabolic alterations and carcinogenic pathways[20,23]. However, these findings need further clarification and invest-
igation in larger clinical trials.
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Role of metformin in GBM treatment
Current research demonstrates antidiabetic therapy's inhibitory effects on cancer cell proliferation, which has enabled the 
investigation of its possible application in the treatment of GBM. Novel studies, as noted in Table 1, noted the potential 
impact of metformin and other antidiabetic drugs on the treatment of tumors, especially GBM.

As illustrated in Figure 3, metformin exerts anticancer effects through multiple mechanisms, including modulation of 
the PI3K, mTOR, AMPK, and MAPK signaling pathways. Takhwifa et al[32] demonstrated that the combination of 
metformin treatment and glucose deprivation exerts a lethal effect on cancer cells. Systemically, metformin reduces 
circulating insulin and IGF-1 levels, attenuates insulin/IGF-related signaling, and alters metabolic activity in both normal 
and malignant cells[32]. Also, recent studies demonstrate that metformin modulates anabolic metabolism, resulting in cell 
cycle arrest and apoptosis[48], enhances glioma cell responsiveness to TMZ therapy by counteracting MGMT activity[49], 
and diminishes glioma stem cell populations, thereby increasing treatment sensitivity[50].

Moreover, the therapeutic efficacy of metformin may vary depending on GBM molecular subtypes and patient-specific 
metabolic profiles[51-54]. For example, IDH-wildtype tumors, characterized by high glycolytic activity, may be more 
vulnerable to metformin-induced AMPK activation and mTOR suppression. The MGMT promoter methylation status, 
already known to influence TMZ sensitivity, may also modulate metformin’s effectiveness by altering DNA repair 
capacity[55]. Laviv et al[46] reported that insulin resistance is associated with gemistocytes (GCs), a histological feature 
indicating metabolically active GBM with poor prognosis. These cells were observed more frequently in patients with 
long-standing hyperglycemia, suggesting that metformin might have enhanced effects in these subpopulations[46]. 
Further biomarker-driven studies are warranted to clarify and personalize metformin’s role in GBM management.

Laviv et al[46] also demonstrated that various metabolic factors found in insulin resistance and health conditions such 
as T2DM and obesity, are connected with the occurrence of specific histologic GBM phenotypes that show the presence of 
special forms of reactive astrocytes marked as GCs. These cells are frequently observed in GBM, especially in higher-
grade or more aggressive types. They are larger, contain more cytoplasm, and are frequently linked to more invasive or 
metabolically active parts of the GBM. GCs are usually found in GBM’s with a poor prognosis and can serve as an 
indicator for tumor aggressiveness. These cells were also detected in patients with long-term increased glucose levels who 
were not using insulin as a part of their therapy, thus indicting that GCs could respond to metabolic dysfunction in the 
GBM. Montemurro et al[3] proved that patients with GBM who have diabetes mellitus (DM) and are being treated with 
metformin, have a longer overall survival (OS) when compared to other antidiabetics. Another proposed mechanism of 
metformin’s antineoplastic potential is its antiproliferative effect, as well as the decrease in angiogenesis due to the 
promotion of AMPK activity[46,47]. Therefore, metformin’s metabolic effects promote the death of tumor cells by taking 
away their main source of energy, which is glucose.

Zander et al[34] conducted an in vitro study showing that PPARγ agonists induce apoptosis and redifferentiation in 
glioma cells, while sparing healthy astrocytes. This mechanism might support metformin’s antineoplastic role through 
shared pathways.

Potential effects of metformin on TMZ resistance in GBM treatment
The option of combining metformin with TMZ in the treatment of GBM has been recently investigated[48-53]. Fur-
thermore, research indicates that the combined use of TMZ and metformin significantly inhibits glioma cancer stem cells 
more than either agent alone[54]. Yang et al[55] noted that metformin decreased the occurrence of resistance to TMZ 
therapy in GBM cells. Metformin also inhibited the growth of GBM xenografts in vivo, suggesting that metformin and 
TMZ have synergistic effects.

On the other hand, Seliger et al[41] conducted a study on 1731 patients with GBM to investigate the connection between 
metformin and OS. However, they found no association between DM or increased glucose levels and differences in OS or 
progression-free survival (PFS) in GBM patients. Similarly, Maraka et al[50] and Yoon et al[51] did not observe significant 
clinical benefits, despite the safety of metformin being confirmed. These findings may be influenced by several factors: 
Lack of stratification by MGMT methylation status (a known predictor of TMZ efficacy), variable metformin doses (from 
1000 to 2250 mg/day), short treatment durations, and absence of glycemic monitoring or body mass index (BMI) data. 
Additionally, steroid-induced hyperglycemia could mask metformin's benefit in real-world use. Therefore, further 
studies should account for these biological and clinical heterogeneities and emphasize the design of biomarker-guided 
prospective trials to assess metformin’s true efficacy in GBM.

For example, Bielecka-Wajdman et al[4] explored the relationship between glucose concentration and TMZ resistance in 
GBM. In an in vitro model employing glucose concentrations of 0.6, 1.0, and 4.5 g/L, the investigators found that only the 
highest glucose level-mimicking hyperglycemic conditions-promoted a more aggressive GBM phenotype in the T98G cell 
line as well as in primary GBM cultures HROG02 and HROG17. This enhancement was evident through increased cell 
viability, proliferation, density, dispersal, chemoresistance, and elevated expression of insulin receptor[4]. The findings 
also align with previous research on hyperglycemia in patients and elevated glucose concentrations in experimental 
models. Moreover, the combined administration of TMZ and DXM enhanced TMZ-induced cytotoxicity in cells cultured 
under low glucose conditions (0.6 and 1.0 g/L), whereas this synergistic effect was absent in HG environments. Although 
TMZ and DXM together reduced cell viability in a glucose-dependent manner, the observed cytotoxicity was less 
pronounced than with TMZ monotherapy. However, limitations of the study include the use of a flat bottom plate in vitro 
model without representation of normal human astrocytes, oligodendrocytes, or neurons, a restricted hypoxic condition 
(2.5%), a brief exposure duration (48 hours) to TMZ/DXM, and the lack of information on BMI.

The authors[4] also performed a retrospective analysis involving 40 patients with GBM who received TMZ and DXM 
as part of their treatment. The cohort consisted of 17 female and 23 male patients, with a mean age of 54.3 years, all of 
whom underwent radiochemotherapy (RTM) in combination with prophylactic corticosteroid therapy. The study id-



Begagić E et al. Metformin and GBM

WJCO https://www.wjgnet.com 7 August 24, 2025 Volume 16 Issue 8

Table 1 Important studies investigating the potential benefits of antidiabetic drugs in glioblastoma therapy

Ref. Type of 
study Number of patients Follow-

up Drugs Mechanisms of 
resistance Outcome

Yang et al
[55]

Experimental 
in vitro

Temozolomide 
(TMZ)-resistant 
glioblastoma cell 
lines named U87R 
and U251R

N/A Metformin and 
TMZ

N/A TMZ resistant cell lines were 
treated with metformin for 2 weeks 
and then exposed to TMZ, causing 
survival rate of glioblastoma cells to 
drop significantly

Seliger et 
al[41]

Matched case-
control 
analysis

2005 glioma cases 
and 20 050 matched 
controls. 55.2% were 
men. The mean age 
was 55.5 (+18.7) years

N/A Sulfonylurea, 
metformin and 
insulin

N/A A study found an inverse 
relationship between diabetes and 
the risk of glioma, most 
pronounced among those with 
long-term and poorly controlled 
diabetes. Antidiabetic medications 
were unrelated to gliomas

Bielecka-
Waldman 
et al[4]

Experimental 
in vitro and 
clinical 
retrospective 
analysis

Commercial T98G 
cell line and two 
primary GBM lines 
(HROG02, HROG17) 
treated with TMZ 
and/or DXM were 
combined with 
clinical analysis on 40 
patients, 17 women 
and 23 men

N/A TMZ, 
Dexamethasone 
(DXM)

High glucose concen-
trations, MGMT 
methylation, oxygen 
conditions, gene mutations 
(IDH 1 and 2, B-Raf)

For higher glucose concentrations, 
primary GBM cell lines have shown 
resistance to TMZ. Simultaneous 
administration of TMZ and DXM 
enhanced the cytotoxic action of 
TMZ in cells cultured in the lower 
glucose medium (0.6 and 1 g/L 
glucose) but not in the high glucose 
medium (4.5 g/L). In clinical 
analysis in patients with 
glioblastoma, increased glucose 
level are positively correlated with 
an increased expression of Ki-67 
proliferation index

Zander et 
al[34]

Experimental 
in vitro

Cell lines used: 
Human U87MG and 
A172, and rat C6 
glioma cells

N/A PPARγ agonists 
(ciglitazone, 
LY171833, 
prostaglandin-J2), 
PPARα agonist 
(WY14643), 
synthetic receptor-
antagonists 
(BADGE)

PPARγ agonist-induced 
apoptosis is inhibited by 
BADGE

PPARγ agonists induce apoptosis 
and redifferentiation in glioma cells; 
primary murine astrocytes are 
unaffected

Moezzi et 
al[57]

Experimental 
in vitro and in 
vivo

Not applicable (the 
study focuses on in-
vitro and in-vivo 
experiments, not on 
patients)

The study 
includes 
long-term 
stability 
tests over 
100 days

Metformin The study focuses on 
overcoming resistance 
through the use of 
nanoerythrosomes to 
deliver metformin 
effectively to glioma cells 
by protecting the drug from 
metabolizing enzymes in 
the blood-brain barrier and 
extending its presence in 
circulation

The nanoerythrosomes successfully 
encapsulated metformin, 
maintained its stability, and 
released the drug in a controlled 
manner. The study concludes that 
nanoerythrosomes can be a suitable 
drug delivery system for 
therapeutic amounts of metformin 
to treat glioma

Valtorta et 
al[58]

Experimental 
in vitro

Two cell lines, U251 
and T98G

N/A Metformin (MET), 
TMZ and their 
combination

Combined-treatment 
modulated apoptosis by 
increasing Bax/Bcl-2 ratio 
and reducing reactive 
oxygen species (ROS) 
production

MET enhances TMZ effect on TMZ-
sensitive cell line (U251) and 
overcomes TMZ-resistance in T98G 
GBM cell line

Feng et al
[59]

Experimental 
in vitro

Glioblastoma cell 
lines (U87MG, 
LNZ308, and LN229)

N/A Temozolomide, 
Metformin

MGMT expression, 
epithelial-mesenchymal 
transition, mitochondrial 
biogenesis

Metformin decreased cell viability, 
proliferation, migration, increased 
apoptosis and ROS in glioblastoma 
cell lines; combined treatment with 
TMZ varied (synergistic in U87, 
antagonistic in LNZ308, and 
additive in LN229)

Ohno et al
[60]

Multicenter 
single-arm 
phase I/II 
study

Phase I included 
seven patients, 
between 20 and 
74 years of age with 
newly diagnosed 
supratentorial GBM 
to determine MET 
tolerability, phase II 
comprised 22 patients

12 months 
after 
initial 
surgery

MET and TMZ 
combination

Metformin could induce the 
differentiation of stem-like 
glioma-initiating cells and 
suppress tumor formation 
through AMPK-FOXO3 
activation

Phase I study demonstrated that 
2250 mg/day MF combined with 
TMZ appeared to be well tolerated, 
phase II is ongoing
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GBM: Glioblastoma; MGMT: O6-methylguanine-DNA methyltransferase; MF: Metformin.

Figure 3 Pathways related to glucose and metformin effects on glioblastoma. Figure illustrates the complex signaling pathways influenced by glucose 
and metformin in the context of glioblastoma, a type of aggressive brain tumor. Glucose enters the cell and contributes to hyperglycemia, which can indirectly promote 
tumor growth. Hyperglycemia stimulates the release of insulin-like growth factor 1 (IGF-1) from the liver, which binds to the IGF-1 receptor (IGF-1R) on the cell 
membrane, activating downstream signaling pathways that include the RAS/MAPK and PI3K/AKT/mTOR pathways. Epidermal growth factor receptor (EGFR) is 
another receptor that activates similar downstream signaling cascades, further promoting cell growth and survival. The MAPK pathway, activated by both IGF-1R and 
EGFR, involves several kinases (MAPKKK, MAPKK, MAPK) and leads to cell proliferation, differentiation, and angiogenesis. The PI3K activation leads to the 
phosphorylation of AKT, which in turn activates mTORC1 and mTORC2 complexes; mTORC1 promotes protein synthesis, cell growth, and proliferation, while 
mTORC2 supports cell survival and cytoskeletal organization. AKT activation also influences cell cycle regulation and apoptosis through various downstream targets. 
WNT signaling leads to the stabilization and nuclear translocation of β-catenin, which influences gene expression related to proliferation, survival, and migration. 
Metformin, a common diabetes medication, activates AMPK, inhibiting mTORC1, thus reducing protein synthesis and cell growth, and promotes glucose uptake, 
counteracting hyperglycemia. Metformin directly inhibits mitochondrial complex I, leading to increased AMP/ATP ratio and subsequent AMPK activation. It also 
inhibits IGF-1R and EGFR signaling, reducing the downstream effects on cell growth and survival pathways, and impacts the WNT/β-catenin pathway by reducing β-
catenin levels, which may suppress tumor proliferation and survival. This figure was created by BioRender.com (Supplementary material).

entified a correlation between serum glucose levels and Ki-67 expression in tumor specimens, indicating that elevated 
glycemia was associated with increased tumor cell proliferation. Notably, the highest Ki-67 indices were observed in 
patients who developed hyperglycemia as a consequence of steroid therapy (post-steroid diabetes). These findings 
suggest that glucose may play a role in modulating the biological behavior of GBM, as evidenced by the positive 
correlation between hyperglycemia and Ki-67 expression. The greatest proliferation rates were recorded in patients with 
post-steroidal diabetes and T2DM, both conditions marked by glycemic instability and transient glucose surges[4,56]. 
Therefore, this study proposed a connection between in vitro results and clinical data, suggesting that HG levels may 
influence GBM progression[4].

Also, Stepanenko et al's study[18] revealed that extended treatment with TMZ in GBM cell lines resulted in heightened 
chromosomal instability in tumor cells, which can lead to genetic diversity within the tumor and the promotion of 
adaptability and resistance to standard therapies. Interestingly, cells subjected to TMZ treatment displayed a unique 
reaction to decreased glucose concentration, demonstrating increased resistance to TMZ the ability of GBM cells to adapt 
metabolically during TMZ treatment[57,58]. Valtorta et al[58] also observed that during the treatment with metformin, a 
reduction in aggressiveness and a decrease in SOX2 expression in TMZ-resistant GBM cells occurred, when compared to 

https://f6publishing.blob.core.windows.net/26012049-d08b-4238-82e8-8192611f32e7/108112-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/26012049-d08b-4238-82e8-8192611f32e7/108112-supplementary-material.pdf
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untreated-resistant cells. A growing body of evidence suggests that metformin selectively targets CSCs and counteracts 
multidrug resistance, which should be further investigated by additional pre-clinical and clinical studies.

In addition, Feng et al[59] found that these encouraging results from in vitro studies led researchers to design clinical 
studies evaluating the clinical benefits of metformin and TMZ for GBM, which ultimately showed synergistic, an-
tagonistic, and additive effects depending on the cell line. An ongoing phase I dose-escalation trial in Japan, led by Ohno 
et al[60], is assessing the safety and optimal dosing of metformin in combination with maintenance TMZ for patients with 
newly diagnosed GBM, in preparation for a phase II study. The investigators reported that a daily dose of 2250 mg of 
metformin was well tolerated, with manageable side effects including appetite loss, nausea, and diarrhea. Tumor 
progression occurred in two patients at 6.0 and 6.1 months, while one patient died 12.2 months postoperatively. The 
remaining five patients showed stable disease at last follow-up. Based on these findings, the study advanced to a phase II 
trial using 2250 mg/day of metformin[60]. Also, a systematic review conducted by Takhwifa et al[32] noted that the 
combination of metformin, with TMZ after the radiotherapeutic treatment, resulted in better OS and PFS in patients with 
primary tumors of the brain. They also proposed that one of the main highlights of metformin’s use is its ability to cross 
the blood-brain barrier (BBB), which is a large obstacle for commonly used antineoplastic agents. However, the exact 
mechanism of action that promotes metformin’s potential in the treatment of GBM is still being investigated[41]. Soritau 
et al[47] conducted a study that researched metformin’s effects on tumor tissue cultures and compared these effects with 
the effects of other antineoplastic agents, such as epidermal growth factor and TMZ. They noted that a significant 
statistical difference between monotherapy with TMZ monotherapy and dual therapy with TMZ plus metformin. A study 
conducted by Sesen et al[48] also noted that metformin decreased the synthesis of ATP in the mitochondria, and increased 
the production of lactate and glycolytic ATP. This led to the induction of tumor cells autophagy, as well as to the 
inhibition of cell proliferation and apoptosis. They have also proven that metformin slows down the growth of the glioma 
cell lines in vivo by the use of xenografts in mice, especially when combined with TMZ and/or irradiation[48].

In addition, Seliger et al[41] conducted a retrospective cohort study noted that metformin monotherapy was associated 
with improved survival rates, but this was not observed in patients receiving metformin combined with RTM. Other 
antidiabetic drugs were associated with poorer survival outcomes, suggesting that the benefits might be specific to 
metformin. Tseng et al[49] noted that metformin use significantly reduced the overall risk of developing malignant brain 
tumors and highlighted the importance of long-term metformin therapy, with a minimal duration of 2-5 years required 
for significant risk reduction. Maraka et al[50] explored the safety and efficacy of combining metformin with TMZ and 
other drugs in a Phase 1 randomized controlled trial and noted that metformin (850 mg twice daily) could be safely 
administered alongside TMZ, mefloquine, and memantine, with gastrointestinal issues being the primary side effect. 
Despite the promising safety profile, the study did not show a marked improvement in OS, which was 21 months for the 
cohort. This indicates that while metformin is safe in combination therapy, its direct impact on survival may be limited. 
Yoon et al[51] conducted a Phase II randomized controlled trial that showed that despite the good tolerance of the 
metformin regimen, metformin use did not have significant clinical benefit for patients with recurrent or refractory GBM. 
This underscores the complexity of GBM treatment and the necessity for further research to fully understand the 
potential synergistic effects of metformin when combined with conventional therapies.

Limitations and future directions
Although recent research demonstrates its ability to decrease GBM cell resistance to TMZ, further studies are needed to 
clarify metformin’s impact on outcomes in patients with GBM. This will also help to overcome obstacles regarding 
metformin’s use for GBM treatment, such as metformin being a hydrophilic drug that has trouble penetrating through the 
BBB and in the tumor cells, as well as the reaching of the GBM cells in sufficient concentrations. Additionally, systemic 
drug administration often comes with a non-specific distribution and required effective doses of metformin are often too 
high for clinical use, which limits its clinical everyday application. Recently, the use of nanoerythrosomes as a transport 
vehicle for metformin to GBM cells has been researched[57].

Nanoerythrosomes are drug carriers engineered from the cellular membrane of red blood cells that can prevent the 
degradation of metformin before its delivery to the targeted cells. Understanding the interplay between metabolism and 
treatment response, as well as exploring novel delivery methods like nanoerythrosomes, could improve GBM therapy[58-
60]. They can load and transport hydrophilic medications, including metformin, preventing enzymatic breakdown at the 
BBB and prolonging their half-life. Therefore, the prolonged and regulated release of metformin made possible by its 
encapsulation in nanoerythrosomes may improve its therapeutic effectiveness against GBM cells. Also, their use could be 
beneficial for solving the TMZ resistance and DXM impact on the effectiveness of treatment for GBM. Although this 
needs more research, the use of nanoerythrosomes could maximize metformin delivery and possibly mitigate some of the 
metabolic changes brought on by DXM[58]. Another limitation of metformin’s use in GBM treatment is that it shows 
potential benefits as a monotherapy and in long-term preventive use, but its role in combination with standard GBM 
treatments like TMZ remains inconclusive. The varying results across studies underscore the necessity for more extensive 
research to elucidate the precise mechanisms and optimal conditions under which metformin could contribute to 
improved GBM outcomes.

Table 2 summarizes the key challenges and corresponding research needs to provide a more precise and structured 
overview of the current limitations regarding metformin use in GBM and facilitate future research planning.

CONCLUSION
GBM remains a formidable challenge in clinical oncology, demanding a multifaceted treatment approach involving 
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Table 2 Summary of current limitations and directions for future research on metformin in glioblastoma

Limitation Underlying issues Proposed solutions /future directions

Heterogeneous trial 
designs

Inconsistent patient selection (MGMT status, IDH 
mutation)

Stratify future trials by molecular subtypes and metabolic profiles

Variable dosing and 
exposure

Metformin doses ranged from 1000 to 
2250 mg/day; durations varied

Standardize dosing protocols; consider longer duration studies

Inadequate CNS 
penetration

Metformin is hydrophilic, and the blood-brain 
barrier limits delivery

Explore alternative delivery systems (nanoerythrosomes, liposomal 
carriers)[58,60]

Lack of metabolic data Poor glycemic control and steroid use are often 
unreported

Integrate glycemic monitoring and steroid adjustment protocols in trial 
design

Biomarker absence No validated predictors of response Identify and validate predictive biomarkers (AMPK activity, gemistocyte 
index, insulin resistance)

MGMT: O6-methylguanine-DNA methyltransferase; CNS: Central nervous system; IDH: Isocitrate dehydrogenase.

surgery, radiotherapy, and chemotherapy with TMZ. While TMZ serves as the standard chemotherapeutic agent, the 
emergence of resistance mechanisms, including elevated MGMT activity, presents significant hurdles in treatment 
efficacy. Recent research underscores the intricate relationship between impaired glucose metabolism, the tumor microen-
vironment, and GBM pathogenesis, highlighting the potential therapeutic role of antidiabetic drugs like metformin in 
overcoming TMZ resistance. However, further investigation is needed to elucidate the underlying mechanisms and 
optimize treatment strategies. Additionally, the exploration of novel therapeutic modalities, such as innovative drug 
delivery systems like nanoerythrosomes, offers promising avenues for improving GBM outcomes.
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