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Abstract

Purpose Brain metastases (BrM) represent the most common intracranial malignancies and remain a major clinical chal-
lenge. Unlike glioblastoma (GBM), where immunotherapy has shown limited benefit, there are promising results for BrM.
Nonetheless, several key aspects remain to be solved to amplify the success of these therapies, highlighting the potential of
integrating immunotherapy with local strategies. This review focuses on therapeutic approaches for BrM, emphasizing the
role of radiotherapy (RT) and focused ultrasound (FUS) in enhancing immunotherapy efficacy.

Methods We performed a narrative review of recent clinical studies addressing the interactions between the immune system,
RT, and blood-brain barrier (BBB) modulation by FUS, with an emphasis on therapeutic strategies tested in BrM.

Results The success of immunotherapy in brain malignancies is hindered by the immunosuppressive tumor microenviron-
ment (TME) and limited BBB penetration, as these treatments are administered systemically. RT synergizes with immuno-
therapy by promoting tumor antigen release and immune priming, which helps transiently overcome the immunosuppressive
TME. However, excessive and prolonged antigen exposure may lead to T-cell exhaustion and checkpoint upregulation,
which explains why sequential administration of stereotactic radiosurgery (SRS) followed by immunotherapy within a 2—4-
week window enhances antitumor responses. Regarding the general difficulty for systemic drugs to access the brain, FUS
emerges as a potent candidate for enabling transient BBB disruption, facilitating drug delivery, and biomarker access.
Conclusion Combining immunotherapy with SRS or FUS-mediated BBB modulation offers a promising path for improving
outcomes in BrM. Future work must optimize these multimodal strategies while minimizing toxicity.

Keywords Brain metastases - Immunotherapy - Radiotherapy - Stereotactic radiosurgery - Focused ultrasound - Low-
intensity focused ultrasound

Introduction

The management of primary brain tumors, such as glio-
blastoma (GBM), and brain metastases (BrM) presents
significant challenges due to the brain’s intricate microen-
vironment and the restrictive properties of the blood-brain
barrier (BBB) [1]. BBB is a specialized, semi-permeable
structure composed of endothelial cells, astrocytic end-
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feet, and pericytes and it is essential for maintaining brain
homeostasis and proper neuronal function [2]. Tight junc-
tions between endothelial cells restrict paracellular diffu-
sion, allowing mainly small, lipophilic molecules to traverse
by passive diffusion. Although this barrier confers critical
neuroprotection, it simultaneously impedes the effective
delivery of many therapeutic agents to the central nervous
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system (CNS), thereby limiting drug efficacy and contribut-
ing to the failure of several treatments for brain disorders
[2].

Current standard-of-care therapies for BrM include
surgery, radiotherapy (RT), chemotherapy, and targeted
therapies [3—5] (Fig. 1). In current clinical practice, sur-
gical resection is typically reserved for selected patients,
particularly when a metastasis produces substantial mass
effect, causes significant peritumoral edema, or when tissue
is required for diagnostic clarification. Surgery is most often
considered in cases of single or oligometastatic disease
with surgically accessible lesions, radio-resistant histolo-
gies such as melanoma or renal cell carcinoma, posterior
fossa tumors at risk of precipitating obstructive hydroceph-
alus, or suspected radionecrosis or progression following
prior radiation [6]. It is also favored in patients with good
functional status and controlled systemic disease [7, 8]. In
contrast, asymptomatic lesions without mass effect are gen-
erally treated with RT, depending on lesion number, size,
and distribution.
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Fig.1 Conventional therapies vs. Immunotherapies for BrM treatment.
On the left panel, conventional therapies for the treatment of these
tumors include local therapies like surgery and RT, and systemic thera-
pies such as chemotherapy and targeted therapy. On the right panel,
emerging immunotherapies are depicted in the field of BrM, like
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RT is delivered either as whole-brain radiotherapy
(WBRT) or as single-dose or fractionated stereotactic radio-
surgery (SRS), a high dose of precisely targeted radiation
[9]. Historically, WBRT was the predominant RT modality
for patients with BrM. However, growing concerns about
neurocognitive toxicity and advances in focal radiation
techniques have driven a progressive shift toward SRS [10].
In parallel, there has been a rise in the use of systemic thera-
pies in combination with radiation (from 26.4% to 36.5%),
illustrating the contemporary shift toward increasingly mul-
timodal treatment paradigms [11].

Traditionally, SRS was reserved for patients with a lim-
ited number of lesions [12], but currently there is no univer-
sal consensus on the maximum number, size, or location of
metastases appropriate for SRS. Evidence from the Japanese
Gamma Knife trial and more recent fractionated SRS series
supports the use of SRS in patients with up to 10—15 lesions
[13—15], and emerging reports describe favorable outcomes
in carefully selected patients with even >20 metastases [16,
17]. WBRT remains an option for patients with diffuse intra-
cranial disease, while SRS to the surgical cavity is frequently
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used after resection to improve local control. By contrast,
systemic therapies such as chemotherapy and targeted
agents have historically shown limited benefit due to the
BBB and variable drug penetration; however, advances in
tyrosine kinase inhibitors (TKIs) and antibody—drug conju-
gates (ADCs) are beginning to shift this paradigm [18] (Fig.
1). Importantly, tumor histology also influences treatment
selection, as certain histologies respond more favorably to
focal SRS compared with WBRT, further underscoring the
need for individualized therapeutic decision-making [19].

For GBM, the standard regimen is maximal safe surgical
resection followed by concurrent RT with the chemotherapy
agent temozolomide and subsequent adjuvant temozolomide
[20]. Despite this multimodal approach, prognosis remains
poor, with median overall survival (OS) of approximately
15—18 months, underscoring the urgent need for more effec-
tive systemic therapies.

Immunotherapy in BrM

Immunotherapies have emerged as a therapeutic alternative
that aims to harness and enhance the patient’s own immune
system to recognize and eliminate tumor cells. In the con-
text of brain tumors, this approach requires a detailed under-
standing of the immune cell composition within the tumor
microenvironment (TME) to identify opportunities and con-
straints for effective immune modulation.

Immune landscape of BrM vs. GBM

While both BrM and GBM arise within the central ner-
vous system, they differ substantially in their cellular ori-
gin, immunologic profile, and therapeutic responsiveness.
BrM typically retain key immunologic features of their
extracranial primaries and often display higher lymphocytic
infiltration [21, 22], whereas GBM is marked by profound
immunosuppression, myeloid predominance, and abundant
tumor-associated macrophages [23-25]. These biological
differences have important therapeutic implications: BrM,
particularly melanoma or lung cancer metastases, gener-
ally respond better to immune checkpoint inhibitors (ICI),
while GBM remains largely resistant [26, 27]. Understand-
ing these distinctions is essential when evaluating synergis-
tic strategies combining RT [28-30] or focused ultrasound
(FUS) [31-33] with immunotherapy, as mechanisms of
immune activation and treatment sensitivity differ markedly
between metastatic and primary tumors. Importantly, rec-
ognizing these divergent immune landscapes is also criti-
cal for tailoring and developing new immunotherapeutic
approaches specifically suited to each tumor type.

Although the brain has long been considered an immune-
privileged site, it is now well established that it can mount
effective immunogenic responses, including those directed
against tumors [34]. In the healthy brain, immunosurveil-
lance is primarily carried out by microglia, the resident
macrophages of the CNS. Additional immune populations,
including dendritic cells (DCs), T cells, border-associated
macrophages, and monocyte-derived macrophages, also
contribute to tissue integrity and immune homeostasis [35].

This delicate balance is profoundly altered in the pres-
ence of tumors. Primary brain tumors such as GBM exhibit
pervasive myeloid dominance, effector T cell exclusion,
accumulation of regulatory T cells (Tregs), and potent local
immunosuppression, contributing to repeated failures of
immunotherapies in clinical trials [36]. In contrast, BrtM
arise from peripheral tumors that colonize the CNS, and
thus their immune landscapes reflect both the biology of
the primary tumor and the unique constraints of the brain
microenvironment. This dual influence generates distinct
patterns of immune cell infiltration and activation, with key
implications for immunotherapy responsiveness [37]. BrM,
especially those originating from melanoma or certain lung
cancers, often contain higher densities of tumor-infiltrat-
ing lymphocytes (TILs) and exhibit more immunoreactive
states.

However, despite their comparatively higher immuno-
genicity, BrM still develop a markedly immunosuppres-
sive TME [38-40] and remain partly shielded by the BBB,
limiting the penetration and efficacy of therapies such as
immune checkpoint inhibitors (ICI) [41]. Thus, even in
BrM, improving immune cell trafficking and therapeutic
delivery across the BBB remains a critical challenge and a
central motivation for strategies such as focused ultrasound
or radiation-induced BBB modulation.

Spatial transcriptomic and single-cell studies further
highlight these distinctions: BrM samples show heteroge-
neous immune niches encompassing both exhausted and
active T cell populations, whereas GBM presents compara-
tively uniform, myeloid-driven immunosuppression and
fewer cancer-reactive T cells [42].

Recent work has highlighted the importance of the glym-
phatic system, a perivascular network involved in cerebro-
spinal fluid circulation and metabolic waste clearance. This
system contributes to antigen drainage from the CNS and
plays an important role in immune surveillance. Studies by
Kipnis and colleagues have demonstrated that glymphatic
flow supports communication between CNS tissues and
peripheral immune organs, adding an additional layer of
complexity to neuroimmune interactions [43].
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Immune checkpoint inhibitors (ICl)

Immune checkpoint molecules are inhibitory pathways that
regulate T cell activation and maintain peripheral tolerance,
thereby preventing autoimmunity and excessive tissue dam-
age. Among the best-characterized targets are cytotoxic
T-lymphocyte antigen 4 (CTLA-4), which dampens early T
cell priming, and programmed cell death protein 1 (PD-1),
which inhibits T cell effector function within tissues [44].
Blocking these pathways with ICI can reinvigorate antitu-
moral T cell responses and has transformed the treatment
landscape of several solid tumors. (Fig. 1).

It is in this context that monoclonal antibodies (mAb)
targeting immune checkpoint receptors were developed and
approved for the treatment of several metastatic cancers
[45, 46]. In melanoma, multiple ICI, including nivolumab
and pembrolizumab (anti-PD1 mAb) and ipilimumab (anti-
CTLA-4 mAb), are FDA-approved for unresectable or
metastatic disease, either as monotherapy or in combina-
tion (nivolumab plus ipilimumab) [47]. Importantly, these
approvals include patients with BrM, supported by clini-
cal trials demonstrating durable intracranial responses and
prolonged survival [48—52]. In non-small cell lung cancer
(NSCLC), several ICI are also approved for metastatic dis-
ease, such as pembrolizumab, nivolumab, and cemiplimab
(anti-PD1 mADb) and atezolizumab and durvalumab (anti-
PDL1 mAb), either as monotherapy or in combination with
chemotherapy, depending on PDL1 expression and treat-
ment setting [53—-55]. These agents have shown intracranial
efficacy, although response rates are generally lower than
those observed in melanoma. In breast cancer, ICI approval
is currently limited to the triple-negative subtype (TNBC)
[56, 57]. Pembrolizumab, in combination with chemo-
therapy, is FDA-approved for patients with PDL1—positive
(CPS > 10) unresectable locally advanced or metastatic
TNBC [58]. However, single-agent activity and efficacy in
brain metastases remain limited.

Targeted therapies and ADC with CNS activity

Antibody—drug conjugates (ADCs) represent an emerging
immunotherapeutic modality for tumors that frequently
metastasize to the brain [58, 59], such as HER2 + breast
cancer (Fig. 1) [60, 61]. In breast cancer, HER2-directed
ADC:s, such as trastuzumab emtansine (T-DM1) and trastu-
zumab deruxtecan (T-DXd), have been practice-changing,
with T-DXd producing durable responses and activity even
in HER2-low disease [62, 63]. Importantly, these studies
include patients with metastatic disease, and emerging data
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show intracranial responses in HER2-positive BrM. T-DXd
has also been approved for HER2-mutant NSCLC, with
early signals of CNS efficacy in metastatic cases [64]. Like-
wise, the Trop-2—directed ADC sacituzumab govitecan has
demonstrated benefit in metastatic breast cancer, including
patients with brain metastases [65].

However, their penetration across the intact BBB remains
limited [66]. This challenge has increased interest in focused
ultrasound (FUS)-mediated BBB opening, which has been
shown in preclinical models to enhance ADC delivery to
intracranial lesions [67, 68]. Therefore, while ADCs are not
yet widely studied in combination with RT or FUS, their
dependence on BBB permeability makes them a conceptu-
ally relevant platform for future synergistic approaches.

Chimeric antigen receptor (CAR)T cells therapy in
BrM

CAR-T cell therapies have demonstrated remarkable effi-
cacy in hematologic malignancies [69], but their applica-
tion to CNS tumors, including GBM and BrM, remains
constrained by limited trafficking across the BBB, antigen
heterogeneity, and a highly immunosuppressive microen-
vironment [70, 71]. Despite these challenges, early proof-
of-concept studies have shown that CAR-T cells can be
delivered safely to the CNS and induce antitumor responses,
particularly when administered intraventricularly or intra-
tumorally, thereby partially bypassing the BBB. Examples
include GD2-directed CAR-T cells (Fig. 1) in diffuse midline
gliomas (NCT03170141) [72] and additional early-phase
trials targeting B7-H3 (NCT04185038) [73], EGFRvVIII
(NCTO01454596) [74], and HER2 (NCTO01109095) [75].
While most ongoing studies focus on GBM and pediatric
midline gliomas, clinical investigations in BrM remain
scarce; among the few, HER2-CAR-T therapy for meta-
static breast cancer with brain involvement (NCT03696030)
exemplifies the potential for target-defined applications in
selected metastases.

These biological and anatomical barriers have prompted
increasing interest in combining CAR-T therapy with
BBB-modulating approaches. Strategies such as focused
ultrasound or radiation have been shown in preclinical intra-
cranial models to enhance CAR-T trafficking and intratu-
moral accumulation [76, 77]. Although CAR-T is not yet a
clinically established modality for BrM, it illustrates how
transient BBB disruption, including FUS or RT-induced
modulation, may unlock new opportunities for cellular
immunotherapies within the CNS.
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Combination of RT and immunotherapy for
BrmMm

The convergence of RT and ICI has generated consider-
able interest, as there is evidence that the concurrent use
of these treatment modalities might improve their efficacy.
The mechanism, whereby radiation converts tumors into
in situ vaccines through antigen release and inflammatory
signaling, provides the biological rationale for combina-
tion therapy. There are different mechanisms that favor the
positive effect of radiation on immune activation, such as:
the increase in density of TILs and particularly cytotoxic
T cells, the activation of DCs, and the overexpression of
immune checkpoint molecules [78] (Fig. 2).

Clinical efficacy

The combination of RT with immunotherapy demonstrates
a generally positive effect on survival outcomes. In a pro-
pensity-matched study, the treatment effect of RT with
ICI was compared to RT and chemotherapy in a NSCLC
cohort. They found that patients receiving RT with immu-
notherapy after neurosurgical resection achieved a median
overall survival of 23 months compared to 11.8 months with
RT and chemotherapy [79]. In a recent study in patients
with NSCLC, the intracranial overall response rate was
49.1% in the ICI-treated patients compared to 75.9% in the
ICI and RT co-treated patients [80]. Similarly, in another
cohort of NSCLC patients, OS was significantly longer
in a group that received ICI with upfront RT compared to
ICI alone, whereas this benefit was not present in patients
who received ICI and chemotherapy [81]. Consistent with
these findings, a study on melanoma BrM patients treated
with RT and ICI showed improved outcomes when RT was
administered before ICI, with higher overall response rate
(HR 7.88) and disease control rate (HR 6.26) [82]. Another
study in melanoma patients after BrM resection revealed
that administering RT before ICI was superior to giving ICI
prior to RT [83]. Overall, these studies consistently support
the benefit of combining RT with ICI over RT with chemo-
therapy or ICI alone. Importantly, sequencing appears criti-
cal, with superior outcomes when RT precedes ICI rather
than the reverse.

A more in-depth focus is needed on SRS, as it drives
a stronger pro-inflammatory response and in situ immu-
nization compared to conventional RT [84, 85]. Clinical
evidence supports the benefit of combining SRS with ICI,
particularly when treatments are delivered within a short
time window. For instance, in a cohort of BrM patients,
administration of SRS in close temporal proximity to ICI
(within four months) resulted in a one-year local control
rate of 90.3% [86]. However, evidence indicates that even

narrower intervals may provide superior benefit. In a retro-
spective study of 580 BrM, concurrent SRS-ICI (ICI within
4 weeks of SRS) was associated with lower rates of extra-
cranial failure and improved OS compared to non-concur-
rent therapy [87]. Consistently, another study demonstrated
that concurrent application of SRS within four weeks of
ICI yielded greater lesion volume reduction at 1.5, 3, and 6
months compared to non-concurrent schedules [88].

Other studies have highlighted additional nuances. For
instance, Le et al. reported that in NSCLC and melanoma
BrM, concurrent SRS-ICI (< 30 days) did not improve local
control but significantly reduced distant brain failure com-
pared to non-concurrent schedules [89]. In a phase II trial
including 26 patients, combining ICI and SRS within 14
days was well tolerated and prolonged 1-year PFS to 45.2%
[90]. Similarly, Kotecha et al. compared lesions treated
with concurrent ICI (+ 5 half-lives) to lesions treated with
delayed ICI, finding superior overall response and durabil-
ity, particularly in patients receiving immediate ICI (£ 1
half-life; 12-month durable response 94% vs. 71%). Nota-
bly, lesions pre-exposed to ICI responded less favorably
than ICI-naive lesions [91]. Finally, in another study, con-
current SRS (defined as ICI given within two weeks of RT)
was associated with improved OS compared to sequential
strategies and predicted a reduced risk of developing > 3
new BrM after SRS [92].

The most consistent finding across studies involves intra-
cranial disease control. Perhaps most intriguingly, several
investigations found reduced rates of new brain metastases
development, suggesting the combination may prevent dis-
tant brain failure beyond treating existing lesions.

Treatment sequencing and timing

The optimal sequencing appears to favor RT before immu-
notherapy. The proposed mechanism suggests radiation first
primes the immune system through antigen presentation,
which subsequent ICI then amplifies. Conversely, admin-
istering immunotherapy first may result in immune activa-
tion being subsequently suppressed by radiation-induced
inflammatory changes. Timing emerges as another critical
variable. Most studies define concurrent therapy as adminis-
tration within two to four weeks, with several demonstrating
superior outcomes when treatments occur earlier within this
window.

Safety considerations
The safety profile of combination therapy is generally safe,
with a mildly increased risk for radiation necrosis (RN) in

patients treated with ICI and SRS compared to SRS alone.
Radiation necrosis rates vary considerably across studies,
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Fig. 2 Mechanisms by which RT and FUS may enhance immunother-
apy efficacy. Application of RT induces tumor antigen release, poten-
tially facilitating tumor recognition and enabling DCs to capture and
present antigens to CD8" T cells. Nevertheless, the constant exposure
to tumor antigens can cause T cell exhaustion, and overexpression
of checkpoint molecules such as PD1/PDL1. Administration of ICIs
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after RT can partially solve this issue and reinvigorate exhausted T
cells. On the other hand, FUS alters the BBB, increasing the likeli-
hood of immune cells and drugs penetrating the CNS. Together, these
approaches may help overcome key challenges that immunotherapies
face in accessing the CNS and counteracting tumor-induced immuno-
suppression in the brain. Figure made with Biorender
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ranging from 1.5% to 14% [82, 90-93]. Most RN remains
asymptomatic, detected only on imaging. Tumor volume
consistently emerges as the strongest predictor of toxic-
ity rather than treatment timing or sequencing. Cabanie et
al.’s analysis confirmed volume as the only significant pre-
dictive factor for radiation necrosis [93]. Patient selection
therefore becomes crucial, with larger tumors potentially
warranting modified approaches or closer monitoring. The
heterogeneity in reported toxicity rates likely reflects dif-
ferences in patient populations, tumor characteristics, and
treatment protocols. Studies including patients with larger
tumors, melanoma histology, or requiring corticosteroids
report higher complication rates. This variation underscores
the importance of individualizing treatment decisions based
on specific clinical factors.

Clinical implications

Current evidence suggests that combining SRS with immu-
notherapy offers meaningful benefits for selected patients
with BrMs, particularly regarding intracranial disease con-
trol. The optimal approach likely involves administering RT
before or concurrently with immunotherapy within a two
— four-week window.

The acceptable safety profile supports clinical implemen-
tation, though careful patient selection remains essential.
Patients with smaller tumor volumes and those not requiring
corticosteroids appear best suited for combination therapy.
Regular monitoring for radiation necrosis is warranted, par-
ticularly in higher-risk populations.

While these findings are encouraging, the evidence base
remains largely retrospective with inherent selection biases.
Ongoing prospective trials will be crucial for definitively
establishing optimal protocols and identifying patients
most likely to benefit from this promising therapeutic
combination.

Combination of focused ultrasound and
immunotherapy for BrM

Focused ultrasound (FUS) represents a promising, non-
invasive tool that enables transient and localized BBB
disruption, thereby facilitating targeted drug delivery to
neoplastic tissue or, alternatively, inducing direct ablation
of tumor structures without reliance on surgical intervention
or ionizing radiation [32] (Fig. 2).

Mechanisms of action and applications

FUS employs highly focused acoustic waves to concen-
trate energy within a defined intracranial region. Depending

on the applied acoustic parameters, such as frequency and
intensity, FUS can elicit a range of therapeutic responses
and can be divided into high-intensity focused ultrasound
(HIFU) and low-intensity focused ultrasound (LIFU). HIFU
is generally used for tissue ablation, whereas LIFU is often
used for BBB opening and microenvironmental regulation
(facilitating neuromodulation and drug delivery) [94, 95].

Tumor ablation

Tissue ablation by HIFU can be categorized into thermal
and mechanical ablation. Thermoablation occurs when
ultrasound waves are converted to heat in biological tis-
sue, raising the temperature and resulting in tumor cell
necrosis or coagulative destruction [94]. Mechanical abla-
tion (histotripsy) is related to the cavitation effect, result-
ing in mechanical tissue destruction and fragmentation [96].
Unlike SRS or WBRT, which use ionizing radiation, HIFU
is non-ionizing and highly localized, sparing healthy tissue
and avoiding cumulative radiation toxicity. It may be pre-
ferred in patients not eligible for further radiotherapy due
to prior dose limits. However, its clinical use is still limited
compared with SRS/WBRT, and ongoing studies are defin-
ing its precise role.

Enhanced delivery of immunotherapy

BBB opening is primarily achieved when LIFU is used in
combination with intravenously administered microbubbles
(MB). The inertial cavitation of these MB following ultra-
sound delivery generates intravascular shear stress, which
causes BBB endothelial cell tight junctions to become loose
and open reversibly for a short time [97]. This mechanism
can promote the entry of therapeutic compounds into brain
tumors and increase their concentrations within tumor tis-
sues. The first preclinical study to demonstrate this concept
documented the delivery of trastuzumab into a mouse brain
via BBB opening induced by FUS and MB (FUS-MB) [98].
In a breast cancer BrM model, the median survival was
increased by 32% through the combined use of trastuzumab
and FUS versus trastuzumab treatment alone [99]. Subse-
quently, the impact of FUS-mediated BBB disruption on
the transport of two anticancer agents was examined (doxo-
rubicin and T-DM1) in an orthotopic xenograft model of
HER2-positive breast cancer BrM, demonstrating increased
uptake and penetration of these compounds [100]. Trans-
lating these findings to clinical application, magnetic reso-
nance-guided focused ultrasound (MRgFUS), has enabled
safe, non-invasive delivery of trastuzumab in patients with
HER2-positive BrM [68]. Trastuzumab uptake in sonicated
BrM was increased by 101% on average, which corre-
lated with a decrease in tumor size of 19% [68]. Building
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on these promising results, ongoing clinical trials examine
the safety and efficacy of the FUS-assisted delivery of ICI,
including nivolumab (NCT04021420) and pembrolizumab
(NCTO05317858) into the CNS for the treatment of meta-
static melanoma and metastatic NSCLC [101].

Modulation of tumor immune microenvironment

LIFU-mediated opening of the BBB has the capacity to
modulate the tumor immune microenvironment in the brain
through both mechanical and thermal mechanisms. Fol-
lowing LIFU treatment, there is increased expression of
pro-inflammatory cytokines, chemokines, and adhesion
molecules [33], followed by the infiltration of neutrophils
into the brain parenchyma [102] and the activation of astro-
cytes and microglia [103]. This intervention has the poten-
tial to reprogram “cold” tumors into “hot” tumors, which
may foster sustained anti-tumor immune responses [104].
The combination of LIFU with ICIs has been shown to
enhance responses to immunotherapy in preclinical glioma
models [95]. Specifically, anti-PD-1 antibodies delivered
through the opened BBB can block immune exhaustion of
effector T cells, thereby enabling T cells to exert effector
responses through perforin and/or granzyme B [95]. Addi-
tionally, it has been demonstrated that LIFU-facilitated
delivery of CAR-T cells allows these cells to infiltrate the
TME more diffusely and with greater persistence, thereby
enhancing tumor cytotoxicity through the CARs [95].

Sonobiopsy

Sonobiopsy is a novel, minimally invasive technique that
uses FUS combined with MB to temporarily open the BBB
and release tumor-derived biomarkers into the bloodstream
for non-invasive molecular diagnosis of brain tumors [105].
By targeting specific tumor regions, sonobiopsy enables
spatially selective enrichment of circulating tumor DNA
and other molecular biomarkers, significantly improving
detection sensitivity compared to conventional plasma-
based liquid biopsies [106]. Therefore, sonobiopsy repre-
sents a promising advancement toward precision medicine
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in neuro-oncology, enabling more accurate tumor character-
ization and monitoring while avoiding risks associated with
invasive tissue sampling procedures.

Concluding remarks

The treatment of CNS tumors, whether primary or sec-
ondary, remains hampered by the restrictive BBB and the
immunosuppressive TME. Combining local therapies with
immunotherapy has emerged as a promising way to over-
come these barriers. RT, and especially SRS, is already
broadly implemented in clinical practice and can act as an
in situ vaccine by promoting antigen release and immune
priming, although optimal timing with ICI is critical to
avoid T-cell suppression and exhaustion and to maximize
therapeutic efficacy. In contrast, FUS-mediated BBB open-
ing is being evaluated in early clinical trials and has yet to
transition into standard clinical practice. While FUS enables
transient BBB disruption to facilitate the delivery of drugs
and immune cells into the brain, alongside direct antitumor
and immune-modulating effects, its clinical application is
still investigational. Translating FUS approaches into rou-
tine care will require overcoming several regulatory and
technical barriers, including the standardization of BBB-
opening parameters, characterization of BBB reclosure
kinetics, reproducibility across centers, and the establish-
ment of long-term safety profiles. Moreover, significant
knowledge gaps remain regarding the optimal timing of RT
or FUS relative to immunotherapy, as well as the precise
mechanisms through which FUS may enhance the traffick-
ing or efficacy of immune-based therapies across the BBB.

Asthese challenges are addressed, multimodal approaches
integrating RT and FUS with immunotherapy hold substan-
tial promise for improving intracranial tumor control and
survival. Nonetheless, uncertainties persist regarding the
safety of BBB disruption, the durability of the induced
immune responses, and the identification of ideal sequenc-
ing regimens. Future prospective studies will be essential to
refine these strategies, delineate their clinical readiness, and
fully harness their synergistic potential (Table 1).
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