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Research progress in glioma-related epilepsy (Review)
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Abstract. Epilepsy is a frequently occurring complication in
patients with gliomas that substantially impairs their quality
of life. The onset of epilepsy in patients with gliomas is
driven by multiple mechanisms, including tumour-induced
compression of the peripheral neural network, the release of
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neurotransmitters and inflammatory factors by tumour cells,
alterations in the tumour microenvironment, and changes in
gene expression. Collectively, these factors contribute to the
abnormal excitability of local neurons, ultimately triggering
seizures. Seizures occur in approximately 30 to 90% of
patients with glioma, with a higher incidence observed in those
with low-grade gliomas. The type and frequency of seizures
are closely associated with tumour characteristics, such as
tumour type, location, and growth rate. The current treatment
strategies for glioma-related epilepsy (GRE) primarily involve
antiepileptic drugs (AEDs) and tumour-directed therapies.
While AEDs are effective in managing seizures, they show
limited efficacy in some patients. Efforts have increas-
ingly focused on identifying biomarkers and elucidating the
molecular mechanisms underlying GRE, with the aim of
developing more targeted and effective treatment approaches.
The present review provides a comprehensive overview of the
latest advancements in GRE research.
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1. Introduction

Glioma-related epilepsy (GRE) refers to seizures that arise
as a secondary symptom of gliomas. These seizures are not
only a frequent complication during disease progression but
also serve as the first noticeable sign of the condition (1). GRE
is a variable and unpredictable disease closely related to the
progression and recurrence of gliomas. Both seizures and
antiepileptic drug (AED) treatment can cause cognitive impair-
ment. The preoperative prevalence of anxiety or depression in
adult patients with low-grade gliomas (LGGs) is markedly
higher than that in patients without epilepsy (2). However,
the interaction between AEDs and chemotherapy may have
a direct impact on tumours, influencing the therapeutic
effects on tumours, imposing a heavy economic and psycho-
logical burden on patients and their families, and significantly
reducing the quality of life of patients (3,4). Therefore, under-
standing the pathogenesis and clinical features of epilepsy
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is essential for the clinical management of brain tumours in
affected patients. The present review summarises the findings
of recent studies on this topic.

2. Clinical characteristics of GRE

Incidence of GRE. The occurrence of epilepsy in GRE is
influenced by various factors such as tumour location, histo-
logical characteristics, the peritumoural microenvironment,
and specific genetic changes. Seizures affect 30-90% of
patients with glioma during the course of their disease (5),
with approximately two-thirds manifesting at the onset and
one-third emerging during treatment (6). Patients with diffuse
LGGs often experience GRE in 60-90% of cases, whereas
those with glioblastomas (GBMs) have seizures in 30-70% of
cases (5). The cumulative incidence of brain tumour-related
epilepsy (BTRE) has been shown to increase with tumour
progression. Notably, ~50% of patients experience at least one
seizure, with the proportion of cases increasing to 50-70% in
the end-of-life phase (7). Isocitrate dehydrogenase 1 (IDH1)
mutation, pS3 overexpression (>40%), younger age (<38 years),
male patients, cortical involvement, and large tumour volume
are associated with a higher incidence of preoperative GRE in
LGGs (34,8). A total of 75% of patients with grade 2 gliomas
(astrocytomas or oligodendrogliomas) with IDH1/2 mutations
and 25% of those with IDH wild-type (IDHwt) GBMs suffer
from seizures, and patients with secondary GBMs carrying
IDH1 mutations have an increased likelihood of seizures (8.9).
Over 50% of patients exhibit preoperative GRE resistance, and
postoperative seizure remission rates range from 43 to 87%,
depending on the extent of resection (EOR). Subtotal resection,
older age (>45 years), generalised seizures, shorter history of
epilepsy (<1 year), and low Ki-67 expression are predictors of
favourable postoperative seizure control (3,10). Notably, 70%
of patients with GBMs and preoperative GRE are seizure-free
early after tumour resection, and near-total resection remains
a predictor of postoperative seizure control. In addition, GRE
recurrence after resection of high-grade gliomas (HGGs) is
usually associated with tumour recurrence/progression (3).
Preoperative GRE is generally associated with prolonged
overall survival in patients with LGG and GBM (3).

Clinical behaviour. The clinical manifestations of GRE
predominantly encompass focal awareness seizures, focal
impaired awareness seizures, generalised tonic-clonic seizures,
and focal-to-bilateral tonic-clonic seizures (11). Research has
highlighted the distinct seizure patterns in low- and high-grade
gliomas. In patients with LGGs, 69.7% exhibited focal-to-
bilateral tonic-clonic seizures. By contrast, HGGs were more
commonly associated with focal motor-aware seizures (38%)
or focal-to-bilateral tonic-clonic seizures (40%) (12).
Secondary generalised epilepsy is common in patients with
LGGs (40%), whereas simple partial seizures predominate in
patients with HGGs (38.3%) (13). However, research suggests
that LGGs frequently cause functional localisation-related
focal seizures (45-95%) (4). HGGs are more frequently associ-
ated with generalised seizures and status epilepticus and are
often triggered by factors such as medication non-adherence
or infections (14-16). Tumour-associated status epilepticus
typically manifests as complex focal seizures (74%) (17).

Seizure semiology is location-dependent; for example,
precentral gyrus lesions cause focal motor seizures, whereas
left frontal or right temporal lesions lead to seizures with or
without consciousness disturbances (18). Patients may also
experience additional symptoms such as visual disturbances,
changes in mental status, or signs of elevated intracranial pres-
sure, including headaches and nausea. Additionally, patients
may exhibit postictal phenomena such as Todd's paralysis and
psychosis (19).

Diagnosis. Tumour-related epilepsy is characterised by the
occurrence of at least one seizure resulting from a brain abnor-
mality, such as a glioma (20). The diagnosis of GRE requires
confirmation of both glioma and epilepsy, as well as evidence
of their correlation (3). Magnetic resonance imaging (MRI)
is crucial for preoperative diagnosis, and is supplemented by
magnetic resonance spectroscopy (MRS), computed tomog-
raphy (CT), and positron emission tomography (PET). For
cortical tumours, diffusion tensor imaging and functional MRI
can help localise functional areas and track fibres (3). Notably,
seizure history duration is correlated with intratumoural
T1-weighted hyperintensity, styloid signs, and regional atrophy
in angiocentric gliomas (21). Definitive glioma diagnosis
requires surgery/biopsy and pathological evaluation, including
histopathological and molecular analyses, with an emphasis on
the IDH1 mutation status (3,22). Patients with IDH1-mutated
gliomas, which are common in LGGs (>80%) and secondary
GBM (73%), are more prone to preoperative seizures than those
with IDH1 wild-type (IDH1wt) gliomas (22-24). Previous
studies have used MRI-based radiomics to identify the IDH
mutation status (25) and the occurrence of GRE (26,27). A
research team recently explored the potential connection
between the two to develop a novel radiomics approach that
reduces the risk of overfitting, enhances model performance,
and may be used to identify valuable generalised biomarkers
for various clinical issues (28). Seizures are defined as tran-
sient symptoms of abnormal neuronal activity (9). For patients
with glioma, epilepsy history and seizure signs should be
documented, with a diagnosis typically made after a single
seizure and classified according to the 2017 International
League Against Epilepsy guidelines (3,9).

3. Underlying mechanisms in GRE

The mechanisms underlying GRE are multifactorial and
involve tumour-related changes and the tumour microenvi-
ronment (TME) (Fig. 1). Seizure mechanisms vary between
LGGs and HGGs and may differ between preoperative and
postoperative seizures, with surgical complications potentially
contributing postoperatively (4,29). Regardless of the glioma
grade, epilepsy onset and tumour progression may share a
dual relationship. Neuronal hyperexcitability and glutamate
release during seizures can promote tumour growth, indi-
cating common underlying mechanisms (4,30). The current
research on GRE mechanisms are subsequently summarised
and reviewed.

Tumor characteristics. GRE is affected by the mechanical
effects of the tumour, including its location, size, and growth
rate. Cortical tumours, particularly in the frontal, temporal,
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Figure 1. Underlying mechanisms in GRE. The mechanisms underlying GRE are multifactorial and involve tumour-related changes and the TME. (A) GRE
is affected by the tumour characteristics, including its location, size, and growth rate. (B) Gliomas disrupt the BBB and cause neuroinflammation to induce
seizures. (C) Excitation-inhibition imbalance of glutamate and GABA in the TME induces neuronal excitation and seizures. (D) Abnormal Na* and K*
concentrations in the TME reduce seizure thresholds. (E) The aberrant expression of enzymes and proteins in the TME drives GRE through changes in the

surrounding neuronal environment. (F) Gliomas can form neurogliomal synapse:

s, promote excitatory synapses and hyperexcitable circuit formation, thereby

mediating seizures. GRE, glioma-related epilepsy; TME, tumour microenvironment; BBB, blood-brain barrier; VGLUT, vesicular glutamate transporter;
EAAT, excitatory amino acid transporter; IDH, isocitrate dehydrogenase; a-KG, a-ketoglutarate; BCAA, branched-chain amino acids; BCATI, branched
chain amino acid transaminase 1; SLC7A11/xCT, solute carrier family 7 member 11; GABA, gamma-aminobutyric acid; GAT, GABA transporter; NKCC1,
Na*-K*-2CI co-transporter 1; KCC2, K*-CI" co-transporter 2; PTEN, phosphatase and tensin homologue; TP53, tumour protein 53; NF1, neurofibromin 1;

MGMT, methylguanine methyltransferase; ADK, adenosine kinase; ADA, ade

nosine deaminase; IDHmut, IDH-mutated; D-2HG, D-2-hydroxyglutarate;

mTOR, mammalian target of rapamycin. The figure was created using BioRender (https://www.biorender.com/).

and parietal lobes (18,31), are significantly related to seizures,
while deep-seated or infratentorial tumours are less frequently
associated with epilepsy (4). LGGs involving the neocortex,
especially oligodendrogliomas (10), have a higher seizure risk,
while GBMs are associated with a lower incidence of epilepsy
owing to shorter survival times and fewer epileptogenic
origins (32,33). For subcortical and cortical brain regions,
a significantly decreased risk has been reported in tumours
within the left frontomesial and dorsal voxels (A3C1S1), and an
increased seizure risk has been found in tumours located in the
left supramarginal and posterior insular voxels (A4C2S3) (34).

Tumour volume also plays a role: Smaller HGGs exhibit a
higher propensity to present with seizures, whereas larger
LGGs are more epileptogenic. Slow-growing tumours, such
as LGGs, are more prone to epilepsy due to complex cellular
reorganisation and vascularisation, unlike fast-growing
HGGs, in which seizures are often triggered by necrosis or
bleeding (18,33). Additionally, specific glioma cell subpopula-
tions, such as astrocyte population C in GBM models, may
contribute to epileptogenicity through synaptic gene expres-
sion and tumour progression (35). Another study showed that
patients with lower anaplastic oligodendroglioma/anaplastic
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oligoastrocytoma exhibited more frequent instances of post-
operative seizures (36).

Neuroinflammation. Gliomas disrupt the blood-brain
barrier (BBB), causing vasogenic oedema, inflamma-
tion, hypoxia, and necrosis. These changes alter the TME,
leading to sodium-calcium imbalances, abnormal ion
concentrations, acidosis, and glutamate pathway activation,
all of which contribute to neuronal hyperexcitability and
seizures (8,18,37,38). Inflammatory reactions and reactive
astrogliosis, which are characteristic of the GBM micro-
environment, play critical roles in BBB injury-induced
epileptogenesis (37). Research using translocator protein-PET
imaging have shown higher contralateral hemisphere neuro-
inflammatory signals in individuals with persistent seizures,
which are associated with shorter survival (39). Despite the
immunosuppressive TME, pro-inflammatory cytokines [such
as interleukin (IL)-1p, IL-6, and TNF-a] and chemokines
play roles in tumour progression and seizures (37,38). IL-6,
in particular, promotes glioma cell proliferation and inva-
sion, while contributing to seizure development (40-44).
Recent findings have suggested that IL-6 levels predict poor
post-resection seizure control in patients with LGGs (45). Over
the past 20 years, studies have shown the presence of cytomeg-
alovirus (CMV) in GBMs (46), and the degree of infection has
been shown to be related to the survival rate of patients (47,48).
Valganciclovir treatment can significantly prolong survival in
patients with GBM (49-51). Recent research has confirmed
that high CMV infection levels can promote epileptic seizures
through a pro-inflammatory microenvironment (52).

Neurotransmitter imbalance

Glutamatergic mechanism. Glutamate, the primary excit-
atory neurotransmitter, plays a key role in BTRE through
aberrant signalling in gliomas and peritumoural tissues (53).
Elevated glutamate levels (>100 yM) in these regions
promote tumor progression, cognitive impairment, epilepsy,
and neurodegeneration by hyperactivating o-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors
(AMPARs)/N-methyl-d-aspartate receptors (NMDARsS),
causing neuronal hyperexcitability and excitotoxic cell death,
while also stimulating glioma proliferation and invasion (1,4,6).
Glutamate imbalance arises from disrupted regulation by glial
cells, which normally maintain homeostasis via proteins such
as solute carrier family 7 member 11 (SLC7A11 or xCT),
excitatory amino acid transporter 1 (EAATI), and excitatory
amino acid transporter 2 (EAAT?2). In gliomas, high xCT and
low EAAT expression lead to excessive glutamate release,
triggering seizures (1,54). xCT expression was not elevated
in the peri-pain region of human tumour samples; however,
in a mouse xenograft tumour model, primary central nervous
system (CNS) tumours were found to release massive amounts
of glutamate due to high xCT expression, thereby triggering
epileptic activity in the peritumoural region (54). Notably,
IDHwt HGGs exhibit heightened activity of the Xc-cysteine
glutamate transporter system in comparison with IDH-mutated
(IDHmut) diffuse low-grade gliomas (DLGGs) (55). This indi-
cates distinct mechanisms underlying glutamatergic-mediated
epileptogenicity in these tumour types, wherein glutamate
release through the Xc-cysteine glutamate transporter

system from HGGs plays a key role, whereas in DLGGs,
epileptogenicity is driven by extracellular accumulation of
D-2-hydroxyglutarate (D-2HG), which acts as a glutamate
receptor agonist (4). While xCT is highly expressed in tumour
cells, EAAT1 and EAAT?2 are significantly downregulated
in gliomas across cell lines, animal models, and human
GBMs (54), causing impaired reuptake of glutamate from
the extracellular space (1). Additionally, hypoxia-induced
overexpression of branched chain amino acid transaminase
1 further elevates glutamate levels by producing glutamate
from branched-chain amino acids, exacerbating extracellular
glutamate accumulation and epileptogenicity (56,57).

Extracellular glutamate activates glutamate receptors
on tumour cells (autocrine) or neighbouring neurones and
astrocytes (paracrine). The glutamate receptors include
ionotropic [AMPARs, kainite receptors (KARs), and
NMDARSs] and metabotropic glutamate receptors (mGIuR).
Ca2*-permeable AMPARSs, which are frequently expressed
in gliomas, promote tumour proliferation and migration (58),
and their antagonist perampanel (PER) may suppress seizures
and tumour growth (1). KARs may also contribute to GRE,
with astrocyte-released glutamate specifically activating
GluK1-containing KARs in interneurons (59). NMDARs,
particularly the NR2B subunits, are highly phosphorylated
in periglioma neurones, enhancing Ca®* influx and neuronal
overexcitation (60), which may be counteracted by PER by
reversing GluN2B phosphorylation (1). mGluRs 1-8 have been
less extensively studied but may influence glioma progression.
For example, mGluR1/5 have been shown to promote tumouri-
genesis (1); low levels of mGluR3 have been shown to be
correlated with longer survival (61,62); and mGluR4 signalling
may affect tumour growth (63). However, no evidence linking
mGluRs to glioma-associated seizures has been reported to
date.

GABAergic mechanisms. Gamma-aminobutyric acid (GABA),
a key inhibitory neurotransmitter, plays an important role
in epileptogenesis. Peritumoural structural and functional
changes reduce GABAergic inhibition and decrease inhibitory
interneurones and synapses in pyramidal cells, leading to exci-
tation-inhibition imbalances and seizures (4,8). Dysregulated
chloride transporters [Na*-K*-2CI" co-transporter 1 upregula-
tion and K*-CI" co-transporter 2 (KCC2) downregulation] in
peritumoural neurones increase intracellular chloride levels,
causing GABA receptor activation and reducing chloride efflux
and neuronal excitation (64-66). Glutamate in the TME further
reduces KCC2 expression. Antagonists such as picrotoxin and
gabazine suppress epileptic discharges, thus confirming this
mechanism (66). Additionally, proteolytic enzymes released by
tumours disrupt neural networks, reducing GABAergic inhibi-
tion, whereas an acidic hypoxic environment further impairs
GABA signalling and increases seizure susceptibility (18,67).

lon imbalances. Ion imbalances contribute to tumour progres-
sion and seizures. The acidic, hypoxic environment around
astrocytomas activates voltage-gated sodium channels and
inhibits inward-rectifying potassium (KIR) channels, lowering
the seizure threshold (67). BBB disruption and serum expo-
sure downregulate astrocyte Kir4.1 channels, disrupting K*
homeostasis (37). Additionally, immunoglobulin superfamily
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member 3, a mediator of glioma progression, interacts with
Kir4.1 to impair K* buffering in peritumoural areas and
increase extracellular K* levels and neuronal excitability,
which can lead to seizures (68).

Gene expression. The aberrant expression of enzymes and
proteins in the TME drives GRE through changes in the
surrounding neuronal environment. IDH1 mutations (60-72),
1p/19q co-deletion (73), and high Ki-67 expression have been
linked to seizure occurrence (73,74), whereas 1p/19q loss of
heterozygosity, p53 overexpression (<40%), and Ki-67 loss are
correlated with reduced seizure frequency and remission (8).
In addition, methylation of the methylguanine methyltrans-
ferase (MGMT) repair protein promoter can significantly
increase the risk of postoperative epileptic seizures (75,76).
In the following sections, the changes in gene expression that
influence GRE are detailed.

IDH is a crucial enzyme involved in cellular metabolism,
particularly in the tricarboxylic acid (TCA) cycle. It catalyses
the conversion of isocitrate to a-ketoglutarate (a-KG), gener-
ating NADH or NADPH. IDH has three primary isoforms:
IDHI1, IDH2, and IDH3. Mutations in IDH1 and IDH?2 are
frequently observed in certain cancers, including GBM (77,78)
and acute myeloid leukaemia (79-81). These mutations alter
the enzyme activity, leading to the production of the onco-
metabolite 2-HG, which contributes to tumourigenesis and
progression (14). Notably, IDH mutations are strongly associ-
ated with GRE.

According to the Ivy Glioblastoma Atlas Project
(http://glioblastoma.alleninstitute.org), IDH1 expression
is low at the tumour leading edge (LE) but elevated in the
tumour core, whereas IDH?2 is upregulated in regions of
microvascular proliferation (82). Additionally, IDH3A has
emerged as a potential risk gene for epilepsy (83,84). IDH
mutations are predictive of seizure occurrence and prognosis
in adults with lower-grade gliomas (85). While 18-34% of
patients with IDH1wt GBM experience preoperative seizures,
this rate increases to 59-74% in patients with IDHImut
GBM (69). Multiple studies have shown that IDH1 mutations
increase the risk of developing GRE before, during, and
after surgery (14,22,69,86,87). However, some studies have
suggested that IDH mutations are not related to postopera-
tive epilepsy or are negatively correlated with postoperative
seizure control (75,87,88). Similar predictive effects have
been attributed to IDH2 mutations in studies on preoperative
epilepsy (5,23,71). In WHO grade II and III gliomas, IDH1
mutations were revealed to be linked to epilepsy; however, this
association was absent in patients with GBMs (14).

Among IDHmut lower-grade gliomas, seizure control and
prognosis vary among subgroups. Grade 3 tumours are asso-
ciated with improved seizure control throughout the disease
course, and seizure freedom post-surgery and adjuvant therapy
is correlated with longer progression-free survival (PFS),
regardless of tumour grade (89). Notably, current evidence
suggests that IDHwt and IDHmut genotypes differentially
affect tumour metabolism and consequently have different
pathological mechanisms that cause excitability in peritu-
moural neuronal populations. IDHwt tumours upregulate
glycolysis and subsequently release excess glutamate and
lactate into the peritumoural environment, both of which
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can mediate hyperexcitability in surrounding neurons (90).
The increased seizure risk in IDHmut gliomas may stem
from the accumulation of D-2HG, an abnormal metabolite
detected at elevated levels using MRS in IDHmut gliomas (91).
Mechanistically, IDHImut glioma cells produce D-2HG
instead of a-KG, with D-2HG concentrations 100-300 times
higher than that in normal tissues (14). Structurally similar
to glutamate, D-2HG binds NMDARSs, impairing glutamate
clearance and increasing neuronal excitability (92,93).
Furthermore, D-2HG competitively inhibits a-KG (94,95), an
antiepileptic metabolite, and induces hypermetabolic changes
in peritumoural neurones, including upregulated lactate
dehydrogenase A, TCA cycle dysfunction, and activation
of the mammalian target of rapamycin (mTOR) pathway, a
known pro-epileptogenic mechanism (96). Preclinical studies
have demonstrated that mTOR inhibitors, such as rapamycin,
reduce neuronal excitability and suppress seizures (30,97,98),
highlighting mTOR as a potential therapeutic target for GRE.
Adenosine, an endogenous regulator of the mammalian
brain, plays a critical role in neuroprotection and seizure
suppression (99,100). Adenosine levels increase during
seizure activity (101), making the adenosinergic system a
promising therapeutic target for epilepsy (102). Adenosine
homeostasis is maintained through its metabolic clearance
by adenosine kinase (ADK), which converts adenosine into
5'-adenosine-monophosphate, and adenosine deaminase
(ADA), which deaminates adenosine to inosine (103). Notably,
ADA levels increase during pentylenetetrazole-induced
seizures, as demonstrated in adult zebrafish models (104).
Studies have shown that both ADA and ADK are upregulated
in the peritumoural tissues of glioma patients with epilepsy
in comparison with those without epilepsy, suggesting
their involvement in glioma progression and epileptogen-
esis (105,106). Elevated ADA and ADK expression may lead to
excessive adenosine degradation, reducing its inhibitory effects
and contributing to seizure activity (105,106). Additionally,
astrocytomas with high ADK expression exhibit lower extra-
cellular concentrations of inhibitory neurotransmitters and
increased aquaporin-4 levels, further decreasing the seizure
threshold (107,108). Since ADK inhibition effectively treats
epilepsy in animal models (109), the development of suitable
experimental models for tumour-associated epileptogenesis is
essential for evaluating the potential of adenosine augmenta-
tion therapies in patients with brain tumours and epilepsy.
Mutations in the tumour suppressor genes phosphatase
and tensin homologue (PTEN) (110,111), neurofibromin 1
(NFI) (112-114), and tumour protein (TP53) (115-117) are
frequently observed in primary GBM. These mutations disrupt
downstream signalling pathways and play critical roles in
tumourigenesis. These genes are also closely associated with
epilepsy. Previous experimental studies have targeted these
genes for deletion or mutation in rodent models, successfully
generating reliable epileptogenic tumours (118,119).
Physiologically, PTEN inhibits the phosphoinositide
3-kinase (PI3K)/protein kinase B (Akt)/mTOR pathway.
However, mutations or deletions in PTEN in GBM have
been shown to lead to the disinhibition of PI3K/Akt and
hyperactivation of mTOR signaling (120,121). These altera-
tions are associated with poor GBM prognosis and have been
implicated in epilepsy syndromes. Conditional deletion of
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PTEN in mice was shown to result in spontaneous seizures,
with post-mortem analyses revealing features consistent with
temporal lobe epilepsy (122-126).

NF1I functions as a critical regulator of the Ras signal-
ling pathway. It exerts its inhibitory effects by enhancing the
GTPase activity of Ras, thereby converting active guano-
sine triphosphate-bound Ras into its inactive guanosine
diphosphate-bound form (112,113). Mutations that impair the
function of the NFI gene, which are often observed in GBM,
disinhibit the Ras/MAPK pathway, resulting in hyperactiva-
tion of the mTOR pathway and uncontrolled cell proliferation,
thereby promoting cancer development. In mouse models, NF'/
knockout was demonstrated to be associated with a reduced
latency period before the onset of epilepsy and more severe
seizures (127). Similarly, in patients with neurofibromatosis
type 1, NFI mutations are correlated with increased seizure
frequency (128). TP53 (p53) mutations disrupt the functioning
of p53 in promoting cell cycle arrest, senescence, and apoptosis,
enabling the uncontrolled proliferation of damaged cells (129).
The gain-of-function mutant form of p53 is frequently over-
expressed in GBM cells. This mutant pS3 promotes invasive
signalling pathways by increasing the expression of receptor
tyrosine kinases (RTKs), including MET and epidermal
growth factor receptor (EGFR) (116). Research has shown that
the amplification of the RTK proto-oncogene MET can best
predict intraoperative epileptic seizures (130). In addition, the
high expression of platelet derived growth factor receptor-a
can aggravate epilepsy, while inhibiting the RTK signalling
pathway can reduce epileptic seizures (131), and tumour-related
changes in EGFR may also increase the risk of intraoperative
epilepsy and postoperative epilepsy (36,132). One possible
mechanism is that activation of the RTK signalling pathway
promotes the release of glutamate and enhances the excitability
of the TME, thereby inducing epilepsy (133,134). Increased
p53 levels, particularly in the hippocampal region, have been
detected in both experimental models and clinical specimens
obtained from individuals with drug-resistant temporal lobe
epilepsy (135,136). In the context of seizures, high p53 expres-
sion has been linked to increased apoptosis and neuronal death,
contributing to excitability imbalances (135). Furthermore,
elevated p53 levels were revealed to be associated with epilep-
togenic GBMs (137). Additionally, the p53 signalling pathway
has been demonstrated to be associated with drug resistance
in epilepsy in diffuse astrocytoma and oligodendroglioma, but
through a mechanism distinct from that of p53-ATRX (138).
Notably, TP53 mutations alone are insufficient to drive GBM
formation; they require concurrent mutations in other genes
such as PTEN to promote GBM progression (139).

As a tumour suppressor gene, promoter methylation of
MGMT is an important molecular feature of gliomas. In the
presence of IDH mutations, the methylation frequency of the
MGMT promoter increases significantly: This phenomenon
is particularly common in oligodendrogliomas and astrocy-
tomas, with approximately 35-45% of gliomas exhibiting
MGMT promoter methylation (140).

An increase in the chromosome 7 arm (7%) and the loss of
the chromosome 10 arm (10°) are typical features of IDHwt
epileptic LGG. This 7*/10 chromosomal abnormality pattern
is associated with the malignant progression of GBM: 59% of
patients with GBMs carry such variations, and their survival

rate is significantly reduced (141). Subsequent studies have
shown that gene expression on chromosome 10, including the
expression of key genes encoding MGMT, PTEN, and vimentin
(Vim), is generally downregulated in epileptic gliomas (142).
Moreover, Vim is also a biomarker of epilepsy (76). Notably,
MGMT promoter methylation not only affects the biological
behaviour of tumours, but may also significantly increase the
risk of postoperative epileptic seizures through epigenetic
regulation (36,75,76). However, the specific molecular mecha-
nisms underlying this phenomenon remain unclear.

One study investigated the spatial distribution and expres-
sion patterns of 358 clinically validated human epilepsy genes
within the GBM transcriptome and compared them with
datasets from non-tumour adults and developing cortices.
Nearly half of these genes, including the dosage-sensitive
genes strongly linked to monogenic epilepsy, were strikingly
enriched and aberrantly regulated at the LE of the tumour.
These findings support the complex epistatic basis of peritu-
moural epileptogenesis. The surrounding hyperexcitability,
driven by intricate patterns of proepileptic gene expression, may
explain the limited efficacy of narrowly targeted anti-seizure
medications and the persistence of epilepsy even after tumour
resection. This may also clarify why not all brain tumours
provoke seizures (82). Additionally, 52 genes exhibiting differ-
ential expression in patients with lower-grade gliomas and
seizures were identified (104). These genes span a wide range
of biological functions, underscoring the complexity of the
molecular processes underlying glioma-associated seizures.
Differential expression analysis revealed that gliomas that
induce epileptic activity are closely associated with genes
involved in neuronal development. The key implicated path-
ways include the RhoGDI, Semaphorin Neuronal Repulsive,
and the Ephrin B signalling pathways (143). Drug-resistant
epilepsy (DRE) is associated with somatic gene mutations.
In comparison with patients showing drug reactivity, patients
in the DRE group exhibited mutations in glutamate receptor
genes (GRIA1, GRIKS, GRIN2B, or GRIN2C), ATRX, and
glutamate-S-transferase genes (144). Understanding the
genetic and molecular characteristics of gliomas and their
relationship with seizures can significantly reduce the substan-
tial morbidity and mortality associated with these conditions.

Synaptic plasticity and neural network. Gliomas promote
axonal branching and synapse formation, increasing neuronal
excitability and seizure risk (145,146). They form microtubules
resembling neuronal axons and dendrites, enabling functional
glial synapses mediated by AMPARSs (38). Glioma-derived
prothrombin also facilitates excitatory synapse formation in
the peritumoural cortex (96). Elevated MMP-9 levels around
tumours convert pro-brain-derived neurotrophic factor
(BDNF) to mature BDNF, activate tropomyosin receptor
kinase B, and foster hyperexcitable circuits (146,147). Chronic
NMDAR activation and increased extracellular glutamate
levels further exacerbate these effects along with abnormal
neuronal structures and impaired synaptic plasticity, thereby
contributing to epileptogenesis.

Although it shows major structural and molecular changes,
epilepsy is fundamentally a network disorder. Functional MRI,
electroencephalography (EEG), and magnetoencephalography
(MEG) have revealed disrupted connectivity networks in brain
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tumours (148-156), with preoperative seizures linked to subop-
timal network topology (157). In summary, GRE arises from
diverse mechanisms that reflect pathological heterogeneity
and complex molecular interactions. Understanding these
pathways is crucial for developing targeted therapies.

4. Treatment of GRE

Treatment with AEDs. AED regimens should be promptly
initiated upon seizure diagnosis in patients with gliomas. The
guiding principles of these regimens include avoiding liver
enzyme-inducing AEDs in patients undergoing chemotherapy
and adopting individualised monotherapy with adequate dosing
and duration (3,158). For cases involving preoperative seizures,
rapid-acting AEDs without slow titration are preferred.

Conversely, in postoperative cases, AEDs with versatile
formulations (including injections, tablets, and oral solutions)
and minimal interactions with anti-infectives, glucocorticoids,
and haemostatics are recommended for long-term use (159).
Given the strong correlation between glioma progression and
epileptic seizures (160), AEDs with antitumour effects are
usually the first choice for GRE.

Usage principles of AEDs. AEDs are commonly used to
manage seizures in patients with glioma. An ideal AED
should effectively control seizures, minimise side effects,
and potentially enhance the efficacy of chemotherapy while
protecting healthy brain tissue. Currently, AED selection is
not directly guided by tumour histology, location, WHO grade,
or molecular markers, although non-enzyme-inducing AEDs
are preferred (30,38). Commonly used non-enzyme-inducing
AEDs include lacosamide (LCM), lamotrigine (LTG), leveti-
racetam (LEV), topiramate (TPM), valproic acid (VPA), and
zonisamide (38). Evidence-based guidelines recommend LEV
and VPA as first-line treatments for GRE, with LEV exhibiting
superior efficacy and comparable tolerability in comparison
with VPA (3,158). Phenytoin (PHT) and pregabalin monother-
apies may also be used for GRE, although they exhibit lower
efficacy than LEV (161). LEV is particularly effective for
focal and bilateral tonic-clonic seizures and is often combined
with antitumour therapies due to its additional benefits.
Mechanistically, LEV interacts with synaptic vesicle glycopro-
tein 2A (SV2A), modulating the release of neurotransmitters
and strengthening GABA-mediated inhibitory signaling (96).
Its analogue, brivaracetam (BRV), has a higher SV2A affinity.
LEV also enhances p53-mediated MGMT inhibition, sensi-
tising GBM cells to temozolomide (TMZ), especially when
combined with interferon-a. (8,96,162). Previous research has
suggested that LEV may improve overall survival, potentially
by modulating the glutamate-to-GABA ratio (1).

Similar to LEV, VPA exhibits antitumour effects medi-
ated through mechanisms such as the upregulation of
BDNF and activation of the ERK/Akt, Akt/mTOR, and Wnt
signalling pathways (96). VPA may enhance the survival
of patients receiving TMZ therapy (8). Although adjuvant
VPA with chemoradiotherapy improves the survival of
patients with GBMs, this benefit has not been observed in
patients with grade II gliomas (1). For patients with inadequate
seizure control after monotherapy, combination therapy with
LEV, VPA, or PHT may be considered (3,161). However, LEV
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or VPA should not be used solely for non-seizure-related
purposes in patients with glioma (3). In cases of poor seizure
control with LEV or VPA, TPM, a KAR inhibitor with antitu-
mour effects, is an alternative option (1).

A previous study on LCM monotherapy reported seizure
control rates of 65% at 3 months and 55% at 6 months. LTG
and LCM exhibited comparable efficacy in reducing seizure
frequency over 1 year (30). However, LTG is limited by its
oral-only formulation, slow titration requirements, and poten-
tial interactions with antineoplastic agents (38).

Talampanel, a noncompetitive AMPAR antagonist, may
reduce seizures and tumour growth. Although its combination
with radiation and TMZ has been shown to improve median
survival, talampanel alone has no significant antitumour
effects (1,30). PER, another noncompetitive AMPAR antago-
nist, has a longer half-life and superior BBB penetration.
Approved for focal and generalised epilepsy, PER is effective,
safe, and well-tolerated in BTRE (163,164). It inhibits glioma
cell proliferation, migration, and invasion, while reducing
extracellular glutamate levels, although the precise mecha-
nisms remain unclear (96). One case report described a GBM
patient achieving 18 months of seizure freedom and survival
with PER treatment (1,6). Cenobamate, which was recently
approved for the treatment of focal epilepsy, has not yet been
evaluated for GRE (38).

Notably, approximately one-third of patients with glioma
continue to experience seizures despite AED monotherapy and
dose escalation, although evidence regarding optimal AEDs
for treatment-resistant cases is lacking (96). Patients with
HGGs often require multiple AEDs for seizure control (18).
Studies have suggested that LCM add-on therapy shows effi-
cacy and tolerability comparable to those of LTG in patients
with glioma (18,30). LCM, which is available intravenously,
allows rapid titration, has minimal drug interactions, and
causes fewer neuropsychiatric side effects, making it a
preferred adjunct (38). Combining AEDs with different mech-
anisms of action, such as LEV with LCM, PER, or VPA, is
recommended for multimodal therapy (9). A prior small-scale
study reported a seizure remission rate of 57% with PER,
add-on therapy (30). LEV combined with VPA was revealed
to be particularly effective for seizure control (18). In a retro-
spective study, BRV add-on therapy reduced monthly seizures
from seven to two (30). For status epilepticus in patients with
brain tumours, first- (such as diazepam and midazolam) and
second-line treatments (such as LEV, PHT, and VPA) should
be initiated promptly (30).

Drug-resistant seizures occur in ~15% of patients with
GBM and ~30% of patients with LGG (9,74). IDHmut gliomas
exhibit a significantly higher trend toward pharmacoresis-
tant seizures, whereas pharmacoresistance is rare in IDHwt
tumours (165). Patients with IDHmut exhibited a higher 4-year
cumulative incidence of DRE (18%) in comparison with
patients with IDHwt (11%), although IDH mutations are not
significantly associated with drug resistance (9). For patients
with GRE who are resistant to other AEDs, LCM offers
improved efficacy and fewer side effects (3).

Adverse effects of AEDs. Adverse effects are the leading causes
of AED treatment failure and often limit effective dosing and
patient adherence. Both first- and second-generation AEDs
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exhibit similar rates of intolerable side effects. Patients with
brain tumours are particularly vulnerable to adverse neurolog-
ical effects, including cognitive decline, depression, anxiety,
dizziness, headache, nausea, and somnolence, of which cogni-
tive impairments are more common with first-generation
AEDs (9,30). First-generation AEDs (such as carbamazepine,
PHT, and VPA) often cause drug interactions such as accel-
erating dexamethasone metabolism. VPA is associated with
coagulopathy, particularly thrombocytopenia, but it rarely
causes adverse psychiatric effects. By contrast, second-gener-
ation AEDs, such as LEV, have minimal drug interactions
and may improve neurocognitive function. However, LEV is
associated with psychiatric side effects such as depression,
agitation, or psychosis, especially in patients with frontal lobe
tumours (9,30,38).

In patients with glioma undergoing chemoradiotherapy,
the concomitant use of AEDs may have both beneficial
and adverse effects. Although the combination of AEDs
and chemotherapeutic agents can prolong patient survival,
they carry potential risks, including thrombocytopenia and
increased drug toxicity (166,167). Clinical studies have demon-
strated that the combination of VPA and TMZ significantly
extends the median survival in comparison with non-VPA
treatment (168,169). Preclinical research has shown that VPA
enhances the anti-glioma efficacy of TMZ in U87 cells, whereas
celecoxib (CXB) combined with TMZ demonstrates optimal
inhibitory effects in C6 and T98G cell lines. The combined use
of VPA and CXB was revealed to synergistically enhance the
antitumour effects of TMZ both in vitro and in vivo, signifi-
cantly reducing tumour volume and prolonging survival (170).

In vivo and in vitro studies have shown that the combined
use of PER and TMZ exerts a synergistic antitumour effect
and significantly prolongs survival (171,172). However, the
combination of AEDs and TMZ also has adverse effects.
Chemotherapeutic drugs metabolised by the CYP450 system
may reduce the serum levels of certain AEDs, while VPA,
a CYP450 inhibitor, may increase the toxicity of some
chemotherapeutic agents (173). Additionally, AED use during
chemotherapy may induce thrombocytopenia (169,174).

The combination of AEDs and radiotherapy has primarily
demonstrated synergistic effects. VPA, which possesses
histone deacetylase inhibitor activity, exhibits synergistic
anti-glioma effects during radiotherapy and may serve as a
radiosensitiser (173,175). Both in vitro and in vivo research
has shown that the combination of VPA and radiotherapy
effectively inhibits tumour cells, while exerting minimal
impact on normal neurons (176). However, a cohort study of
1,057 patients with GBM revealed that patients concurrently
using AEDs for =14 days during chemoradiotherapy (AED
group) had a significantly higher mortality risk than non-AED
users. This adverse effect was dose-dependent, with VPA
demonstrating pronounced detrimental effects (177).

Therefore, when selecting AEDs for GRE, key consid-
erations include: i) Minimal drug interactions; ii) potential
beneficial side effects (such as anxiety relief and mood stabi-
lisation); iii) availability of multiple dosage forms (oral or
intravenous); and iv) avoidance of adverse effects (38).

Prophylactic use of AEDs. The preventive administration of
AEDs in patients with glioma is still a topic of debate, since

it cannot enhance PFS or decrease the likelihood of initial
seizures occurring within 6 months post-diagnosis. Therefore,
AEDs are not recommended for seizure prevention in newly
diagnosed, seizure-free patients with brain tumours (30). The
SNO and EANO guidelines state that the evidence supporting
the use of prophylactic AEDs on the basis of tumour location,
histology, or grade is currently insufficient (178). Perioperative
or postoperative AED use is not advised in seizure-free
patients (9,179), and a recent study revealed no reduction
in postoperative seizures with preoperative AEDs (180).
Although increased extracellular glutamate is linked to
seizures in patients with glioma, most AEDs, including LEV,
do not directly target the glutamatergic system, limiting
their ability to prevent tumour-associated epilepsy (181).
Nevertheless, 63% of neurosurgeons reported frequent peri-
operative AED use to reduce the risk of craniotomy-related
epilepsy (181). Guidelines suggest postoperative AED use for
patients with preoperative GRE, whereas prophylactic AEDs
may only be considered for seizure-free patients in the pres-
ence of high-risk factors (3).

AED deactivation time. The discontinuation of AEDs in
patients with GRE is complex due to the significant influence
of tumour status and antineoplastic therapy on seizure risk,
unlike idiopathic epilepsy. The psychosocial impact of seizure
recurrence further complicates accurate risk prediction (3,10).
Notably, 71% of seizure recurrences in patients with glioma
occur within 6 months of post-AED discontinuation (30).
Factors such as the adverse effects of AEDs, financial burden,
and psychosocial implications must be weighed against bene-
fits. Current guidelines recommend discontinuing prophylactic
AEDs 2 weeks post-surgery for patients seizure-free before
and after surgery (3). For patients with a single postoperative
seizure, gradual discontinuation after 3 months is advised,
whereas for patients with recurrent seizures, treatment should
be continued for at least 1 year. In patients with preoperative
GRE with a seizure history of <6 months and complete tumour
resection, AEDs can be stopped after 1 year of seizure remis-
sion. Nevertheless, for individuals with a prolonged history
of epilepsy, partial tumour removal, widespread epileptiform
activity on EEG, preoperative drug-resistant seizures, or focal
seizures accompanied by loss of consciousness, a seizure-free
interval of at least 2 years after surgery is advisable before
contemplating discontinuation of treatment. AED discontinu-
ation is not recommended for: i) All patients with GBMs; and
ii) other patients with HGG undergoing incomplete tumour
resection or exhibiting postoperative refractory seizures (such
as patients with anaplastic glioma).

Surgical treatment

Tumour resection extent. In patients with glioma, seizure
control is being increasingly recognised as a critical goal,
second only to tumour control. Maximal tumour resection
significantly improves seizure outcomes, with the EOR
being an independent predictor of postoperative seizure
control (182-186). Surgical resection was shown to achieve
seizure control in 36-100% of patients with LGGs (4), with
80% of patients with temporal lobe lesions achieving Engel
class I outcomes following maximal resection (187,188). For
patients with LGGs with preoperative epilepsy, resection
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exceeding 91% significantly enhanced postoperative seizure
control (3.4). Gross total resection has shown superior seizure
reduction over other resection types (180), with near-total and
subtotal resections achieving 87 and 55% seizure remission
rates, respectively (18).

Maximal safe resection can not only improve seizure
control but also enhance local tumour control and survival.
In insular gliomas, maximal resection was demonstrated
to prolong survival and improve seizure outcomes for both
newly diagnosed and recurrent tumours (189,190). For GBMs,
super-total resection, extending beyond the contrast-enhancing
tumour margins, was revealed to improve overall survival and
seizure control in comparison with near-total resection (9).
Maximal resection with functional preservation is essential
for tumours of the cerebral cortex. Advanced techniques such
as ‘sculpting surgery’, which precisely target epileptic foci, can
help reduce postoperative seizures when near-total resection is
not feasible (3).

Location of epileptogenic foci. The epileptogenic zone in
BTRE can be located within, adjacent to, or distant from
the tumour. In two-thirds of patients with BTRE, it is found
within or near the tumour (18). A previous electrophysiological
study has revealed that epileptic activity primarily originates
in the superior granular layer of the peritumoural neocortex,
which is infiltrated by glioma cells, rather than in the tumour
core (66). Animal studies have further indicated that the peri-
tumoural area exhibits heightened spontaneous epileptiform
activity, likely due to increased neuronal bursting in this
region (4,191). In LGGs, epileptic foci are typically located
at the tumour-neocortex interface, with the glioma-infiltrated
peritumoural neocortex playing a key role in epileptogen-
esis (4).

Preoperative and intraoperative electrophysiological
techniques, such as MEG, EEG, stereotactic EEG, and elec-
trocorticography (ECoG), primarily detect epileptic activity
in the peritumoural neocortex (4). While routine EEG can
localise epileptic foci, intracranial EEG is often necessary for
precise localisation and improved treatment outcomes (3,9,18).
Intraoperative ECoG monitoring using strip or grid elec-
trodes is recommended before and after tumour resection to
identify residual epileptic activity that can be treated with
electrocautery (192). Advances in biomedical engineering
have introduced ‘circular grid’ electrodes, which enable 360°
cortical monitoring and demonstrate higher seizure detection
accuracy, tumour resection rates, and postoperative functional
outcomes than conventional electrodes (192).

Awake craniotomy (AC), combined with direct electrical
stimulation (DES) and ECoG, is effective for resecting
gliomas in eloquent areas, reducing postoperative complica-
tions, and improving survival and quality of life (192,193).
A previous study revealed no increase in seizure risk with
AC in comparison with general anaesthesia (180). Recent
research has highlighted the predictive value of transcranial
magnetic stimulation for postoperative neurological outcomes,
with ECoG-guided supratotal resection improving seizure
control while preserving function (194). Emerging techniques
for localising epileptogenic zones include PET with a-(11C)
methyltryptophan, which selectively accumulates in epilepto-
genic foci, and proton MRS (1H-MRS), which non-invasively
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assesses glutamate and GABA levels in tumour and peritu-
moural tissue (195-199). These advanced methods complement
traditional imaging and electrophysiological tools, offering
novel insights into the management of epilepsy in patients with
glioma.

Management of intraoperative and early postoperative
seizures. Near-total resection during glioma surgery can
contribute to intraoperative seizures (158,193), particularly
in high-risk patients with factors such as younger age, frontal
lobe involvement (especially the supplementary motor area),
preoperative epilepsy history, use of multiple AEDs, and
IDH1 mutations. Prophylactic administration of LEV or VPA
is recommended for these patients (3). During AC, DES under
real-time ECoG monitoring, which is essential for functional
localisation, carries a 3.2-15.5% risk of intraoperative seizures,
typically partial seizures. However, this does not increase
postoperative seizure risk (3,4,192). Minimising the intensity
and frequency of electrical stimulation can reduce the inci-
dence of seizures (193). In the event of a seizure, immediate
cessation of stimulation and cortical irrigation with ice-cold
Ringer's solution or saline is recommended. Persistent seizures
may require benzodiazepine administration, with intraopera-
tive electromyography facilitating early detection (3).

Early postoperative seizures that occur within the
first week require prompt airway management and injury
prevention (159). The diagnostic workup should include
electrocardiography, blood tests (glucose, electrolytes, and
liver/kidney function), and neuroimaging (CT/MRI) to
exclude non-epileptic causes such as intracranial haemor-
rhage or metabolic disturbances. EEG monitoring for 2 h can
help assess epileptiform discharges related to brain oedema
or residual tumour (3). Seizures lasting over 5 min or clus-
tered seizures (multiple brief episodes of interictal recovery)
should be treated aggressively with midazolam or other AEDs
to prevent progression to status epilepticus (159). Recurrent
seizures warrant monitoring of AED blood levels and poten-
tial medication adjustments or substitution (3). Prophylactic
AEDs are recommended for 1 week post-surgery, regardless
of preoperative seizure history (158).

Postoperative seizures may result from preoperative
epilepsy, surgical trauma, or metabolic disturbances (such
as electrolyte imbalance and hypoglycaemia). Non-epileptic
events should be distinguished using video EEG and AED-level
testing to identify the underlying cause and guide appropriate
management (159).

Postoperative epilepsy management. Postoperative MRI,
including contrast-enhanced imaging, should be performed
within 24-72 h to evaluate the EOR. MRI findings such as
nodules, border blurring, or mass effect on T2 (FLAIR) or T1
sequences can predict postoperative epilepsy risk by reflecting
tumour growth and seizure propensity (3,8). IDH mutations in
gliomas are linked to more severe and refractory postopera-
tive seizures, although glutamate concentrations in the LGG
microenvironments are not correlated with seizure risk (4).
Seizure recurrence after a prolonged seizure-free period
may result in tumour recurrence. In cases of tumour recurrence
with drug-resistant seizures, surgery may be considered after
a thorough evaluation. If seizures occur without evidence of
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tumour recurrence, management should follow the refractory
epilepsy guidelines. Surgical intervention is recommended
for drug-resistant GRE when frequent seizures significantly
impair the quality of life of a patient (3).

Radiation therapy and chemotherapy. Radiotherapy and
chemotherapy are the cornerstone treatments for gliomas
and are aimed at controlling tumour growth and improving
survival. Their combined use enhances prognosis and quality
of life, with research showing significant seizure reduction
following these therapies in patients with LGGs (183). For
instance, focal fractionated irradiation and TMZ chemo-
therapy have been associated with a 44-77% reduction in
seizure frequency (200,201). Radiotherapy improves local
tumour control, preserves neurological function, and extends
survival (9). It also significantly reduces seizures in GRE, with
remission rates ranging from 20% after focal radiotherapy to
80% after brachytherapy (3,9). Notably, seizure improvement
often precedes tumour shrinkage on MRI, indicating a direct
antiepileptic effect (4). For example, 76% of patients with
WHO grade II glioma experienced a 50% reduction in seizure
frequency within 3 months of radiotherapy, despite no apparent
tumour changes on imaging (200,202). Early postoperative
radiotherapy is recommended because earlier intervention
is associated with improved seizure control. Neither seizure
duration prior to radiotherapy nor radiation dose was found to
significantly influence outcomes (3.4). Radiotherapy is also a
viable option for patients with refractory seizures and surgical
intolerance, regardless of tumour recurrence (3).

Common chemotherapy agents for gliomas include TMZ,
procarbazine, lomustine, and vincristine (PCV), and lomus-
tine. These drugs not only improve survival but also reduce
seizures in 30-100% of patients with GRE (3). In LGGs, seizure
remission rates range from 13 to 60% with PCV and from 13
to 50% with TMZ (9). TMZ, which is widely used in patients
with LGGs and HGGs, was demonstrated to reduce seizure
frequency by 50% in 48% of patients (203,204). However,
evidence of the antiepileptic efficacy of TMZ remains incon-
clusive and warrants further research (205). The primary goal
of TMZ is tumour control; however, its potential antiepileptic
benefits should be leveraged if confirmed.

Emerging therapies

Targeting IDH and its related downstream pathways. Targeted
therapies for IDHmut gliomas have shown significant promise
in both preclinical and clinical settings. Vorasidenib (AG-881)
and ivosidenib (AG-120), which are inhibitors of mutant
IDH1/2 enzymes, specifically target D-2HG (97), a key driver
of tumourigenesis and epileptogenesis. Vorasidenib, which
effectively penetrates the BBB, demonstrated improved PFS
in the INDIGO trial, although its direct impact on seizure
control remains unclear (206-208). Ivosidenib, on the other
hand, has shown potential antiepileptic benefits, as evidenced
by reduced seizure frequency in a case of IDHImut oligo-
dendroglioma (209). Additionally, mTOR inhibitors such as
rapamycin and everolimus, which counteract the activation of
the mTOR pathway by D-2HG, may offer therapeutic benefits
for patients with IDH1mut glioma with refractory epilepsy (30).
Emerging therapies, including IDH1-targeted peptide vaccines
currently under development, hold promise for mitigating the

seizure risk in GRE (8). These advancements highlight the
potential of targeted approaches to not only control tumour
growth, but also improve seizure outcomes in patients with
IDHmut glioma.

Targeting metabolic abnormalities. The ketogenic diet
has shown promise in inhibiting glioma proliferation and
reducing seizure frequency and severity (3). Sulfasalazine,
which inhibits glutamate release, has been associated with
prolonged seizure-free survival, although its use is limited
by its haematological adverse reactions (1). PPAR-A agonists,
such as glitazones, have been demonstrated to enhance
glutamate reuptake, potentially reducing excitotoxicity (38).
NMDAR antagonists have been shown to restore inhibitory
GABA signalling in peritumoural neurones, offering another
avenue for seizure control (6). Cannabidiol (CBD), known for
its efficacy in refractory epilepsy, may also benefit patients
with glioma, although its clinical effectiveness in GRE
requires further validation (96).

Immune regulation. Bevacizumab, an anti-VEGF monoclonal
antibody, has been demonstrated to reduce peritumoural
oedema and may decrease the risk of seizures in patients with
recurrent GBMs (8). While immune checkpoint inhibitors
enhance antitumour immunity, they may also paradoxically
increase the risk of status epilepticus in patients with brain
metastases (56). Notably, disruption of the BBB has been
shown in both patients with epilepsy and animal models of
epilepsy (210-215). In patients with temporal lobe epilepsy,
CCL2 upregulation was revealed to be associated with BBB
disruption and epileptogenesis (211,212,216). Therefore,
systemic delivery of immunotherapies may be a viable strategy
for these patients, presenting an advantage over treating other
CNS diseases not accompanied by BBB disruption.

Targeting ion channel.Enrichment analysis revealed conserved
pathogenesis modules between epilepsy and glioma, including
calcium-related pathways (217). Seizures have also been
reported to be controlled by voltage-sensitive calcium channel
antagonists and have been demonstrated in animal models
of epilepsy (218). In addition, a new generation of calcium
channel drugs has emerged for the treatment of epilepsy
and chronic pain. w-Taro spirotoxin is a potent blocker of
presynaptic calcium channels in neurons. A synthetic deriva-
tive, ziconotide (Prialt), is administered intrathecally for the
control of severe pain in patients with advanced cancer and
other patients suffering from intractable pain (219). SCN3B
is one of the hub genes involving ion channel regulation, and
it is significantly overexpressed in patients with GRE (220).
Upregulated SCN3B may influence cell excitability and
contribute to epileptogenesis (221). Moreover, SCN3B is also
a potential oncogenic factor, as the 33 subunit could promote
proliferation and suppress tumor cell apoptosis by promoting
p53 degradation (222,223). SCN3B appears to have potential
as a shared therapeutic target for both diffuse gliomas and
GRE.

These emerging therapies represent innovative approaches
to improving outcomes in GRE by targeting both tumour
biology and epileptogenesis. In conclusion, although radio-
therapy and chemotherapy remain central to glioma treatment,
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emerging therapies and targeted agents offer promising
avenues for improving seizure control and overall outcomes
in patients with GRE. Further research is essential to validate
their efficacy and optimise their clinical application.

5. Conclusion and perspectives

Gliomas are the most common primary brain tumours.
Notably, 30-90% of patients with glioma experience epileptic
seizures, especially those with LGGs, who exhibit an even
higher incidence of epilepsy (60-90%). Epilepsy is not only
an early symptom of glioma, but may also affect the quality
of life, cognitive function and prognosis of patients. Its patho-
genesis involves tumour-induced compression, destruction
of peripheral neural tissue, and aberrant excitatory effects of
tumour-derived chemicals. Furthermore, epileptic seizures (a
symptom of GBM) promote tumour progression and exacer-
bate the increase in excitability. This establishes a reinforcing
feedback loop that intensifies epileptic seizures (224). However,
the detailed molecular, cellular, and electrophysiological
mechanisms underlying seizure generation remain unclear,
necessitating further research to develop precise therapeutic
strategies. Patients with GRE present with diverse symptoms
that complicate its diagnosis and treatment. Improving early
diagnosis, accurate symptom analysis, and the use of predictive
tools based on advanced imaging techniques such as MRI are
crucial for improved patient outcomes. In addition, accurate and
reliable diagnosis of glioma and prediction of glioma patient
survival can provide valuable guidance for the diagnosis, treat-
ment planning, and prognosis of subsequent complications
such as epilepsy. A recent study proposed a method involving a
standardised workflow of nanoparticle-enhanced laser desorp-
tion/ionisation mass spectrometry and paper-based dried serum
spots to achieve sustainable metabolic diagnosis, which can
diagnose multiple cancers within minutes at an affordable cost,
with environmentally friendly, serum-equivalent precision, and
user-friendly protocols (225). Another research team estab-
lished a squeeze-and-excitation deep learning feature extractor
for T1 contrast-enhanced images and histological sections and
explored the significant cyclic 5-hydroxymethylcytosine profile
for screening glioma survival through minimum absolute
contraction and Cox regression (226).

Current treatments include surgical resection, radiotherapy,
chemotherapy, and AEDs. However, challenges, such as
surgical limitations, risks to the surrounding brain tissue, and
AED resistance due to long-term use, persist. Future research
should focus on elucidating the pathogenesis of GRE, including
its seizure-initiation mechanisms, neuronal network abnormali-
ties, and tumour-neuron interactions. Leveraging molecular
biology, genomics, and cell biology techniques to identify
seizure biomarkers can enhance the diagnostic and therapeutic
precision. Additionally, exploring novel therapies, such as
neuromodulation, immunotherapy, and next-generation AEDs,
may address the limitations of existing treatment modalities.

Multidisciplinary collaboration and robust clinical
research are essential to better understand the local and
systemic effects of GRE and to accelerate the development
of innovative therapies. Future research should integrate
molecular pathology, radiomics, and artificial intelligence to
promote individualised treatment and improve the quality of
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life of patients. Although GRE research and treatment remain
challenging, advancements in these areas hold promise for
improving patient outcomes and quality of life. Continued
exploration and collaboration are the keys to unlocking novel
therapeutic possibilities.
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