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Temozolomide (TMZ) resistance is one of the critical factors contributing to the poor prognosis of glioblastoma (GBM). As a first-line
chemotherapeutic agent for GBM, TMZ exerts its cytotoxic effects through DNA alkylation. However, its therapeutic efficacy is
significantly compromised by enhanced DNA damage repair (DDR) mechanisms in GBM cells. Although several DDR-targeting
drugs have been developed, their clinical outcomes remain suboptimal. Post-translational modifications (PTMs) in GBM cells play a
pivotal role in maintaining the genomic stability of DDR mechanisms, including methylguanine-DNA methyltransferase-mediated
repair, DNA mismatch repair dysfunction, base excision repair, and double-strand break repair. This review focuses on elucidating
the regulatory roles of PTMs in the intrinsic mechanisms underlying TMZ resistance in GBM. Furthermore, we explore the feasibility
of enhancing TMZ-induced cytotoxicity by targeting PTM-related enzymatic to disrupt key steps in PTM-mediated DDR pathways.
By integrating current preclinical insights and clinical challenges, this work highlights the potential of modulating PTM-driven
networks as a novel therapeutic strategy to overcome TMZ resistance and improve treatment outcomes for GBM patients.
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INTRODUCTION
Overview of Glioblastoma
Glioblastoma (GBM) is characterized by high malignancy and poor
prognosis. The aggressive invasiveness of GBM cells complicates
the accurate identification of tumor-infiltrated regions during
surgery, leading to residual tumor cells that contribute to disease
progression and recurrence [1]. Consequently, adjuvant therapy
with radiation and chemotherapy is essential for effective GBM
treatment. A Phase III clinical trial conducted in 2005 demon-
strated that temozolomide (TMZ) in combination with radiation
therapy (the Stupp regimen) significantly improves patient
outcomes compared to radiation alone, with a median survival
of 14.6 months versus 12.1 months, respectively [2]. Due to its
favorable therapeutic effects, TMZ has become the standard first-
line treatment for GBM.

Mechanisms and Advances in Temozolomide Resistance
TMZ is a small, lipophilic alkylating agent and an imidazotetrazine
derivative of dacarbazine [3]. Key attributes supporting its use as a
first-line treatment include stability in acidic conditions, rapid

absorption after oral administration, peak plasma concentrations
within one hour, and effective blood-brain barrier penetration.
TMZ’s primary anticancer mechanism involves methylation of
purine bases, resulting in N7-guanine (70%), O6-guanine (6%), and
N3-adenine (9%) adducts, leading to DNA mismatch and repair
failure, which causes G2/M phase arrest and programmed cell
death in GBM cells [4].
Although TMZ has advanced GBM treatment, its palliative

nature and the intrinsic chemoresistance of tumors limit efficacy,
with 90% of recurrent GBM exhibiting resistance [4, 5]. The
mechanisms underlying GBM resistance to TMZ are multifaceted,
encompassing enhanced DNA damage repair (DDR) pathways, an
immunosuppressive tumor microenvironment, drug efflux trans-
porter activities [6]. While the complexity of TMZ resistance
involves cross-talk between multiple systems, the augmented DDR
machinery represents a predominant molecular determinant and
the fundamental driver of GBM chemoresistance.
To counteract TMZ-induced cytotoxicity, GBM cells activate DNA

repair mechanisms, including methylguanine-DNA methyltransfer-
ase (MGMT), DNA mismatch repair (MMR) dysfunction, base

Received: 17 March 2025 Revised: 4 May 2025 Accepted: 15 May 2025
Published online: 26 May 2025

1Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China. 2Department of Radiation Oncology, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. 3Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang
University, Hangzhou, Zhejiang, China. 4Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China. 5Guali
Branch of the First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China. 6Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex,
JMS Building, Falmer, Brighton, UK. 7International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Oncology Department of the First
Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China. 8Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China. 9MOE Frontier Science
Center for Brain Science & Brain-Machine Integration Zhejiang University, Hangzhou, Zhejiang, China. 10These authors contributed equally: Yike Chen, Kaikai Ding, Shuyu Zheng.
✉email: zjm135@zju.edu.cn; yichg@zju.edu.cn; jijx@zju.edu.cn

www.nature.com/oncOncogene

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-025-03454-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-025-03454-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-025-03454-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-025-03454-5&domain=pdf
http://orcid.org/0000-0002-4417-2707
http://orcid.org/0000-0002-4417-2707
http://orcid.org/0000-0002-4417-2707
http://orcid.org/0000-0002-4417-2707
http://orcid.org/0000-0002-4417-2707
http://orcid.org/0009-0002-8752-6613
http://orcid.org/0009-0002-8752-6613
http://orcid.org/0009-0002-8752-6613
http://orcid.org/0009-0002-8752-6613
http://orcid.org/0009-0002-8752-6613
https://doi.org/10.1038/s41388-025-03454-5
mailto:zjm135@zju.edu.cn
mailto:yichg@zju.edu.cn
mailto:jijx@zju.edu.cn
www.nature.com/onc


excision repair (BER), and double-strand break (DSB) repair via
non-homologous end joining (NHEJ) and homologous recombina-
tion (HR) (Fig. 1) [7, 8].
Research on TMZ resistance in GBM primarily focuses on

inhibiting MGMT expression or function. As early as 1996, studies
showed that o6-benzylguanine, an MGMT inhibitor, could
enhance TMZ sensitivity in GBM cells with high MGMT levels [9].
PARP inhibitors like olaparib inhibit MGMT PARylation, impair O6-
methylguanine repair, and enhance TMZ sensitivity in MGMT+
GSCs [10]. Cordycepin reduces MGMT expression by down-
regulating the Wnt/β-catenin pathway, thereby enhancing TMZ
sensitivity [11]. The HDAC8 inhibitor NBM-BMX inhibits the
β-catenin/c-Myc/SOX2 signaling pathway and upregulates WT-
p53, suppressing MGMT-mediated DNA repair and increasing TMZ
toxicity [12]. Parthenolide reduces MGMT expression through NF-
κB pathway inhibition, decreasing TMZ resistance both in vitro
and in vivo [13]. EPIC-0412, a small molecule inhibitor, targets the
p21-E2F1 and ATF3-p-p65-MGMT axes, thereby improving TMZ
efficacy [14]. Despite these interventions, there is limited evidence
supporting the reversal of TMZ resistance or improvement in
patient outcomes [15].
Methoxyamine and PARP inhibitors (e.g., olaparib, veliparib)

effectively inhibit the activation of the BER system in GBM cells,
thereby reducing TMZ resistance both in vitro and in vivo [5, 16].
Additionally, a positive correlation has been identified between
BRD4 expression levels and key genes in the MMR pathway. BRD4
inhibitors can suppress the function of critical proteins in the MMR
system [17]. However, studies aimed at enhancing GBM sensitivity
to TMZ by targeting MMR and BER repair mechanisms remain

limited. Further research is needed to better understand these
pathways and develop new drugs and therapeutic strategies.

Post-translational modifications
Beyond direct targeting of DDR core components, emerging
evidence implicates post-translational modifications (PTMs) —
particularly phosphorylation, ubiquitination, SUMOylation, acetyla-
tion, and glycosylation — as critical regulatory layers that
dynamically orchestrate DNA repair fidelity and therapeutic
vulnerability, offering novel therapeutic strategies for targeting
GBM progression and reversing chemoresistance [18]. Since PTMs
are reversible and regulated by specific enzymes, they are
dynamic and responsive to cellular changes [19]. Targeting key
enzymes involved in PTMs—such as protein kinases, histone
deacetylases, and proteasome inhibitors—holds promise for the
development of new chemotherapeutic agents.
Numerous chemotherapy drugs targeting key enzymes

involved in PTMs are available for the treatment of GBM. Imatinib,
an Abelson tyrosine kinase inhibitor, was the first protein kinase
inhibitor used clinically [20]. Since then, hundreds of protein
kinase inhibitors have entered clinical trials, with 76 approved for
clinical use [20]. Histone deacetylase inhibitors, including Vorino-
stat, Romidepsin, and benzamides, inhibit GBM cell proliferation
in vitro, enhance the cytotoxic effects of radiotherapy and
chemotherapy, and have shown promising results in phase II
trials, particularly in GBM patients treated with Vorinostat [21–23].
Bortezomib, the first proteasome inhibitor approved for clinical
use, effectively inhibits ubiquitin-mediated protein degradation
[24]. Current research demonstrates its therapeutic efficacy in

Fig. 1 DNA repair mechanisms in TMZ-resistant glioblastoma. MTIC: MTIC (5-(3-methyltriazen-1-yl) imidazole-4-carboxamide), the key
bioactive metabolite of TMZ generated after traversing the BBB (blood-brain barrier). MGMT: MGMT, a 22 kDa protein found in both the
cytoplasm and nucleus, transfers a methyl group from the O6 position of guanine to a cysteine residue in its active site, rendering itself
inactive while protecting DNA [195]. MMR Dysfunction: The MMR system, involving MutSα (MSH2-MSH6) and MutSβ (MSH2-MSH3)
complexes, detects mispairing, initiating futile repair and resulting in cell death. However, MMR deficiency permits the mispairing to persist,
promoting tumor cell survival [3, 7]. BER: DNA glycosylases and APE1 recognize and excise the damage site, initiating BER. Pol β mediates the
correct nucleobase insertion into the lesion, and DNA ligase, in conjunction with XRCC1, completes the final assembly [3]. NHEJ: Ku70/80
recognizes the DSB, promoting the binding of DNA-PKcs to the DNA ends and recruiting nucleotides to the site. The DNA ligase IV complex
ultimately completes the repair by sealing the DNA ends [196]. HR: RPA binds to the DSB ends, preparing the DNA for repair. BRCA2 facilitates
RAD51 recruitment, which forms a D-loop on the homologous sister chromatid. RAD51 mediates strand invasion and searches for a
homologous sequence, followed by DNA synthesis to repair the break [197].
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glioblastoma-bearing mice, enhancing TMZ-induced cytotoxicity
against GBM cells [25]. Thus, targeting specific key enzymes
involved in PTMs to design corresponding chemotherapeutic
agents holds significant clinical potential for improving the
efficacy of GBM treatment. Currently, several related drugs
are undergoing clinical trials aimed at exploiting this approach
(Table 1) [26].
Given the critical role of PTMs in cellular regulation and their

link to tumor development, we will explore their relationship with
TMZ resistance in GBM, focusing on key PTM types. This will
provide insights into the molecular mechanisms of TMZ resistance
in GBM and inform future therapeutic strategies.

RELATIONSHIP BETWEEN PHOSPHORYLATION AND TMZ
RESISTANCE MECHANISM
Phosphorylation primarily occurs on serine, threonine, and
tyrosine residues of target proteins [27]. Protein kinases and
phosphatases are key enzymes in this process, responsible for
phosphorylating and dephosphorylating proteins to regulate
substrate phosphorylation levels [28]. Disruptions in the
phosphorylation-dephosphorylation balance of tumor-associated
genes are a major driver of tumorigenesis.

Phosphorylation in the MMR system
PCNA is a homotrimeric sliding clamp composed of three identical
monomers (PCNA1, PCNA2, and PCNA3) that form a ring structure
[29]. Several critical proteins, including MSH3, MSH6, MLH1, and
EXO1, interact with PCNA in MMR [30]. The EGFR can phosphor-
ylate the tyrosine residue Y211 of PCNA, inhibiting the activation
of the MMR system [31]. MSH2 and MSH6 are phosphorylated by
PKC and CK2, with MSH6 being more highly phosphorylated than
MSH2. This phosphorylation may facilitate the transport of MSH2
and MSH6, promoting their accumulation in the nucleus and
enabling MMR [32]. ATM/ATR, assisted by BRCA1, phosphorylates
MLH1 at the S406 site, stabilizing MLH1 and promoting MMR [33].
In contrast, phosphorylation of MLH1 at S477 by CK2 inhibits MMR

activation, likely by preventing MLH1 from binding to other key
MMR proteins [34].

Phosphorylation in the BER system
Upon DNA damage induced by alkylating agents like TMZ, the
ATM/Chk2 signaling pathway is activated. Chk2 then forms a
complex with the BER scaffold protein XRCC1, promoting
phosphorylation of T284 on XRCC1, which facilitates the recruit-
ment of DNA glycosylases (MPG, UNG2) and downstream BER
proteins (polβ, PARP1), thus enhancing BER [35, 36]. Mutations at
the T284 site in XRCC1 lead to accumulation of BER intermediates,
impairing DNA repair and increasing the cytotoxic effects of
alkylating agents [37]. Further, XRCC1 can be phosphorylated by
CK2, which stabilizes the XRCC1-Lig III complex and promotes
XRCC1 nuclear accumulation, supporting BER [38]. Knockdown of
histone demethylase KDM6B increases phosphorylation of Chk1 at
S345 and S296, activating its downstream pathways and promot-
ing XRCC1-mediated DNA repair. This suggests KDM6B could be a
biomarker for TMZ-resistant GBM [39]. Phosphorylation at Y263
and S269 of DNA glycosylase NEIL1 is critical for its DNA binding
and enzymatic activity; mutations at these sites impair BER
function [40]. CDK5 and PKC mediate phosphorylation of NEIL2,
with PKC phosphorylation inhibiting NEIL2’s function in BER [41].
AID is phosphorylated at S38, promoting its binding to the key BER
protein APE1 and regulating BER [42]. CDK2 phosphorylates T553
of Polλ, preventing its ubiquitination and degradation, thereby
maintaining its stability [43]. APE1, a core endonuclease in the BER
pathway, is phosphorylated at multiple sites by various kinases.
Phosphorylation of T233 by CDK5 inhibits APE1’s endonuclease
activity, impairing BER and leading to DNA damage accumulation
and neuronal death [44]. However, the role of APE1 phosphoryla-
tion remains debated. Some studies suggest that CK2-mediated
phosphorylation inhibits APE1’s activity, while others report no
effect [45, 46]. Additionally, PKC-mediated phosphorylation of
APE1 has been proposed to enhance its redox function, though
this has not been observed in earlier studies [45, 47]. Further
investigation is required to clarify the impact of these

Table 1. Chemotherapeutic agents targeting PTM enzymes in clinical trials for GBM treatment.

Drug names Molecular targets Clinical trial titles Phase

Lapatinib Tyrosine kinase inhibitor Lapatinib Ditosylate Before Surgery in Treating Patients with Recurrent High-
Grade Glioma (NCT02101905)

I

Sorafenib multiple kinases inhibitor Sorafenib, Valproic Acid, and Sildenafil in Treating Patients with Recurrent High-
Grade Glioma (NCT01817751; Ref. [26])

II

Dasatinib; Afatinib Tyrosine kinase inhibitor Pilot Trial for Treatment of Recurrent Glioblastoma (NCT05432518) I

Palbociclib CDK4/6 kinase inhibitor Pilot Trial for Treatment of Recurrent Glioblastoma (NCT05432518) I

Ribociclib CDK4/6 kinase inhibitor Ribociclib (LEE011) in Preoperative Glioma and Meningioma Patients
(NCT02933736)

I

Ribociclib CDK4/6 kinase inhibitor Study of Ribociclib and Everolimus in HGG and DIPG (NCT05843253) II

Ibrutinib Bruton’s tyrosine inhibitor Ibrutinib With Radiation and Temozolomide in Patients with Newly Diagnosed
Glioblastoma (NCT03535350)

I

Ibrutinib Bruton’s tyrosine inhibitor Chemo-immunotherapy Using Ibrutinib Plus Indoximod for Patients with
Pediatric Brain Cancer (NCT05106296)

I

Bortezomib Proteasome inhibitor Bortezomib and Temozolomide in Recurrent Grade-4 Glioma Unmethylated
MGMT Promoter (NCT03643549)

II

Vorinostat Histone deacetylase
inhibitors

Vorinostat, Isotretinoin and Temozolomide in Adults with Recurrent
Glioblastoma Multiforme (NCT00555399)

II

Vorinostat Histone deacetylase
inhibitors

Vorinostat and Temozolomide in Treating Patients with Malignant Gliomas
(NCT00268385)

I

Belinostat Histone deacetylase
inhibitors

MRSI to Predict Response to RT/ TMZ ± Belinostat in GBM (NCT02137759) II

Panobinostat Histone deacetylase
inhibitors

A Study of Intra-tumoral Administered MTX110 in Patients with Recurrent
Glioblastoma (NCT05324501)

I
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phosphorylation modifications on APE1, which may provide
insights into their role in the BER pathway in TMZ-resistant
GBM cells.

Phosphorylation in the DSBs repair system
DNA-PKcs, the largest serine/threonine kinase in the PIKK family,
is the most abundant PIKK in human cells and is crucial for NHEJ
repair [48]. DNA-PKcs undergoes autophosphorylation, which
inactivates its enzymatic activity and dissociates it from the
DNA-binding factor Ku, a key step in NHEJ [49]. Autopho-
sphorylation occurs at multiple residues in the M-HEAT domain,
collectively known as the ABCDE clusters, including T2609,
S2612, T2620, S2624, T2638, and T2647 [50, 51]. Mutations in
these residues inhibit autophosphorylation and the dissociation
of DNA-PKcs from Ku, impeding NHEJ [52]. In GBM cells, FGFR2-
induced phosphorylation of Y240 on PTEN (pY240-PTEN) binds
chromatin through Ki-67 and recruits RAD51, activating the HR
repair system [53]. Isoflavones, as tyrosine kinase inhibitors, bind
directly to DNA-PKcs and inhibit its phosphorylation, suppres-
sing HR repair in GBM cells with high DNA-PKcs expression,
thereby promoting DNA damage [54]. EXO1, a key exonuclease
in HR, can be phosphorylated by CDK1/CDK2 at multiple sites
(S639, T732, S815, and T824) in response to DNA damage,
activating EXO1 [55]. After completing its function, ATR
phosphorylates EXO1, leading to its degradation [56]. HPRT1
enhances TMZ metabolism in GBM cells, activates AMPK, and
promotes phosphorylation of T52 of RRM1, activating RNR and
increasing dNTPs production, facilitating HR repair of TMZ-
induced DNA damage. This is a key mechanism of intrinsic and
acquired resistance to TMZ in GBM [57]. Inhibiting HPRT1, using
drugs like 6-mercaptopurine, blocks AMPK activation and
enhances TMZ cytotoxicity in GBM cells [57]. In GBM cells, the
small molecule protein AQB upregulates UBXN1 and inhibits NF-
κB phosphorylation [58]. Synthetic AQB analogs, such as EPIC-
1027, disrupt NF-κB phosphorylation, interrupting the EGFRvIII/
MUC1-C feedback loop, inhibiting DSB repair activation, and
increasing TMZ sensitivity [59, 60]. Additionally, as a DNA
damage sensor, ATM promotes DNA repair by phosphorylating
key proteins such as P53 (S46, S15), DNA-PKcs, Chk2, and BRCA1
in the early stages of DNA damage [61, 62].

Phosphorylation in other DNA damage repair mechanisms
The cellular localization of YAP/TAZ is primarily regulated by their
phosphorylation status. For instance, phosphorylation of S127 in
YAP (S89 in TAZ) causes their accumulation in the cytoplasm [63].
Additionally, phosphorylation of S381 in YAP (S311 in TAZ) affects
their protein stability [64, 65]. Knockout of the upstream gene Syx
increases the phosphorylation of YAP/TAZ co-transcriptional
activators, leading to cytoplasmic retention and reduced activity,
thereby enhancing TMZ efficacy in TMZ-resistant GBM cells [66].
Overexpression of GNA13 downregulates the PRKACA subunit of
PKA, inhibiting phosphorylation of RELA and MGMT, which
increases GBM cell sensitivity to TMZ [67]. In GBM LN18 cells,
TMZ treatment elevates the expression of the serine/threonine
pseudokinase TRIB1, which mediates phosphorylation of ERK and
Akt, activating the MEK/ERK and Akt/PI3K pathways, promoting
cell proliferation and TMZ resistance [68]. Furthermore, CDKL5, a
serine/threonine kinase, mediates Akt phosphorylation in GBM
cells, activating the Akt/PI3K pathway and promoting proliferation,
migration, and TMZ resistance [69]. Finally, phosphorylation
modifications contribute to TMZ resistance by promoting changes
in the GBM microenvironment. GBM cells release exosomes
containing lnc-TALC, which are transferred to microglial cells. In
these cells, lnc-TALC binds to ENO1 and promotes P53 phosphor-
ylation [70]. This triggers the secretion of complement C5/C5a,
inducing M2 polarization in microglial cells, reshaping the GBM
microenvironment, and reducing tumor sensitivity to TMZ
chemotherapy [70, 71].

RELATIONSHIP BETWEEN UBIQUITINATION AND TMZ
RESISTANCE MECHANISM
Ubiquitination is a key post-translational modification, involving
the covalent attachment of one or more ubiquitin molecules to
target proteins. This process is facilitated by E1 activating
enzymes, E2 conjugating enzymes, and E3 ligases [72]. Ubiquitina-
tion can be classified into different types based on the lysine or
methionine residues involved in the chain formation, including K6,
K11, K27, K29, K33, K48, K63, and M1-linked ubiquitination [73].
K48 and K63 are the most studied types, with K48 typically
indicating proteasomal degradation of the target protein through
the UPS, and K63 being involved in regulating kinase activity,
signal transduction, and endocytosis [74, 75]. Dysregulated
ubiquitination can activate or deactivate key oncogenic pathways,
such as those involving p27, p53, and NF-κB, contributing to
cancer development [76].

Ubiquitination in the MGMT system
Early studies indicated that MGMT serves as a substrate for
ubiquitination under the influence of inactivating agents such as
O6-benzylguanine or carmustine, leading to proteolytic degrada-
tion that enhances the efficacy of alkylating agents in cancer
treatment [77]. Notably, the ubiquitin-mediated proteolysis of
MGMT is more pronounced in the U87 glioma cell line, suggesting
that promoting MGMT ubiquitination and subsequent degrada-
tion could be a promising therapeutic strategy to improve TMZ
sensitivity in GBM cells [78]. Further research identified UBE2B, an
E2 ubiquitin-conjugating enzyme, which works with the E3 ligase
RAD18 in BCNU-induced MGMT ubiquitination [79]. Additionally,
studies have shown that the knockout of UBE2B leads to MGMT
inactivation and accumulation within tumor cells, causing cellular
toxicity [79]. In melanoma, MGMT undergoes ubiquitination and
proteolysis mediated by the E3 ligase TRIM72, with TRIM72
overexpression enhancing the cytotoxic effects of alkylating
agents [80]. However, further studies are needed to clarify the
specific types of MGMT ubiquitination and their functional roles.

Ubiquitination in the MMR system
MSH2/MSH6 acts as a key heterodimer in regulating MMR, with
studies showing that the knockout of MSH6 leads to a 50%
reduction in MSH2 protein levels, suggesting a correlation
between the two proteins. Further investigations revealed that
when MSH6 levels decrease, MSH2 undergoes ubiquitination-
mediated proteolysis via the NOT4 ligase, indicating that the
stability of the MutSα MMR repair heterodimer is influenced by
subunit interactions and ubiquitination [81]. The histone deace-
tylase HDAC6 plays a critical role in cellular responses to external
stimuli; its DAC1 domain functions as an E3 ubiquitin ligase,
mediating MSH2 ubiquitination and subsequent degradation [82].
Additionally, OTUB1 inhibits MSH2 ubiquitination by blocking the
ubiquitin transfer activity of E2 enzymes, thus maintaining
MSH2 stability [83]. In summary, ubiquitination regulates the
stability of MSH2 within the MutSα MMR repair heterodimer,
which impacts the MMR system. MSH2 ubiquitination represents a
potential therapeutic target for enhancing TMZ resistance in
GBM cells.

Ubiquitination in the BER system
DNA glycosylase OGG1 undergoes ubiquitination by the E3 ligase
CHIP, which mediates its degradation and translocation from the
nucleus to the nucleoplasm, inhibiting its function in the BER
pathway [84]. CHIP also facilitates the ubiquitination of several key
BER proteins, including XRCC1, Lig III, and Pol β, thereby
controlling cellular levels of BER enzymes and ensuring proper
BER function [85]. Similarly, the E3 ligase Mule mediates the
ubiquitination of the DNA glycosylase MutYH, resulting in its
degradation and mislocalization, which impairs the BER repair
process [86]. APE1, a crucial AP endonuclease in BER, is
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ubiquitinated by the E3 ligase UBR3 [87]. In UBR3-deficient MEFs,
APE1 degradation is disrupted, leading to increased APE1 levels
[87]. Additionally, MDM2 has been shown to ubiquitinate APE1,
with its RING domain being essential for this modification [88].
Beyond mediating protein degradation, ubiquitination can also
directly regulate protein function. 5-hydroxymethylcytosine acti-
vates the E3 ligase UHRF2, which catalyzes K33-linked ubiquitina-
tion of XRCC1. This modification does not lead to XRCC1
degradation but instead promotes its interaction with the
ubiquitin-binding domain of RAD23B, facilitating the recruitment
of TDG to the BER complex and ensuring the stable operation of
the BER system [89].

Ubiquitination in the DSBs repair system
Ubiquitination plays a critical role in the repair of DSBs, particularly
in the recruitment of DNA repair factors to damage sites. This
process mainly involves K63-linked ubiquitination mediated by
the RNF8/RNF168 pathway, which targets histones and chromatin-
binding proteins [90]. Phosphorylated L3MBTL2 associates with
MDC1 and binds to the DNA damage site, where RNF8 mediates
its ubiquitination, recruiting RNF168 to the site [91]. RNF168 then
ubiquitinates histone H2A at K13 and K15, promoting the
assembly of ubiquitin-binding domains and repair factors such
as 53BP1, RAP80, RNF169, and RAD18 at the damage site [91–93].
Notably, 53BP1 is recruited upon recognizing the K15 ubiquitina-
tion of H2A, facilitating NHEJ [94]. RAP80, ubiquitinated at K63 or
K6, recruits BRCA1 to the site [95, 96]. RNF169, through its MIU2
motif, is also ubiquitinated by RNF8/RNF168 and competitively
inhibits the recruitment of other repair factors like RNF168 and
53BP1 [97, 98]. RAD18, ubiquitinated by RNF168, attracts HR-
related factors such as RAD51C and the SMC5/SMC6 complex,
promoting HR [99]. In summary, many DSB repair proteins are
recruited to damage sites via ubiquitin-dependent mechanisms.
However, further research is needed to fully elucidate the
mechanisms and dynamic regulation of this recruitment process.
Ubiquitination recruits DNA repair factors and selects the repair

mechanism, either NHEJ or HR. During G1, CDH1-mediated
ubiquitination of CtIP promotes its degradation, inhibiting HR
[100]. RNF138 activates CtIP via UBE2Ds, facilitating HR [101]. RNF8
and RNF138 also ubiquitinate Ku80, removing it from damage
sites to suppress NHEJ and promote HR [102, 103]. UHRF1
enhances K63-linked ubiquitination of RIF1, promoting HR by
dissociating 53BP1 from damage sites [104]. Deubiquitination also
regulates DSB repair. USP52 deubiquitinates CtIP, enhancing its
ATM-mediated phosphorylation and promoting HR [105]. UCHL3,
activated by ATM phosphorylation, deubiquitinates RAD51,
enhancing RAD51 recruitment and its interaction with BRCA2 to
facilitate HR [106]. UCHL3 is thus a key therapeutic target for
enhancing chemotherapy sensitivity in tumor cells [106]. Further-
more, the polymerase Pol κ, which is upregulated in GBM cells
following TMZ treatment, contributes to TMZ resistance in
sensitive GBM cells [107]. Inactivating Pol kappa increases the
ubiquitination and proteasomal degradation of Rad17 induced by
TMZ, inhibiting ATR-CHK1 signaling and impairing HR, ultimately
increasing GBM cells’ sensitivity to TMZ [107].
In summary, ubiquitination not only mediates substrate

degradation but also facilitates protein translocation and activa-
tion. It influences the abundance of key proteins in DSB repair,
modulates the distribution of repair factors, and affects complex
assembly. Therefore, ubiquitination plays a critical role in DSB
repair and serves as a key target to overcome TMZ resistance in
GBM cells.

Ubiquitination in other DNA damage repair mechanisms
The SCF-type E3 ligase FBW7, an important tumor suppressor,
reduces the expression of Aurora B, Mcl1, and Notch1 upon
overexpression, causing GBM cells to arrest in the G2/M phase and
significantly enhancing TMZ efficacy [108]. Ube2C and Ube2S, two

other E2 ubiquitin-conjugating enzymes, are overexpressed in
GBM and associated with poor prognosis and reduced che-
motherapy response [109]. The aberrant E3 ligase MAEA promotes
K48-linked ubiquitination of PHD3 at K159, leading to PHD3
degradation and stabilizing HIF-1α, thereby enhancing GBM TMZ
resistance [110].

THE RELATIONSHIP BETWEEN SUMOYLATION AND TMZ
RESISTANCE MECHANISMS
SUMOylation, or small ubiquitin-like modifier conjugation, is a key
post-translational modification process. In mammals, there are
three SUMO paralogs: SUMO-1, SUMO-2, and SUMO-3 [111].
SUMO-1 primarily maintains normal cellular functions, while
SUMO-2/3 are involved in stress responses to environmental
changes [111]. Recent proteomic studies have identified over 1,000
human proteins with more than 3000 SUMOylation sites. These
SUMOylated proteins are directly or indirectly involved in
processes such as apoptosis, inflammation, immune regulation,
DDR, angiogenesis, migration, DNA replication, cell division, and
cell cycle regulation, all of which contribute to tumorigenesis [112].

SUMOylation in the BER system
UNG2 undergoes both SUMOylation and ubiquitination. Over-
expression of SUMO-1 increases UNG2 SUMOylation while
decreasing its ubiquitination, thereby stabilizing the protein
[113]. TDG is SUMOylated at K330, which reduces its affinity for
DNA substrates, promoting the release of aberrant bases and the
formation of AP sites [114]. SUMOylation also enhances APE1’s
stimulatory effect on TDG, facilitating TDG dissociation from AP
sites and promoting BER activity [115]. Additionally, SUMOylation
at lysine 341 of TDG inhibits CBP-mediated acetylation, preventing
its interaction with APE1 [116]. PARP-1, which is pivotal in BER, is
SUMOylated at K203 and K486 by PIASy. This modification
prevents PARP-1 acetylation and degradation via RNF4, modulat-
ing its role in BER [117]. FEN-1 is regulated by SUMOylation at
lysine 168, promoting its ubiquitination by PRP19 and subsequent
degradation [118]. Moreover, although XRCC1 undergoes SUMOy-
lation, its functional implications remain unclear. Further research
is needed to clarify the effects of SUMOylation on other key BER
proteins.

SUMOylation in the DSBs repair system
Knockout of SUMO-1 and SUMO-2 in GBM cells impairs DNA
synthesis and DSB repair, suggesting SUMOylation protects GBM
cells from chemotherapy or radiotherapy induced damage [119].
SUMOylation of 53BP1 is crucial for its accumulation at DNA
damage sites [120]. The absence of Nup153 leads to dissociation
of the SUMO protease SENP1 from the NPC, inhibiting 53BP1
SUMOylation [120]. Artificially tethering SENP1 to the NPC in
Nup153-deficient cells restores 53BP1 SUMOylation and facilitates
NHEJ [120]. Phosphorylated ARF mediates SUMOylation of PTEN
with SUMO-1, allowing SUMOylated PTEN to be recruited to DNA
damage sites via the SUMO interaction motif of BRCA1 [121]. PTEN
then dephosphorylates 53BP1, promoting its dissociation and
activating HR repair [121]. Inhibition of PTEN SUMOylation
enhances tumor cell sensitivity to chemotherapeutic agents
[121]. SUMOylation of Sp1 at K16 leads to its ubiquitin-
dependent degradation via RNF4, which removes Sp1 and
53BP1 from DNA damage sites, promoting HR [122]. A similar
modification occurs in CtIP, where SUMOylation at K578, mediated
by PIAS4, leads to its ubiquitin-dependent degradation via RNF4,
promoting HR [123]. PIAS4 also mediates SUMOylation of TIP60 at
K430 with SUMO-2, preventing its binding to DNA-PKcs [124].
Mutations at this site increase DNA-PKcs phosphorylation,
inhibiting HR [124]. TIP60 thus represents a key target for
enhancing GBM cell sensitivity to TMZ [124]. Additionally,
SUMOylation of ZMYM2, mediated by PIAS4, is critical for its
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enrichment at DNA damage sites, opposing 53BP1 accumulation
and promoting HR-related protein recruitment [125].
Research shows that the three SUMO isoforms have distinct

roles in DSB repair. SUMO-1 is involved in both HR and NHEJ,
while SUMO-2 and -3 are mainly associated with NHEJ [126].
Additionally, the deSUMOylating enzyme SENP2 regulates MDC1
deSUMOylation, preventing its RNF4-VCP-mediated degradation
and promoting NHEJ [127]. Despite significant progress,
unresolved questions remain, particularly regarding the
mechanisms governing protein accumulation at DNA damage
sites and the balance between SUMOylation and
deSUMOylation.

SUMOylation in other DNA damage repair mechanisms
Studies have shown that MGMT can generate two SUMOylated
products with SUMO-1 in vitro, facilitated by the SUMO ligase Ubc-
9, which may influence MGMT protein stability [78]. The K26 site of
the oncogene YB-1 is crucial for SUMOylation [128]. Although this
modification does not alter YB-1’s expression or stability, further
studies have shown that the level of YB-1 SUMOylation affects its
binding to PCNA, thereby disrupting the MutSα-PCNA interaction
in MMR [128]. As an E3 SUMO ligase, NUSAP1 promotes ATR
SUMOylation, preventing ATR degradation and stabilizing it,
thereby increasing GBM cell resistance to TMZ and other
chemotherapy agents [129]. SUMO-1 can bind to lysine residues
27, 76, and 112 on Olig2. SUMOylated Olig2 enhances its binding
to the Cdkn1a gene, preventing p53 from binding to the Cdkn1a
promoter, thereby inhibiting p53-mediated cell cycle arrest and
apoptosis, and increasing TMZ resistance [130]. SUMOylation of
the C-terminal K330 site in DNA glycosylase TDG is essential for its
enzymatic activity [114]. This modification alters TDG’s conforma-
tion, reducing its affinity for AP sites and impeding its DNA
binding activity [114].

THE RELATIONSHIP BETWEEN ACETYLATION AND TMZ
RESISTANCE MECHANISMS
Acetylation is a PTM where an acetyl group is transferred to lysine
residues or the N-terminus of proteins by acetyltransferases. It is a
prevalent PTM in the proteome, playing a crucial role in cellular
homeostasis, with over 35,000 acetylation sites identified in
humans to date [131]. Lysine acetylation is primarily regulated
by two enzyme classes: lysine acetyltransferases (KATs/HATs) and
lysine deacetylases (KDACs/HDACs) [132, 133]. Abnormal expres-
sion or mutation of these enzymes is implicated in various cancers.
For example, KAT2A mediates acetylation of c-MYC at K323,
stabilizing c-MYC [134]. KAT2A also recruits c-MYC to RNA
polymerase III, promoting the transcription of c-MYC target genes
[135]. Overexpression of HDAC1, 2, and 3 is observed in many
cancers, promoting tumor cell proliferation, invasion, and migra-
tion [136, 137]. HDAC6 regulates the acetylation of α-tubulin and
cortactin, influencing cell migration, chemotaxis, angiogenesis,
and cancer metastasis [138].

Acetylation in the MMR system
The histone acetyltransferase CBP promotes MLH1 acetylation,
preventing its ubiquitin-dependent degradation and stabilizing
MLH1, thereby facilitating the formation of the MutSα-MutLα
complex [139]. In contrast, HDAC6 induces deacetylation of MLH1,
inhibiting MutSα-MutLα complex formation [140]. The K73 site of
MSH2 is acetylated by HBO1 and deacetylated by HDAC10, with
HDAC10-mediated deacetylation being crucial for MSH2’s role in
MMR [141]. However, other studies suggest that HDAC6-mediated
deacetylation of MSH2 promotes its ubiquitination, reducing its
levels and inhibiting MMR [82]. In conclusion, the balance
between acetylation and deacetylation plays a crucial role in
regulating MMR proteins, warranting further investigation to
clarify specific mechanisms.

Acetylation in the BER system
TDG is acetylated at K94, 95, and 98 by p300, inhibiting APE1
recruitment [142]. p300 also acetylates OGG1 at K338 and 341,
enhancing its glycosylase activity, reducing affinity for AP site
products, and promoting APE1 recruitment [143]. Acetylation of
NEIL2 by p300 at K49 and K153 alters its activities, with K49
acetylation inhibiting base excision and AP nuclease functions
[144]. Furthermore, p300 and ERα acetylate MPG, facilitating its
binding to alkylation-induced DNA damage [145]. Multiple lysine
residues of APE1, including K6 and K7, are acetylated by p300,
promoting interaction with YB-1, which activates multidrug
resistance gene MDR1 [145]. Acetylation at residues K27, K31,
K32, and K35 may influence APE1’s nuclease activity and its roles
in BER and RNA metabolism [146]. The autophagy adapter p62
undergoes acetylation by hMOF and deacetylation by SIRT7;
acetylated p62 accumulates at DNA damage sites, interacting with
APE1 to activate its nuclease activity and initiate BER [147].

Acetylation in the DSBs repair system
Knockout of CBP/p300 proteins significantly decreases acetylation
at histone H3 K18 and histone H4 K5, 8, 12, and 16, inhibiting the
recruitment of key NHEJ proteins, KU70 and KU80, to DNA
damage sites [148]. Additionally, the recruitment of BRM, a
catalytic subunit of the SWI/SNF chromatin remodeling complex, is
also impaired [148]. ATM phosphorylation of Sp1 promotes its
interaction with p300, facilitating the accumulation of p300 at
DNA damage sites and enhancing histone H3 and H4 acetylation
[149]. Specifically, acetylation of H3K18 is associated with SWI/SNF
and Ku70 recruitment for NHEJ repair [149]. SET/TAF-I β, which
interacts with Ku70/80 to inhibit Ku70 acetylation, dissociates from
the Ku complex upon DNA damage, releasing Ku70/80 and
activating NHEJ repair [150]. Acetylation of Ku70 at K331 and 338
by CBP/p300 is critical for its binding to DNA, with acetylation at
K317 facilitating DNA binding through a salt bridge with E330
[151]. MCL-1 can also form a complex with MOF and BID to
regulate the acetylation of histone H4K16, thereby influencing the
function of HR repair systems [152]. The dynamic balance between
acetylation and deacetylation is crucial for the choice between
NHEJ and HR. Acetylation of 53BP1 by CBP at K1626 and 1628
inhibits its recruitment to DNA damage sites, thus promoting HR
repair [153]. HDAC2 works with CBP to maintain acetylation/
deacetylation balance of 53BP1, regulating DSB repair pathway
choice [153]. Furthermore, CBP/p300-mediated acetylation of
RAD52 is counteracted by deacetylation by SIRT2/SIRT3, prevent-
ing premature dissociation of RAD52 and RAD51 from DNA
damage sites and limiting HR repair. Maintaining this acetylation/
deacetylation balance is critical for HR stability [154].

Acetylation in other DNA damage repair mechanisms
Numerous studies have linked HDACs to TMZ resistance in GBM
cells. HDAC6, for instance, stabilizes EGFR, enhancing cell
proliferation and spheroid formation, which increases resistance
to TMZ-induced growth inhibition and apoptosis [155]. HDAC6
inhibitors can reduce MGMT expression in TMZ-resistant GBM
cells, increasing TMZ sensitivity and inducing apoptosis [156].
Histone acetylation plays a key role in high MGMT expression in
tumors [157]. High-throughput lncRNA sequencing of TMZ-
resistant and sensitive GBM cells identified Lnc-TALC, an lncRNA
that binds miR-20b-3p, activating the c-Met/Stat3/p300 pathway.
This promotes acetylation of H3K9, H3K27, and H3K36 in the
MGMT promoter, increasing MGMT expression and TMZ resistance
[158]. DIP2A, a multifunctional protein, collaborates with the
HDAC2-DMAP1 complex to deacetylate H3K9Ac, inhibiting MGMT
transcription and enhancing TMZ sensitivity in GBM cells [159].
Fstl1, a glycoprotein overexpressed in TMZ-resistant GBM cells,
inhibits DIP2A binding to the HDAC2-DMAP1 complex, preserving
H3K9 acetylation and promoting MGMT expression, thus
boosting resistance to TMZ [159]. Acetylation of H3K27 regulates
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cis-regulatory elements to promote gene transcription, while
HDAC complexes deacetylate core histones, reducing transcrip-
tion. The RET finger protein (RFP), in complex with HDAC1,
modulates histone modifications. Downregulation of RFP or
disruption of the RFP/HDAC1 complex alters histone modifica-
tions, impacting cell division, cycle progression, and apoptosis,
thereby enhancing TMZ efficacy in GBM treatment [160].

OTHER MODIFICATIONS AND THEIR RELATION TO TMZ
RESISTANCE MECHANISMS
PARylation
PARylation plays a critical role in BER pathway, which is catalyzed
by poly(ADP-ribose) polymerases (PARPs). PARP1 functions as a
DNA damage sensor that is rapidly activated in response to DNA
lesions. Upon activation, it catalyzes the formation of poly(ADP-
ribose) (PAR) chains, which create a molecular scaffold for the
recruitment of key proteins in BER (e.g., XRCC1, DNA ligase),
thereby coordinating a highly complex biochemical repair
response [161]. During the NHEJ repair process, PARP stimulates
DNA-PKcs activity through PARylation [162]. A structural PARP1/
DNA-PKcs/Ku molecular complex has been identified, in which
PARP1 induces a major architectural rearrangement of the DNA-
PKcs-mediated assembly and further recruits critical NHEJ repair
proteins (e.g., POL β, XRCC1) [161, 163]. Samuele Lodovichi et al.
demonstrated that inhibition of BRCA1 PARylation promotes
EXO1- and BRCA2-dependent homologous recombination (HR)
while destabilizing the RIF1-53BP1 oligomeric complex at DNA
double-strand break (DSB) sites, thereby suppressing non-
homologous end joining (NHEJ) [164]. Therefore, PARylation
exerts multifaceted effects on DNA double-strand break (DSB)
repair mechanisms. PARylation may play a critical role in
maintaining the homeostatic balance between HR and NHEJ
pathways. Furthermore, Shaofang Wu et al. discovered that PARP
can mediate PARylation modification of MGMT, thereby enhan-
cing its binding affinity to DNA [10].
Multiple studies have demonstrated that pharmacological

inhibition of PARylation effectively disrupts various DDR pathways.
Moreover, PARP inhibitors exhibit a “PARP trapping” effect - the
formation of cytotoxic PARP-DNA complexes at damage sites that
potentiate tumor cell lethality [165]. Consequently, targeting
PARylation has emerged as a pivotal therapeutic strategy to
overcome TMZ resistance in GBM.

Methylation
Methylation of NFAT5 at K668 is associated with drug resistance
and prognosis in GBM patients. This modification inhibits NFAT5’s
interaction with E3 ligase, preventing its degradation and
promoting its nuclear accumulation and activation, thereby
increasing MGMT expression [166]. DNA Pol β, a key enzyme in
BER, undergoes methylation at various arginine residues by
different arginine methyltransferases (PRMT1 and PRMT6), influen-
cing its function. Methylation of Pol β at R137 by PRMT1 disrupts
its binding to PCNA, impairing BER, while methylation at R83 and
152 by PRMT6 enhances its DNA binding affinity, facilitating
BER [167].

Neddylation
Neddylation facilitates Ku ubiquitylation following DSBs, promot-
ing the release of Ku and associated proteins from damage sites
during NHEJ [168]. The neddylation inhibitor MLN4924 reduces
MGMT levels and enhances TMZ toxicity in GBM cells, under-
scoring neddylation’s key role in TMZ resistance in GBM [169].

Crotonylation
In response to DSBs, GCN5 mediates K525 crotonylation of DNA-
PKcs, promoting DNA-PK complex assembly and enhancing its
DNA binding capacity [170]. This process is essential for tumor

cells to repair DNA damage induced by radiotherapy or
chemotherapy via the NHEJ pathway [171]. Crotonylation of
MSH6 at K544 affects its interaction with Ku70, facilitating NHEJ
while inhibiting HR, thereby regulating the balance between these
repair pathways [172].

Lactylation
In recurrent GBM tissues and TMZ-resistant cells, increased
lactylation of H3K9 at the LUC7L2 promoter enhances LUC7L2
expression [173]. This, in turn, leads to intron retention in MLH1,
impairing MMR function and contributing to TMZ resistance in
GBM [173]. Inhibition of lactate dehydrogenase A/B with
stiripentol enhances the cytotoxic effect of TMZ on GBM both
in vitro and in vivo [173].

O-GlcNAcylation
O-GlcNAcylation regulates DSBs repair and influences tumor
sensitivity to radiotherapy and chemotherapy [174, 175].
O-GlcNAcylation of DNA-PKcs modulates its kinase activity, thereby
regulating NHEJ [176]. Inhibition of RAD52 O-GlcNAcylation using
O-GlcNAc transferase inhibitors suppresses homologous HR [177].

SUMMARY AND DISCUSSION
TMZ resistance remains a significant challenge in GBM treatment.
The development of resistance is primarily linked to multiple DDR
pathways, including MGMT, MMR, BER, and DSB repair mechan-
isms such as NHEJ and HR. Current research on TMZ resistance in
GBM predominantly focuses on MGMT and the upstream
regulatory pathways of BER, MMR, NHEJ, and HR. While consider-
able attention has been given to the MGMT promoter status, some
studies indicate that its methylation levels remain relatively stable
throughout TMZ treatment in GBM patients [178]. Thus, MGMT
alone cannot fully explain TMZ resistance in GBM, necessitating
further exploration of the mechanisms driving acquired resistance.
Studies have shown that GBM acquires resistance to alkylating

agents, including TMZ, due to MMR dysfunction caused by
reduced expression of MMR proteins such as MLH1, MSH2, and
MSH6 [179, 180]. To overcome this, targeting MMR dysfunction,
researchers have identified decitabine as a potential agent to
enhance TMZ sensitivity by modulating MLH1 promoter methyla-
tion [181]. Multiple studies have demonstrated that mutations in
MMR genes are critical drivers of tumorigenesis and may also
contribute to chemotherapy resistance [182, 183]. Research by
Hamzeh Kayhanian et al. revealed that the MMR genes MSH3 and
MSH6 contain coding homopolymers, which are frequent muta-
tional targets in MMR-deficient cancers [184]. In colorectal cancer,
Casey G. et al. identified a high prevalence of mutations in MLH1,
MSH2, or MSH6 through whole-genome sequencing of patient
samples. The genetic heterogeneity of MMR genes is a critical
factor underlying tumor chemoresistance. Takahashi M. et al.
further discovered that most MLH1 mutations causing MMR
dysfunction are localized around the putative ATP-binding pocket
of the NH (2)-terminal domain or span the entire COOH-terminal
domain [185], providing pivotal insights for developing targeted
therapies against MLH1 mutations.
Research on the role of BER in TMZ resistance in GBM has

primarily centered on PARPs, which are critical for initiating the
BER pathway. PARP inhibitors have been shown to reduce PARP
binding in the BER complex and impair O6-methylguanine repair,
thereby enhancing TMZ sensitivity in GBM cells [10]. However,
clinical trials of the PARP inhibitor Veliparib have failed to
significantly improve patient outcomes [186], and have caused
severe myelosuppressive effects when combined with radio-
therapy [187]. Olaparib has shown potential in crossing the blood-
brain barrier, but its therapeutic efficacy needs further clinical
validation [188]. Other PARP inhibitors, such as Pamiparib and
Niraparib, lack sufficient evidence of efficacy in GBM patients.

Y. Chen et al.

1787

Oncogene (2025) 44:1781 – 1792



Moreover, research into other key steps in the BER process
contributing to TMZ resistance in GBM remains limited. Disruption
of XRCC1 complex formation and inhibition of APE1’s recognition
of damage sites are promising therapeutic targets for improving
TMZ efficacy.
Knockdown or inhibition of genes involved in HR or NHEJ, such

as RAD51, BRCA2, XLF, 53BP1, and APLF, enhances the cytotoxic
effects of TMZ and radiotherapy on GBM [189–191]. However, due
to the complexity of DNA repair in HR and NHEJ, current research
often focuses on the expression or activation of key genes within
these pathways. Further studies are needed to explore the
regulatory mechanisms of crucial steps in the repair process, such
as the formation of the Ku70/Ku80 heterodimer, assembly of the
Rad51 complex, recruitment of repair proteins, and the balance
between HR and NHEJ.
Different PTMs exert distinct effects on DNA repair processes:

phosphorylation regulates protein or enzyme activity, ubiquitina-
tion promotes protein degradation or translocation, SUMOylation
counters ubiquitin-dependent degradation to stabilize key pro-
teins, and acetylation promotes gene transcription through
histone modifications. Although each PTM has its unique
functions, they interact and cooperate during the regulation of
DDR, making it challenging to attribute a specific repair
mechanism to a single modification. Furthermore, PTMs are
reversible, requiring multiple enzymes whose activities can be
influenced by factors such as hypoxia, radiation, and drug
exposure. As a result, PTMs in GBM cells often exist in a dynamic
equilibrium. TMZ-resistant GBM cells can adapt to TMZ-induced
damage and other stimuli by modulating this equilibrium,
allowing tumor cells to choose the most efficient repair pathways
to maintain normal cellular functions. While drugs targeting PTMs
are available, clinical trials have generally shown unsatisfactory
results. For instance, a 2008 phase II trial found that imatinib was
ineffective for recurrent gliomas [192]; a phase II study of
bevacizumab and erlotinib following radiation and TMZ in
MGMT-unmethylated GBM patients did not improve outcomes
[193]; and a phase II trial of panobinostat, despite good patient
tolerance, was terminated early due to insufficient efficacy [194].
Clinically, effective strategies to overcome TMZ resistance in GBM
remain lacking. Therefore, in the further research, in addition to
the intrinsic mechanism underlying TMZ resistance in GBM, we
also need to conduct in-depth research by integrating the
administration routes and regimens, tumor heterogeneity, and
the tumor microenvironment.
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