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Simple Summary

Glioblastoma is one of the deadliest cancers, with most patients living only a short time
after diagnosis due to treatment resistance and recurrence. A key driver of resistance is
a subpopulation of tumor cells called glioblastoma stem-like cells (GSCs), which assist
the tumor in resisting therapies and regrowth. This review explores the potential of using
existing drugs, already approved for other diseases, to target GSCs. Several promising
candidates are presented, including drugs used for treating diabetes, high blood pressure,
infections, and neurological diseases, many of which can cross the blood-brain barrier.
Some of these work by disrupting GSC energy production, others by blocking tumor-
promoting signals, and several increase the effectiveness of current chemotherapy. By
identifying safe, accessible drugs that target GSCs and improve response to treatment, this
approach could open new and faster paths to improve GBM patient outcomes.

Abstract

Glioblastoma (GBM) is one of the deadliest types of cancer, characterized by a short life
expectancy after diagnosis, mostly related to therapy resistance and recurrence. GBM
stem-like cells (GSCs) reside within the tumor and contribute to these features; therefore,
finding drugs that specifically target such cells holds promise to halt GBM progression. The
primary objective of this work is to comprehensively review and discuss the potential of
hard drug repurposing to target GSCs. Several studies evaluating drugs showing anti-GSC
activity, originally approved for non-cancer indications, were identified. These mainly
included antidiabetics (e.g., Metformin, Phenformin, and Sitagliptin), antihypertensives
(e.g., Nicardipine, Doxazosin, and Prazosin), antimicrobials (e.g., Pyrvinium pamoate,
Flubendazole, and Clofazimine), and central nervous system-acting drugs (e.g., Chlorpro-
mazine, Fluvoxamine, and Disulfiram). Relevant candidates include those that disrupt
GSC metabolism, namely impairing mitochondrial function, such as Metformin, Chlorpro-
mazine, and Pyrvinium pamoate. Multiple signaling pathways may be involved, namely
the Wnt, PI3K/AKT, and STAT3 pathways, among others. Also significant were those
drugs tested in combination, resulting in increased sensitivity to Temozolomide (TMZ), the
standard pharmacological treatment available for GBM. Some repurposed agents, such as
Disulfiram and Metformin, have already reached clinical testing, although none have yet
been incorporated into clinical practice. Importantly, major translational barriers remain,
like limited blood-brain barrier penetration and the lack of robust clinical trials. In conclu-
sion, drug repurposing is an affordable and suitable strategy to target GSCs, impairing cell
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viability, reducing stemness, and enhancing their sensitivity to TMZ, which has potential
that should be further explored to improve patients” clinical outcomes.

Keywords: drug repurposing; glioblastoma; glioma; glioblastoma stem-like cells; cancer
stem cells

1. Introduction

Glioblastoma (GBM) is the most common and lethal primary brain cancer, arising
from glial stem or precursor cells, as a subtype of gliomas [1]. It is characterized by rapid
growth, diffuse invasion into normal brain tissue, and a dismal prognosis [2]. Despite an
intensive standard-of-care therapeutic approach combining surgical resection, radiother-
apy, and chemotherapy with Temozolomide (TMZ) [3], survival rates remain low, with an
almost inevitable recurrence [2]. Despite this scenario, no significant therapeutic advances
have been recorded in the past 20 years. Innovative approaches such as tumor-treating
fields [4-7], immunotherapies [8,9], and stem cell-based therapies [10-14] have reached
clinical trials, but clinical benefits remain limited, underscoring persistent gaps in therapeu-
tic efficacy [15,16]. Therefore, there is an urgent need to identify new strategies to overcome
the resistance of this type of cancer.

A key contributor to treatment failure is the pronounced cellular heterogeneity of GBM,
which resembles the complexity of a developing organ and contains cells with stem-like
properties [17]. A growing body of evidence implicates glioblastoma stem-like cells (GSCs)
as key drivers of tumor progression and resistance through their capacities for self-renewal,
lineage plasticity, and stress tolerance [18-23].

The existence of cancer stem cells (CSCs) at the apex of the tumor cell hierarchy
or as a source of less differentiated cells in GBM tumors has been a topic of debate. In
this context, a revised definition was proposed in 2024, defining GSCs as cells with long-
term self-renewal capacity that generate diverse progeny, while lacking the ability to fully
differentiate [24]. Recent single-cell transcriptomic studies have further revealed that GBM
stemness is highly plastic, with tumor cells dynamically shifting between defined cell states
in response to environmental and therapeutic pressures [23,25-28]. Whether arising from
one or multiple subpopulations, GSCs are strongly associated with recurrence, therapy
resistance, and clinical outcome [19,23,29-31], making them a critical target for effective
and durable therapies for GBM [21].

One increasingly promising approach to circumvent the limitations of traditional
drug discovery is drug repurposing, that is, the identification and development of new
therapeutic uses for existing drugs. This strategy is especially attractive in the context
of GBM, given the high attrition of novel oncologic agents and the urgent clinical need.
As highlighted by Ashburn and Thor (2004), drug repurposing reduces cost, accelerates
timelines, and leverages existing safety data, thereby accelerating the translational pipeline
for anti-cancer therapies [32]. While much of oncology repurposing has focused on anti-
cancer drugs, there is growing interest in repositioning non-cancer drugs [33,34], including
antipsychotics, antidepressants [35], antimalarials [36,37], and antibiotics [38,39], that
present unexpected anti-GBM activity. This focus is especially relevant because the blood—
brain barrier (BBB) restricts the delivery of many systemic therapies, whereas several
non-cancer drugs already exhibit favorable CNS penetration [40—42].

Within the domain of GSC-targeted therapy, drug repurposing has gained traction
as a method to identify agents capable of selectively impairing stemness properties and
sensitizing these cells to standard therapies. However, despite progress in oncology, drug
repurposing for GSCs remains underdeveloped. Preclinical challenges include accurately
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modeling GSC biology, limited systematic testing of repurposed drugs in GSC-enrichment
conditions, and additional pharmacological barriers posed by the BBB. At the mecha-
nistic level, therapeutic strategies have focused on three major axes: (i) developmental
signaling pathways (e.g., Notch, Hedgehog, Wnt) that sustain stemness; (ii) metabolic
reprogramming and mitochondrial dependencies that underlie GSC survival; (iii) epi-
genetic regulation, which enables phenotypic plasticity and therapy evasion [21,43—46].
While each pathway offers compelling therapeutic rationale, conflicting results across stud-
ies underscore the need for integrated and comparative evaluations to identify the most
effective approaches.

This review explores the landscape of drug repurposing strategies focused on targeting
GSCs, with particular emphasis on the repositioning of drugs not originally approved to
treat cancer. We summarize the molecular mechanisms underpinning GSC-directed thera-
pies, review landmark and emerging repurposing studies, and assess their translational
potential. Ultimately, we argue that an integrated drug-repurposing approach, especially
leveraging non-cancer agents with BBB penetrance, holds promise to overcome GSC-driven
therapy resistance and address the persistent challenge of GBM treatment.

2. Drug Repurposing in Glioblastoma
2.1. Soft Repurposing in Glioblastoma

“Soft repurposing” refers to the strategy of adding new cancer indications for estab-
lished cancer medicines, an approach that is based on the existence of shared molecular
pathways either activated or inhibited between different types of cancers [34]. Before
TMZ was integrated into the first-line protocol to treat GBM [3], several other chemother-
apeutic drugs were tested, like Procarbazine, Lomustine, and Vincristine [47-49]. Other
anti-cancer targeted therapies indicated for other types of cancer also showed potential to
treat GBM. Examples include Bortezomib, a proteasome inhibitor originally developed to
treat multiple myeloma, Regorafenib, an inhibitor of multiple kinases originally approved
for metastatic colorectal cancer (CRC) and hepatocellular carcinoma, and Bevacizumab,
an anti-angiogenic agent that, although first approved for metastatic CRC, was later ap-
proved for other types of cancer by the Food and Drug Administration (FDA), including
for recurrent GBM [50-52].

Many of these examples have been extensively reviewed elsewhere, although most of
the studies have primarily focused on targeting the bulk of the tumor instead of specifically
targeting glioma stem-like cells (GSCs). In summary, soft repurposing builds on drugs
already validated in oncology, while hard repurposing explores drugs from non-oncologic
fields, thereby offering greater novelty but also distinct translational challenges. The
repurposing of drugs originally developed for conditions other than cancer has a higher
potential for innovation and, therefore, will be the focus of this review.

2.2. Hard Repurposing in Glioblastoma

Several drugs originally developed for conditions other than cancer have shown
promise when repurposed for GBM treatment, so-called “hard repurposing”. These include
approved drugs used to treat diabetes mellitus, such as Metformin, antimalarial drugs such
as Mefloquine, Chloroquine, and Lumefantrine, and also several drugs used for neurologi-
cal diseases such as Alzheimer’s and Parkinson’s disease (Memantine and Pimavanserin,
respectively), and schizophrenia or epilepsy (Fluphenazine, Fluspirilene, Valproic Acid,
and Levetiracetam) [50,53]. These agents can be broadly grouped into metabolic regulators
(e.g., Metformin), antiparasitic agents (e.g., Mefloquine, Chloroquine), and CNS-acting
drugs (e.g., Fluphenazine, Fluspirilene, Valproic Acid, Levetiracetam). The latter group is
particularly attractive because of their intrinsic BBB permeability, whereas other classes,
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such as antidiabetics or antimalarials, may face limitations in CNS penetration, necessitat-
ing reformulation or innovative delivery approaches. The effect of these drugs on GBM,
more specifically on GSCs, was evaluated alone or in combination with TMZ and is further
explored in this review.

2.3. Glioblastoma Models for Drug Testing

Glioblastoma stem-like cells (GSCs), a subpopulation of tumor cells with self-renewal,
multipotency, and high tumorigenic potential [18], are typically enriched and studied
in vitro through serum-free culture conditions that mimic aspects of the neural stem cell
niche. Following surgical resection, tumor samples obtained from patients are enzymati-
cally or mechanically dissociated into single-cell suspensions. GBM established cell lines
may also be used (e.g., U87, LN229, A172, U251, T98G, and U118). These cells are then
cultured in defined media supplemented with growth factors such as epidermal growth
factor (EGF) and basic fibroblast growth factor (bFGF), which support the expansion of
stem-like cells while suppressing differentiation, and in non-adherent conditions. Under
these conditions, GSCs often form free-floating neurosphere-like structures, also named
spheroids or tumor spheres, although some protocols also utilize adherent monolayer
cultures on laminin-coated surfaces, for instance, to maintain their stemness and facili-
tate downstream analyses [54,55]. Enriched GSC cultures are typically characterized by
the expression of stem cell markers such as CD133, Nestin, and SOX2, along with func-
tional assays assessing self-renewal and tumor initiation capacity [56]. The tumorigenic
potential is typically assessed using orthotopic xenograft models, in which GSCs are im-
planted into the brains of immunocompromised mice (e.g., NOD/SCID, NSG, and Nude
mice). This approach allows researchers to evaluate the ability of GSCs to initiate and
sustain tumor growth in a physiological environment that more closely mimics human
GBM [19,56]. Moreover, GSC-enriched cultures may be differentiated to mimic the tu-
mor bulk cells by introducing adhesion conditions and using FBS-supplemented culture
medium (without bFGF and EGF) [55]. Altogether, the described in vitro systems, alone or
in combination with xenograft in vivo models, provide a critical platform for studying GSC
biology, testing therapeutic agents, and modeling GBM heterogeneity alongside resistance
mechanisms [57].

3. Specific Targeting of Glioblastoma Stem-like Cells with
Repurposed Drugs
3.1. Search Strategy and Selection of Studies

To comprehensively explore the strategies to target CSCs in adult GBM with hard-
repurposed drugs, a systematized search protocol was defined. The search was performed
in PubMed, using the following combination of predefined keywords: (“glioblastoma” OR
“glioma” OR “GBM"”) AND (“cancer stem cell*” OR “glioma stem cell*” OR “CSC”) and
(“drug*” AND (“repurpos*” OR “reposition*”)), on 3 December 2024 (Table 1). No date
restrictions were applied.

Table 1. List of terms used in the search strategy.

Cancer Treatment Targeted Cells
Glioblastoma Drug Cancer stem cells
Glioma Repurposing or repurposed Glioma stem cells
GBM Repositioning or repositioned CSC or GSC

A total of 60 potentially relevant articles were identified. From these, 16 were review
articles. Although related to the topic, such reviews did not comprehensively focus on
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hard-repurposing strategies targeting GSCs, the main goal of the current review. Only
studies of adult GBM (IDH1/2-wildtype) with an explicit focus on GSCs in preclinical or
translational/clinical settings that evaluated hard repurposing (drugs previously approved
for non-oncologic indications) were included. Studies on pediatric GBM, IDH-mutant or
non-GBM gliomas, CSC studies not specific to GBM/GSCs, and drugs already approved
for any cancer indication were excluded. In total, 28 original articles met these criteria, and

their data were extracted and are summarized in Table 2.

Table 2. List of selected original articles using repurposed drugs to target GSCs.

Author, Year [Ref]

Repurposed Drug(s)

Main Molecular Target(s)

Model(s) Used for Drug Testing

Identified
Metformin, Minocycline, . . .
Kucinska, 2024 [58] Chlorpromazine !, MT-CO1 ! GBM patient-derived cell line
L. U3042
Disulfiram
GBM patient-derived cell lines;
. . MGGS and T3264 GBM cells
Yin, 2024 [59] N-acetylcysteine PTEN transplanted intracranially into
mice
p53, TFRC, DMT1, xCT, .
Teng, 2024 [60] Flubendazole FHC, GPX4 GBM U251 and LN229 cell lines
. . TrxR1, AKT, p53, p21, GBM patient-derived cell lines
Jamali, 2024 [61] Auranofin PARP1 (OPK161, OPK257, and OPK49)
Drospirenone, RPA3, BLVRA, PSMA?2, . .

Dogra, 2024 [62] Eltrombopag PSMC2, HUS1 In silico screening
Established GBM cell lines (U87,
U251, T98G, A172, and LN229);

. GBM patient-derived cell lines
You, 2023 [63] Sitagliptin Ayfglfi LK;}B“G;;IM (GBM—19, —23, GSC-G, -F, -,
& &P y and -Z); U87- and patient-derived
GBM cells xenografted
intracranially in mice
Rosiglitazone, Nizatidine, . . .

Roddy, 2023 [64] Pantoprazole, Tolmetin - Bioinformatics-based approach
GBM cells isolated from primary
tumors or patient-derived GBM

Zhang, 2022 [65] Disulfiram USP21, FOXD1 xenografts; GBM patient-derived
cells implanted intracranially in

mice
. . GBM patient-derived cell lines
Matteoni, 2021 [66] Chlorpromazine ALDH1A3 (TSH#1, TS#83, and TS#163)
Sighel, 2021 [67] Quinupristin/Dalfopristin OXPHOS GBM patient-derived cell lines

GBM patient-derived cell lines

Shi, 2021 [68] Nicardipine LC3, p62, mTOR (SU4 and SU5); orthotopically
xenografted mice
Zirjacks, 2021 [69] Disulfiram . GBM p?{%ﬁji’g%e” lines
Trifluoperazine, GBM patient-derived cell lines
Datta, 2021 [70] Pyrvinium pamoate i (0827 and 0923)
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Table 2. Cont.

Author, Year [Ref] Repurposed Drug(s) Main Molecu‘lailr Target(s) Model(s) Used for Drug Testing
Identified
. . GBM patient-derived cell line
Suzuki, 2020 [71] Doxazosin LC3, p62 (GS-Y01)
Vargas-Toscano, Trihexyphenidyl . GBM cell line HSR-GBM1 (GBM1)
2020 [72]
. . GBM patient-derived cell line
Suzuki, 2019 [73] Brexpiprazole - (GSY03)
Aprepitant, Auranofin,
Captopril, Celecoxib,
Skaga, 2019 [74] Disulfiram, Itraconazole, Wnt activity GBM patient-derived cell lines
Minocycline, Quetiapine,
Sertraline
GBM patient-derived cell lines
. . Ketoconazole, (GSC8-18, GSC7-2, GBMS, and
Agnihotri, 2019 [75] Posaconazole HK2 GSC30); mice intracranially
transplanted with GSCs
Established GBM xenografts
Mulkearns-Hubert, Clofazimine Cxd6 T4121, T3691, and T387; mice
2019 [76] transplanted subcutaneously with
GBM cells
GBM patient-derived cell lines
Dong, 2017 [77] Fluspirilene STAT3 .(TGSOL .TGSO4’ and KG.SOD;
intracranial transplantation of
TGS04 cells in mice
TMZ-sensitive U251 cells and
TMZ-resistant cells derived from
Oliva, 2017 [78] Chlorpromazine MT-COX activity U251 cells (UTMZ);
patient-derived GBM xenograft
cell lines (J x 12,] x 39)
Murine GBM cell line GL261;
o Wnt/ 3-catenin signaling GL261 cells transplanted
Wang, 2017 [79] Quetiapine pathway subcutaneously into mice and in
orthotopic xenografts
GBM patient-derived cell lines
. . (HF2414, HF2355, HF2354, and
Jiang, 2016 [80] Phenformin HMGA2 FHF2587); mice orthotopically
transplanted with GBM cells
Hayashi, 2016 [81] Fluvoxamine FAK anle AKT /mTOR GBM pa.tlent—derlved cell hn(.es;
signaling orthotopically xenografted mice
. L GBM patient-derived cell line
Suzuki, 2016 [82] Aripiprazole - (GS-Y03)
Assad I[<8a3}]m, 2016 Prazosin AKT pathway GBM patient-derived cell lines

(TG1, TG16, GBM5, and GBM44)
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Table 2. Cont.

Main Molecular Target(s)

Author, Year [Ref] Repurposed Drug(s) Identified Model(s) Used for Drug Testing
Doxycycline,
Lamb, 2015 [84] Azithromycin, Tigecycline, - GBM cell line U87
Pyrvinium pamoate
Gritti, 2014 [85] Metformin CLIC1 GBM patient-derived cells

1 Molecular target reported for Chlorpromazine only. Abbreviations: AKT, serine/threonine-protein kinase
(Protein kinase B (PKB)); ALDH1A3, Aldehyde dehydrogenase 1 family member A3; AMPK, AMP-activated
protein kinase catalytic subunit alpha-1; BECN1, Beclin-1; BLVRA, Biliverdin reductase A; CLIC1, Chloride
intracellular channel protein 1; CTNNBI, Beta-catenin, DMT1, Divalent metal transporter 1 (SLC11A2); FAK, Focal
adhesion kinase; FHC, Ferritin heavy chain; FOXD1, Forkhead box D1; Cx46, Connexin 46; GPX4, Glutathione
peroxidase 4; HK2, Hexokinase II; HUS1, HUS1 checkpoint homolog; LC3, Microtubule-associated protein 1A /1B
light chain 3; MT-CO1, Cytochrome c oxidase subunit I; MT-COX, Mitochondrial cytochrome c oxidase activity
(complex IV); mTOR, Mechanistic target of rapamycin; OXPHOS, Oxidative phosphorylation complexes; p53,
Tumor protein p53; PARP1, Poly [ADP-ribose] polymerase 1; PSMA2, Proteasome subunit alpha type-2; PSMC2,
Proteasome 26S ATPase subunit 2; PTEN, Phosphatase and tensin homolog; RPA3, Replication protein A 3;
P62, Sequestosome-1 (SQSTM1); STATS3, Signal transducer and activator of transcription 3; TrxR1, Thioredoxin
reductase 1 (TXNRD1); USP21, Ubiquitin-specific peptidase 21; xCT, Cystine/glutamate transporter (SLC7A11).

In addition, the reference lists of relevant reviews and original articles were searched to
capture potential repurposed drugs targeting G5Cs that may have been missed by the initial
search; eligible studies identified through this process were included in the subsequent
subsections.

Where clinical trial NCT identifiers are provided, they refer to records on ClinicalTri-
als.gov, and the trial information reflects the database status as assessed on 4 September 2025.

3.2. Identification of Repurposed Drugs Targeting Glioma Stem-like Cells

From the selected articles, many different drugs with the potential to target GSCs were
identified (Table 2). These included drugs used for many diverse diseases, namely diabetes
mellitus, hypertension, schizophrenia, depression, and infections, among other indications,
which were further categorized under the Anatomical Therapeutic Classification (ATC)
(Table 3). Interestingly, the most represented anatomical main groups were the “nervous

system”, followed by “anti-infective for systemic use”, “alimentary tract and metabolism
groups”, and “cardiovascular system”.

Table 3. Repurposed drugs targeting glioma stem cells classified by ATC.

Drug ATC Code !
A—Alimentary tract and metabolism
Aprepitant A04AD12
Metformin A10BAO2
Nizatidine A02BA0O4
Pantoprazole A02BC02
Phenformin A10BAO1
Rosiglitazone A10BD04
Sitagliptin A10BHO1
B—Blood and Blood-Forming Organs
Eltrombopag B02BX05
C—Cardiovascular system
Captopril C09AA01
Doxazosin C02CA04
Nicardipine C08CA04

Prazosin C02CAO01
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Table 3. Cont.

Drug ATC Code !
G—Genito-urinary system and sex hormones
Drospirenone GO03AA12
J—Anti-infective for systemic use
Azithromycin JO1FA10
Clofazimine JO4BAO1
Doxycycline JO1AAQ2
Itraconazole JO2ACO02
Ketoconazole J02AB02
Minocycline JO1AAO08
Posaconazole J02AC04
Quinupristin/Dalfopristin JO1FGO02
Tigecycline JO1AA12
M—Musculo-skeletal system
Auranofin MO01CB03
Celecoxib MO1AHO1
Tolmetin MO01ABO3
N—Nervous system
Aripiprazole NO05AX12
Brexpiprazole NO05AX16
Chlorpromazine NO5AA01
Disulfiram N07BB01
Fluspirilene NO5AG01
Fluvoxamine NO06ABO8
Quetiapine NO5AH04
Sertraline NO06ABO06
Trifluoperazine NO05AB06
Trihexyphenidyl NO4AA01
P—Antiparasitic products, insecticides, and repellents
Flubendazole P02CA05
Pyrvinium pamoate P02CX01

R—Respiratory system
Acetylcysteine R0O5CB01

1 ATC, Anatomical Therapeutic Chemical system. Only one ATC code is provided per drug, corresponding to
either its first approved indication or its most recognized therapeutic use.

3.2.1. Repurposed Drugs Used in Patients with Diabetes

Metformin is one of the most prescribed drugs for treating prediabetes and diabetes,
belonging to the biguanide family of antidiabetic drugs [86]. In a research article published
over a decade ago, Gritti and colleagues showed that the treatment of stem cell-enriched
primary cells isolated from GBM patients with Metformin resulted in G1 phase arrest and a
reduction in cell viability [85]. The authors verified that these antiproliferative effects were
dependent on the functional activity of the chloride intracellular channel-1 (CLIC1) [85], a
channel previously found to be involved in GBM development [87]. These findings add
to a previous report in which the authors found Metformin-specific GSC-elimination was
mediated by AKT signaling inactivation [88] (Figure 1). In addition, others previously
showed that the survival of mice bearing an intracranial xenograft of GSC-enriched GBM
cells treated with Metformin before transplantation was extended, highlighting the role of
AMPK-FOXO3 activation by Metformin in GSC elimination [89]. Metformin also showed
moderate cytotoxic activity in the patient-derived GBM stem cell line U3042, defined
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as stem-like cells and cultivated under conditions that maintained their stemness [58].
In summary, Metformin appears to act on GSCs through distinct but complementary
mechanisms, which may depend on the cellular and metabolic context. While Metformin
suppressed Akt phosphorylation and downstream mTOR activity, the authors found it was
independent of AMPK activation [88]. However, others showed that Metformin indeed
activated AMPK and its downstream effector FOXO3 [89]. Most likely independently,
CLIC1 activity was inhibited by Metformin, a mechanism also noted for Phenformin [90].
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Figure 1. Schematic representation of key signaling pathways involved in glioblastoma pathogen-
esis and their modulation by repurposed drugs. Pathways frequently activated in GBM, such as
PI3K/AKT, RAS/MAPK, and Wnt/ 3-catenin, are shown as activated, whereas tumor suppressor
pathways like those mediated by p53 are commonly inactivated. Grey symbols represent signaling
events: — activation or - inhibition. The black arrow represents an increased ratio (1). Hard-
repurposed compounds identified in this review are mapped to their corresponding direct or indirect
targets within these pathways. The following symbols denote drug modes of action: — activation
(green); - inhibition (red). Abbreviations: AKT, Protein kinase B; AMPK, AMP-activated protein
kinase; APC, Adenomatous polyposis coli protein; ATM, Ataxia-telangiectasia mutated kinase; AXIN,
Axis inhibition protein; BAX, Bcl-2-associated X protein; BCL-2, B-cell lymphoma 2; BMX, Bone
marrow tyrosine kinase on chromosome X; BRAF, B-Raf proto-oncogene serine/threonine-protein
kinase; CBP, CREB-binding protein; CK1«x, Casein kinase 1 alpha; Cx46, Connexin 46; Cyclin D,
G1/S-specific cyclin D; DVL, Dishevelled segment polarity protein; EGF, Epidermal growth fac-
tor; EGFR, Epidermal growth factor receptor; ERK, Extracellular signal-regulated kinase; GSK-33,
Glycogen synthase kinase-3 beta; MDM2, Mouse double minute 2 homolog; MEK, Mitogen-activated
protein kinase kinase; mTORC1, Mechanistic target of rapamycin complex 1; NF-«kB, Nuclear factor
kappa B; OXPHOS, oxidative phosphorylation; p21, Cyclin-dependent kinase inhibitor 1 (CDKN1A);
P53, Tumor protein p53; PI3K, Phosphoinositide 3-kinase; PDK1, 3-Phosphoinositide-dependent
protein kinase-1; PIP2, Phosphatidylinositol 4,5-bisphosphate; PIP3, Phosphatidylinositol (3,4,5)-
trisphosphate; PLK, Polo-like kinase; PTEN, Phosphatase and tensin homolog; Ras, Rat sarcoma virus
protein; STAT3, Signal transducer and activator of transcription 3; TCF/LEF, T-cell factor /lymphoid
enhancer-binding factor family; TSC1, Tuberous sclerosis complex 1; TSC2, Tuberous sclerosis com-
plex 2; VEGE, Vascular endothelial growth factor; VEGFR, Vascular endothelial growth factor receptor;
Wnt proteins, Wingless-related integration site proteins; 3-catenin, Beta-catenin. Figure generated
using Servier Medical Art (https://smart.servier.com/ accessed on 11 September 2025), licensed
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/ accessed on 11 September 2025).
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Multiple clinical trials, including ongoing studies, are evaluating Metformin in GBM.
A completed randomized, prospective, multicenter, controlled Phase II trial (NCT03243851)
tested Metformin added to low-dose TMZ in patients with recurrent or refractory GBM
and did not demonstrate clinical benefit for the combination [91].

In GSC-enriched tumor spheres that were generated from GBM primary tumors, Phen-
formin (another biguanide derivative) inhibited GSC proliferation and self-renewal [80].
The expression of several stemness (i.e., OCT4, SOX2, and CD44) and mesenchymal transi-
tion (i.e., YKL40 and fibronectin) markers was downregulated, while microRNA expression
was altered, affecting the H19/let-7/HMGA?2 pathway, in response to Phenformin treat-
ment. Moreover, when administered to mice, Phenformin inhibited tumor growth and
prolonged the overall survival of mice orthotopically transplanted with GSCs. Importantly,
when combined with TMZ or dichloroacetate, a glycolysis inhibitor, Phenformin’s effects
were further enhanced both in vitro and in vivo [80], highlighting its potential for GBM
treatment through GSCs targeting (Figure 1).

Also for type 2 diabetes treatment, Sitagliptin is a dipeptidyl peptidase 4 (DDP4)
inhibitor that increases the levels of the incretin hormones glucagon-like peptide 1 (GLP-1)
and glucose-dependent insulinotropic peptide (GIP) [92]. In established GBM cell lines
(U87, U251, T98G, A172, and LN229), primary cell lines, and GSCs-enriched cultures,
Sitagliptin inhibited cell viability [63]. It also suppressed GSC self-renewal and stemness,
showing decreased tumor sphere formation, an in vitro assay that evaluates the presence
of cancer cells with stemness properties, and reduced expression of stem cell markers (i.e.,
CD133 and Nestin). Finally, its administration inhibited tumor growth and prolonged
survival when administered to intracranial xenografted mice [63]. Interestingly, while the
activity of DDP4 was decreased, the mice maintained their body weight and glycemia over
time, reflecting favorable safety and tolerance [63]. Moreover, by inhibiting late autophagy,
Sitagliptin was able to enhance TMZ cytotoxicity (Figure 1). Importantly, a new Phase 11
clinical trial (NCT07003542) that is not yet recruiting will evaluate the impact of Sitagliptin
on patients with progressive grade 4 gliomas by targeting the tumor microenvironment
and not the cancer cells directly.

3.2.2. Repurposed Drugs Used in Patients with Hypertension

Based on the complexity of the disease and its difficult control, there are different
classes of antihypertensive drugs in the market, such as diuretics, calcium channel block-
ers, angiotensin-converting enzyme (ACE) inhibitors, and alpha and/or beta-adrenergic
receptors (AR) blockers, among others [93].

Nicardipine is a member of the calcium channel blocker class used for hyperten-
sion [94]. In patient-derived GSCs, it promoted apoptosis and sensitized cells for TMZ
cytotoxicity [68]. It was reported that Nicardipine combined with TMZ inhibited autophagy
and promoted apoptosis by upregulating the mTOR pathway (Figure 1). The overall sur-
vival of orthotopically xenografted mice was also prolonged when they were treated with
TMZ in combination with Nicardipine [68].

Doxazosin, a long-acting «1-adrenegic receptor (x1-AR) antagonist used in the treat-
ment of hypertension and benign prostatic hyperplasia [95], was found to enhance the
anti-cancer effects of Osimertinib (an EGFR inhibitor) in a patient-derived cell line both in
GSC-enrichment conditions and after differentiation, an effect mediated through autophagy
induction [71] (Figure 1). This observation is important since GBM acquires resistance
to Osimertinib, and Doxazosin may resensitize GBM cells to Osimertinib treatment. In
another study, Doxazosin was shown to induce apoptosis and G0/G1 cell cycle arrest of
the GBM LN229 and U87 MG cell lines, although its effects specifically in GCSs were not
explored at that time [96].
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In cells with stem-like properties isolated from patient-derived GBM tumors that
were resistant to TMZ, the treatment with Prazosin (an «1-AR and «2B-AR antagonist
antihypertensive drug) induced cell apoptosis, inhibited tumor growth, and prolonged the
survival of orthotopic xenografted mice. In this context, Prazosin’s cytotoxic effect was
independent of x1-AR and «2B-AR and relied on inhibition of the AKT pathway (Figure 1).
Interestingly, dose-dependent changes in cell viability were more evident in Prazosin when
compared to Doxazosin [83].

3.2.3. Antimicrobial Repurposed Drugs

Cancer cells rely on both glycolysis and mitochondrial respiration for obtaining en-
ergy. Targeting GSC metabolism, which depends heavily on mitochondrial function, is a
promising approach for cancer treatment [97]. Indeed, the above-mentioned biguanides
(Metformin and Phenformin) are known mitochondrial complex I inhibitors [98]. Ap-
proved therapeutic agents that inhibit mitochondrial biogenesis also include antibiotics,
anthelmintics, and antimycobacterial drugs, in addition to central nervous system-acting
drugs, among others.

Antibiotics and Semi-Synthetic Derivatives

About a decade ago, erythromycins (e.g., Azithromycin), tetracyclines (e.g., Doxycy-
cline), and glycylcyclines (Tigecycline) were evaluated in several cell lines representative
of different cancers (including the GBM established cell line U87 MG), where they inhib-
ited tumor sphere formation [84]. These findings suggested that these antibiotics could
target CSCs.

In several patient-derived GBM cell lines enriched for GSCs [99], targeting mito-
chondrial translation with the antibiotic combination Quinupristin/Dalfopristin (Figure 1)
suppressed GSC growth, affected the formation of tumor spheres, dysregulated the cell
cycle, and induced apoptosis [67]. Interestingly, cells cultured in a pro-differentiation envi-
ronment were less sensitive to the treatment, suggesting that Quinupristin/Dalfopristin
preferentially targets undifferentiated, stem-like cells. In addition, its efficacy in disrupt-
ing OXPHOS exceeded that of TMZ, and autophagy appeared to play a compensatory
pro-survival role [67].

Similarly, Minocycline, a semi-synthetic tetracycline, showed selective cytotoxic activ-
ity against GSCs, but not against the established cell line U251 [58].

Importantly, Azithromycin, Doxycycline, and Minocycline may cross the blood-brain
barrier (BBB), making them more attractive for repurposing in GBM [100-102]. Moreover,
Doxycycline is an accepted therapy for selected CNS infections and achieves therapeutically
relevant CNS exposure, underscoring its translational potential [101].

Anthelmintics

Pyrvinium pamoate, a synthetic anthelmintic drug, inhibits mitochondrial oxidative
phosphorylation [103] (Figure 1). Although it shows poor BBB penetration, studies report
its potential to eliminate GSCs selectively. For instance, in two patient-derived cell lines
enriched for GSCs, Pyrvinium pamoate triggered GSC-selective cytotoxic effects, whereas
TMZ did not [70].

More recently, Flubendazole, from the benzimidazole class, was tested in the U251 and
LN229 GBM cell lines, inducing cell death by ferroptosis accompanied by p53 and transfer-
rin receptor (TFRC) upregulation, as well as solute carrier family 7 member 11 (SLC7A11)
downregulation (Figure 1). When the same cell lines were treated under GSC-enriching
conditions, Flubendazole reduced proliferation, downregulated stemness markers (i.e.,
CD133 and SOX2), and triggered apoptosis [60]. Although Flubendazole may cross the
BBB, it is not currently approved for the treatment of CNS infections [104,105].
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Antifungals

The azole antifungals Ketoconazole and Posaconazole increased survival in mice
intracranially transplanted with patient-derived GSCs compared to untreated controls [75].
Tumors treated with either drug exhibited reduced proliferation, increased apoptosis,
and decreased expression of the glycolytic enzyme hexokinase II (HK?2), highlighting the
potential of targeting metabolic vulnerabilities in GSCs [106]. Early-phase clinical trials
evaluated whether Ketoconazole (NCT04869449) and Posaconazole (NCT04825275) could
achieve therapeutically relevant concentrations in GBM tumors; however, the studies were
terminated due to slow accrual.

Antimycobacterials

Clofazimine, mainly used for the treatment of leprosy [107], was shown in vitro to re-
duce GSC self-renewal and induce apoptosis in a dose-dependent manner, without affecting
non-GSCs [76]. Mechanistically, it inhibited Cx46-mediated gap junction communication in
GSCs, increased intracellular ROS, and synergized with TMZ. In vivo, Clofazimine reduced
the growth of GSCs-derived subcutaneous tumors in mice [76]. However, its limited pene-
tration across the BBB is a major obstacle [108], and alternative routes of administration
will be needed to advance its potential clinical applicability.

3.2.4. Repurposed Drugs Used in Patients with Central Nervous System Diseases

Central nervous system (CNS) drugs are a broad class of medications that primarily
target the brain and spinal cord, used to treat a wide variety of neurological and psychiatric
conditions. These may include those used to specifically target tumors within the CNS (such
as TMZ for GBM), those used for managing cancer-related symptoms or complications [109],
or those repurposed for cancer therapy. Importantly, several CNS drugs have shown
potential against GSCs by disrupting mitochondrial function, blocking signaling pathways
such as signal transducer and activator of transcription 3 (STAT3) and Wnt/ 3-catenin, or
inducing cell death and differentiation, making them attractive candidates for repositioning.
Their established ability to cross the BBB also enhances their translational potential, though
potential clinical trials and safety profiles must be carefully considered.

Antipsychotics

Several typical antipsychotics used in the treatment of schizophrenia, including the
phenothiazines Trifluoperazine and Chlorpromazine, as well as the diphenylbutylpiperi-
dine derivative Fluspirilene, have demonstrated preclinical activity against GSCs.

Trifluoperazine was identified in a mitochondprial inhibitor drug screen as selectively
cytotoxic to patient-derived GSCs in vitro, alongside Pyrvinium pamoate [70].

The treatment of GBM patient-derived cell lines displaying stem-like properties with
Chlorpromazine inhibited GSC viability, reduced the formation of tumor spheres, and
decreased the expression of stemness markers [66]. Nevertheless, GBM established cell
lines growing under adhesion conditions, and non-cancer RPE-1 cells were shown to be
more sensitive than GSCs (growing as tumor spheres) to treatment. The authors also found
that Chlorpromazine inhibited the expression of aldehyde dehydrogenase isoform-1A3
(ALDH1AB3), a stem cell marker previously proposed to contribute to increased resistance
to TMZ [110]. Furthermore, in certain cells and dose combinations of Chlorpromazine and
TMZ, a synergistic decrease in cell viability was observed [66]. Previous studies have also
shown that Chlorpromazine inhibited the formation of tumor spheres with GSC-enrichment
from a U251-derived TMZ-resistant cell line, in a dose-dependent manner. It also promoted
increased survival in an orthotopic xenograft mouse model. Importantly, Chlorpromazine
was shown to induce selective inhibition of mitochondrial cytochrome ¢ oxidase (complex
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IV) activity [78], disrupting, like Metformin, energy metabolism (Figure 1). However, when
compared with the established U251 cell line, Chlorpromazine exerted stronger cytotoxic
activity in patient-derived GSCs, which was only evident for Metformin after a longer
duration of treatment [58].

Chlorpromazine has been repurposed for GBM treatment in two clinical trials: an ac-
tive yet incomplete Phase II trial (NCT04224441) combining Chlorpromazine with adjuvant
TMZ in patients with unmethylated MGMT promoter (results pending), and a completed
Phase I study (NCT05190315) evaluating its safety alongside standard radiotherapy and
TMZ (results not yet publicly reported).

Fluspirilene significantly reduced the viability of patient-derived GSCs and decreased
their ability to form tumor spheres in a dose-dependent manner [77]. In addition, it was
able to reduce proliferation and invasion in both G5Cs and GBM established cell lines. Its
effects on GSCs were associated with the inactivation of STAT3, a key regulator of CSC
maintenance (Figure 1). Moreover, Fluspirilene reduced tumor growth and prolonged the
survival of mice with GSC orthotopic xenotransplants and, consistent with the in vitro
results, STAT3 inhibition was detected in these tumors [77].

In contrast to typical antipsychotics, the atypical (second-generation) antipsychotics
Quetiapine and Brexpiprazole, also approved for the treatment of schizophrenia, have
shown potential to target GSCs through distinct mechanisms.

Quetiapine was shown to reduce proliferation and induce the preferential differentia-
tion to the oligodendrocyte lineage of the murine GBM cell line GL261 cultured in vitro
under GSC-enriching conditions, through inhibition of the Wnt/ 3-catenin signaling path-
way [79] (Figure 1), which plays an important role in GSC proliferation [111]. Quetiapine
was also reported to reduce tumor proliferation and size when GL261 cells enriched for
GSCs were transplanted subcutaneously into mice and in orthotopic xenografts, increas-
ing mouse survival. These effects were especially relevant when Quetiapine treatment
was combined with TMZ [79]. Therefore, Quetiapine may suppress the growth of TMZ-
resistant GBM.

Brexpiprazole was evaluated in CSCs from multiple cancer types, including the GS-
Y03 patient-derived cell line [73]. While inhibiting the growth of GS-Y03, Brexpiprazole
did not affect the viability of non-cancer cells. In addition, the expression of stem cell
markers was reduced after the treatment of GBM cells with Brexpiprazole, as well as their
sphere-forming ability. Similarly, Aripiprazole inhibited GS-Y03 cell growth and induced
cell death [82].

Trifluoperazine and Chlorpromazine are commonly linked to extrapyramidal symp-
toms, sedation, orthostatic hypotension, and anticholinergic effects [112,113], while Fluspiri-
lene carries similar risks and may also cause QT prolongation [114]. By contrast, Quetiapine
and Brexpiprazole have a lower risk of extrapyramidal symptoms but are associated with
metabolic side effects such as weight gain and dyslipidemia in the case of Quetiapine [115],
or Akathisia and CYP3A4-mediated drug interactions in the case of Brexpiprazole and
Aripiprazole [116]. These distinct safety profiles strongly influence their translational po-
tential, with atypical antipsychotics generally offering a more favorable balance of efficacy
and tolerability for repurposing against GSCs.

Other CNS Drugs

Fluvoxamine, a selective serotonin reuptake inhibitor used as an antidepressant, inhib-
ited GSC invasion, both in vitro and in vivo, prolonging survival in orthotopic xenografts.
Its mechanism involves inhibition of actin polymerization, which can be related to the
suppression of both FAK (focal adhesion kinase) and AKT/mTOR signaling [81] (Figure 1).
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Despite presenting moderate translational potential based on robust preclinical efficacy,
Fluvoxamine use in GBM is limited by serotonin reuptake inhibitor (SSRI)-associated
adverse effects and significant drug—drug interaction risks due to potent CYP1A2/2C19
inhibition [117].

The potential of Disulfiram, a drug used to treat chronic alcoholism [118], as a repur-
posed drug for cancer treatment was largely explored and was recently reviewed [119,120].
In both reviews, its potential for targeting not only cancer cells but also specifically CSCs
is highlighted. In 2012, Disulfiram was shown to inhibit the self-renewal capacity of
TMZ-resistant primary cells from GBM tumors, but it did not affect normal human astro-
cytes [121]. Clinical trials were then developed to evaluate its potential in GBM treatment
in combination with TMZ [122-124]. More recently, it was described that Disulfiram regu-
lated cell cycle distribution and decreased the clonogenic survival of GSCs [69]. The effects
observed in the patient-derived GSC culture studies were independent of the inhibition
of ALDH1A3, formerly considered the main mechanism for the induction of CSC toxicity
by Disulfiram, and may result from alternative mechanisms, not necessarily mediated
by Disulfiram itself [125]. Importantly, the indicated effects were antagonized by TMZ,
discouraging the use of Disulfiram in combination with standard therapy [69]. Previous
studies had shown that Disulfiram inhibited the growth of GSCs, here designated as brain
tumor-initiating cells (BTIC), sensitizing these cells to TMZ treatment [126]. Moreover,
treatment of mice bearing intracranial GBM transplants with Copper-Disulfiram (DSF-Cu)
metal complexes and TMZ prolonged the survival of the animals [126]. Aiming to eval-
uate whether simultaneous ALDH and TGEF- inhibition would be effective in targeting
therapeutic-resistant GBM, Liu et al. showed that combining Disulfiram with Galunisertib
led to higher cytotoxicity and inhibition of tumor spheres’ growth, compared to each drug
alone [127]. Finally, there is recent data showing that DSF-Cu, either in monotherapy (i.e.,
Disulfiram combined with Copper gluconate) or combined with tyrosine kinase receptor
inhibitors, namely Dacomitinib [58], significantly reduced the viability of patient-derived
GSCs. Of note, DSF-Cu shows higher cytotoxic activity when compared with Disulfi-
ram alone. Another study reported that Disulfiram reduced the tumor-forming ability
of mesenchymal GSCs, the most resistant to therapies, in a GBM orthotopic xenograft
model [65].

Disulfiram, often combined with Copper, has been evaluated in several clinical trials
for GBM, including both newly diagnosed and recurrent cases. Across eight registered tri-
als, four were completed (NCT02715609, NCT01907165, NCT03034135, NCT02678975),
two terminated (NCT03151772, NCT03363659), and one remains not yet recruiting
(NCT01777919). Early-phase studies established maximum tolerated doses ranging from
375 to 500 mg/day, showing that Disulfiram can be safely combined with TMZ and ra-
diotherapy [122,123,128,129]. However, while some signals of efficacy were observed in
subgroups such as BRAF-mutant GBM [128], which is rare in adult GBM, the overall clini-
cal benefit for unselected patients has been limited, with outcomes largely comparable to
standard therapy alone [122-124,128,129].

Importantly, safety concerns have emerged, particularly in larger randomized trials.
The addition of Disulfiram and Copper to chemotherapy in recurrent GBM did not improve
survival but led to significantly higher rates of severe (grade > 3) and serious adverse
events, including hepatotoxicity and neurotoxicity [122-124,128,129]. These findings high-
light that, despite its theoretical appeal and preclinical rationale, Disulfiram in combination
with Copper is associated with substantial toxicity and has yet to demonstrate a meaningful
therapeutic advantage in GBM.

Finally, Trihexyphenidyl, an anti-Parkinsonian agent, was identified in a robotic drug
screen and reduced proliferation in a GSC-enriched tumor sphere model (GBM1) [72].
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Nevertheless, it has limited translational potential due not only to weak preclinical evidence,
but also to prominent anticholinergic toxicity including cognitive impairment and confusion
in the elderly [130].

3.2.5. Other Repurposed Drugs and Broader Therapeutic Strategies for Hard Repurposing
in GSCs

Additional candidates for hard repurposing to target GSCs include N-acetylcysteine
(NAC), an antioxidant approved as a mucolytic and as an antidote for paracetamol overdose,
among other indications [131], and Auranofin, an oral gold compound used in the treatment
of rheumatoid arthritis [132]. In one study, by depleting fumarate, NAC decreased PTEN
succination, impairing GSC maintenance, as well as increasing sensitivity to both TMZ
and irradiation [59] (Figure 1). In another study, Auranofin induced cytotoxicity in GSCs
through a ROS-dependent mechanism, an effect that was further enhanced when p53 was
silenced [61].

CUSP9, from “coordinated undermining of survival paths”, refers to a combination
of nine approved non-cancer drugs, aiming to simultaneously block several signaling
pathways [133,134]. The individual and concomitant use of five drugs referred to in the pre-
viously presented preclinical studies (i.e., Auranofin, Captopril, Disulfiram supplemented
with Copper(Il) chloride dehydrate, Minocycline, and Quetiapine) and four more (i.e.,
Aprepitant, Celecoxib, Itraconazole, and Sertraline), with and without TMZ, was evaluated
in patient-derived GSC-enriched cell cultures [74]. CUSP9 combined with TMZ reduced
GSC viability and fully abrogated tumor sphere formation, whereas the individual effects
were mild. Moreover, Wnt activity was significantly reduced after treating GSCs with
such a combination (Figure 1), while not being affected by any of the drugs individually.
The CUSP9v3 regimen, a refined version of CUSP9, testing a combination of nine drugs
targeting multiple survival pathways alongside continuous low-dose TMZ, was assessed
in a clinical trial (NCT02770378), demonstrating feasibility in recurrent GBM under careful
monitoring [135]. This version includes all drugs from CUSP9 but Quetiapine, which was
here replaced by the antiviral drug Ritonavir.

Using a bioinformatics-based approach that analyzed differentially expressed genes
(DEGs) between patient-matched primary and recurrent GBM from four public cohorts,
without direct drug testing, one study validated the repurposing potential of previously
investigated agents and identified additional candidates for future evaluation. The top-
ranking target compounds considered to be effective against GSCs were Rosiglitazone,
Nizatidine, Pantoprazole, and Tolmetin [64].

In silico screening also allows the identification of novel drug candidates for targeting
GSCs. This is possible using publicly available datasets and online resources such as
the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), the LINCS
Data Portal, and the Connectivity Map (CMap) portal. With such a strategy, Dogra and
colleagues identified different potential molecular targets in GBM, including in GSCs,
with significant impact on patient survival, and candidate drugs, such as Drospirenone
and Eltrombopag (used mainly as a contraceptive drug and to treat thrombocytopenia,
respectively), which will need to be experimentally validated for their anti-tumor potential
against GSCs [62].

4. Discussion

GBM remains one of the most intractable and lethal human cancers, characterized by
high heterogeneity, pronounced therapeutic resistance, and poor clinical outcomes [2,136].
The concept of targeting GSCs has gained momentum due to their central role in therapy
resistance, recurrence, and tumor progression [24]. In this context, drug repurposing has
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emerged as a particularly attractive approach, offering a cost-effective, expedited route
to therapeutic innovation, especially crucial given the high attrition rate in de novo drug
development [137]. This review identified multiple studies evaluating hard-repurposed
drugs, i.e., medicines originally approved for non-cancer indications that have demon-
strated anti-GSC activity. These include CNS-acting agents, antidiabetics, antihypertensives,
and antimicrobials, among others. CNS-active drugs in particular stand out due to their
inherent BBB permeability, a major pharmacokinetic hurdle in GBM treatment. Agents
such as Chlorpromazine, Fluspirilene, Trifluoperazine, and Quetiapine demonstrated po-
tent activity against GSCs in vitro and in vivo, enhancing the efficacy of TMZ in some
contexts [66,70,77,79].

Nevertheless, BBB penetration remains a significant limitation. Compounds like Clo-
fazimine and Pyrvinium pamoate, although effective against GSCs, display poor CNS
bioavailability, necessitating reformulation or novel delivery strategies for clinical transla-
tion [76,84].

The unique metabolic dependencies of GSCs have become a focal point for repurpos-
ing. Several identified drugs, including Metformin, Phenformin, Sitagliptin, Fluvoxamine,
Chlorpromazine, and antibiotics like Doxycycline or Tigecycline, directly or indirectly tar-
get mitochondrial function or glycolysis. This supports the emerging notion that disrupting
energy metabolism can selectively affect therapy-resistant GSCs, particularly those relying
on OXPHOS [63,80,84,85].

Notably, in a recent review, Tang et al. (2025) emphasized metabolic rewiring in
GSCs, including amino acid metabolism [21]. While our review identified drugs target-
ing more canonical metabolic processes, pathways like lysine metabolism which remain
underexplored in the repurposing literature suggest a promising future direction.

Single-agent therapies often fall short due to GBM'’s redundancy in survival path-
ways. Several studies evaluated drug combinations, for instance with TMZ, showing
enhanced efficacy or reversal of TMZ resistance. For example, Nicardipine, Phenformin,
Chlorpromazine, and Quetiapine sensitized GSCs to TMZ, either by affecting autophagy,
promoting apoptosis, or targeting stemness pathways [66,68,79,80]. However, not all com-
binations are synergistic. Disulfiram, for example, displayed antagonistic effects when
combined with TMZ in some models [69]. This highlights the importance of preclinical
validation and mechanistic understanding when designing rational combinations. Im-
portantly, unraveling the molecular basis of these interactions, whether synergy arises
from convergent pathway inhibition or antagonism results from competing stress-response
mechanisms, will be critical for refining combination therapies and avoiding ineffective or
counterproductive regimens.

Tang et al. identified key GSC regulatory pathways, including Notch, Wnt/ 3-catenin,
Hedgehog, STAT3-PARN, TFPI2-JNK-STAT3, and endogenous retroviral elements like
HML-2 [21]. In our review, Wnt/ 3-catenin and STAT3 were among the targets of repur-
posed agents (e.g., Quetiapine (Wnt) and Fluspirilene (STAT3)) [77,79].

Several limitations affect the comprehensiveness of the literature search, hinder the
comparability of the studies, and complicate the evaluation of the translational potential
of drug repurposing for targeting GSCs. First, terminological inconsistency may have
complicated our systematized search. GSCs are referred to by varied terms like glioma
stem cells, stem-like cells, brain tumor-initiating cells, or glioblastoma/glioma-initiating
cells. Similarly, terms like “neurospheres”, “spheroids”, and “tumor spheres” are used
interchangeably without standard definitions. Establishing minimal criteria for defining
GSCs, such as validated stemness marker expression, functional self-renewal capacity
in vitro, and tumorigenicity in orthotopic in vivo models, would improve reproducibility
and comparability across studies. Second, variable GSC models are used in different stud-
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ies. Several studies used established GBM cell lines (e.g., U87, LN229, and A172) and/or
patient-derived GSCs, with diverse culture conditions and inconsistent validation of stem-
ness, and not all confirmed tumorigenicity in vivo, an essential benchmark for true GSC
identity. Furthermore, xenograft models are limited by their lack of immunocompetence,
restricting evaluation of drug—immune interactions, which are increasingly recognized as
critical in GBM biology. Third, the studies presented heterogeneous experimental designs;
that is, xenograft studies varied in mouse strain, implantation site (subcutaneous vs. or-
thotopic), and drug administration route, affecting translational relevance. Fourth, while
we aimed to focus on IDH-wildtype adult GBM, many studies lacked molecular or clinical
annotation, raising concerns about tumor classification, especially given updates in the
WHO classification [1]. Fifth, we found an underrepresentation of clinical studies, as most
findings are preclinical, with few repurposed agents tested in clinical trials. Finally, we
acknowledge that our initial search strategy might have missed studies in which, while
indeed evaluating hard-repurposed drugs targeting GSCs, the authors did not use the term
“repurposed” nor “repositioned” in their articles.

Importantly, we were able to comprehensively describe and integrate several studies
that found the potential of some drugs to be repurposed for GBM treatment, many of them
supporting clinical trials. Although several repurposed regimens have been, or are being,
evaluated clinically, none have been formally incorporated into standard care. Contributing
factors include slow accrual in this relatively uncommon disease, frequent reliance on
single-arm studies with historical controls, lack of consistent benefit at diagnosis or relapse,
and pharmacokinetic constraints; that is, agents that cross the BBB in other settings may
still fail to achieve therapeutic concentrations within GBM tissue [128].

The intersection of GBM biology with neuroscience, the emerging field of cancer
neuroscience, opens new therapeutic avenues. As Tang et al. noted, GSCs exploit neural
developmental programs and immune-privileged niches to persist. The recognition that
GSCs modulate immune evasion through PD-L1, TFPI2, and other cytokines suggests that
repurposed immunomodulatory agents (e.g., Fluvoxamine and Disulfiram) might have
dual activity. Moreover, strategies like CAR-T cells targeting GSC-specific antigens (e.g.,
IL13Rx2 and GRP78) represent a powerful complement to pharmacological repurposing,
especially when combined with BBB-permeable agents or metabolic modulators [21].

Progress in this field will benefit from collaborative efforts that enhance methodolog-
ical consistency and strengthen translational relevance. This includes the refinement of
experimental models that more accurately capture the complexity of human GBM. For
example, three-dimensional humanized models based on brain organoids have emerged as
valuable translational platforms for studying drug repurposing [138,139]. Unlike traditional
spheroid or xenograft systems, brain organoids provide a more physiologically relevant
microenvironment, recapitulating human neural architecture, cellular diversity, and inter-
cellular interactions. Such systems hold the potential to better model GSC behavior, drug
penetration, and in some cases the tumor-immune interface, ultimately enabling more
predictive preclinical testing of both single agents and rational drug combinations. Future
translation may also benefit from early-phase, multi-center “phase 0” clinical trials to assess
pharmacokinetics and CNS penetration in well-characterized patient subgroups. While
no applications have yet been reported for hard repurposing specifically targeting GSCs,
integration of organoid-based assays may represent a critical step forward in bridging
preclinical findings with clinical translation.

Moving forward, advancing drug repurposing research for GSCs will require the
adoption of clear and consistent terminology across studies, as well as the promotion of
open data sharing to facilitate robust comparative analyses. In addition, closer alignment
between preclinical findings and clinical endpoints is essential to bridge the gap between
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bench and bedside. Incorporation of next-generation omics technologies, Al-driven screen-
ing approaches, and microfluidic-based patient-derived models may further accelerate
identification and prioritization of the most promising repurposed candidates. Strength-
ening these foundational aspects while simultaneously incorporating advanced organoid
models and mechanistic studies of drug interactions will support a more cohesive research
landscape and help to advance promising repurposed candidates toward meaningful
clinical impact.

5. Conclusions

Drug repurposing offers a promising strategy to accelerate the development of effective
therapies for GBM, particularly by targeting GSCs, which play a central role in treatment
resistance and tumor recurrence. Evaluation of diverse drug classes, especially CNS-active
agents and compounds that modulate cancer metabolism, has revealed several candidates
capable of impairing GSC viability, reducing stemness, or enhancing sensitivity to TMZ.
Among them, Metformin, Disulfiram, and Chlorpromazine stand out as leading candidates
for clinical translation, particularly in rational combinations with TMZ and radiation.
Future trials should also consider patient stratification based on GSC-associated molecular
signatures to better capture treatment responsiveness.

To fully realize the potential of this approach, future progress will depend on the
adoption of standardized methodologies, rigorous functional validation of GSC models,
and incorporation of emerging molecular insights. Further exploration of less studied
signaling pathways and integration of concepts from fields such as cancer neuroscience
may reveal novel therapeutic targets. Ultimately, a coordinated, multidisciplinary effort
grounded in both preclinical and clinical rigor will be key to translating repurposed drugs
into durable and effective treatments for this aggressive disease.
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