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The blood–brain barrier (BBB) plays a vital role in maintaining central nervous

system homeostasis but poses a major obstacle to effective drug delivery in

pediatric brain tumors. BBB integrity varies significantly in pediatric brain

tumors compared to adult ones, and is influenced by the tumor type,

molecular subtype, and anatomical location. This review discusses the

heterogeneous nature of the BBB across various pediatric brain tumors,

including low-grade gliomas, diffuse midline gliomas, medulloblastomas,

ependymomas and craniopharyngiomas. We review histological, molecular,

and imaging evidence to highlight differences in BBB permeability and their

implications for therapeutic delivery and treatment resistance. Special

consideration is given to advanced drug delivery strategies, such as focused

ultrasound and BBB-disrupting agents, which have been tailored to the unique

barrier properties of each tumor subtype. A deeper understanding of tumor-

specific BBB architecture is essential for tailoring treatment strategies and

improving outcomes in pediatric brain cancer.
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Introduction

Pediatric brain tumors are among the most common solid tumors in children and are

a leading cause of cancer-related mortality in this population worldwide (1–4). In the

United States, central nervous system (CNS) tumors rank the second most common

cancer, second only to leukemia, in children aged 0–19 years; however, their mortality

rate has surpassed that of leukemia, making CNS tumors the leading cause of cancer-

related death in children (3). Approximately 80%–90% of the newly diagnosed pediatric

brain tumor cases each year occur in low- and middle-income countries, which together

account for approximately 88% of the global pediatric population (5). Studies in China

have demonstrated significant regional differences in the annual incidence of pediatric

brain tumors (6). Moreover, the peak age for pediatric brain tumors is between 0 and

14 years (7), and some studies have reported a slight male predominance, with a

male-to-female ratio of approximately 1.2:1 (8). Common pediatric brain tumor types

include low-grade gliomas (accounting for approximately 30% of all gliomas) (9),

medulloblastomas (10%–15.2%), ependymomas, craniopharyngiomas, and diffuse midline

gliomas, with approximately half of these tumors exhibiting malignant features (10).
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Anatomically, the most common sites of occurrence are the

posterior fossa, ventricular system, and supratentorial regions (10).

The microvasculature of the CNS, collectively termed the

blood–brain barrier (BBB), tightly controls the passage of ions,

molecules, and cells into the CNS to maintain homeostasis

within this evolutionarily conserved region. Drug penetration

across the BBB is impacted by factors such as molecular size,

lipid solubility, and efflux transporters (11). With respect to the

molecular size, most publications report an absolute cutoff of

400–600 Da (12), and the largest substance reported to cross the

BBB to date had a molecular weight of 7.8 kDa (13). BBB

development occurs synchronously with CNS angiogenesis, and

its structure and function support the metabolic demands of

neurons and glial cells (14). During development, the brain

vasculature acquires a series of specialized molecular and cellular

properties, such as tight junction proteins and efflux transporters,

which collectively form the BBB and limit passive diffusion

between the blood and brain parenchyma (14, 15).

In pediatric brain tumors, the BBB often undergoes structural

and functional alterations, forming a blood–brain tumor barrier

whose degree of disruption exhibits marked heterogeneity both

across different tumor types and among different regions within

the same tumor. This heterogeneity likely plays a crucial role in

the permeability and therapeutic efficacy of drugs. Moreover, the

unique developmental state of the pediatric BBB may further

restrict the permeation of therapeutic agents, especially large

molecules, such as monoclonal antibodies (mAbs), thereby

influencing treatment outcomes (16, 17). To overcome these

limitations, recent research efforts have focused on the

exploration of strategies such as the use of nanoparticle carriers

and BBB-penetrating peptides (e.g., BBB-modulating peptides) to

increase drug delivery efficiency; however, these approaches must

carefully consider differences in metabolism and sensitivity to

toxic substances inherent to the developing pediatric brain (18).

Existing BBB models, including stem cell-derived models and

microfluidic chip systems, are predominantly based on adult

tissue data and lack the capacity to simulate pediatric brain

physiology accurately (19). Therefore, there is an urgent need to

establish in vitro models that more closely mimic the

physiological state of the developing brain, enabling deeper

investigations into the dynamic changes in the BBB of pediatric

brain tumors (20).

A comprehensive understanding of BBB characteristics in

pediatric brain tumors is critical for optimizing therapeutic

strategies, improving targeted drug delivery efficiency, and

ultimately improving patient outcomes. This review focuses on

the features of the BBB in several common pediatric brain

tumors (21), with the aim of providing a theoretical foundation

and research directions for their precise treatment in the future.

Low-grade gliomas

Pediatric low-grade gliomas (pLGGs) and glioneuronal tumors

represent the most common brain tumors, accounting for nearly

30% of pediatric CNS neoplasms. pLGGs are defined as grade 1

or 2 per the recent World Health Organization (WHO) 2021

classification (22). Overall, the BBB function in pLGGs remains

relatively intact, with tumor cells causing minimal disruption.

This BBB preservation has been observed in magnetic resonance

imaging (MRI) examinations. Typically, low-grade gliomas do

not exhibit marked contrast enhancement, which distinguishes

them from high-grade gliomas. The relatively normal vascular

architecture of low-grade gliomas in children contributes to the

maintenance of BBB integrity (Figure 1). This integrity protects

the brain tissue around the tumor from harmful substances that

are secreted by tumor cells, limiting the rapid growth and

metastasis of the tumor. According to the report by Hong CS

et al. (23), an abundant glial fibrillary acidic protein (GFAP)

signal was observed in pediatric pilocytic astrocytoma, which

was consistent with the astrocytic lineage of the tumor cells.

Aquaporin-4 (AQP4), a marker of astrocytic end-foot processes,

has been widely used as a reliable indicator of the structural and

functional integrity of astrocyte–endothelial cell interactions

(24). AQP4 expression was reduced and exhibited a disorganized

pattern within the pilocytic astrocytoma tumor tissue, suggesting

that the tumor cells were unable to fulfill their physiological

role in supporting the BBB, thereby facilitating increased

permeability for therapeutic agents to access the lesion

from the vasculature. In low-grade diffuse astrocytoma,

immunofluorescence staining revealed an intact BBB, which was

characterized by strong GFAP and AQP4 signals surrounding

the microvasculature. Notably, AQP4 staining was sufficiently

intense to delineate the contours of CD31-positive vessels

independently (23). On the basis of data from animal models,

Tan J et al. suggested that the use of an I6P7 peptide-mediated

MRI probe could be a potential strategy for overcoming the

BBB integrity and diagnosing low-grade gliomas (25). The

integrity of the BBB remains a major obstacle for conventional

chemotherapeutic agents to reach the tumor parenchyma.

However, focal BBB disruptions may create opportunities for the

use of targeted therapies and advanced drug delivery systems.

Recently, focused ultrasound (FUS) combined with microbubble

technology has been employed as a noninvasive and reversible

method to locally open the BBB, thereby enhancing the

penetration of antitumor drugs into pLGGs. Preliminary studies

have shown promising results (26, 27). In terms of surgical

treatment, sodium fluorescein is among the ideal candidates as

an intraoperative marker for actual recognition of tumor

extension, since it accumulates in areas with an altered blood–

brain barrier, a typical characteristic of pediatric gliomas, and

has a low rate of adverse events, which greatly facilitates

complete surgical resection (28). To better model and

understand the complex BBB status in pLGGs, researchers have

utilized human induced pluripotent stem cells (hiPSCs) to

develop subtype-specific in vitro models. These models can

reflect the interactions between different molecular subtypes of

pLGGs and the BBB, providing new technical avenues for

personalized drug screening and preclinical platform

development (29, 30), However, they are limited by the absence

of immune system components and a lack of long-term

functional stability.
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High-grade gliomas

High-grade gliomas account for approximately 10% of CNS

tumors in children and are the leading cause of cancer-related

death in individuals under 19 years of age. According to the

2021 WHO classification, pediatric diffuse high-grade gliomas are

categorized into four distinct subgroups, with diffuse midline

glioma (DMG), H3 K27-altered, being the most common

subtype (21). DMG is a highly infiltrative and aggressive

pediatric brain tumor, with a median survival of approximately

nine months following diagnosis. These tumors arise in midline

structures of the central nervous system, most commonly in the

pons, where they are referred to as diffuse intrinsic pontine

gliomas (DIPGs), as well as in the thalamus or spinal cord. More

than 80% of DMG cases harbor a specific lysine-to-methionine

substitution at position 27 (K27M) in histone H3 variants,

occurring either in the canonical H3C1/H3C2 genes

(H3.1-K27M) or in the alternative histone H3 variant H3-3A

(H3.3-K27M) (31). MRI with a gadolinium-based contrast agent

is the most commonly employed method for assessing BBB

disruption. Unlike certain CNS tumors that exhibit a

compromised BBB, DMG is characterized by a relatively intact

BBB (Figure 1) (32–34). However, heterogeneity within the

tumor’s blood–tumor barrier can result in focal areas of

increased permeability. In contrast to many other malignant CNS

tumors, the vasculature within DMGs generally retains BBB

integrity (35–39). This preservation is largely maintained by tight

junction proteins and specialized interendothelial structures that

constitute an effective barrier, limiting the penetration of large-

molecule therapeutics into the tumor microenvironment.

Claudin-3, a key tight junction protein, is known to be

overexpressed in ovarian cancer cells, where its upregulation is

associated with a reduction in the repressive histone mark

H3K27me3 at its promoter region. Similarly, histone mutations

that lead to decreased H3K27me3 may contribute to aberrant

upregulation of Claudin-3 expression in DMG (40). As a result,

the intact BBB presents a major challenge to the delivery and

efficacy of molecularly targeted therapies and chemotherapeutic

agents (36, 37, 41). Notably, a study by McCully et al.

demonstrated that the BBB is not uniformly impermeable; rather,

it is heterogeneous, as evidenced by the differential penetration

of temozolomide between the brainstem and cortical regions

(42). To date, more than 250 DMG-targeting clinical trials have

failed to overcome the BBB limitation, resulting in persistently

high treatment failure rates (38). At the molecular level, the

hallmark genetic alteration in DMG, the H3 K27M mutation,

causes global hypomethylation of histone H3, potentially

regulating the expression of BBB-related genes through epigenetic

mechanisms and thus influencing the dynamic functionality of

the barrier (43–45). In an in vitro study that investigated the

DIPG-specific BBB, Deligne et al. reported that over the course

of one week of DIPG cell development, there was no significant

change in either the permeability of the barrier to

chemotherapeutic agents or the expression levels of efflux

transporters (34), which underscores the complex and

multifactorial nature of chemoresistance in DMGs (34). Imaging

studies using diffusion-weighted imaging (DWI) and apparent

diffusion coefficient (ADC) analysis have revealed significant

differences in ADC values between H3 K27M-mutant DMGs and

other midline gliomas, with these parameters potentially serving

FIGURE 1

Localization and BBB characteristics in pediatric brain tumors. BBB, blood–brain barrier; SHH, sonic hedgehog; WNT, wingless.
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as indirect indicators of the BBB functional status and tumor

microenvironment characteristics (46, 47). With respect to

treatment, small molecules such as ONC201 (dordaviprone) or

epigenetic agents demonstrate relatively good BBB penetration

and have shown preliminary efficacy in some patients with the

H3 K27M mutation, making these agents a current focus of

clinical research (48). Several studies have reported the

expression of efflux transporters, such as P-glycoprotein/MDR1

(P-gp) and breast cancer resistance protein 1 (BCRP1), not only

on the surface of DIPG cells but also within the surrounding

tumor microenvironment (49). P-gp, in particular, contributes to

reduced intracellular drug accumulation by actively exporting

therapeutic agents in an ATP-dependent manner (50). Although

CAR-T-cell therapy has shown some potential to penetrate the

BBB, many immunotherapeutic agents, including immune

checkpoint inhibitors, are poorly delivered to the tumor site

(51, 52). Moreover, the tumor immune microenvironment in the

DMG is generally immunosuppressive and, in combination with

the intact BBB, further diminishes the efficacy of systemic

therapies (53). Radiotherapy, as the current standard of care, can

temporarily alleviate symptoms but does not effectively overcome

BBB-related drug delivery barriers. However, its long-term

efficacy and BBB modulation effects remain controversial (54).

Various techniques that are aimed at bypassing or disrupting the

BBB, such as convection-enhanced delivery (CED) and focused

ultrasound, have demonstrated promising results. Clinical trials

investigating techniques such as CED and FUS for targeted drug

delivery to the brain are increasing in number (55, 56) In

addition to enhancing drug penetration, FUS can transiently

disrupt the BBB, enabling the release of tumor-derived biomarkers

into the bloodstream, which may facilitate noninvasive monitoring

of tumor progression and treatment response through liquid

biopsy. Furthermore, FUS holds promise for delivering larger

therapeutic molecules, such as monoclonal antibodies, to otherwise

inaccessible brain regions. These approaches hold significant

potential for overcoming the formidable challenge that the BBB

presents to drug delivery to the central nervous system (35, 44).

Future breakthroughs in DMG treatment may depend on effective

modulation of the BBB combined with molecular-targeted and

immunotherapeutic strategies.

Medulloblastoma

Medulloblastoma is one of the most common malignant CNS

tumors in children. During tumor progression, the BBB

undergoes pathological changes, resulting in a structurally and

functionally compromised BBB. The extent of BBB disruption is

significantly heterogeneous across different tumor regions and

among molecular subtypes (57). Medulloblastomas are classified

into Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and

Group 4 molecular subtypes, each with a distinct tumor

microenvironment and vascular architecture. Notably, the SHH

subtype displays specific vascular biological features and differs

in the BBB morphology and permeability from the other

subtypes (Table 1) (58). The SHH and Group 4 subtypes of

medulloblastoma exhibit an intact BBB, whereas the Group 3

subtype shows mild BBB disruption. In contrast, in WNT-

activated medulloblastoma, the BBB is notably leaky (Figure 1)

(33, 59). Phoenix et al. demonstrated in genetically engineered

mouse models that medulloblastomas driven by alterations in the

WNT signaling pathway exhibited a compromised BBB, resulting

in greater exposure to systemically administered

chemotherapeutic agents and an enhanced tumor response (60).

The WNT subgroup has an innately porous BBB, which is driven

by abnormal β-catenin signaling and causes a fenestrated

vasculature (60, 61). This intrinsic property likely enables a

chemotherapy drug to pass into the tumor more easily. In

contrast, medulloblastomas that are associated with alterations in

the SHH pathway tend to maintain a more intact BBB, which

renders them less responsive to chemotherapy (60). The SHH

subtype also has upregulated angiogenesis pathway molecules,

including chemokine receptor type 4 (CXCR4) and vascular

endothelial growth factor (VEGF) (62, 63). Research conducted

by Tylawsky DE et al. revealed that P-selectin-targeted

nanocarriers induced active crossing of the blood‒brain barrier

via caveolin-1-dependent transcytosis in the SHH subtype (64),

demonstrating that even tumors with intact BBBs (e.g., SHH

subtype) may be susceptible to targeted transcytosis-based drug

delivery strategies. These preclinical findings align with clinical

observations, as patients with WNT-driven medulloblastoma

typically exhibit superior survival outcomes compared to those

with SHH-driven tumors under similar treatment regimens.

While enhanced BBB permeability in the WNT subtype may

contribute to improved drug delivery, other contributing factors

such as a favorable immune microenvironment and inherent

chemosensitivity are also believed to influence the improved

prognosis observed in patients (65). Compared with the other

subgroups, the Group 3 subtype has significantly greater vascular

endothelial growth factor A (VEGFA) mRNA expression (66),

which may be directly driven by MYC activation (67). Although

some degree of BBB disruption is observed in medulloblastomas,

most tumors retain partial barrier function, which poses a major

obstacle for systemic therapies to effectively penetrate into the

tumor core (57). Group 3 subtype is associated with a poor

prognosis, characterized by a survival rate below 40% and

frequent metastases (68). Medulloblastoma frequently

TABLE 1 BBB and vascular features in medulloblastoma subtypes.

Subtype BBB
status

Key features Drug
response

SHH Intact Low permeability

Elevated expression of CXCR4

and VEGF

P-selectin–mediated

transcytosis

Poor penetration;

Lower response

WNT Leaky Fenestrated vasculature

Abnormal β-catenin–driven

permeability

High drug

penetration;

Good response

Group 3 Compromised Overexpression of VEGFA Variable response

Group 4 Intact Less characterized vasculature Limited drug

delivery

BBB, blood–brain barrier; SHH, sonic hedgehog; WNT, wingless.
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metastasizes through cerebrospinal fluid (CSF) dissemination, with

the therapeutic challenge being especially pronounced in patients

presenting with leptomeningeal spread or distant metastases. In

these cases, the BBB remains a significant obstacle to effective

drug delivery. Intrathecal administration offers considerable

potential as a therapeutic strategy to bypass the BBB and directly

target tumor cells within the CSF compartment (69, 70). The

interaction between tumor cells and the vascular

microenvironment also plays a crucial role in maintaining BBB

stability. Some studies have shown that SOX2-positive

medulloblastoma stem-like cells tightly envelop capillaries via a

mechanosensitive ion channel Piezo2-dependent mechanism,

thereby influencing local tissue mechanical properties and

vascular permeability (71, 72). Targeting the Piezo2 channel (e.g.,

via knockout) not only significantly enhances drug delivery

efficiency but also has the potential to prolong survival,

indicating that Piezo2 is a novel target with clinical translational

potential (72). Furthermore, radiotherapy has been demonstrated

to improve the efficiency of fucoidan nanocarrier-mediated

transcytosis via P-selectin, thus increasing drug delivery (64).

However, radiation also impacts BBB-associated structures, such

as the perivascular space (PVS), potentially causing side effects,

including cerebral edema and alterations in the tumor

microenvironment (73). Owing to the barrier effect of the BBB,

liquid biopsy markers such as circulating microRNAs in

peripheral blood have shown limited sensitivity for detecting

medulloblastoma (74). Therefore, the clinical focus has

increasingly shifted toward the use of imaging parameters to

evaluate the BBB status. MRI-based biomarkers, such as the

ADC, hold promise for noninvasively monitoring BBB integrity

within tumors and assessing treatment responses (75, 76).

Ependymoma

Ependymoma is a neuroepithelial tumor that arises from the

ependymal layer bordering the cerebral ventricles and spinal

canal. Intracranial ependymoma represents a major encephalic

tumor in children, whereas spinal ependymoma develops more

frequently in adults (77). In pediatric ependymomas, the

structural integrity of the BBB remains preserved (Figure 1) (78).

However, ependymal cells constitute a key component of both

the cerebrospinal fluid–brain barrier and the blood–CSF barrier,

playing a vital role in maintaining CNS homeostasis. During

ependymoma development, these barrier cells can be directly

disrupted by the tumor, leading to abnormal infiltration of

cerebrospinal fluid components into the tumor parenchyma,

which alters the local microenvironment and may promote

tumor progression (79). Animal model studies further

demonstrated that intracranial tumor growth could directly

damage the ependymal epithelial layer, disturbing its barrier

function and thereby enhancing interactions between

cerebrospinal fluid and tumor tissue (80). Significant regional

heterogeneity of the BBB has been observed in ependymomas,

particularly in supratentorial tumors. In 9 out of 20 cases, tumor

cells in supratentorial ependymomas highly expressed the tight

junction protein claudin-5, a marker of BBB integrity, a feature

not observed in infratentorial tumors (81). The heterogeneity of

the BBB in ependymomas is a major contributor to treatment

failure and poor drug delivery efficiency. Targeted therapies face

clinical challenges, partly because of the variable drug

permeability across different tumor regions, which is governed

mainly by differences in BBB permeability and molecular tumor

characteristics (82). Some studies have shown that the regulation

of BBB functionality is closely linked to the glycosylation of

certain transmembrane proteins, such as basigin, which is

upregulated in ependymomas. Basigin may influence barrier

permeability by modulating endothelial tight junctions and

transport mechanisms (83). Ginguené C et al. reported that a

biochemical, transporter-dependent blood‒tumor barrier might

exist in ependymomas, which may reduce the tumoral

bioavailability of lipophilic and amphiphilic anticancer drugs

(77). It is noteworthy that two pediatric cases of relapsing

demyelination, occurring after and in conjunction with radiation

therapy for ependymoma, have been reported with features

consistent with a multiple sclerosis phenotype, suggesting

radiation-induced disruption of the BBB (84). Such BBB

impairment may enhance the permeability of therapeutic agents,

potentially improving drug delivery to the central nervous

system. In parallel, Ependymal cells regulate CSF dynamics and

contribute to CSF production via the choroid plexus. Their

strategic ventricular location enables broad distribution of

therapeutic proteins through CSF pathways, potentially bypassing

the BBB and offering a route for targeted brain tumor treatment

while minimizing neuronal toxicity (85). Therefore, a deeper

understanding of BBB functional states and underlying molecular

mechanisms across ependymoma is critical for improving drug

delivery strategies and enhancing therapeutic responses.

Craniopharyngioma

Craniopharyngioma is a benign tumor originating from

embryonic remnants of Rathke’s pouch or the residual

craniopharyngeal duct epithelium. In pediatric patients, the peak

incidence of craniopharyngioma occurs between 5 and 15 years

of age, with the adamantinomatous subtype being the most

predominant form observed in this population. Pediatric

adamantinomatous craniopharyngiomas (ACPs) predominantly

occur in the sellar and suprasellar regions, adjacent to critical

neurovascular structures such as the hypothalamic‒pituitary axis

and optic pathways (86). The integrity of the BBB in this area is

crucial for maintaining neuroendocrine system homeostasis.

Craniopharyngiomas, though histologically benign, can exert

significant mass effects that compress or infiltrate adjacent brain

structures, leading to focal BBB disruption (Figure 1) (57, 87).

For instance, hypothalamic damage frequently results in multiple

pituitary hormone deficiencies and may induce metabolic

disorders such as nonalcoholic fatty liver disease, suggesting that

BBB dysfunction may play a significant role in these pathological

changes (88, 89). Moreover, the tumors’ clinically aggressive

behavior may further impair BBB integrity, causing
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neuroendocrine abnormalities (e.g., growth hormone deficiency or

diabetes insipidus) as well as visual impairment (90, 91). Studies

indicate that pediatric patients face a significantly greater risk of

postoperative obesity, cognitive decline, and cranial nerve damage

than adults do, which is potentially related to inflammation or

oxidative stress triggered by BBB disruption (92, 93). A small

phase 0 study, which involved three child patients, provided

compelling evidence that the humanized monoclonal antibody

tocilizumab effectively reached ACP tumors and cyst fluid after

systemic delivery (94). These findings support existing data that

indicate that tocilizumab may play a role in systemic therapy for

ACP. Furthermore, these findings imply that the ACP-associated

BBB is compromised relative to other regions of the CNS (94).

Moreover, abnormal expression of tight junction proteins such as

claudin-5 within the gut–brain axis is thought to exacerbate BBB

dysfunction, suggesting that the peripheral system may influence

central nervous system function through the modulation of

barrier integrity (95). Currently, surgical resection and

radiotherapy remain the primary treatment modalities in patients

with craniopharyngiomas but may exacerbate BBB damage to

some extent. For example, perioperative BBB disruption is closely

associated with cognitive impairment and increased postoperative

mortality (93). Oxytocin treatment of ACP patients can restore

the integrity of the BBB and reduce the inflammatory response

that is activated by infiltrating peripheral immune cells, thus

blocking the lipotoxicity of hypothalamic neural stem cells

induced by the diffusion of peripheral low-density lipoprotein

cholesterol into the third ventricle (96). To minimize

hypothalamic injury, some studies recommend conservative

treatment strategies, such as limited resection combined with

moderate radiotherapy (97, 98). Additionally, the permeability of

the BBB in ACP can vary considerably, resulting in inconsistent

therapeutic delivery (99). To address this challenge, localized

treatment strategies such as intracystic drug administration and

nanotechnology-based delivery systems are being investigated as

potential approaches to bypass the BBB and improve treatment

efficacy (100). However, there is a lack of sufficient evidence

regarding the long-term efficacy of these approaches in

protecting or restoring BBB function, highlighting the need for

further systematic investigations.

Conclusion

The review underscores the heterogeneous integrity of the BBB

across pediatric brain tumors and its significant implications for

drug delivery and therapeutic resistance. By integrating

histopathological, molecular, and imaging data, it highlights the

subtype-specific characteristics of BBB disruption and

preservation. Furthermore, the review evaluates emerging

therapeutic strategies, such as FUS and CED, that aim to

overcome BBB-associated barriers, thereby enhancing drug

delivery and potentially improving clinical outcomes in

affected children.
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