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The blood-brain barrier (BBB) plays a vital role in maintaining central nervous
system homeostasis but poses a major obstacle to effective drug delivery in
pediatric brain tumors. BBB integrity varies significantly in pediatric brain
tumors compared to adult ones, and is influenced by the tumor type,
molecular subtype, and anatomical location. This review discusses the
heterogeneous nature of the BBB across various pediatric brain tumors,
including low-grade gliomas, diffuse midline gliomas, medulloblastomas,
ependymomas and craniopharyngiomas. We review histological, molecular,
and imaging evidence to highlight differences in BBB permeability and their
implications for therapeutic delivery and treatment resistance. Special
consideration is given to advanced drug delivery strategies, such as focused
ultrasound and BBB-disrupting agents, which have been tailored to the unique
barrier properties of each tumor subtype. A deeper understanding of tumor-
specific BBB architecture is essential for tailoring treatment strategies and
improving outcomes in pediatric brain cancer.

KEYWORDS

pediatric brain tumors, blood-brain barrier, tumor heterogeneity, permeability,
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Introduction

Pediatric brain tumors are among the most common solid tumors in children and are
a leading cause of cancer-related mortality in this population worldwide (1-4). In the
United States, central nervous system (CNS) tumors rank the second most common
cancer, second only to leukemia, in children aged 0-19 years; however, their mortality
rate has surpassed that of leukemia, making CNS tumors the leading cause of cancer-
related death in children (3). Approximately 80%-90% of the newly diagnosed pediatric
brain tumor cases each year occur in low- and middle-income countries, which together
account for approximately 88% of the global pediatric population (5). Studies in China
have demonstrated significant regional differences in the annual incidence of pediatric
brain tumors (6). Moreover, the peak age for pediatric brain tumors is between 0 and
14 years (7), and some studies have reported a slight male predominance, with a
male-to-female ratio of approximately 1.2:1 (8). Common pediatric brain tumor types
include low-grade gliomas (accounting for approximately 30% of all gliomas) (9),
medulloblastomas (10%-15.2%), ependymomas, craniopharyngiomas, and diffuse midline
gliomas, with approximately half of these tumors exhibiting malignant features (10).
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Anatomically, the most common sites of occurrence are the
posterior fossa, ventricular system, and supratentorial regions (10).

The microvasculature of the CNS, collectively termed the
blood-brain barrier (BBB), tightly controls the passage of ions,
molecules, and cells into the CNS to maintain homeostasis
within this evolutionarily conserved region. Drug penetration
across the BBB is impacted by factors such as molecular size,
lipid solubility, and efflux transporters (11). With respect to the
molecular size, most publications report an absolute cutoff of
400-600 Da (12), and the largest substance reported to cross the
BBB to date had a molecular weight of 7.8kDa (13). BBB
development occurs synchronously with CNS angiogenesis, and
its structure and function support the metabolic demands of
neurons and glial cells (14). During development, the brain
vasculature acquires a series of specialized molecular and cellular
properties, such as tight junction proteins and efflux transporters,
which collectively form the BBB and limit passive diffusion
between the blood and brain parenchyma (14, 15).

In pediatric brain tumors, the BBB often undergoes structural
and functional alterations, forming a blood-brain tumor barrier
whose degree of disruption exhibits marked heterogeneity both
across different tumor types and among different regions within
the same tumor. This heterogeneity likely plays a crucial role in
the permeability and therapeutic efficacy of drugs. Moreover, the
unique developmental state of the pediatric BBB may further
restrict the permeation of therapeutic agents, especially large
molecules, such as monoclonal antibodies (mAbs), thereby
influencing treatment outcomes (16, 17). To overcome these
efforts
exploration of strategies such as the use of nanoparticle carriers

limitations, recent research have focused on the
and BBB-penetrating peptides (e.g., BBB-modulating peptides) to
increase drug delivery efficiency; however, these approaches must
carefully consider differences in metabolism and sensitivity to
toxic substances inherent to the developing pediatric brain (18).
Existing BBB models, including stem cell-derived models and
microfluidic chip systems, are predominantly based on adult
tissue data and lack the capacity to simulate pediatric brain
physiology accurately (19). Therefore, there is an urgent need to
establish

physiological state of the developing brain, enabling deeper

in vitro models that more closely mimic the
investigations into the dynamic changes in the BBB of pediatric
brain tumors (20).

A comprehensive understanding of BBB characteristics in
pediatric brain tumors is critical for optimizing therapeutic
strategies, improving targeted drug delivery efficiency, and
ultimately improving patient outcomes. This review focuses on
the features of the BBB in several common pediatric brain
tumors (21), with the aim of providing a theoretical foundation

and research directions for their precise treatment in the future.

Low-grade gliomas
Pediatric low-grade gliomas (pLGGs) and glioneuronal tumors

represent the most common brain tumors, accounting for nearly
30% of pediatric CNS neoplasms. pLGGs are defined as grade 1
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or 2 per the recent World Health Organization (WHO) 2021
classification (22). Overall, the BBB function in pLGGs remains
relatively intact, with tumor cells causing minimal disruption.
This BBB preservation has been observed in magnetic resonance
imaging (MRI) examinations. Typically, low-grade gliomas do
not exhibit marked contrast enhancement, which distinguishes
them from high-grade gliomas. The relatively normal vascular
architecture of low-grade gliomas in children contributes to the
maintenance of BBB integrity (Figure 1). This integrity protects
the brain tissue around the tumor from harmful substances that
are secreted by tumor cells, limiting the rapid growth and
metastasis of the tumor. According to the report by Hong CS
et al. (23), an abundant glial fibrillary acidic protein (GFAP)
signal was observed in pediatric pilocytic astrocytoma, which
was consistent with the astrocytic lineage of the tumor cells.
Aquaporin-4 (AQP4), a marker of astrocytic end-foot processes,
has been widely used as a reliable indicator of the structural and
functional integrity of astrocyte-endothelial cell interactions
(24). AQP4 expression was reduced and exhibited a disorganized
pattern within the pilocytic astrocytoma tumor tissue, suggesting
that the tumor cells were unable to fulfill their physiological
role in supporting the BBB, thereby facilitating increased
to access the lesion
diffuse
immunofluorescence staining revealed an intact BBB, which was

permeability for therapeutic agents

from the vasculature. In low-grade astrocytoma,
characterized by strong GFAP and AQP4 signals surrounding
the microvasculature. Notably, AQP4 staining was sufficiently
intense to delineate the contours of CD31-positive vessels
independently (23). On the basis of data from animal models,
Tan ] et al. suggested that the use of an I6P7 peptide-mediated
MRI probe could be a potential strategy for overcoming the
BBB integrity and diagnosing low-grade gliomas (25). The
integrity of the BBB remains a major obstacle for conventional
chemotherapeutic agents to reach the tumor parenchyma.
However, focal BBB disruptions may create opportunities for the
use of targeted therapies and advanced drug delivery systems.
Recently, focused ultrasound (FUS) combined with microbubble
technology has been employed as a noninvasive and reversible
method to locally open the BBB, thereby enhancing the
penetration of antitumor drugs into pLGGs. Preliminary studies
have shown promising results (26, 27). In terms of surgical
treatment, sodium fluorescein is among the ideal candidates as
an intraoperative marker for actual recognition of tumor
extension, since it accumulates in areas with an altered blood-
brain barrier, a typical characteristic of pediatric gliomas, and
has a low rate of adverse events, which greatly facilitates
(28). To better
understand the complex BBB status in pLGGs, researchers have

complete surgical resection model and
utilized human induced pluripotent stem cells (hiPSCs) to
develop subtype-specific in vitro models. These models can
reflect the interactions between different molecular subtypes of
pLGGs and the BBB, providing new technical avenues for
personalized drug screening and preclinical platform
development (29, 30), However, they are limited by the absence
of immune system components and a lack of long-term

functional stability.
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FIGURE 1

Localization and BBB characteristics in pediatric brain tumors. BBB, blood—-brain barrier; SHH, sonic hedgehog; WNT, wingless.
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Compromised BBB
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SHH subtype: Intact BBB

WNT subtype: Leaky BBB

Group 3 subtype: Compromised BBB
Group 4 subtype: Intact BBB

High-grade gliomas

High-grade gliomas account for approximately 10% of CNS
tumors in children and are the leading cause of cancer-related
death in individuals under 19 years of age. According to the
2021 WHO classification, pediatric diffuse high-grade gliomas are
categorized into four distinct subgroups, with diffuse midline
glioma (DMG), H3
subtype (21). DMG
pediatric brain tumor, with a median survival of approximately

K27-altered, being the most common
is a highly infiltrative and aggressive

nine months following diagnosis. These tumors arise in midline
structures of the central nervous system, most commonly in the
pons, where they are referred to as diffuse intrinsic pontine
gliomas (DIPGs), as well as in the thalamus or spinal cord. More
than 80% of DMG cases harbor a specific lysine-to-methionine
substitution at position 27 (K27M) in histone H3 variants,
occurring H3C1/H3C2  genes
(H3.1-K27M) or in the alternative histone H3 variant H3-3A
(H3.3-K27M) (31). MRI with a gadolinium-based contrast agent
is the most commonly employed method for assessing BBB
Unlike certain CNS that exhibit a
compromised BBB, DMG is characterized by a relatively intact
BBB (Figure 1) (32-34). However, heterogeneity within the
tumor’s blood-tumor barrier can result

either in the canonical

disruption. tumors

in focal areas of
increased permeability. In contrast to many other malignant CNS
tumors, the vasculature within DMGs generally retains BBB
integrity (35-39). This preservation is largely maintained by tight
junction proteins and specialized interendothelial structures that
constitute an effective barrier, limiting the penetration of large-
into the tumor microenvironment.

molecule therapeutics
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Claudin-3, a key tight junction protein, is known to be
overexpressed in ovarian cancer cells, where its upregulation is
associated with a reduction in the repressive histone mark
H3K27me3 at its promoter region. Similarly, histone mutations
that lead to decreased H3K27me3 may contribute to aberrant
upregulation of Claudin-3 expression in DMG (40). As a result,
the intact BBB presents a major challenge to the delivery and
efficacy of molecularly targeted therapies and chemotherapeutic
agents (36, 37, 41). Notably, a study by McCully et al
demonstrated that the BBB is not uniformly impermeable; rather,
it is heterogeneous, as evidenced by the differential penetration
of temozolomide between the brainstem and cortical regions
(42). To date, more than 250 DMG-targeting clinical trials have
failed to overcome the BBB limitation, resulting in persistently
high treatment failure rates (38). At the molecular level, the
hallmark genetic alteration in DMG, the H3 K27M mutation,
causes global hypomethylation of histone H3, potentially
regulating the expression of BBB-related genes through epigenetic
mechanisms and thus influencing the dynamic functionality of
the barrier (43-45). In an in vitro study that investigated the
DIPG-specific BBB, Deligne et al. reported that over the course
of one week of DIPG cell development, there was no significant

change in either the permeability of the barrier to
chemotherapeutic agents or the expression levels of efflux
transporters  (34), which underscores the complex and

multifactorial nature of chemoresistance in DMGs (34). Imaging
studies using diffusion-weighted imaging (DWI) and apparent
diffusion coefficient (ADC) analysis have revealed significant
differences in ADC values between H3 K27M-mutant DMGs and
other midline gliomas, with these parameters potentially serving
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as indirect indicators of the BBB functional status and tumor
microenvironment characteristics (46, 47). With respect to
treatment, small molecules such as ONC201 (dordaviprone) or
epigenetic agents demonstrate relatively good BBB penetration
and have shown preliminary efficacy in some patients with the
H3 K27M mutation, making these agents a current focus of
research (48). Several
expression of efflux transporters, such as P-glycoprotein/MDRI1

clinical studies have reported the
(P-gp) and breast cancer resistance protein 1 (BCRP1), not only
on the surface of DIPG cells but also within the surrounding
tumor microenvironment (49). P-gp, in particular, contributes to
reduced intracellular drug accumulation by actively exporting
therapeutic agents in an ATP-dependent manner (50). Although
CAR-T-cell therapy has shown some potential to penetrate the
BBB, many immunotherapeutic agents, including immune
checkpoint inhibitors, are poorly delivered to the tumor site
(51, 52). Moreover, the tumor immune microenvironment in the
DMG is generally immunosuppressive and, in combination with
the intact BBB, further diminishes the efficacy of systemic
therapies (53). Radiotherapy, as the current standard of care, can
temporarily alleviate symptoms but does not effectively overcome
BBB-related drug delivery barriers. However, its long-term
efficacy and BBB modulation effects remain controversial (54).
Various techniques that are aimed at bypassing or disrupting the
BBB, such as convection-enhanced delivery (CED) and focused
ultrasound, have demonstrated promising results. Clinical trials
investigating techniques such as CED and FUS for targeted drug
delivery to the brain are increasing in number (55, 56) In
addition to enhancing drug penetration, FUS can transiently
disrupt the BBB, enabling the release of tumor-derived biomarkers
into the bloodstream, which may facilitate noninvasive monitoring
of tumor progression and treatment response through liquid
biopsy. Furthermore, FUS holds promise for delivering larger
therapeutic molecules, such as monoclonal antibodies, to otherwise
inaccessible brain regions. These approaches hold significant
potential for overcoming the formidable challenge that the BBB
presents to drug delivery to the central nervous system (35, 44).
Future breakthroughs in DMG treatment may depend on effective
modulation of the BBB combined with molecular-targeted and

immunotherapeutic strategies.

Medulloblastoma

Medulloblastoma is one of the most common malignant CNS
BBB
undergoes pathological changes, resulting in a structurally and

tumors in children. During tumor progression, the
functionally compromised BBB. The extent of BBB disruption is
significantly heterogeneous across different tumor regions and
among molecular subtypes (57). Medulloblastomas are classified
into Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and
Group 4 molecular subtypes, each with a distinct tumor
microenvironment and vascular architecture. Notably, the SHH
subtype displays specific vascular biological features and differs
in the BBB morphology and permeability from the other
subtypes (Table 1) (58). The SHH and Group 4 subtypes of
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medulloblastoma exhibit an intact BBB, whereas the Group 3
subtype shows mild BBB disruption. In contrast, in WNT-
activated medulloblastoma, the BBB is notably leaky (Figure 1)
(33, 59). Phoenix et al. demonstrated in genetically engineered
mouse models that medulloblastomas driven by alterations in the
WNT signaling pathway exhibited a compromised BBB, resulting
in  greater  exposure to  systemically  administered
chemotherapeutic agents and an enhanced tumor response (60).
The WNT subgroup has an innately porous BBB, which is driven
by abnormal B-catenin signaling and causes a fenestrated
vasculature (60, 61). This intrinsic property likely enables a
chemotherapy drug to pass into the tumor more easily. In
contrast, medulloblastomas that are associated with alterations in
the SHH pathway tend to maintain a more intact BBB, which
renders them less responsive to chemotherapy (60). The SHH
subtype also has upregulated angiogenesis pathway molecules,
including chemokine receptor type 4 (CXCR4) and vascular
endothelial growth factor (VEGF) (62, 63). Research conducted
DE et al that
nanocarriers induced active crossing of the blood-brain barrier
via caveolin-1-dependent transcytosis in the SHH subtype (64),

demonstrating that even tumors with intact BBBs (e.g, SHH

by Tylawsky revealed P-selectin-targeted

subtype) may be susceptible to targeted transcytosis-based drug
delivery strategies. These preclinical findings align with clinical
observations, as patients with WNT-driven medulloblastoma
typically exhibit superior survival outcomes compared to those
with SHH-driven tumors under similar treatment regimens.
While enhanced BBB permeability in the WNT subtype may
contribute to improved drug delivery, other contributing factors
such as a favorable immune microenvironment and inherent
chemosensitivity are also believed to influence the improved
prognosis observed in patients (65). Compared with the other
subgroups, the Group 3 subtype has significantly greater vascular
endothelial growth factor A (VEGFA) mRNA expression (66),
which may be directly driven by MYC activation (67). Although
some degree of BBB disruption is observed in medulloblastomas,
most tumors retain partial barrier function, which poses a major
obstacle for systemic therapies to effectively penetrate into the
tumor core (57). Group 3 subtype is associated with a poor
prognosis, characterized by a survival rate below 40% and
metastases  (68).  Medulloblastoma

frequent frequently

TABLE 1 BBB and vascular features in medulloblastoma subtypes

Subtype BBB Key features Drug
status response

Intact Low permeability Poor penetration;

Elevated expression of CXCR4 | Lower response
and VEGF
P-selectin-mediated
transcytosis

WNT Leaky Fenestrated vasculature High drug
Abnormal B-catenin-driven penetration;
permeability Good response

Group 3 Compromised | Overexpression of VEGFA Variable response

Group 4 Intact Less characterized vasculature | Limited drug

delivery

BBB, blood-brain barrier; SHH, sonic hedgehog; WNT, wingless.
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metastasizes through cerebrospinal fluid (CSF) dissemination, with
the therapeutic challenge being especially pronounced in patients
presenting with leptomeningeal spread or distant metastases. In
these cases, the BBB remains a significant obstacle to effective
drug delivery. Intrathecal administration offers considerable
potential as a therapeutic strategy to bypass the BBB and directly
target tumor cells within the CSF compartment (69, 70). The
cells and the
microenvironment also plays a crucial role in maintaining BBB
stability. that SOX2-positive
medulloblastoma stem-like cells tightly envelop capillaries via a

interaction  between  tumor vascular

Some studies have shown
mechanosensitive ion channel Piezo2-dependent mechanism,
thereby influencing local tissue mechanical properties and
vascular permeability (71, 72). Targeting the Piezo2 channel (e.g.,
via knockout) not only significantly enhances drug delivery
efficiency but also has the potential to prolong survival,
indicating that Piezo2 is a novel target with clinical translational
potential (72). Furthermore, radiotherapy has been demonstrated
to improve the efficiency of fucoidan nanocarrier-mediated
transcytosis via P-selectin, thus increasing drug delivery (64).
However, radiation also impacts BBB-associated structures, such
as the perivascular space (PVS), potentially causing side effects,
including cerebral edema and alterations in the tumor
microenvironment (73). Owing to the barrier effect of the BBB,
liquid biopsy markers such as circulating microRNAs in
peripheral blood have shown limited sensitivity for detecting
(74). Therefore, the
increasingly shifted toward the use of imaging parameters to
evaluate the BBB status. MRI-based biomarkers, such as the

ADC, hold promise for noninvasively monitoring BBB integrity

medulloblastoma clinical focus has

within tumors and assessing treatment responses (75, 76).

Ependymoma

Ependymoma is a neuroepithelial tumor that arises from the
ependymal layer bordering the cerebral ventricles and spinal
canal. Intracranial ependymoma represents a major encephalic
tumor in children, whereas spinal ependymoma develops more
frequently in adults (77). In pediatric ependymomas, the
structural integrity of the BBB remains preserved (Figure 1) (78).
However, ependymal cells constitute a key component of both
the cerebrospinal fluid-brain barrier and the blood-CSF barrier,
playing a vital role in maintaining CNS homeostasis. During
ependymoma development, these barrier cells can be directly
disrupted by the tumor, leading to abnormal infiltration of
cerebrospinal fluid components into the tumor parenchyma,
which alters the local microenvironment and may promote
(79). further
demonstrated that intracranial tumor growth could directly

tumor progression Animal model studies

damage the ependymal epithelial layer, disturbing its barrier
thereby
cerebrospinal fluid and tumor tissue (80). Significant regional

function and enhancing interactions  between
heterogeneity of the BBB has been observed in ependymomas,
particularly in supratentorial tumors. In 9 out of 20 cases, tumor

cells in supratentorial ependymomas highly expressed the tight
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junction protein claudin-5, a marker of BBB integrity, a feature
not observed in infratentorial tumors (81). The heterogeneity of
the BBB in ependymomas is a major contributor to treatment
failure and poor drug delivery efficiency. Targeted therapies face
clinical challenges, partly because of the variable drug
permeability across different tumor regions, which is governed
mainly by differences in BBB permeability and molecular tumor
characteristics (82). Some studies have shown that the regulation
of BBB functionality is closely linked to the glycosylation of
certain transmembrane proteins, such as basigin, which is
upregulated in ependymomas. Basigin may influence barrier
permeability by modulating endothelial tight junctions and
transport mechanisms (83). Ginguené C et al. reported that a
biochemical, transporter-dependent blood-tumor barrier might
exist in ependymomas, which may reduce the tumoral
bioavailability of lipophilic and amphiphilic anticancer drugs
(77). Tt is noteworthy that two pediatric cases of relapsing
demyelination, occurring after and in conjunction with radiation
therapy for ependymoma, have been reported with features
consistent with a multiple sclerosis phenotype, suggesting
radiation-induced disruption of the BBB (84). Such BBB
impairment may enhance the permeability of therapeutic agents,
potentially improving drug delivery to the central nervous
system. In parallel, Ependymal cells regulate CSF dynamics and
contribute to CSF production via the choroid plexus. Their
strategic ventricular location enables broad distribution of
therapeutic proteins through CSF pathways, potentially bypassing
the BBB and offering a route for targeted brain tumor treatment
while minimizing neuronal toxicity (85). Therefore, a deeper
understanding of BBB functional states and underlying molecular
mechanisms across ependymoma is critical for improving drug

delivery strategies and enhancing therapeutic responses.

Craniopharyngioma

Craniopharyngioma is a benign tumor originating from
of Rathke’s
craniopharyngeal duct epithelium. In pediatric patients, the peak

embryonic remnants pouch or the residual
incidence of craniopharyngioma occurs between 5 and 15 years
of age, with the adamantinomatous subtype being the most
in this

adamantinomatous craniopharyngiomas (ACPs) predominantly

predominant form observed population. Pediatric
occur in the sellar and suprasellar regions, adjacent to critical
neurovascular structures such as the hypothalamic-pituitary axis
and optic pathways (86). The integrity of the BBB in this area is
crucial for maintaining neuroendocrine system homeostasis.
Craniopharyngiomas, though histologically benign, can exert
significant mass effects that compress or infiltrate adjacent brain
structures, leading to focal BBB disruption (Figure 1) (57, 87).
For instance, hypothalamic damage frequently results in multiple
pituitary hormone deficiencies and may induce metabolic
disorders such as nonalcoholic fatty liver disease, suggesting that
BBB dysfunction may play a significant role in these pathological
changes (88, 89). Moreover, the tumors’ clinically aggressive
behavior may further impair BBB

integrity, causing
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neuroendocrine abnormalities (e.g., growth hormone deficiency or
diabetes insipidus) as well as visual impairment (90, 91). Studies
indicate that pediatric patients face a significantly greater risk of
postoperative obesity, cognitive decline, and cranial nerve damage
than adults do, which is potentially related to inflammation or
oxidative stress triggered by BBB disruption (92, 93). A small
phase 0 study, which involved three child patients, provided
compelling evidence that the humanized monoclonal antibody
tocilizumab effectively reached ACP tumors and cyst fluid after
systemic delivery (94). These findings support existing data that
indicate that tocilizumab may play a role in systemic therapy for
ACP. Furthermore, these findings imply that the ACP-associated
BBB is compromised relative to other regions of the CNS (94).
Moreover, abnormal expression of tight junction proteins such as
claudin-5 within the gut-brain axis is thought to exacerbate BBB
dysfunction, suggesting that the peripheral system may influence
central nervous system function through the modulation of
integrity  (95).
radiotherapy remain the primary treatment modalities in patients

barrier Currently, surgical resection and
with craniopharyngiomas but may exacerbate BBB damage to
some extent. For example, perioperative BBB disruption is closely
associated with cognitive impairment and increased postoperative
mortality (93). Oxytocin treatment of ACP patients can restore
the integrity of the BBB and reduce the inflammatory response
that is activated by infiltrating peripheral immune cells, thus
blocking the lipotoxicity of hypothalamic neural stem cells
induced by the diffusion of peripheral low-density lipoprotein
the (96). To

hypothalamic injury, some studies recommend conservative

cholesterol into third ventricle minimize
treatment strategies, such as limited resection combined with
moderate radiotherapy (97, 98). Additionally, the permeability of
the BBB in ACP can vary considerably, resulting in inconsistent
therapeutic delivery (99). To address this challenge, localized
treatment strategies such as intracystic drug administration and
nanotechnology-based delivery systems are being investigated as
potential approaches to bypass the BBB and improve treatment
efficacy (100). However, there is a lack of sufficient evidence
regarding the long-term efficacy of these approaches in
protecting or restoring BBB function, highlighting the need for

further systematic investigations.

Conclusion

The review underscores the heterogeneous integrity of the BBB
across pediatric brain tumors and its significant implications for
By
histopathological, molecular, and imaging data, it highlights the
of BBB disruption

review

drug delivery and therapeutic resistance. integrating

characteristics and
the

therapeutic strategies, such as FUS and CED, that aim to

subtype-specific

preservation. Furthermore, evaluates emerging

Frontiers in Pediatrics

06

10.3389/fped.2025.1646641

overcome BBB-associated barriers, thereby enhancing drug

delivery and potentially clinical outcomes in

affected children.

improving
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