Review J Mol Neurosci. 2025 May 20;75(2):68. doi: 10.1007/s12031-025-02335-6.

Interplay of Neuroinflammation and Epilepsy in Glioblastoma Multiforme: Mechanisms and Therapeutic Implications

Fereshteh Golab ¹, Pooya Hajimirzaei ², Sam Zarbakhsh ³ ⁴, Samira Zolfaghari ⁵, Parisa Hayat ¹, Mohammad Taghi Joghataei ¹, Fatemeh Bakhtiarzadeh ⁶, Nooshin Ahmadirad ⁷

PMID: 40392361 DOI: 10.1007/s12031-025-02335-6

Abstract

Glioblastoma multiforme (GBM) is the most aggressive form of primary brain cancer in adults and is characterized by poor prognosis and a high incidence of seizures due to tumor-induced alterations in cerebral physiology. This review explores the complex interactions between GBM-induced neuroinflammation and epilepsy, emphasizing the mechanisms of epileptogenesis influenced by blood-brain barrier dysfunction, ion homeostasis, and neurotransmitter dynamics. We discuss the roles of pro-inflammatory mediators such as interleukin-1 β and tumor necrosis factor-alpha in exacerbating excitatory synaptic activity while inhibiting inhibitory signaling, thus creating a milieu conducive to seizure activity. Furthermore, we evaluated the efficacy of current anti-seizure medications and emerging therapeutic strategies, including the reprogramming of tumor-associated macrophages, in managing GBM-related epilepsy and tumor growth. This study aimed to elucidate the critical pathways connecting GBM and epilepsy, thereby advancing our understanding of potential interventional approaches to improve patient outcomes.

Keywords: BBB dysfunction; GBM; Ion homeostasis; Neuroinflammation; Seizure; Tumor-associated macrophages.

© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

PubMed Disclaimer

1 di 1 12/06/2025, 10:23