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Glioma is the most common CNS tumor, account-
ing for approximately one-third of all CNS tumors 
and 80% of primary malignant CNS tumors.1 

High-grade glioma (HGG), classified as WHO grades 3 
and 4 glioma, accounts for 61.5% of all glioma cases.2 The 
current standard treatment consists of maximal safe resec-
tion followed by radiotherapy and chemotherapy, with te-

mozolomide (TMZ) as the most common agent used. With 
recent advances in surgical technique, maximal safe resec-
tion is more readily achievable now. Although the extent of 
resection has a significant impact on prognosis, patients’ 
responses to chemotherapy and radiotherapy also play an 
important role. Sensitivity to TMZ is directly related to 
patients’ good outcome; in contrast, TMZ resistance re-
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OBJECTIVE  Despite optimal therapy, high-grade glioma (HGG) still has a very unfavorable prognosis. Gross-total 
resection is not often possible, and even when it is, many patients still succumb to the disease due to resistance to te-
mozolomide (TMZ) and radiotherapy. As the mechanism behind such resistance is multifactorial, microribonucleic acids 
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gate the role and predictive value of miRNA-10b and miRNA-21 in TMZ and radiotherapy resistance in HGG patients.
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sults in a higher recurrence rate. Unfortunately, the rate of 
resistance is alarmingly high, with around 40%–60% of 
HGG patients exhibiting resistance.3,4

Because of the high resistance rate, there have been tre-
mendous efforts to develop new therapy for HGG. How-
ever, none have been successful in reducing the drug re-
sistance rate. One possible explanation for failure is the 
presence of a compensatory mechanism in HGG so that 
a therapy targeting one biological aspect of HGG can be 
overcome by other mechanisms.5 Therefore, a targeted 
therapy affecting multiple aspects of HGG is needed.

One of the promising fields of research concerns the 
role of microribonucleic acid (miRNA) in HGG. MiRNAs 
are small noncoding RNAs that have wide-ranging epi-
genetic impacts in the cell cycle and division, differentia-
tion, growth, apoptosis, proliferation, and migration. They 
exert these effects by modulating the expression of various 
genes through the 3 -́untranslated regions of mRNA tar-
gets. The binding of miRNA inhibits the protein transla-
tion of their respective mRNA target.6 Numerous amounts 
of miRNAs have been identified, with some of them pro-
moting tumor growth, while others suppress it.7

In HGG, miRNA-10b and miRNA-21 are two of the 
most widely studied and established oncogenic miRNAs 
with profound effects on the tumor pathophysiology.8 
MiRNA-21 is overexpressed in HGG and related to treat-
ment resistance and worse prognosis. MiRNA-10b is con-
sidered a unique oncogenic miRNA that is expressed in all 
subtypes of glioblastoma (GBM) but not in normal neuro-
glia.9 Its inhibition also significantly reduces glioma cell 
proliferation.

Several biological mechanisms have been proposed to 
explain the role of both miRNAs in HGG, including, but not 
limited to, modulation of DNA repair, tumor stemness, an-
giogenesis, metabolic reprogramming, apoptosis, and cell 
cycle regulation.10,11 All these are important mechanisms in 
the development of TMZ and radiotherapy resistance.

TMZ and radiotherapy resistance are still some of 
the most pressing issues in HGG management. Although 
there have been numerous studies focusing on the role of 
miRNA-10b and miRNA-21 in HGG cell metabolism, 
there has not yet been a specific review regarding how both 
miRNAs influence HGG cell resistance toward therapy. 
Because both miRNAs are integral in the pathophysiology 
of HGG, we hypothesized that they are important contrib-
utors to therapy resistance. Therefore, this review aimed 
to investigate the role of miRNA-10b and miRNA-21 in 
TMZ and radiotherapy resistance in HGG patients.

Methods
Database and Literature Search

We conducted a literature search of the PubMed, Eu-
rope PMC, and Web of Science databases, covering the 
period from database inception to January 15, 2025. The 
search was performed using the following keywords: (mi-
cro RNA 21 or micro RNA 10b or miRNA-21 or miRNA-
10b) and (high-grade glioma or astrocytoma grade 4 or 
astrocytoma grade 3 or high-grade astrocytoma or oligo-
dendroglioma grade 3 or high-grade oligodendroglioma 
or glioblastoma or glioblastoma multiforme or GBM) and 

(prognosis or survival or progression or resistance) and 
(TMZ or radiotherapy). The references of relevant studies 
were also reviewed to identify suitable research. Duplicate 
studies were then identified and removed before study se-
lection. This review has been registered in PROSPERO 
(International Prospective Register of Systematic Re-
views) under registration no. CRD1004470.

Study Selection
The criteria for study inclusion were as follows: 1) in vi-

tro, in vivo, and clinical studies; 2) using human HGG cell 
lines, animal HGG models, or adult HGG patients; and 
3) showing an association between miRNA-10b and/or 
miRNA-21 and TMZ and/or radiotherapy resistance and/
or prognosis. We used grade 3 or 4 gliomas from the 5th 
edition of the World Health Organization Classification of 
Tumors of the Central Nervous System to describe HGG. 
These included oligodendroglioma, astrocytoma, and 
GBM. Review articles, editorials, correspondence, case 
reports, case series, non–English-language articles, and 
studies that only analyzed datasets were excluded. Two au-
thors performed the initial title and abstract screening in-
dependently before reviewing their full texts. The screen-
ing results were then compared. Any discrepancies were 
resolved through discussion with the other two authors.

Data Extraction
Two authors independently performed data extraction 

from the included studies using a standardized form that 
included authors, publication year, study design, study 
sample, intervention or exposure group, control group, and 
outcomes measured. Extracted data were then compared, 
and any discrepancies were also resolved through discus-
sion. Data synthesis was performed to classify the results 
according to the type of miRNA studied and the outcomes 
measured. We presented the result of each miRNA ac-
cording to TMZ resistance, radiotherapy resistance, and 
prognosis. Risk of bias was analyzed using the Quality 
Assessment Tool for In Vitro Studies (QUIN Tool)12 for 
in vitro studies, SYRCLE’s risk of bias (SYRCLE’s RoB) 
tool13 for in vivo studies, and the Risk of Bias in Nonran-
domized Studies—of Exposures (ROBINS-E)14 tool for 
clinical studies.

Results
The literature search of the PubMed, Europe PMC, and 

Web of Science databases yielded 174 records; 33 duplicate 
records were removed, and 141 studies’ titles and abstracts 
were then screened. The initial screening resulted in 38 
studies eligible for a full-text evaluation. Two studies were 
excluded because they did not provide a specific report 
on miRNA-10b or miRNA-21, 1 study was excluded be-
cause it used datasets to analyze survival, and 1 study was 
excluded because it did not separate low- and high-grade 
glioma, leaving 34 studies for the final review (Fig. 1).

Study Characteristics
Tables 1–3 present the characteristics of the included 

studies. There were 14 in vitro studies, 11 clinical stud-
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ies, 3 in vitro combined with clinical studies, and 6 in vi-
tro combined with in vivo studies. For in vitro studies, all 
used either an HGG cell line (U87MG, U251, U343, U373, 
LN18, LN229, LN428, D54MG, T98G, HCN2, A172, 
SF268, and M059) or tumor sample from HGG patients. 
In vivo studies all used nude mice with either intracranial 
or extracranial HGG implantation. Twelve clinical studies 
included GBM patients, 1 included grade 3 and 4 astrocy-
toma patients, and 1 included grade 3 glioma and GBM 
patients. Twenty-five studies evaluated miRNA-21,15–39 6 
studies evaluated miRNA-10b,11,40–44 and 3 studies ana-
lyzed both miRNA-10b and miRNA-21.10,45,46

TMZ Resistance
There were 15 studies evaluating miRNA-10b and 

miRNA-21 expression and their effect on TMZ resistance. 
Four studies evaluated miRNA-10b,40–43 9 studies evalu-
ated miRNA-21,16,24,​25,​27,​28,​30,​4,​37,38 and 2 studies evaluated 
both miRNAs.10,46

From the in vitro studies, we found that response to 
TMZ was improved after miRNA-10b inhibition, evi-
denced by reduced cell viability.10,43 MiRNA-10b also 
shifted tumor metabolism toward glycolysis, thereby in-
creasing the resistance of HGGs to TMZ.42 These effects 
of miRNA-10b were achieved through modulation of the 
cell cycles and activities of PTEN, PI3K/Akt, PDCD4, 
MDM2, p53, BIM, p21, p27, and HOXD10.10,41,42,46

Similar to miRNA-10b, a decreased expression of 
miRNA-21 also improved the response to TMZ in vitro. 
Inhibition of miRNA-21 increased the apoptosis rate and 
reduced cell viability, with 1 study reporting a difference 
in response as high as 53%.24,25,​27–30,​34,​37,46 MiRNA-21 was 
found to alter the ratio of Bax/Bcl2 and caspase-3, pro-
teins closely linked with apoptosis.25,27,​29,​30,38 One study 
also found that increased miRNA-21 expression was iden-
tified in glioma stem cells (GSCs). These GSCs were then 
found to be more resistant to TMZ compared with normal 
GBM cells.39 Other genes and proteins that were reported 

FIG. 1. Study flow diagram. Data added to the PRISMA template (from Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann 
TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71) 
under the terms of the Creative Commons Attribution (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0/).
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to be altered by the expression of miRNA-21 and contrib-
uted to TMZ resistance included PTEN, TP53, PDCD4, 
SOX2, STAT3, OCT4, Nestin, Wnt/β-catenin, GFAP, Akt, 
and VEGF and the cytokine IL-6.24,25,29

The findings of the in vitro studies translated to the 
in vivo studies. In the in vivo studies, miRNA-10b and 
miRNA-21 inhibition resulted in smaller tumor size after 
TMZ treatment.29,41,42,46 One study even found that tumors 
with miRNA-21 expression exhibited double the tumor 
size of those without miRNA-21 expression.29 Regarding 
survival, mice treated with miRNA-21 inhibitor and TMZ 
were found to survive longer than those treated with TMZ 
alone (44 vs 32 days).25

Radiotherapy Resistance
Six studies evaluated the relationship between miRNA-

10b and miRNA-21 expression and radiotherapy resis-
tance. There were 5 in vitro studies and 1 in vitro com-
bined with clinical study. Similar to TMZ, radiation dose 
also differed across studies, ranging from 2 to 100 Gy. One 
study evaluated miRNA-10b,11 while 5 studies evaluated 
miRNA-21.15,23,31,33,36

HGG cells transfected with miRNA-10b mimics had 
a reduced apoptosis rate by one-third. MiRNA-10b was 
found to inhibit caspase-3/7 activity, reduce the Bax/Bcl2 
ratio, and double the p-AKT values in those HGG cells.11 
Similarly, miRNA-21 inhibition produced an increase in 
apoptosis rate and reduced survivability. The differences 
were large, with 1 study reporting a difference in surviv-
ability as high as 80%.15,23,31,33 Inhibition of miRNA-21 
increased the number of DNA double-strand breaks af-
ter radiotherapy, suppressed the PI3K/Akt pathway,33 and 
stimulated the expression of hMSH2 and PDCD4 pro-
teins.23 Regarding cell cycle, 2 studies found that inhibi-
tion of miRNA-21 increased the proportion of cells in the 
G2/M phase.23,33

Prognosis
Two studies evaluated the effect of miRNA-10b on 

prognosis. These 2 studies reported conflicting results, 
with one finding a correlation between higher miRNA-10b 
expression and overall survival (OS), while the other did 
not.40,44 While both studies utilized reverse transcription 
polymerase chain reaction (RT-PCR) to analyze the value 
of miRNA-10b expressed in the tumor tissue of GBM pa-
tients, there were several differences that could explain 
their conflicting results. A significant correlation was 
found in the study by Junior et al.,44 which had a longer 
follow-up time (2 years vs 10.8 months). This could have 
resulted in some deaths being missed in the study by Tez-
can et al.40 Another difference was that all the patients in 
the study by Junior et al. underwent chemotherapy and ra-
diotherapy after surgery, while Tezcan et al. did not report 
their patients’ therapy regimen. Moreover, they did not 
stratify their samples based on resection status. This po-
tential difference in patients’ baseline characteristics and 
treatment could have resulted in uncontrolled confounding 
factors that ultimately affected the final result.

Eleven studies evaluated the effect of miRNA-21 on 
prognosis. As with the studies analyzing miRNA-10b, not 
all the studies differentiated patients with subtotal resec-

tion and gross-total resection status. Two studies analyzed 
both glioma grade 3 and 4 patients and found that higher 
miRNA-21 expression translated to poorer OS in grade 3 
and 4 astrocytoma but not GBM.16,35 Six studies included 
only GBM samples and failed to find a significant correla-
tion between miRNA-21 expression and OS.17–20,22,26 How-
ever, 1 study found that patients with a time to progres-
sion (TTP) less than 6 months had a significantly higher 
miRNA-21 expression.17

All those studies analyzed miRNA-10b and miRNA-21 
expression by performing RT-PCR on the resected tumor 
tissue of their study populations. Therefore, they only 
captured the pre–chemotherapy and radiotherapy level of 
miRNA-10b and miRNA-21. Two other studies tried a dif-
ferent approach, in which they used RT-PCR to analyze 
miRNA-21 expression from the blood serum of GBM pa-
tients taken several times over the course of the disease. 
Interestingly, those 2 studies found that a high miRNA-21 
expression value observed after initiation of the Stupp reg-
imen, not the initial value, correlated with a shorter OS.21,32

A study by Stepanović et al. with 43 GBM patients 
showed a link between miRNA-10b and acute toxicity 
caused by radiotherapy and TMZ. They found that the 
expression of miRNA-10b measured at the 15th fraction 
was significantly higher in patients with toxicity (95.47 vs 
84.62). Expression of miRNA-21 was also higher in those 
with toxicity, but it did not reach statistical significance.45

Risk of Bias
Risk of bias analysis for in vitro studies was carried out 

using the QUIN Tool. All the studies were assessed as hav-
ing a medium risk of bias. Identified potential risks of bias 
were the lack of randomization, blinding, sample number 
description, and operator or assessor details. SYRCLE’s 
RoB tool was used to assess the risk of bias in the in vivo 
studies. All the studies had potential risks of bias. Only 1 
study randomized the samples into treatment and control 
groups. No studies used blinding. For clinical studies, the 
ROBINS-E tool was used. Only 3 studies were assessed as 
having a low risk of bias. One study had a high risk of bias, 
while the rest had some concerns about bias. The major 
potential source of bias was uncontrolled confounding, as 
most of the studies did not control the effect of resection 
status on outcome. The risk of bias analysis can be found 
in Supplemental Tables 1–3.

Discussion
We performed this review to prove our hypothesis that 

miRNA-10b and miRNA-21 are significant contributors to 
TMZ and radiotherapy resistance. We have elaborated on 
the evidence that both miRNAs are instrumental in the de-
velopment of such resistance. Regarding TMZ resistance, 
there is evidence that miRNA-10b and miRNA-21 caused 
resistance through modulation of DNA repair, tumor stem-
ness, angiogenesis, metabolic reprogramming, apoptosis, 
and cell cycle regulation (Fig. 2). In terms of DNA damage 
repair, we learned that miRNA-10b and miRNA-21 modu-
lated the expression and activity of the hMSH2, MDM2, 
and TP53 genes. Deficiency or loss of hMSH2 function has 
been found to induce TMZ resistance through impaired 
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DNA mismatch repair.47 MDM2 naturally suppresses the 
activity of TP53,48 and its overexpression would impair the 
DNA repair capability of TP53.49

GSCs are cells with self-renewal capability that can 
proliferate uncontrollably and form neurospheres. They 
have been implicated in the development of HGG and its 
resistance to TMZ. In our review, we understood that the 
expression of miRNA-21 was increased in neurospheres, 
while GSCs secreted vesicles that carried miRNA-10b to-
ward other tumor cells. We also found that miRNA-10b 
and miRNA-21 increased the expression of SOX2, OCT4, 
and Wnt signaling, which are known contributors to tumor 
stemness.50–52 Taken together, miRNA-10b and miRNA-21 
potentially have roles in the development of GSCs and 
merit further investigation.

Another important pathway that was modulated by the 
expression of miRNA-10b and miRNA-21 was the PI3K/
Akt pathway. The downstream effectors of this pathway 
include pyruvate dehydrogenase kinase 1 (PDK1), hypox-
ia-inducible factor 1 (HIF-1), nuclear factor–kappa B (NF-
κB), and Bcl-2.53 PDK1 inactivates pyruvate dehydroge-
nase and prevents the production of acetyl-CoA, causing 
a shift toward the glycolytic pathway in what is called the 

Warburg effect, which contributes to TMZ resistance.54 
The activation of HIF-1 by the PI3K/Akt pathway pro-
motes angiogenesis by activating the VEGF gene and 
helps the tumor survive in a hypoxic microenvironment.53 
NF-κB promotes TMZ resistance by promoting MGMT 
gene expression, therefore giving the HGG cell the ability 
to repair the DNA damage caused by TMZ.55,56

Regarding apoptosis, miRNA-10b and miRNA-21 in-
creased the expression of pro-apoptotic Bcl2 and lowered 
the expression of anti-apoptotic caspase-3/7, BIM, and 
PDCD4. Closely related to apoptosis, there was evidence 
that pathways that regulate cell cycle, such as p27/KIP157 
and CDKN1A,58 were also altered by miRNA-10b and 
miRNA-21. As a result, tumor cells can bypass the G2/M 
phase and continue to proliferate. We also found evidence 
of alterations in IL-6 and STAT3. IL-6 is the upstream 
element of the JAK/STAT3 signaling pathway. STAT3 can 
upregulate MGMT gene expression and also plays a role in 
metabolic reprogramming by promoting HIF-1 transcrip-
tion.59

We also found evidence that miRNA-10b and 
miRNA-21 reduced the deleterious effect of radiotherapy 
on HGG cells. The main target of radiotherapy is DNA 

FIG. 2. Summary of possible pathways that are activated by miRNA-10b and miRNA-21 to ultimately induce HGG chemoresis-
tance or radioresistance.
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damage. Therefore, any factors that can help repair the 
DNA damage will contribute to radiotherapy resistance. 
There was evidence that miRNA-10b and miRNA-21 
can increase the PI3K/Akt pathway. An increased PI3k/
Akt pathway can then enhance DNA damage repair in 
response to radiotherapy through homologous recombi-
nation and nonhomologous end joining,60 hence reducing 
the efficacy of radiotherapy. Similar to TMZ resistance, 
another important factor in radiotherapy resistance is 
the GSCs. GSCs were found to reduce apoptosis and in-
crease the tumor cell’s DNA repair capability.60 Regarding 
hMSH2, 2 studies showed that resistant HGG tumor cells 
exhibit high levels of hMSH2.61,62

The in vitro findings were supported by in vivo stud-
ies, in which inhibition of miRNA-10b and miRNA-21 re-
duced tumor size and prolonged survival. However, clini-
cal studies produced conflicting results. One reason may 
be variation in patients’ resection status—a key predictor 
of survival.63 Patients with gross-total resection typically 
have better outcomes than those with subtotal resection, 
and combining both groups could introduce bias. Tumor 
type and grade also appeared to be influential; miRNA-21 
expression correlated with poorer survival only in grade 
3 and 4 astrocytoma cases.16,35 The timing and method of 
miRNA sampling further contributed to inconsistencies. 
Studies that found no prognostic correlation measured 
miRNA expression at initial resection, whereas Olioso et 
al. and Labib et al. observed a correlation when miRNA-21 
was measured after treatment began, using blood samples 
instead of tumor tissue.21,32 This suggests that miRNA ex-
pression may change during therapy and that blood sam-
pling could be a better sampling method, as it allows se-
quential evaluation. Lastly, there were differences between 
studies regarding the therapy regimens and follow-up pe-
riod. Therefore, we recommend that future studies stratify 
patients by resection status and tumor grade, control con-
founders such as therapy status of the samples, adopt con-
sistent sampling methods, and ensure adequate follow-up.

We have demonstrated that miRNA-10b and miRNA-21 
contribute to resistance to TMZ and radiotherapy through 
multiple pathways. Therefore, rather than targeting each 
pathway individually, using these miRNAs either as prog-
nostic tools or therapeutic targets can yield better results.

Currently, the most widely used marker for resistance 
and survival for HGG is MGMT promoter methylation sta-
tus. However, there is still some discordance because HGG 
has demonstrated that it has the capability of expressing 
MGMT despite having a methylated MGMT promoter.64 
In some studies, even expression of the MGMT protein it-
self has some inconsistencies with clinical outcome.65 Us-
ing MGMT promoter or expression status does not capture 
the complete mechanism behind therapy resistance. On 
the contrary, miRNA-10b and miRNA-21 with their wide-
ranging epigenetic impacts can potentially provide better 
prognostic tools. Regarding ease of sampling, instead of us-
ing HGG tissue, both miRNAs can be analyzed from blood 
samples with proven correlation to clinical outcomes.21,32 
Therefore, miRNA-10b and miRNA-21 can potentially 
be better biomarkers. With a better prognostication tool, 
clinicians are provided with more tools in their armamen-
tarium for determining their patients’ prognosis and ther-

apy. This is especially important in countries with limited 
resources, as the ability to predict which HGG patients are 
more likely to respond to TMZ and radiotherapy would al-
low resources to be focused on those patients. However, the 
cost of RT-PCR to analyze miRNA-10b and miRNA-21 
expression is still high. In our country, a developing lower-
middle-income country, the cost reached 5000 US dollars, 
which makes widespread use not yet feasible. Neverthe-
less, we believe that in the future, when miRNA-10b and 
miRNA-21 have progressed from the realm of research to 
the clinical setting, their cost will decrease substantially.

Aside from their prognostic value, miRNA-10b and 
miRNA-21 also offer promising therapeutic targets. Nu-
merous treatments for HGG—ranging from PI3K in-
hibitors to gene therapies targeting GSCs—have been 
explored, yet prognosis remains poor and recurrence in-
evitable. This is likely due to the presence of redundant 
compensatory pathways and the ability of GSCs to stay 
quiescent until drug levels decrease.5 Targeting miRNA-
10b and miRNA-21 could address this, as they influence 
multiple resistance mechanisms simultaneously. However, 
further research is needed, particularly regarding deliv-
ery methods. Promising approaches under investigation 
include locked nucleic acids and viral vectors.66 We hope 
this review highlights the therapeutic potential of miRNA-
10b and miRNA-21 and lays a foundation for more focused 
research into miRNA-based therapies.

Our review has several limitations that need to be ad-
dressed. First, the studies included in our review had 
several inherent biases. None of the in vitro and in vivo 
studies utilized randomization and blinding. The clinical 
studies also did not adequately control for resection status. 
These biases might have some effects on the results of our 
review. To tackle this issue, we used a systematic method 
to assess for bias and presented the results so that the read-
ers could understand the strength of the evidence and use 
the information accordingly. Another limitation was that 
we were not able to conduct a meta-analysis because the 
studies differed in their methods of presenting the results. 
Nevertheless, we believe our review managed to unify the 
current evidence of miRNA-10b and miRNA-21 in TMZ 
and radiotherapy resistance.

Conclusions
The expression of miRNA-10b and miRNA-21 contrib-

uted to TMZ and radiotherapy resistance in vitro. Animal 
studies have also shown their negative effect on progres-
sion and survival. However, the effects of miRNA-10b and 
miRNA-21 on survival and progression in clinical studies 
are still conflicting. Future studies should perform bet-
ter confounding adjustments when studying the effect of 
miRNA-10b and miRNA-21.
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