Neuro-Oncology Advances

7(S4), vdaf028, 2025 | https://doi.org/10.1093/noajnl/vdaf028

Immunologic specificity in glioblastoma: Antigen discovery and translational implications

Cameron M. Hill, Anthony Z. Wang, Brian Hsueh, Ramiro Ramirez, Ngima Sherpa, Marcelo Costa, Ofir Williams, Mao Li, and Gavin P. Dunn[®]

All author affiliations are listed at the end of the article.

Corresponding Author: Gavin P. Dunn, MD, PhD, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (GPDUNN@MGH.Harvard.edu).

Abstract

Recent studies have highlighted the therapeutic potential of targeting tumor antigens (TAs) in glioblastoma (GBM). Several classes of TAs, such as tumor-associated, cancer testis, and tumor-specific antigens, have proven to be immunogenic and used safely in vaccines. Many of these vaccines have focused on tumor-associated or cancer testis antigens. However, tumor-specific antigens (TSA) present an ideal target due to the lack of tolerance and exclusive tumor expression, mitigating the risk of off-target effects. Most research on TSAs in GBM has aimed to uncover neoantigens, yet the dearth of shared neoantigens as well as the cost and labor-intensive process of identifying personal neoantigens have acted as barriers to treatment. A better understanding of the individual antigens spanning all three TA classes is important to improve the design of GBM antigen therapies and understand, fundamentally, the nature of immunologic specificity in glioma. We review the antigen classes in all cancers and how TAs are discovered. Then, we focus on the unique properties of GBM and the antigens that have been identified and used for therapy in GBM. Finally, we discuss translational considerations for future antigen-targeted treatments.

Key Points

- Numerous types of GBM antigens can be recognized by T cells, including tumor associated antigens, cancer testis antigens and tumor specific antigens.
- Therapeutic applications of antigens include vaccines and adoptive cell therapy, both of which have been shown to be safe in humans.
- Prior to targeting via therapy, antigens should be confirmed to be present in the immunopeptidome, since often algorithm-identified "neoantigens" are not displayed by the tumor.
- To combat GBM heterogeneity, antigen-focused therapies should target both MHC class I and class II restricted antigens, as well as multiple classes of antigens.

Glioblastoma (GBM) is the most common malignant central nervous system (CNS) cancer in adults. With standard therapy, median survival is around 20 months, ²⁻⁴ emphasizing the need for novel therapies. Targeting tumor antigens (TAs), the peptides presented by tumors on major histocompatibility complex (MHC) molecules, either via vaccine^{5,6} or adoptiveT cell transfer (ACT)⁷⁻¹² has shown success in other cancers and holds promise for GBM.

As context for our discussion of TAs, it is important to briefly consider our definition for "antigen." We are exclusively referring to T cell antigens: when we use the terms "antigen," "epitope," or "peptide" we are referring to the 8–10 length or the 13–25 length amino acid sequence that is non-covalently bound to an MHC class I (HLA-A, HLA-B, or HLA-C) or MHC class II (HLA-DP, HLA-DQ, or HLA-DR) molecule,

© The Author(s) 2025. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

respectively.^{13,14} During class I antigen processing, proteasomes typically cleave proteins in the cytosol into shorter peptides, and during class II processing, lysosomes commonly digest uptaken extracellular proteins into shorter peptides.¹³ The peptides capable of binding MHC molecules are loaded; then, the peptide-MHC complex (pMHC) is presented on the cell surface.¹³ A class I pMHC can be recognized by CD8+T cells, while a class II pMHC can be recognized by CD4+T cells.^{13,14}T cell activation requires T cell receptor (TCR) contact with amino acids from both the antigen and the MHC, as well as costimulating molecules.¹⁵

Classes of T-Cell Tumor Antigens in Cancer

Tumors can present antigens on both class I and II MHCs. 16,17 The value of targeting antigens in cancer stems from the idea that vaccinations or TCR-based therapies can augment a patient's immune response against antigens, derived from intracellular and extracellular proteins, that are presented on tumor cells. These approaches aim to induce clonal expansion of antigen-specific T cells. Overall, TAs can be classified into tumor-associated antigens

(TAAs), cancer testis antigens (CTAs), and tumor-specific antigens (TSAs)^{18,19} (Figure 1).

Tumor-Associated Antigens

TAAs, which are present in normal cells and tumor cells, can be further subdivided into overexpressed or lineage-specific TAAs. ¹⁹ Overexpressed TAAs are self-antigens with amplified expression in tumor cells. These include HER2 epitopes in breast cancer²⁰ and P53 epitopes in squamous cell carcinoma. ²¹ Lineage-specific TAAs are self-antigens that are normally restricted to a particular cell type. An example of this class is the melanocyte differentiation antigens (MDAs), like MART-1 epitopes, ²² which are typically only expressed by melanocytes, ²³ but can also be expressed in melanoma and GBM. ^{19,22,24,25} Despite endogenous expression of TAAs and presumed negative selection of TCRs reactive against them, studies have shown reactivity against TAAs by cytotoxic lymphocytes (CTLs). ^{26–28}

Notably, Tebentasfusp, a first-in-class FDA-approved treatment for metastatic uveal melanoma, is a bispecific molecule that consists of (1) an affinity-enhanced TCR specific for the HLA-A*02:01 restricted MDA gp100 peptide YLEPGPVTA

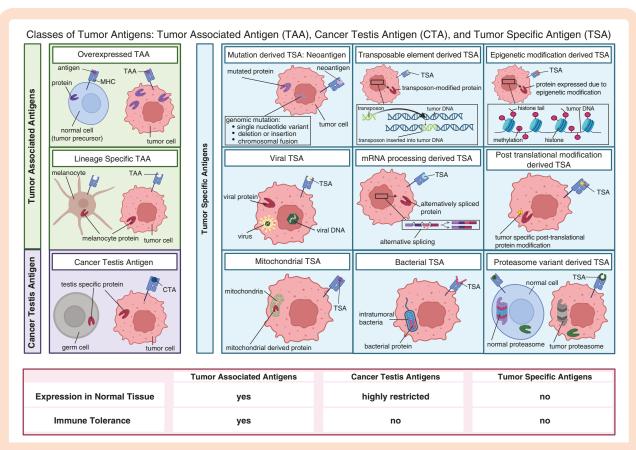


Figure 1. Tumor antigens can be ascribed to three classes: tumor-associated antigen (TAA), cancer testis antigen (CTA), and tumor-specific antigen (TSA). TAAs are self-antigens that are present in tumor cells; they include the overexpressed and the lineage specific. While the proteins from which CTAs derive are present in male germline cells and trophoblasts, antigen expression is mostly isolated to tumors. TSAs that occur secondary to mutations, like single-nucleotide variants (SNVs), insertions or deletions of amino acids (INDELs), or gene fusions, are called neoantigens. Myriad other causes of TSAs may include transposable elements, epigenetic modifications, viruses, altered mRNA processing (such as alternative splicing), post-translational modifications, mutations in mitochondrial DNA, bacterial proteins, and proteasome variants. The classes of TAs vary in their levels of expression in non-tumor tissue and in the degree of immune tolerance, factors that impact off-target effects and efficacy, respectively, of antigen-focused therapy for cancer.

and (2) an anti-CD3 single chain variable fragment.^{29,30} Tebentasfusp binds the gp100 antigen-HLA complexes displayed by tumor cells and recruits and activates T cells via CD3.³⁰ Tebentasfusp demonstrates the feasibility and therapeutic potential of targeting TAAs, particularly in cancers with a low tumor mutational burden (TMB), a term that quantifies the mutations in a cancer exome,^{31,32} since uveal melanoma has a medianTMB of 2.1 mutations per megabase.³³

Cancer Testis Antigens

CTAs, also known as cancer germline antigens, are highly restricted in normal tissues. They originate from proteins that are lineage-restricted to male germline cells and trophoblasts¹⁹ and are expressed in cancers.³⁴ A MAGE-1 CTA was the first human TA ever identified.35 NY-ESO, a protein from which CTAs can derive, is expressed in cancers such as ovarian, breast, bladder, prostate, and hepatocellular carcinoma.³⁶ While male germline cells and trophoblastic cells do not express MHC molecules, 19 potential TCRs reactive against CTAs are likely subject to some self-tolerance due to CTA protein and MHC molecule expression in the thymus. 37,38 Despite this, CTLs reactive to CTAs have been observed. 19,26 Their immunogenicity, limited presentation in normal cells, and association with oncogenicity and immune invasion,³⁹ make CTAs promising therapeutic targets. In fact, the FDA recently approved a TCR therapy against MAGE-A4 CTA for patients with unresectable or metastatic synovial sarcoma. 40

Tumor-Specific Antigens

Finally, TSAs are antigens exclusive to tumor cells. 41 TSAs occur when aberrant protein expression in cancer leads to the expression of antigens novel to the immune system. 18 TSAs can arise due to genomic mutations, in which case the resulting antigen is called a neoantigen, or due to other causes. 18,42-47 Importantly, the host has not developed tolerance to TSAs, since they were not present during immunologic development.

Neoantigens—Neoantigens are usually considered the TSAs that arise due to mutations in the cancer cell genome. 18 Some neoantigens result from mutations that confer a selective advantage to cancer, termed "driver mutations, while the majority likely result from mutations that surface incidentally, termed "passenger mutations." 48,49 Neoantigens commonly occur secondary to single-nucleotide variants (SNV), in which one amino acid is substituted, resulting in a missense or nonsense mutation. 18 SNV mutations are frequent in melanoma, with a reported average of 489 SNV mutations per tumor,50 and less frequent in pancreatic cancer, with a reported median of 48 SNVs per tumor.⁵¹ GBM has been described as having 30-50 SNVs per tumor. 18,52 Neoantigens can also arise due to insertions or deletions of amino acids (INDELs), which can cause either frameshift or in-frame mutations, like EGFRvIII in GBM.¹⁸ INDEL neoantigens commonly accrue in cancers that occur secondary to microsatellite instability, like colon cancer. 18,53 INDEL neoantigens often promote greater immunogenicity and may have stronger binding than SNV neoantigens.⁵⁴ In three melanoma cohorts, the number of frame-shift INDEL mutations, but neither the number of in-frame INDEL mutations nor SNV mutations, were associated with response to immune checkpoint blockade (ICB).⁵⁴ Finally, neoantigens can originate from gene fusions, like in chronic myeloid leukemia,⁵⁵ head and neck cancer,⁵⁶ or breast cancer.⁵⁷ One study determined that 21 of 92 tested GBM samples had gene fusions, suggesting that a subset of GBM patients may have gene fusion neoantigens.⁵⁸This represents a potential vulnerability, since the immunogenicity of fusion neoantigens has been reported as greater than those from SNVs or INDELs.^{54,59}

Personal vaccines targeting neoantigens have exhibited strong potential as a treatment for some cancers. ^{5,60,61} In a phase I clinical trial for melanoma, four of the six patients who received the personal neoantigen vaccine NeoVax, had no recurrence at 25 months. ⁵ Two patients with recurrence subsequently received anti-PD-1 therapy and experienced complete regression. ⁵ This success is likely related to melanoma having a median TMB of over 10 somatic mutations per megabase ^{31,62}—what the FDA considers the threshold for defining a high TMB ⁶³—because high TMB is associated with response to ICB in many cancers. ^{64,65} Since ICB's mechanism of action leverages the tumor immunity cycle, ^{66,67} which requires the presentation of TAs, ³² then transitively, high TMB likely corresponds to a response to antigen therapy.

However, the relationship between TMB and tumor neoantigen burden (TNB) is uncertain for two reasons. First, the TMB calculation is typically restricted to only mutations in the exome, the protein-coding regions of the genome. Hence, the TMB does not account for mutations in the noncoding regions, which comprise over 98% of the genome, and likely serve as abundant sources of TSAs. 32,68-72 Second, most mutations do not yield neoantigens, 73-76 since only a select few potential neoantigens are actually processed and presented, let alone recognized by T cells. 19 For example, less than 2% of identified somatic mutations in metastatic gastrointestinal cancers were found to have corresponding reactive T cells.⁷⁷ Still, the higher the TMB, the greater the chance of exome mutations leading to neoantigens.^{75,78} For low TMB cancers like GBM, which has a median TMB of around one to two somatic mutations per megabase,31,79 and thus, presumably, a low TNB, it may be necessary to target other types of TAs.

The lack of correlation between the existence of a mutation and the presence of its corresponding neoantigen can pose challenges to neoantigen vaccine design. The GAPVAC clinical trial for GBM sought to vaccinate patients with both off-the-shelf, or premanufactured, TAs and personal neoantigens.⁵² Of the 643 identified genomic mutations from 15 patients, zero were identified by high-sensitivity mass spectrometry (M.S.) in the patients' immunopeptidome, which refers to the antigens in aggregate bound to MHC molecules.^{52,80} These results did not seem to reflect a lack of sensitivity due to the successful elution of both mutated antigens from non-tumor tissues and neoantigens from a GBM patient not in the study.⁵² Plus, this result corroborates other studies' findings that only a small percentage of potential neoantigens are processed and presented on MHC molecules. 73-76 As loss of antigenicity is one pathway by which tumors evade the immune system,81 a process that can occur secondary to mutations⁸² or epigenetic changes,^{83,84} this lack of antigen presentation is not totally surprising and emphasizes the importance of confirming tumor presentation of neoantigens prior to targeting them.

Moreover, the GAPVAC personal vaccine only targeted SNV neoantigens.⁵² As mentioned, GBM typically has only around 30–50 SNVs per tumor,⁵² so the number of presented SNV neoantigens is likely much lower. Thus, future therapies for GBM and other low TMB cancers should target other sources of neoantigens, like INDELs and fusions, as well as other sources of TSAs.

Other Sources of Tumor-Specific Antigens-Although studies have focused mostly on variant neoantigens in the coding regions of DNA, it is important to recognize other TSAs, as they may serve as a reservoir of additional tumor targets. One study investigating M.S. data from multiple cancers, including GBM, discovered that for some HLA groups, nonmutation-derived TSAs may account for up to 15% of MHC class I restricted peptides.85 A source of these alternative TSAs is altered mRNA processing. For instance, alternative splicing has been predicted to occur in cancer at over double the frequency of SNV mutations⁸⁶ and has been reported to cause TSAs in cancers like melanoma87 or AML.88 Another study identified alternative splicing-derived TSAs as immunogenic across multiple cancers, including GBM.89 Notably, this study demonstrated that mRNA expression for the majority of GBM neojunctions, borne from cancer-specific splicing events, were conserved across multiple tumor regions. Thus, targeting alternative splicing TSAs may be an effective strategy for cancers like GBM with significant spatial heterogeneity.

Other causes of TSAs could include changes in epigenetic regulation⁹⁰ and transposable elements (TEs), which are mobile DNA sequences that can change their location in a genome, ^{91,92} as in the case of ovarian cancer, breast cancer, or hepatocellular carcinoma. ⁹³ Post-translational processing derived TSAs can arise, such as in pancreatic cancer, melanoma, and lung cancer. ⁹⁴ Lastly, some studies have suggested that abnormal proteasomal processing can lead to TSAs, ^{44–46,95} but others have challenged this. ⁸⁵

Even mitochondria, 96,97 bacteria, 98 and virus-derived proteins may lead to TSAs. Viral TSAs occur secondary to infections like human papillomavirus (HPV), 9 Epstein–Barr virus, 99 and human T-lymphotropic virus-1 100 in squamous cell carcinoma, lymphoma, and leukemia, respectively. Vaccines that target antigens of the oncogenic viruses HPV and HBV are administered prophylactically against cervical cancer and hepatocellular carcinoma, respectively. 101 Viral antigen vaccines have also demonstrated promise as a treatment for cervical cancer. 102 Overall, alternative sources of TSAs represent potential therapy targets for cancer, especially those with low TMB, and more research is necessary to better characterize them.

Identifying and Validating Tumor Antigens in Patients

Discovery of Antigens

Two general approaches can be taken for antigen discovery: (1) a genomic approach, termed "cancer immuno genomics," 48,103,104 that uses next-generation sequencing (NGS) to detect mutations, from which computational algorithms predict neoantigen sequences, and (2) an

immunopeptidome approach that uses M.S. to detect antigens bound to MHC molecules on the cell surface. 105

The former, which exclusively identifies neoantigens in protein-coding regions, begins with the detection of mutations via comparing whole exome sequencing (WES) of tumor DNA to normal DNA. 106,107 Multiple pipelines for "mutation calling," which is the process of identifying somatic mutations¹⁰⁸ are often used in conjunction to increase confidence. 18,108-111 RNA-sequencing performed in parallel to WES quantifies the expression of each mutation.¹¹² (However, the logic of performing this RNA sequencing is challenged by a study that compared presentation of peptide to its corresponding mRNA levels in an in vivo murine model, and found that peptides identified in the immunopeptidome had low corresponding mRNA levels.113) Then, mutation data and patient HLA allele information can be integrated into computational algorithms that list predicted peptides and potential peptide-HLA binding partners. 110,114,115 These algorithms often rank peptides by estimated binding affinity to respective HLA alleles, which is complex due to the highly polymorphic nature of the HLA locus. 15 The algorithms vary widely in their predictions and are typically better suited to predict class I restricted peptides. 112 Importantly, this approach does not necessarily confirm that the identified "antigens" are actually in the immunopeptidome.

Immunopeptidomics, meanwhile, can be harnessed for the identification of TAAs, CTAs or TSAs. 116 Immunopeptidomics identifies HLA-bound peptides isolated from tumor samples using M.S. 117 In this approach, MHC molecules with attached antigens are immunoprecipitated and eluted from tumor samples. Peptide sequences can be determined using protein database searching, library searching of antigens previously characterized by M.S., or de novo sequencing, which uses algorithms to predict antigen sequences directly from the mass spectra data without any references. 116,118,119 Comparisons between peptides eluted from tumor and normal tissue determine tumor specificity.

Determining the Immunogenicity of Discovered Antigens

Once identified, peptides require further testing to validate immunogenicity, since many do not elicit an immune response. 120-122 Historically, TA immunogenicity was confirmed by screening patient-derived CTLs for recognition of cells transfected with both the antigen of interest and the matched HLA.⁷⁶ At present, high-throughput screening methods for TCR reactivity to antigens can be used.76 Several variables make this validation difficult. First, limited algorithms are available for TCR and peptide-MHC complex (pMHC) binding interactions. 18 While databases of publicly available TCRs are available for TCR comparison, the majority of these are reactive against viral antigens. 123 Second, the correlation between antigen affinity and immunogenicity is weak. 124,125 A few key components are required for antigen screening: (1) TCRs of interest, (2) antigens of interest, (3) patient-specific HLA alleles, and (4) sources of antigen-presenting cells (APCs).

Several methods are available for biased antigen screens, which focus on select antigens. 122,126-129 In brief,

healthy peripheral blood mononuclear cells (PBMCs) or immortalized T cells are transduced with TCRs of interest. APCs are transduced with patient-specific HLA alleles and pulsed with either pools of target antigens or oligonucleotides encoding target antigens. Following T cell and APC co-culture, markers of T cell activation are measured via flow cytometric analysis. Then, the cognate antigen of the target TCR can be determined through an iterative screening process.

Unbiased approaches have also been developed to identify antigen and TCR pairs, in which selected TCRs are screened against a wide range of peptides. Yeast display, for example, involves yeast which individually expresses a random peptide that is covalently linked to an HLA molecule. 130 These yeast are then co-cultured with soluble bead-multimerizedTCR and iteratively enriched via affinitybased selection. After several rounds of enrichment, yeast are sequenced and the corresponding antigen sequences are determined. Thus, even though thousands of individual peptides presented by yeast are cultured together, only those that express the cognate antigen of the target TCR will be purified and eventually sequenced. Another example of an unbiased approach is the use of cytokinecapturing APCs. 131 In this system, APCs are transduced with patient-specific HLA molecules and membrane-bound antibodies that bind to either IL-2 or interferon-gamma (IFNy). These APCs, which are also transduced with oligonucleotide pools, are co-cultured with T cells expressing target TCRs. When the target TCR binds to its cognate antigen, the T cell will release cytokines which then are "captured" by the APC. APCs with bound cytokine can be isolated and sequenced to detect the cognate antigen of the target TCR. Regardless of the screening method, confirmation of antigen immunogenicity is resource-intensive. However, the recent advent of artificial intelligence in cancer immunity research¹³² has yielded tools¹³³ that may expedite this process.

Unique Features of Glioblastoma Relevant to Immunotherapy

As context for our discussion of TAs in GBM, it is important to briefly consider its properties that impact antigen-based therapy. In addition to the previously discussed low TMB, these include (a) heterogeneity, (b) immunological dysfunction, and (c) standard treatment.

Spatial Heterogeneity of Glioblastoma

At a genetic level, GBM remains an incredibly difficult tumor to treat due to the significant heterogeneity in transcriptional expression, as well as somatic mutations, and consequently antigens—likely a result of severe immunoediting.^{134–136} Several studies have highlighted the transcriptional heterogeneity of GBM tumor samples,^{79,137} with Verhaak et al. initially classifying 4 major subtypes using bulk RNA-sequencing: proneural, neural, classical, and mesenchymal.¹³⁸ Other classifications highlight the complexity, and plasticity, of GBM tumor cells.¹³⁹

Moreover, GBM tumors have been characterized as having a high frequency of subclonal mutations, ¹⁴⁰ leading to a lack of uniform antigen expression across a tumor spatially. ¹⁴¹ Overall, the intratumoral and intertumoral heterogeneity of GBM tumors, at the transcriptional, mutational, and antigen level, should be considered during the design of antigen-based therapy, discussed in more detail in a later section.

Immunosuppression Characterizes Glioblastoma

Immunosuppression defines the microenvironment of GBM tumors. GBM tumors are reported as infiltrated by immunosuppressive tumor-associated macrophages (TAMs). 142-147 Microglia have also been observed to downregulate MHC class II, which would limit the presentation of class II-restricted antigen. 148-150 The accumulation of myeloid-derived suppressor cells (MDSCs) also contributes to immunosuppression. 151 Plus, T cells appear to be dysfunctional within the tumor microenvironment. Although some studies have highlighted the expression of canonical exhaustion markers on T cells derived from both human and mice tumors, 144,152-155 exhaustion does not seem to be the predominant phenotype of GBM T cells. 142,145,156,157 Specifically, studies demonstrate the lack of a strong exhaustion signature, and instead reveal the presence of CLEC2D expressing 142 or GZMK expressing T cells.¹⁵⁷ Also, immunosuppressive regulatory T cells (Tregs) have been shown to comprise a significant proportion of the CD4+T cell compartment in both patients with GBM and murine models. 158,159

GBM tumors also intrinsically contribute to immunological dysfunction. One study found that 61% of patients had at least 1% or more PD-L1-positive tumor cells, and PD-L1 expression was a negative prognostic factor. 160 Indoleamine 2,3 dioxygenase (IDO) has been shown to be expressed by GBM tumor cells and to increase the recruitment of immunosuppressive Tregs. 161–163 Expression of other proteins such as FasL 164 which induces T cell apoptosis, non-classical MHC class I molecules 165, 166 which enables evasion of immune cells, and ICAM-1, which promotes immigration of myeloid cells, by GBM tumors have also been reported. 167, 168 The microenvironment and tumor-intrinsic sources of immunosuppression likely contribute to the disease's limited response to immunotherapy.

Standard Treatment of Glioblastoma May Influence Response to Antigen Therapy

GBM treatments can cause further immunosuppression. 169
Some clinical trials have observed that steroid administration, commonly given to patients with GBM, was associated with no immune response to antigen therapy, 52,106
and some trials have used steroid administration as an enrollment exclusion criteria. 170,171 However, other trials have had immune responses in patients that received steroids. 172,173 Doubtlessly, timing and dose determine the effect on immune response. Radiotherapy and chemotherapy, part of the standard of care for GBM, also likely impact tumor response to immunotherapy. Radiotherapy can promote the proliferation and infiltration of Tregs, as well

as the differentiation and migration of MDSCs, fostering immunosupression.¹⁷⁴ Conversely, radiotherapy can cause mutations that lead to new neoantigens, providing targets for the immune system.¹⁷⁴ Similarly, temozolomide (TMZ) has been observed to cause immunosuppression, and in particular, lymphopenia.¹⁷⁵ However, TMZ can also cause a hypermutation phenomenon,¹⁷⁶ which presumably leads to the presentation of more antigens novel to the immune system. In fact, hypermutation has been observed to be associated with increased levels of CD8+T cell infiltration.¹³⁹The impact of treatments like corticosteroids, radiation, and chemotherapy on response to antigen therapy requires further investigation.

Tumor Antigens in Glioblastoma

Glioblastoma Tumor Antigens

GBM TAAs have been used in several vaccines (Supplementary Table S1). GBM CTAs (Supplementary Table S2) and shared TSAs (Supplementary Table S3) have also been used in vaccines or shown to be immunogenic in vitro. Table 1 lists clinical trials that target TAs in GBM via vaccine.

As depicted in the "Antigen Discovery" section earlier, for an epitope to be a true TA, two criteria must be met: (1) the epitope is presented endogenously on HLA molecules by tumor cells and (2)T cells can bind the pMHC and elicit an immune response. 194 For criterion one, antigen presentation can be confirmed by eluting antigens from tumor cells via M.S. An indirect way to confirm criterion one, while simultaneously confirming criterion two, occurs when CTLs that are specific for a particular antigen lyse tumor cells because this process requires tumor display of the antigen. IFNy ELISpot assays, tetramer assays, or antigen screens can confirm criterion two (antigen immunogenicity) but not criterion one.

A caveat: while almost every TA listed in the supplementary tables have been shown to be immunogenic, not all the antigens listed are necessarily presented by MHC molecules on GBM cells, despite the expression of the protein from which the antigen is derived. While this is in part due to HLA restriction of peptides, 140 it does not fully account for such discrepancies. One study highlighted this phenomenon when different antigens with the same MHC restriction and originating from the same source protein were differentially expressed in tumor and normal brain. 195 Normal brain and tumor cells both expressed the mRNA for the protein PTPRZ1.¹⁹⁵ However, while one HLA-A*02-restricted PTPRZ1-derived antigen was exclusively presented in tumor but not the normal brain, another HLA-A*02-restricted PTPRZ1-derived antigen was expressed in both tumor and normal brain.¹⁹⁵ In a separate study, TAs with the same HLA restriction from the same source protein were not always simultaneously presented by HLAmatched GBM.¹⁹⁶ It is possible that technical artifact could contribute to the observed lack of concordance between protein expression and antigen presentation. However, other biological reasons might include different expressions of proteasomes, different binding strength to MHCs,

preferential display of more immunogenic peptides, or the opposite: MHC downregulation to facilitate immune escape. 197 Further investigation should be done in preclinical models to interrogate the mechanisms underpinning tissue or tumor specificity of the immunopeptidome. This can be explored via an in vivo murine model that allows for the tagging of MHC I complexes from defined cell populations. 113 Moreover, the differential display of antigens by tumor tissue underscores the importance of directly confirming MHC presentation of antigens on tumor cells before targeting them with therapy.

Tumor-Associated Antigens in Glioblastoma

Many identified GBM TAs belong to the TAA class (Supplementary Table S1). Overexpressed TAAs in GBM include peptides derived from ARF4L, ¹⁹⁸ GALT3, ¹⁹⁸ AIM-2, ¹⁹⁹ HER-2, ²² EphA2, ^{22,200} tyrosinase, ²² Sox2, ²⁰¹ Sox11, ²⁰² and EphB6v. ²⁰³ Lineage-specific TAAs include MDAs from TRP-2, ²⁵ Mart-1, ²² and gp100. ²² While not tumor-specific, GBM TAAs have successfully induced immune responses from T cells either in vitro, ²² ex vivo, ^{198,200–203} endogenously without intervention, ⁵² or endogenously after vaccination. ^{25,204} Although targeting these TAAs with an exogenous intervention risks deadly autoimmune reactions, ²⁰⁵ many GBMTAAs have been used safely in vaccines (Table 1).

HER2 antigens—Human Epidermal Growth Factor Receptor 2 (HER2) is often overexpressed in GBM, including in glioblastoma stem cells (GSCs),206 and is associated with primary GBM²⁰⁷ and worse survival.²⁰⁸The HER2 antigen KIFGSLAFL has been shown to be immunogenic, as antigen-specific T cells lysed HLA-matched glioma cells ex vivo.²² A phase I clinical trial of a dendritic cell (DC) based vaccine that included this antigen showed that some patients developed antigen-specific CD8+T cells.¹⁸⁷ However, the presence of CD8+T cells to the vaccine TAs did not correlate with improved survival. 187 In phase I of the ICT-107 trial, which included the HER2 antigen VMAGVGSPYV, HER2 was shown to be downregulated in recurrent tumors, suggesting either successful targeting of HER2-expressing cells or a degree of immunoediting.²⁰⁹ However, HER2 mRNA is expressed in normal brain,²¹⁰ so prior to targeting any HER2 antigens in the future, MHC display of HER2 antigens should be evaluated both on GBM and on normal brain.

Cancer Testis Antigens in Glioblastoma

CTAs in GBM have been reported as immunogenic both in vivo and in vitro (Table S2). The first TA discovered in brain cancer was the CTA SART1(259)690-698 peptide (EYRGFTQDF). The antigen was originally identified in squamous cell carcinoma²¹¹ and was subsequently demonstrated in glioma cell lines, as CTLs specific for the antigen could lyse HLA-matched glioma cells expressing Sart1(259).²¹² Other GBM CTAs include peptides derived from Sart-3, IL-13Rα2, Mage1, MageC2, and Survivin. CTAs have been used in many vaccines for GBM. 171,183,188,192,193,204,209,213-216

Table 1. T Cell Tu	ımor Antigen Vaccine	T Cell Tumor Antigen Vaccine Clinical Trials in GBM								
Vaccine type	NCT number	Target antigen(s)	Delivery platform	Deli-very route	Adjuvant/Combina- tion interventions	Sponsor	HLA Enroll-ment Restric-tion	Phase Start Ei Year m	Enroll- Status ment	Design
"off the shelf" antigens										
VEGFR-2										
VXM01 Bacterial vaccine encoding VEGFR-2	NCT02718443	VEGFR-2 antigens	Salmonella typhi Ty21a carrying a DNA plasmid encoding vascular endothelial growth factor receptor (VEGFR)-2 ¹⁷⁷	oral	nivolumab	Vaximm GmbH	None listed	1 2016	14 C	NR; SG;
VXM01 Bacterial vaccine encoding VEGFR-2	NCT03750071	VEGFR-2 antigens	Same as above	oral	Avelumab	Vaximm GmbH	None listed	I/II 2018	28 A, not Rec	NR; SG
EGFRVIII										
Peptide Vaccine(ZAP IT)	NCT00626015	EGFRVIII neoantigen (LEEKKGNYVVTDHC)	Rindopepimut is a 14-amino acid peptide, PEP-VIII LEEKKGNYVYTDHC ¹⁷⁸ chemically conjugated to keyhole limpet hemocyanin (KLH) ¹⁷⁹	i.d.	daclizumab/ basiliximab, temozolomide (TMZ)	Duke university	None listed	1 2007	O 9	SG;
Peptide Vaccine(ACT II)	NCT00643097	EGFRVIII neoantigen (LEEKKGNYVVTDHC)	Rindopepimut	þ:i	GM-CSF, dose- intensified (DI)TMZ	Celldex Therapeutics	None listed	II 2007	40 C	NR; P
Peptide Vaccine(ACT III)	NCT00458601	EGFRvIII neoantigen (LEEKKGNYVVTDHC)	Rindopepimut	i.d.	GM-CSF	Celldex Therapeutics	None listed	II 2007	65 C	NR; SG
Peptide Vaccine(ACT IV)	NCT01480479	EGFRVIII neoantigen (LEEKKGNYVVTDHC)	Rindopepimut	i.d.	GM-CSF	Celldex Therapeutics	None listed	III 2011	745 C	NR; P
CMV antigens										
mRNA loaded autologous DC vaccine(ATTAC)	NCT00639639	cytomegalovirus (CMV) phospho- protein 65 (pp65) antigens	Autologous dendritic cells pulsed with mRNA of pp65 fused to LAMP	i.d.	human cyto- megalovirus (CMV)-autologous lymphocyte transfer or GM-CSF, + unpulsed DCs or td toxoid preconditioning, DI TMZ ¹⁷⁰	Duke University	None listed	- 2006	23 C	SG ;;

d 2015 64 d 2016 6 d 2018 11 d 2020 43 d 2022 6 d 2022 6
ity of None listed II ity of None listed II niver- None listed II niver- None listed II ity of None listed II ity of None listed III
bid Duke University of Florida Duke University of sity Duke University of Florida University of Florida VBI Vaccines Inc.
Duke University of Florida Sity Duke University of Sity University of Florida VBI Vaccines Inc.
TdToxoid, GM-CSF, Duk DITMZ TdToxoid, unpulsed Duk DCs, Varlilumab sity GM-CSF or AS01B VBI' Inc.
p ₀
D
University of Florida VBI Vaccines Inc.
VBI Vaccines Inc.

	tus Design		ot NR;	œ.	SG.		S S S S S S S S S S S S S S S S S S S
	Enroll- Status ment	24 Not yet Rec.	10 A, not Rec	Т 27 Т	26 Not yet Rec.		ပ စ
	Phase Start Year	1 2024	1 2023	1 2016	1 2023		1 2012
	HLA Enroll-ment Restric-tion	None listed	None listed	None listed	None listed		A*02, A*03
	Sponsor	University of Florida	Immunomic Thera- peutics, Inc.	Duke University	Charlotte Lemech (The University of New South Wales)		Roswell Park Cancer Institute
	Adjuvant/Combina- tion interventions	попе	TdToxoid	TdToxoid, GM-CSF, Montanide ISA-51, DITMZ	TdToxoid		Montanide ISA-51, GM-CSF,
	Deli-very route	. ' .	Ë	i. d.			S. C.
	Delivery platform	pp65 RNA-LPs, autologous tumor mRNA, and full-length pp65-LAMP mRNA loaded DOTAP liposome vaccine	2 DNA plasmids. 1st encodes IE-1 and pp65 antigens fused to LAMP1. 2nd encodes gB antigen fused to LAMP1.	PEP-CMV Component A (26 amino acids encoding multiple potential class I, class II, and antibody epitopes of CMV pp65 across several haplotypes) ¹⁸² and PEP-CMV Component B (a neutralizing antibody epitope from human CMV glycoprotein B conjugated to Keyhole Limpet Hemocyanin)	long synthetic peptide of 26 amino acids de- rived from CMV pp65 that has both MHC class I and II epitopes		SurVaxM = SVN53-67/ M57-KLH: synthetic peptide of survivin 53-67, with cysteine to methionine substitu- tion at amino acid 57, conjugated to keyhole limpet hemocyanin
	Target antigen(s)	CMV pp65 antigens	CMV IE-1, pp65 and gB antigens	CMV pp65 and gB antigens	CMV pp65 antigens		Survivin 53-67/M57
5	NCT number	NCT06389591	NCT05698199	NCT02864368	NCT06132438		NCT01250470
	Vaccine type	RNA-LP vaccine	ITI-1001 DNA vaccine	Peptide vaccine (PERFORMANCE)	Peptide vaccine (INTERROGATE- GBM)	Survivin (BIRC5)	SurVaxM Peptide vaccine

Table 1. Continued	pe									
Vaccine type	NCT number	Target antigen(s)	Delivery platform	Deli-very route	Adjuvant/Combina- tion interventions	Sponsor	HLA Enroll-ment Restric-tion	Phase Start Year	Enroll- ment	Status Design
SurVaxM Peptide vaccine	NCT02455557	Survivin 53-67/M57	SVN53-67/M57-KLH	s.c.	Montanide ISA-51, GM-CSF	Roswell Park Cancer Insti- tute	A*02, A*03, A*11, A*24	II 2015	99	A, not NR; Rec SG
SurVaxM Peptide vaccine (SUR-VIVE)	NCT05163080	Survivin 53-67/M57	SVN53-67/M57-KLH	S.C.	Montanide ISA- 51 or GM-CSF, Temozolomide	MimiVax, LLC	None listed	II 2021	247	A, not R; P Rec
Wilms' tumor gene 1 (WT1)										
WT2725 Peptide vaccine ¹⁸⁴	NCT01621542	WT1 126-134 antigen	Peptide in water in-oil emulsions	o.s.	none	Sumitomo Pharma America, Inc.	A*0201+, A*0206+	1 2012	12 62 C	NR; SG
DSP-7888 or Ombipepimut-S (adegramotide/ nelatimotide) Peptide Vaccine	NCT02498665	Nelatimotide: synthetic pep- tide of WT1 ₁₂₆₋₁₃₄ (RMFPNAPYL) and a modified WT1 ₂₃₅₋₂₃₄ (CYTWNOMNL). Adegramotide: (WT1 ₃₄₋₅₁ : WAPYLD FAPPGASAYGSL), which includes HLA- A*02:01 restricted WT1 37-45 (VLDFAPPGA) ¹⁸⁵	Peptides in water-inoil emulsions mixed with Montanide ISA-51185	i.d. or s.c.	Montanide ISA-51	Sumitomo Pharma America, Inc.	A*02:01, A*02:06, A*24:02	1 2015	24 C	N E
DSP-7888 or Ombipepimut-S (adegramotide/ nelatimotide) Peptide Vaccine (WIZARD 201G)	NCT03149003	Same as above	Peptides in water-inoil emulsions mixed with Montanide ISA-51185	i.d.	Montanide ISA-51, Bevacizumab	Sumitomo Pharma America, Inc.	A*02:01, A*02:06, A*24:02	III 2017	17 221 C	ж. С
autologous WT1 mRNA- transfected DC Vaccine	NCT01291420	WT1 antigens	mRNA-electroporated Autologous Dendritic Cell	i.d.	none	University Hospital, Antwerp	None listed	1 2010	10 48 C	NR; SG
Autolo- gous mRNA loaded DCs vaccine(ADDIT- GLIO)	NCT02649582	LTW	Autologous WT1 mRNA-loaded den- dritic cell vaccine	i.d.	none	University Hospital, Antwerp		1/11 2015	15 20 Rec	c NR:SG

Vaccine type	NCT number	Target antigen(s)	Delivery platform	Deli-very	Adjuvant/Combina-	Sponsor		Phase Start	t Enroll- Status	s Design
				route	tion interventions		Enroll-ment Restric-tion	Year	r ment	
Telomerase (TERT)										
Peptide vaccine	NCT00069940	TERT: 540-548	Peptide vaccine	S.C.	GM-CSF	Dana-Farber Cancer Insti- tute	A*0201	1 2000	0	NR:SG
Peptide vaccine(UCPVax- Glio)	NCT04280848	TERT antigens	Montanide ISA-51 VG	ပ်	none	Centre Hospitalier Universitaire de Besancon	None listed	II 2020	0 56 A, not Rec	T NR: P
CD 133										
ICT-121 Peptide Loaded Autolo- gous DC Vaccine	NCT02049489	CD133 antigens	Autologous DCs pulsed with CD133 peptides	j.d	none	Precision Life Sciences Group	A2	1 2013	3 20 C	NR; SG
NY-ESO-1										
Peptide vaccine(DC205- NY-ESO-1)(CDX- 1401)	NCT01522820	NY-ESO-1	Monoclonal antibody specific for DEC-205 fused to NY-ESO-1 peptide 186	intranodally Sirolimus	Sirolimus	Roswell Park Cancer Insti- tute	A2	1 2012	2 18 C	NR; P
multiple protein sources										
peptide-pulsed autologous den- dritic cell vaccine	NCT00612001	TRP-2, gp 100, her-2/neu, survivin antigens ¹⁸⁷	Peptide-pulsed autolo- i.d. ¹⁸⁷ gous DC vaccine	i.d. ¹⁸⁷	GM-CSF or IL-4	Jonsson Comprehen- sive Cancer Center, UCLA	A*201	1 2006	S C	NR; SG ,:
Peptide loaded DC vaccine	NCT00766753	IL-13Ra2 345- 353:1A9V, EphA2 883- 891, YKL-40 202-211, gp100 209-217	Autologous type-1 alpha-DCs loaded with peptides	intranodally Poly-ICLC	Poly-ICLC	University of Pittsburgh	A2	1/11 2006	6 22 C	NR; SG
mRNA trans- fected DC vaccine	NCT00846456	hTERT and survivin antigens	Autologous dendritic cells transfected with hTERT and Survivin mRNA	j. G.	none	Oslo University Hospital	None listed	I/II 2009	9 20 C	NR; SG

Table 1. Continued	pə									
Vaccine type	NCT number	Target antigen(s)	Delivery platform	Deli-very route	Adjuvant/Combina- tion interventions	Sponsor	HLA Enroll-ment Restric-tion	Phase Start Year	Enroll- ment	Status Design
DC vaccine(ICT-107)	NCT01280552	MAGE1(161) EADPTGHSY, AIM- 2(14) RSDSGOQARY, TRP-2(180) SVYDFFWUL, gp100(210M) IMDQVPFSV, HER2(773) VMAGVGSPYV and IL13Ra2 (345)	Autologous dendritic cells pulsed with antigens	i.d.	ICT107	Precision Life Sciences Group	A1, A2	1 2011	1 124 C	Ŗ, G
Peptide vaccine(SL-701)	NCT02078648	Survivin 95-104 with T to M substitu- tion, IL-13Ra2345- 353:1A9V, EphA2883-891 ¹⁸⁸	Multi-peptide cocktail	S.C.	poly-ICLC + GM-CSF, Bevacizumab, Imiquimod	Stemline Thera- peutics, Inc.	A2	I/II 2014	4 74 C	R; SG
Peptide vaccine (IMA950)	NCT01222221	9 HLA-02-restricted glioblastoma-associated peptides and 2 HLA class II (2 HLA DR) binding peptides) and HBV antigen: BCAN 478-486, CSPG 421-29, FABP7 118-126, PTPRZ1 195-203, IGF2BP3 552-560, NLGN4X 131-139, NRCAM 692-700, PTPRZ1 1347-1355, TNC 3-11, MET 651-667 and BIRC5 97-111	Multi-peptide cocktail	j.	GM-CSF	Cancer Research UK	A*02	2010	0 45 C	S S G
Peptide vaccine (IMA950)	NCT01403285	Same as above	Multi-peptide cocktail	Not speci- fied	GM-CSF,Imiquimod, Cyclophosphamide	Immatics Biotechnolo- gies GmbH	A*02	1 2011	1 6 T	NR; SG
Peptide vaccine (IMA950)	NCT01920191	Same as above	Multi-peptide cocktail	i.d. or s.c.	Poly-ICLC	University Hospital, Geneva	A2	I/II 2013	3 19 C	NR; SG

Table 1. Continued	pə									
Vaccine type	NCT number	Target antigen(s)	Delivery platform	Deli-very route	Adjuvant/Combina- tion interventions	Sponsor	HLA Enroll-ment Restric-tion	Phase Start Year	Enroll- ment	Status Design
Peptide vaccine (IMA950)	NCT03665545	Same as above	Multi-peptide cocktail	s.c.	Poly-ICLC, pembrolizumab	University Hospital, Geneva	A*0201	I/II 2018	18	A, not R; P Rec
ADU-623 Bac- terial vaccine encoding antigens	NCT01967758	EGFRVIII neoantigen and NY-ESO-1 CTA	Live-attenuated Listeria Monocytogenes Strain (AactA/∆inIB) encoding EGFRvIII-NY- ESO-1 ¹⁸⁹	<u>.</u> 2	amoxicillin or tri- methoprim/sulfa- methoxazole	Providence Health & Services	None listed	1 2014	. 1 C	S S G ;
Peptide vaccine (ROSALIE)	NCT04116658	Gut bacteria origins peptides containing 3 CD8 HLA-A2 epitopes with mimicry to GB-TAAs (IL13Ra2, BIRC5, and FOXM1) and the CD4 epitope UCP2(E2401)	Multi-peptide cocktail	S. C.	Nivolumab, Bevacizumab	Enterome	A2	I/II 2020	100 A, not Rec	c C C
mRNA Vaccine(P30-EPS)	NCT05938387	8 HLA02 and HLADR restricted glioblastoma- associated antigens(CVGBM)	mRNA with unmodi- fied nucleotides formulated with lipid nanoparticles ¹⁹⁰	E.	none	CureVac	A*02:01 ¹⁹⁰	1 2023	16 Rec	c NR; S
P30-EPS Peptide vaccine(ETAPA I)	NCT05283109	EphA2, CMV pp65, and survivin antigens	P30-linked EphA2, CMV pp65, and survivin peptides	Not speci- fied	Poly-ICLC	Mustafa Khasraw, (Duke Uni- versity)	A*0201	1 2023	36 Rec	c NR;
NO-5401 DNA vaccine	NCT03491683	WT1, prostate- specific membrane antigen (PSMA), and TERT antigens	INO-5401: Vaccine comprised of 3 separate DNA plasmids encoding WT1, PSMA, and TERT	Ë.:	DNA plasmid encoding interleukin-12 (INO- 9012), Cemiplimab, electroporation via CELLECTRA® 2000 EP device	Inovio Pharmaceuticals	None listed	I/II 2018	. 52 C	AR; P

Personalized antigens
Neoantigenbased

	Design	NR; SG	NR; SG	Я; Р	NR; SG	NR; S	NR; SG	NR; SG	NR; S	NR; SG
	oll- Status nt	16 C	10 Rec	56 Rec	⊢	⊢ ⊛	13 A, not Rec	9 A, not Rec	12 Rec	11 A, not Rec
	Start Enroll- Year ment	2014	2022	2014	2015	2018	2018	2020	2023	2021
	Phase n	_	-	-	–	–	–	_	-	-
	HLA Enroll-ment Restric-tion	A*02:01, A*24:02	None listed	None listed	None listed	None listed	None listed	None listed	None listed	None listed
	Sponsor	Immatics Biotechnolo- gies GmbH, Germany	Shanghai 10th People's Hospital	Dana-Farber Cancer Insti- tute	Washington University School of Medicine	Washington University School of Medicine	Albert Einstein College of Medicine	Washington University School of Medicine	Washington University School of Medicine	Beijing Tiantan Hos- pital
	Adjuvant/Combina- tion interventions	Poly-ICLC, GM-CSF	Poly-ICLC	Pembrolizumab	Poly-ICLC	Nivolumab, Ipilimumab, Poly- ICLC	Neoantigen peptides vaccine, Poly-ICLC, Tumor Treatment Fields	DNA plasmid encoding interleukin-12 (INO- 9012), electropora- tion via CELLECTRA® 2000 EP device	Retifanlimab, TDS-IM v 2.0 electroporation device	none
	Deli-very route	<u></u>	s. S.	s.c. ¹⁰⁶	s.c ²³⁶	ပ်			i.n.	j.d.
	Delivery platform	Multipeptide cocktail	Multipeptide cocktail	Multipeptide cocktail	Multipeptide cocktail	Multipeptide cocktail	Multipeptide cocktail	DNA plasmid vector expressing tumor- specific antigens	Personalized neoantigen DNA vaccine	autologous dendritic cells pulsed with multiple neoantigen peptides
	Target antigen(s)	Off the shelf antigens (APVAC1) and personal- ized neoantigens (APVAC2)	Off the shelf CMV antigens (NPVAC1), person- alized neoantigens (NPVAC2)	Personalized neoantigens	Personalized neoantigens	Personalized neoantigens	Personalized neoantigens	Personalized neoantigens	Personalized neoantigens	Personalized neoantigens
p	NCT number	NCT02149225	NCT05557240	NCT02287428	NCT02510950	NCT03422094	NCT03223103	NCT04015700	NCT05743595	NCT04968366
Table 1. Continued	Vaccine type	Peptide vaccines (GAPVAC-101)	Peptide vaccine(NeoPep)	Peptide vaccine(NeoVax)	Peptide vaccine	Peptide vaccine(NeoVax)	Peptide vaccine	GNOS-PV01 DNA vaccine	DNA vaccine	peptide pulsed DC Vaccine

et a	Target antigen(s)	Delivery platform	Deli-very route	Adjuvant/Combina- tion interventions	Sponsor	HLA Enroll-ment Restric-tion	Phase Start Year	Enroll- Status ment	Design
Personalized neoantigens		autologous dendritic cells loaded with multiple neoantigen peptides	Ś.	Personalized Beijin neoantigen pulsed DC Tiant vaccine(ZSNeo-DC1.1) pital	Beijing Tiantan Hos- pital	None listed	1 2024	12 Rec	NR; SG
TRP-2, gp 10 her-2/neu, s antigens ¹⁸⁷	iurvivin	Peptide-pulsed autologous DC vaccine	i.d. ¹⁸⁷	GM-CSF or IL-4	Jonsson Comprehen- sive Cancer Center, UCLA	A*201	1 2006	O 80	NR; SG
Multiple pe tumor-asso antigens ¹⁹¹	rsonalized ciated	mRNA-TAA pulsed au- tologous DC vaccine	i.d.+ i.v.	low-dose cyclo- phosphamide, poly I:C, imiquimod and anti-PD-1 antibody ¹⁹¹	Guangdong 999 Brain Hospital	None listed	1 2016	10 C	SG;
Multiple pe tumor asso antigens ¹⁹¹	rsonalized ciated	mRNA-TAA pulsed au- tologous DC vaccine	i.d.+ i.v.	low-dose cyclo- phosphamide, poly I:C, imiquimod and anti-PD-1 antibody ¹⁹¹	Guangdong 999 Brain Hospital		1 2016	10 C	NR; SG
EGFR 800-8C (DYVREHKD Lck-486-494 (TFDYLRSVL 497 (DYLRS) MRP3-1293- (LYMEPS-1293- (NYSVRYRP- 13-221 (LYC PSA-248-257 (HYRKWIKD) PTHP-102-11 (RYLTOETNI RATZ-93-10 (DYSARWNE SARTZ-161-1 (AYDFLYNYL SARTZ-161-1	NI), Lck-488- 11 11 11 11 11 11 11 11 11 11 11 11 11	Multipeptide vaccine	ပ်	none	Kurume University School of Medicine	A*24 ¹⁹²	5006	15 C	SG ;

	esign	ج: ح	N.; S
	Status Design		
	Enroll- St ment	S8 C	17 C
	Start En Year me	2012	2019
	Phase S	=	≡
	HLA Enroll-ment Restric-tion	A*24	A*02:01, A*02:06, A*11:01, A*24:02, A*31:01, A*33:03 ¹⁹³
	Sponsor	Kurume University School of Medicine	Taiho Pharmaceutical
	Adjuvant/Combina- tion interventions	none	Montanide [™] ISA 51 VG ¹⁸³
	Deli-very route	s.c.	ပ် ဖ
	Delivery platform	Multipeptide vaccine	multi-epitope long peptide vaccine
	Target antigen(s)	Same as above	SART2 p93-101 (DYSARWNEI), SART3 p734-742 (QIRPIFSNR), SART3 p109-118 (VYDYNCHVDL), SART3 p302-310 (LLQAEAPRL), EGFR p800-809 (DYVREHKDNI), PTHRP p102-111 (RYLTQETNKV), LCK p246-254 (KLVERLGAA), LCK p90-99 (ILEQSGEWWK), MRP3 p60-99 (ILEQSGEWWK), MRP3 p60-91 (ILEQSGEWCSVI), LCK p488-497 (DYLRSVLEDF), WHSCZ p103-111 (ASLDSDPWV)
Þ	NCT number	JPRN- UMIN000006970	JapicCTI-183824
Table 1. Continued	Vaccine type	Peptide vaccine(ITK1) ¹⁹²	Peptide vaccine(TAS0313)

N.S. = not specified; DC = Dendritic cells; i.d. = intradermal; i.v. = intravenous; i.m. = intramuscular; C = Completed; A = Active; Rec = Recruiting; Not Rec = Not Recruiting; T = Terminated; NR = Non-Randomized; R = Randomized; SG = Single Group; P = Parallel; S = Sequential.

IL-13Ra2 antigens—Sixty-seven percent to ninetysix percent^{217,218} of GBM tumors express IL-13Rα2, an IL13 receptor subunit, which is implicated in GBM invasion^{219,220} and cooperates with EGFRvIII to promote GBM proliferation.²²⁰ Multiple GBM clinical trials have used antigens from IL-13Rα2.204,215,221 A clinical trial using peptide-pulsed DCs included a variant of an endogenous IL-13Ra antigen. 204,222 In this trial, 10 of 19 patients who received the vaccine were found to have an immune response to the antigen.²⁰⁴ This same IL-13Rα2 antigen variant was included in SL-701 vaccine; in a clinical trial for this vaccine, patients' T cell response to the vaccine did not correlate with survival.²²³ In phase I of ICT-107, which also vaccinated with an IL-13Rα2 antigen, IL-13Rα2 was shown to be downregulated in recurrent tumors after vacination.²⁰⁹ Moreover, in phase II of the ICT-107 trial, vaccination with a cocktail of antigens showed therapeutic benefit with an increased OS of 1.6 months in treated compared to untreated groups. However, it is unclear which of the vaccine peptides, individually or in combination, may have conferred the survival benefit. Overall, antigens from IL-13Rα2 represent potential therapeutic targets in GBM due to their minimal expression in normal tissue, role in tumor progression and proliferation, and confirmed immunogenicity in vaccinated GBM patients. IL-13Rα2 antigens' therapeutic application for GBM is under investigation in another clinical trial.²²⁴

Survivin antigens—Survivin (also known as BIRC5) inhibits apoptosis²²⁵ and is expressed in 80-90% of GBM, 22,226 including GSCs. 227 Survivin expression in GBM correlates with worse prognosis. 228-230 Notably, survivin has been shown to have low intratumoral heterogeneity and high expression across GBM tumor samples. 140 A phase I clinical trial vaccinated seven newly diagnosed GBM patients with DCs transfected with mRNA encoding survivin and hTERT. 171 Strikingly, the median progression-free survival (PFS) for the treated group was 694 days, which was 2.9 times longer than the median PFS of 236 days in the control.¹⁷¹ Separately, the IMA950 vaccine included the class II HLA-DR-restricted survivin 97-111 antigen, and in a phase I trial with the vaccine in combination with poly-ICLC, 11 of 16 treated patients developed peptide-specific CD4+T cells.¹⁷³ However, no tumor infiltrating vaccine-specific T cells were detected. 173 Additionally, there was no association between patient T cell response to TAs and survival in an IMA-950 vaccine trial that used granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant.231 Finally, the SurvmaxM vaccine includes a peptide that contains multiple HLA-restricted survivin epitopes, and it induced antigen-specific CD8+T cells in patients.¹⁸³ Overall, survivin antigens represent a potentially promising target for GBM therapy due to their high expression, low variance across samples, and immunogenicity. A phase II trial including SurvmaxM is currently underway (NCT05163080), and another active clinical trial includes a survivin antigen (NCT05283109).

Tumor-Specific Antigens in Glioblastoma

GBM shared neoantigen: EGFRVIII (LEEKKGNY VVTDHC)—Besides the IDH1 neoantigen,²³² which is more common in lower grade glioma and secondary GBM,233 the only shared neoantigen discovered to date in GBM is one from EGFRvIII,²³⁴ a constitutively active variant of EGFR with a mutated extracellular domain, resulting from an in-frame deletion of EGFR exons 2-7.235,236 The EGFRvIII mutation has been shown in vitro to promote cell proliferation, angiogenesis, and invasion,²³⁷ and studies indicate that it is expressed in 17-64% of GBM tumors.^{218,235} However, the presence of the mutation in GBM has an equivocal association with survival.^{238,239}The administration of rindopepimut, the EGFRvIII neoantigen (LEEKKGNYVVTDHC) conjugated to keyhole limpet hemocyanin (KLH),240 did not show survival benefit in a phase III trial.3 However, this may be because rindopepimut was not designed as a T cell neoantigen therapy. While KLH can serve as an adjuvant for induction of antigen-specific CD8+T cells, 183 KLH primarily activates an antibody response.²⁴¹ In fact, in one preclinical study of rindopepimut, vaccinated mice did not develop significant cytotoxic responses, but instead developed increased antibody titers.²⁴² Moreover, the EGFRvIII neoantigen in rindopepimut is HLA restricted.^{179,234} Yet, clinical trials did not restrict enrollment based on HLA.3,243-245 Thus, a vaccine trial designed to augment the T cell response against a EGFRvIII neoantigen has yet to be developed. Importantly, CTLs specific for the EGFRvIII neoantigen have been able to lyse glioma cells expressing the mutated protein in vitro in an HLA-restricted manner.²³⁴ As such, this shared neoantigen is still a promising target for future therapies. The recent results of a Chimeric Antigen Receptor (CAR) therapy against both EGFRvIII and EGFR²⁴⁶ provide further reason to be cautiously optimistic about the therapeutic potential of the EGFRvIII neoantigen.

GBM personal neoantigens—In contrast to shared neoantigens, which are mutated TSAs present in multiple patients with GBM, personal neoantigens are mutated TSAs presented only by one or a very minimal subset of patients. In GBM neoantigens identified in personal vaccines^{247,248} and the Cancer Antigen Atlas,²⁴⁹ the majority are personal, likely a reflection of their status as passenger mutations. While personal neoantigens will not be comprehensively covered here, they are still incredibly relevant to therapy. 103 Neoantigen vaccines for GBM have been demonstrated to induce neoantigen-specific T cells in patients, 106,172,247 with one study showing that vaccination can induce neoantigen reactive TILs. 106 Encouragingly, a recent clinical trial demonstrated that in 173 GBM patients vaccinated with a median of 19 personal neoantigens, patients who had T cell responses to multiple peptides had a median survival of 53 months compared to 27 months in those with a response to one or zero. 172 These studies represent the promise that antigen-based therapies have for improving outcomes for GBM patients.

TSA of unknown etiology in glioblastoma: BCAN478-486—Some nonmutant glioblastoma antigens have been

identified as tumor-specific; however, the reason for their selective presentation by tumor cells is unknown. Their tumor-exclusive presentation could be due to any of the previously mentioned causes, including differential mRNA processing, post-translational modification, and/or proteasome processing. 95,250 The TSAs of unknown etiology include a group of HLA-A*02 restricted neoantigens identified by Dutoit et al. 195 Of these, BCAN478-486 is promising, since brevican (encoded by BCAN) is a brain-specific extracellular matrix molecule involved in tumor invasion and expressed by GSCs. 195 Brevican has also been implicated in migration and metastasis, and over-expression is linked to decreased survival in GBM. 195 When tested, eight out of eight GBM patients'T cells mounted an immune response ex vivo to BCAN478-486 in the original Dutoit et al. study, 195 and the subsequent use of this antigen in vaccines induced immune responses in patients.52,173 GBM samples taken before and after vaccination with IMA950, which included the peptide, and Poly-ICLC showed a lower percentage of BCAN positive cells, indicating that vaccination may have resulted either in successful targeting of the cells with the antigen, or in antigen downregulation.¹⁷³ However, as previously mentioned, no association between T cell response to any IMA950 peptides and survival was seen in the IMA950 plus GM-CSF trial.²³¹ Overall, BCA478-486 has potential as an antigen target for GBM due to brevican's potential role in oncogenicity, its association with decreased survival, and its demonstrated immunogenicity in vaccines.

TSA of unknown etiology: SART2-93 DYSARWNEI—

The SART2 protein was first identified in squamous cell carcinoma and has been shown to be expressed in adenocarcinoma, melanoma, renal cell carcinoma, and glioma.²⁵¹ This protein has been determined to be absent in normal tissue, including testis and fetal liver.²⁵¹ In the phase III ITK-1 multipeptide vaccine trial for 88 patients with recurrent GBM in Japan, receiving vaccination of the SART2-93 DYSARWNEI peptide conferred a negative impact on survival. 192 In this randomized double-blind trial, each patient in the vaccinated group was given a vaccine of four peptides out of twelve possible HLA-A24 restricted peptides based on their pre-vaccination IgG levels for each peptide. The median OS for the 13 patients that received the SART2-93 antigen in their vaccine was 6.6 months compared to eight matched placebo patients with a median survival of 22 months. 192 This difference in survival was not necessarily mediated by receiving the SART2-93 antigen and may instead reflect the immune function of the patients for whom the antigen was selected. Investigators found that prior to vaccination, the patients that were ultimately selected to receive SART2-93 had baseline lower CTL and B cell activity against all possible vaccine peptides, as measured by ex vivo IFNy assays and antibody assays, respectively. 192 Despite this, investigators still opted to use the same antigen in the TAS0313 vaccine. 193,214 A phase I/II clinical trial for the vaccine in patients with recurrent GBM has not yet published its overall survival (OS), but the median PFS was 1.7 months. 193 The function of SART2 and the reason for its tumor-specific expression remains unknown. While most antigen vaccines have not been harmful and

often provided benefit, the mechanism underlying the negative association between the SART2-93 antigen and survival merits further investigation.

Transposable element derived TSAs in glioblastoma—

Recent studies have shown that antigens derived from transposable elements (TE) are presented by GBM tumor cells and generate an immune response.252 Specifically, Bonte et al. identified fifteen TE-derived antigens in GBM that were validated as immunogenic by tetramer-binding assays.²⁵² While TE-derived antigens have been classified as tumor-specific,93,253 the study indicated that many TEs are expressed at low levels in normal tissues.²⁵² Another study identified 19 TE-derived antigens on GBM samples²⁵⁴; however, this study did not confirm the immunogenicity of these peptides. One TE that warrants further investigation is human Endogenous Retrovirus K, since it is differentially expressed in GBM and likely contributes to its stem cell niche. 255,256 No clinical trials have used antigens from TEs for GBM, but given the large number of candidate antigens, they hold promise for future therapy.

Viral tumor-specific antigens in glioblastoma—Studies have indicated that 51-100% of GBM tumors, including GSCs, are CMV-positive, 257-260 while surrounding brain tissue is CMV-negative.^{257,261} As such, GBM TSAs include peptides from the CMV pp65 protein. One study found that when PBMCs from patients with GBM were exposed to DCs transfected with RNA for CMV pp65 peptides, peptidespecific T cells expanded and could subsequently lyse autologous tumor cells endogenously expressing pp65.262 However, since many GBM patients are seropositive for CMV,²⁵⁷ CMV antigens likely are not a bona fide tumorspecific target. In fact, an IMA-950 vaccine trial used a CMV-derived peptide as an internal positive control for ex vivo immunogenicity experiments, citing the high levels of chronic infection with the virus. 173 Nonetheless, both CMV antigens^{170,263} and CMV-specific T cells^{264–266} have been used safely in clinical trials.

In a clinical trial for 25 patients receiving ACT specific for CMV antigens, at 65 months, ten patients were alive and five were disease free.²⁶⁴ In addition, in a clinical trial that administered GM-CSF mixed with DCs pulsed with the mRNA of pp65 fused to lysosome-associated membrane protein (LAMP), along with dose intensified TMZ, median PFS was 20, and OS was 33.4 months.¹⁷⁰ The strategy of fusing the antigenic target (in this case, pp65) mRNA to LAMP mRNA has previously demonstrated enhanced activation of the MHC class II pathway and thus, subsequent induction of CD4+T cells.^{267,268} Both in this trial, and another CMV peptide vaccine clinical trial, investigators did not confirm the presence of CMV in patients before enrolling them.^{170,263}

Contrastingly, a study that analyzed the immunopeptidome in 19 primary and recurrent GBM samples found no virus-derived antigens.⁴² Nonetheless, the increased survival seen in the early clinical trials focused on CMV antigens justify further trials to better explore their therapeutic potential, many of which are already in progress (Table 1).

Bacterial TSAs in glioblastoma—Intracellular microbes have been reported in GBM tumor cells.²⁶⁹The previously mentioned study that analyzed the antigens present in 19 GBM tumor samples found between 5 and 54 unique HLA class II-restricted bacterial derived antigens per patient,42 some of which were demonstrated to be recognized by TILs.42 However, findings from this study challenged the utility of bacterial antigens as therapy for GBM: (1) some bacterial antigens were also found in the brain tissues of control brain tissue (taken from healthy patients or those with multiple sclerosis), and (2) there was minimal overlap of bacteria and bacterial antigens between patients. One clinical trial currently underway targets bacterial antigens from the gut that are designed to induce T cells that are cross-reactive against GBM TAAs and CTAs.²²⁴ However, since only a small number of studies have reported intratumoral bacterial antigens in GBM, 42,269 further preclinical work should be undertaken to validate and further elucidate this antigen type before targeting in therapy.

Translational Considerations

Antigen Selection

Antigens can be harnessed therapeutically in GBM via vaccines or TCR-based therapies, and when selecting target antigens, many factors should be considered (Figure 2). First, the two criteria of being a TA should be confirmed: presentation on tumor cells and immunogenicity. Antigen presentation in the tumor compared to normal cells should be evaluated, weighing the risks of potential autoimmune reactions. Levels of antigen presentation should be evaluated within a tumor, with a preference toward those that are highly expressed. However, relatively low expression of an antigen does not necessarily militate against the success of an antigen as a target. GSCs are a small percentage of total tumor but are drivers of recurrence.²⁷⁰ Thus, GSC antigens may provide key targets. Levels of antigen presentation should additionally be considered across a tumor spatially, since GBM tumors have been shown to be intratumorally heterogeneous with distinct regions of the tumor expressing different antigens. 140 The function of the antigen's source protein should be considered, too, with the prioritization of those that belong to driver mutations or associate with decreased survival. Finally, HLA restriction of antigens will need to be accounted for, as further discussed below.

Multiple antigens should be targeted because immune response to multiple vaccine antigens has been demonstrated to be associated with prolonged survival in both renal cell carcinoma²⁷¹ and in GBM.¹⁷² Polyvalent targeting can counteract antigen heterogeneity, particularly regarding spatial variation in expression; indeed, Johanns et al. demonstrated the feasibility of incorporating multisector sampling of a GBM tumor into antigen vaccine design.^{107,140} Directing therapy at multiple antigens can also help mitigate dampened immune response that may arise secondary to "original antigenic sin," the process where immune cells can have weak responses to

epitopes that are similar to previously encountered foreign epitopes.^{272,273} Lastly, targeting multiple antigens protects against vaccine failure caused by antigen downregulation on recurrent tumors, which has occurred in multiple GBM antigen vaccine clinical trials.^{209,243,274,275}

Targeting multiple antigens is feasible. GBM vaccine trials have targeted multiple antigens and had varying degrees of success inducing T cell responses to their peptides. 52,106,173,192,215 A clinical trial for melanoma exhibited that targeting multiple peptides does not decrease the immunogenicity of each peptide, and patients had a greater total immune response to a twelve-peptide compared to a four-peptide vaccine. 276 Lastly, the previously mentioned Latzer et al. study produced personal neoantigen vaccines for GBM patients in around 12 weeks. 172

Selecting antigens that encompass multiple TA classes likely provides a therapeutic advantage. In two patients who underwent adoptive transfer of tumor-infiltrating lymphocytes (TILs) resulting in successful eradication of their HPV+ cervical cancer, investigators looking into the antigenic targets of the infused TILs discovered the TILs were reactive against HPV antigens, neoantigens, and CTAs.⁹ They also demonstrated that these TILs remained functional and elevated in patients' blood during tumor regression and remission.⁹

Targeting both MHC class I and II peptides should be prioritized. While the majority of studies have looked into MHC class I epitopes, in part due to the limitation of prediction algorithms, MHC class II epitopes are important for anti-tumor immunity.^{8,277–279} Class II expression by tumor cells is associated with improved survival in many cancers.²⁸⁰ Plus, CD4+T cells reactive to class II-restricted neoantigens have been observed in glioma.^{232,281,282} One multivalent neoantigen vaccine for GBM primarily induced CD4+T cell responses, despite being designed to induce CD8+T cell responses.⁵² Other neoantigen vaccines for GBM have similarly demonstrated the ability to provoke CD4+T cell responses.^{247,283} Lastly, targeting both classes may be necessary to counteract tumor immune evasion via tumor downregulation of either MHC class.⁸⁹

Moreover, consideration should be paid to the changing antigenic landscape that occurs temporally as GBM tumors evolve, especially in response to standard therapy, 175,284 antigen-based therapy, 247 and immune pressures. 285 While personalized antigen vaccines can lead to antigenic loss, 106 treatments have also been shown to induce new antigenic targets. 175,286–288 A potential approach to antigen targeting might thus involve vaccinating patients against antigens known to be induced by a treatment in conjunction with administration of the treatment. 289 Lastly, recurrent tumors are distinct from primary tumors 290 with presumably discrete antigenic targets and thus may require different treatments. For example, tumors expressing the EGFRVIII mutation at diagnosis have been observed to lose its expression at recurrence. 238,291

All these factors should bear upon the design of antigendirected therapy, as should other factors, like the immunological response state of each patient's tumor, which can be evaluated with techniques like CIBERSORT,^{292,293} as well as the vaccine delivery platform, adjuvant therapies, and timing and route of administration. These topics merit their own review.

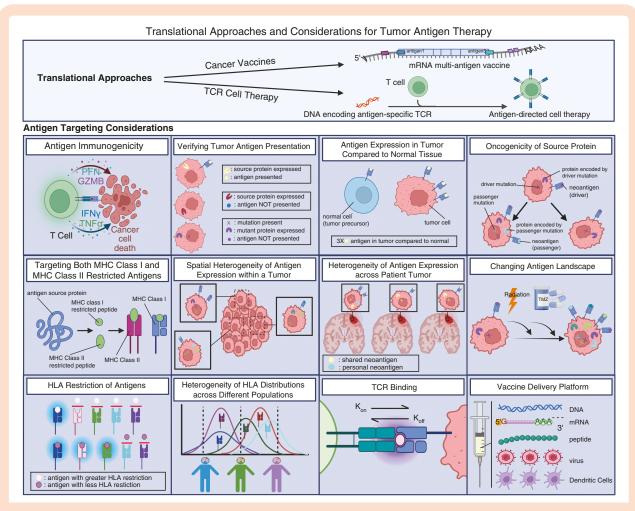


Figure 2. Tumor antigens can be harnessed for therapy against GBM either via vaccines or TCR-based therapies. Considerations for the design of the therapy include: focusing on antigens confirmed to be immunogenic; prioritizing antigens that are confirmed to be present in the immunopeptidome; focusing on antigens that have little to no expression in normal tissue to minimize the risk of autoimmune reactions; whether the protein source of the antigen contributes to the tumor's oncogenicity, with a preference toward antigens sourced from driver mutations to target the most deleterious tumor cells; ensuring both MHC I and MHC II restricted antigens are targeted to activate both CD8+ and CD4+ T cells, respectively; the intratumoral spatial heterogeneity caused by clonal and subclonal tumor populations with discrete antigen targets; intertumoral heterogeneity of antigen expression; temporal evolution of antigen expression that occurs secondary to immune pressures and standard treatment like temozolomide and radiotherapy; HLA restriction of antigens; accounting for the fact that HLA molecules are differentially expressed across populations and ensuring that antigens of different HLA restrictions are studied to avoid excluding certain populations from benefiting from therapy; antigen binding to TCRs, specifically the affinity, avidity and cross-specificity; method of delivery for antigen-based vaccines, which could include DNA, mRNA, peptide, virus, or pulsed dendritic cell delivery platforms.

TCR Engineering

Recent preclinical advances in targeting GBM antigens via ACT have been promising. One study demonstrated that ACT specific for an endogenous neoantigen in the murine GBM model GL261 resulted in intratumoral infiltration by the T cells and long-term cures in the majority of the mice.²⁹⁴

When developing TCR-based therapies, including ACT, three important TCR qualities must be considered: (1) affinity, (2) avidity, and (3) cross-specificity. Affinity describes the strength of interaction between a TCR and cognate peptide-MHC molecule. While some studies suggest that TCR affinity relates to T cell activation, ²⁹⁵ others show that TCR affinity does not relate to T cell response. ^{124,125,296} One group found that changing the catch bond duration between a TCR and cognate pMHC,

while keeping the affinity the same, correlated with TCR activity.²⁹⁷ Structural avidity measures the number of interactions between all the TCRs of a T cell and MHC molecules on the target cell. Functional avidity measures the capacity of a T cell to respond to a given concentration of peptide. Higher avidity indicates that at lower concentrations of a peptide, a T cell will be activated. Generally, higher functional avidity is associated with increased T cell function^{298–300}; however, TCR-independent factors like T cell differentiation states³⁰¹ and epitope density³⁰² can affect functional avidity levels.

Arguably, the most important variable to consider is TCR cross-specificity. TCRs that have been synthetically affinity matured have been powerful in clinical trials, 303-306 but have also led to significant adverse events due to cross-reactivity. Although in vitro the affinity-enhanced MAGE-

A3-specific TCR did not bind off-target,³⁰⁷ in clinical trials two patients died due to cardiogenic shock,³⁰⁸ since the TCR was cross-reactive against a titin-derived peptide. Overall, these studies underscore the importance of thorough preclinical testing of TCR-based therapies.

TCR Therapies Compared to CAR-T

A full exploration of CAR-based therapies for GBM is not within the scope of this review, since the "antigens" that CARs target are portions of whole proteins, not T cell antigens. However, it is worth briefly delineating TCR-based versus CAR-based therapies, as they are two arms of cellbased immunotherapy. Unlike TCR therapies that can use endogenous or engineered TCRs to recognize HLA-bound antigen displayed on the cells surface, CAR-based therapies use engineered receptors to recognize cell-surface targets that are not bound by MHC.309 Thus, CAR-T cells are limited to surface-expressed proteins as targets but are not limited by MHC restriction. ACT is constrained by MHC but can target antigens derived from both intra- and extra- cel-Iular proteins. Plus, in the case of ACT therapy using TILs, like lifileucel, the FDA-approved TIL therapy for use in melanoma,310 a patient's T cells are removed from their tumor and expanded ex vivo without any genetic engineering, since the TCRs of the TILs presumably already have tumor specificity. CAR-T cells on the other hand, are often manufactured by taking T cells from a patient's blood prior to engineering them to recognize a defined target.³¹¹

TCR and CAR therapy design should borrow principles from each other, as strategies have been developed for CAR-T cells to mitigate tumor heterogeneity, antigen escape, and off-target effects for non-tumor-specific antigens. Ter example, SynNotch, which can be engineered to require the presence of a tumor-specific antigen in order to deploy a CAR against a non tumor-specific antigen that is homogenously expressed in the tumor, showed promise against targets in a GBM model in mice. Ten against targets in a GBM model in mice. Ten against targets and descreases the number of possible therapy targets and decreases the possible mechanisms of immune escape by the tumor.

Developing Equitable Antigen Therapy

Antigens are often HLA-restricted: certain antigens only bind particular HLA molecules. 313,314 Since HLA distributions vary across ethnic populations, 314,315 in the case of designing "off-the-shelf" vaccine peptides or TCR therapies, the choice of which peptides to target and their concomitant HLA restriction has significant implications for who benefits. For example, Tebentasfusp, the therapy for advanced uveal melanoma is FDA-approved only for patients that are HLA-A*02:01 positive. 29,316 A recent cross-sectional study of all U.S. clinical trials that required a certain HLA for enrollment found that due to HLA enrollment criteria, people of European descent were 46% more likely to be eligible for a clinical trial with HLA restriction than those of Asian or Pacific Islander descent and 60% more likely than those of African descent. 316 Notably, in the United States,

minorities are already underrepresented in both oncology clinical trials³¹⁷ and brain tumor clinical trials.³¹⁸

It is imperative that GBM antigen therapies do not inadvertently lead to structural racism³¹⁹ or exacerbate the already present disparities³²⁰⁻³²² in brain tumor care. The SurVaxM vaccine presents a proof of concept for the design of equitable therapy, since it includes a peptide that encompasses antigen binding motifs for multiple class I HLAs and successfully induced immune responses to a variety of HLA-restricted peptides.¹⁸³ Designing equitable antigen therapy in the future hinges on how research is conducted in the present: investigating antigens that bind to HLAs of different classes. Plus, prioritizing equity in research design will strengthen insights and translate to improved patient outcomes.

Conclusion

Targeting TAs represents an exciting therapy for GBM. Treatment design needs to account for the unique properties of GBM and overcome the limited neoantigens by targeting multiple classes of TAs, and both MHC I and II restricted antigens. Additionally, further research must be done to confirm target antigens are presented on tumor cells and that immune responses to peptides in vaccines translate to survival benefit. More broadly, understanding the immunogenic landscape of GBM is crucial to knowing how the immune system discriminates GBM from normal and, unquestionably will lead to translational insights that will change the lives of patients with this disease.

Supplementary Material

Supplementary material is available online at *Neuro-Oncology Advances* (https://academic.oup.com/noa).

Keywords

glioblastoma | immunotherapy | neoantigens | tumor antigens | tumor specificity.

Funding

"Targeting Neoantigens in Glioblastoma" grant (5R01NS112712-05) from the National Institute of Neurological Diseases and Stroke.

Supplement sponsorship

This article appears as part of the supplement "Immunotherapy for Brain Tumors," sponsored by the Wilkins Family Chair in Neurosurgical Brain Tumor Research.

Acknowledgments

Special thanks to Erdyni N. Tsitsikov, Jose Maldonado, and Charlie Meynet for your ideas and feedback while writing this review. The figures in this article were created with BioRender. com (license was issued to G.P.D.).

Conflict of interest statement

The authors have no conflicts of interest.

Authorship Statement

Conceptualization: C.M.H., A.Z.W., M.L., G.P.D. Writing—original draft: C.M.H., A.Z.W. Writing—reviewing and editing: C.M.H., A.Z.W., B.H., G.P.D. Tables: C.M.H., M.L., R.R. Figures—original draft: C.M.H. Figures—reviewing and editing: C.M.H., A.Z.W., B.H., R.R. N.S., M.C., O.W., M.L., G.P.D. All authors read and approved the final manuscript.

Affiliations

Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA (C.M.H., A.Z.W., B.H., R.R., N.S., M.C., M.L., G.P.D.); Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA (C.M.H., A.Z.W., B.H., R.R., N.S., M.C., M.L., G.P.D.); Harvard Medical School, Boston, Massachusetts, USA (C.M.H.); Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA (A.Z.W.); Biological and Biomedical Sciences Graduate Program, Harvard University, Cambridge, Massachusetts, USA (N.S.)

References

- Ostrom QT, Gittleman H, Truitt G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 2018;20(suppl_4):iv1-iv86.
- Stupp R, Mason WP, van den Bent MJ, et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996.
- Weller M, Butowski N, Tran DD, et al; ACT IV trial investigators. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRVIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. *Lancet Oncol*. 2017;18(10):1373–1385.
- Lim M, Weller M, Idbaih A, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly

- diagnosed glioblastoma with methylated MGMT promoter. *Neuro Oncol.* 2022:24(11):1935–1949.
- Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. *Nature*. 2017;547(7662):217–221.
- Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. *Nature*. 2017;547(7662):222–226.
- Robbins PF, Lu YC, El-Gamil M, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumorreactive T cells. Nat Med. 2013;19(6):747–752.
- Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. *Science*. 2014;344(6184):641–645.
- Stevanović S, Pasetto A, Helman SR, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356(6334):200–205.
- Tran E, Robbins PF, Lu YC, et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 2016;375(23):2255–2262.
- Zacharakis N, Chinnasamy H, Black M, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24(6):724–730.
- Sarnaik AA, Hamid O, Khushalani NI, et al. Lifileucel, a tumorinfiltrating lymphocyte therapy, in metastatic melanoma. *J Clin Oncol*. 2021;39(24):2656–2666.
- Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology E-Book: Cellular and Molecular Immunology E-Book. Elsevier Health Sciences: 2021.
- Wieczorek M, Abualrous ET, Sticht J, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol. 2017;8:292.
- Dunn GP, Okada H. Principles of immunology and its nuances in the central nervous system. *Neuro Oncol.* 2015;17(suppl 7):vii3–vii8.
- Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological consequences of MHC-II expression by tumor cells in cancer. *Clin Cancer Res.* 2019;25(8):2392–2402.
- Fotakis G, Trajanoski Z, Rieder D. Computational cancer neoantigen prediction: current status and recent advances. *Immunooncol Technol*. 2021;12(100052):100052.
- Xie N, Shen G, Gao W, et al. Promising targets for cancer therapy. Signal Transduct Target Ther. 2023;8(1):9.
- Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. *Nat Rev Cancer*. 2014;14(2):135–146.
- Ladjemi MZ, Jacot W, Chardès T, Pèlegrin A, Navarro-Teulon I. Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother. 2010;59(9):1295–1312.
- Ohara K, Ohkuri T, Kumai T, et al. Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. *Oncoimmunology*. 2018;7(9):e1466771.
- Zhang JG, Eguchi J, Kruse CA, et al. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. *Clin Cancer Res.* 2007:13/2 Pt 1):566–575.
- Pitcovski J, Shahar E, Aizenshtein E, Gorodetsky R. Melanoma antigens and related immunological markers. *Crit Rev Oncol Hematol*. 2017;115:36–49.
- Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. *Cancer Res.* 2001;61(3):842–847.
- **25.** Liu G, Khong HT, Wheeler CJ, et al. Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma. *J Immunother.* 2003;26(4):301–312.

- 26. Kirkin AF, Dzhandzhugazyan K, Zeuthen J. The immunogenic properties of melanoma-associated antigens recognized by cytotoxic T lymphocytes. *Exp Clin Immunogenet*. 1998;15(1):19–32.
- Lennerz V, Fatho M, Gentilini C, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. *Proc Natl Acad Sci U S A*. 2005;102(44):16013–16018.
- Kawashima I, Hudson SJ, Tsai V, et al. The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. *Hum Immunol*. 1998;59(1):1–14.
- Hassel JC, Piperno-Neumann S, Rutkowski P, et al. Three-year overall survival with tebentafusp in metastatic uveal melanoma. N Engl J Med. 2023;389(24):2256–2266.
- Nathan P, Hassel JC, Rutkowski P, et al; IMCgp100-202 Investigators.
 Overall survival benefit with tebentafusp in metastatic uveal melanoma.
 N Engl J Med. 2021;385(13):1196–1206.
- Alexandrov LB, Nik-Zainal S, Wedge DC, et al; Australian Pancreatic Cancer Genome Initiative. Signatures of mutational processes in human cancer. *Nature*. 2013;500(7463):415

 –421.
- Budczies J, Kazdal D, Menzel M, et al. Tumour mutational burden: clinical utility, challenges and emerging improvements. *Nat Rev Clin Oncol.* 2024;21(10):725–742.
- **33.** Newell F, Wilmott JS, Johansson PA, et al. Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. *Nat Commun.* 2020;11(1):5259.
- **34.** Old LJ, Chen YT. New paths in human cancer serology. *J Exp Med.* 1998;187(8):1163–1167.
- van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–1647.
- Thomas R, Al-Khadairi G, Roelands J, et al. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol. 2018;9:947.
- Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. *J Exp Med*. 2004;199(2):155–166.
- Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012;12(4):307–313.
- Salmaninejad A, Zamani MR, Pourvahedi M, et al. Cancer/Testis antigens: expression, regulation, tumor invasion, and use in immunotherapy of cancers. *Immunol Invest*. 2016;45(7):619–640.
- Release: FI. FDA Approves First Gene Therapy to Treat Adults with Metastatic Synovial Sarcoma.
- Leko V, Rosenberg SA. Identifying and targeting human tumor antigens for T Cell-based immunotherapy of solid tumors. *Cancer Cell*. 2020;38(4):454–472.
- Naghavian R, Faigle W, Oldrati P, et al. Microbial peptides activate tumour-infiltrating lymphocytes in glioblastoma. *Nature*. 2023;617(7962):807–817.
- Smith CC, Selitsky SR, Chai S, et al. Alternative tumour-specific antigens. Nat Rev Cancer. 2019;19(8):465–478.
- Vigneron N, Stroobant V, Chapiro J, et al. An antigenic peptide produced by peptide splicing in the proteasome. Science. 2004;304(5670):587–590.
- Liepe J, Marino F, Sidney J, et al. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. *Science*. 2016;354(6310):354–358.
- Soh WT, Roetschke HP, Cormican JA, et al. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat Commun. 2024;15(1):1147.
- **47.** Guillaume B, Stroobant V, Bousquet-Dubouch MP, et al. Analysis of the processing of seven human tumor antigens by intermediate proteasomes. *J Immunol*. 2012;189(7):3538–3547.

- Dunn GP, Cloughesy TF, Maus MV, et al. Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. *Neuro Oncol*. 2020;22(10):1425–1438.
- Miao D, Margolis CA, Vokes NI, et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. *Nat Genet*. 2018;50(9):1271–1281.
- Harbst K, Lauss M, Cirenajwis H, et al. Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. *Cancer Res.* 2016;76(16):4765–4774.
- Witkiewicz AK, McMillan EA, Balaji U, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. *Nat Commun.* 2015;6(1):6744.
- Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. *Nature*. 2018;565(7738):240–245.
- Linnebacher M, Gebert J, Rudy W, et al. Frameshift peptide-derived T-cell epitopes: A source of novel tumor-specific antigens. *Int J Cancer*. 2001;93(1):6–11.
- Turajlic S, Litchfield K, Xu H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pancancer analysis. *Lancet Oncol.* 2017;18(8):1009–1021.
- Biernacki MA, Bleakley M. Neoantigens in hematologic malignancies. Front Immunol. 2020;11:121.
- Yang W, Lee KW, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25(5):767–775.
- Mistretta B, Rankothgedera S, Castillo M, et al. Chimeric RNAs reveal putative neoantigen peptides for developing tumor vaccines for breast cancer. Front Immunol. 2023;14:1188831.
- Kim T, Lee A, Ahn S, et al. Comprehensive molecular genetic analysis in glioma patients by next generation sequencing. *Brain Tumor Res Treat*. 2024;12(1):23–39.
- **59.** Wei Z, Zhou C, Zhang Z, et al. The landscape of tumor fusion neoantigens: a pan-cancer analysis. *iScience*. 2019;21:249–260.
- Hu Z, Leet DE, Allesøe RL, et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med. 2021;27(3):515–525.
- 61. Ott PA, Hu-Lieskovan S, Chmielowski B, et al. A phase lb trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell. 2020;183(2):347–362.e24.
- **62.** Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. *Cell.* 2015;161(7):1681–1696.
- FDA. Highlights of prescribing information: KEYTRUDA. Published online 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125514s110lbl.pdf
- 64. Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. *J ImmunoTher Cancer*. 2018;6(1):157.
- McGrail DJ, Pilié PG, Rashid NU, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. *Ann Oncol.* 2021;32(5):661–672.
- Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. *Immunity*. 2013;39(1):1–10.
- **67.** Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: Indication, genotype, and immunotype. *Immunity*. 2023;56(10):2188–2205.
- Elliott K, Larsson E. Non-coding driver mutations in human cancer. Nat Rev Cancer. 2021;21(8):500–509.
- Lau TTY, Sefid Dashti ZJ, Titmuss E, et al. The neoantigen landscape of the coding and noncoding cancer genome space. *J Mol Diagn*. 2022;24(6):609–618.

- Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470(7333):187–197.
- Laumont CM, Vincent K, Hesnard L, et al. Noncoding regions are the main source of targetable tumor-specific antigens. *Sci Transl Med.* 2018;10(470):eaau5516.
- Xiang R, Ma L, Yang M, et al. Increased expression of peptides from noncoding genes in cancer proteomics datasets suggests potential tumor neoantigens. Commun Biol. 2021;4(1):496.
- Linnemann C, van Buuren MM, Bies L, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2015;21(1):81–85.
- Lu YC, Yao X, Crystal JS, et al. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res. 2014;20(13):3401–3410.
- Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.
- Garcia-Garijo A, Fajardo CA, Gros A. Determinants for neoantigen identification. Front Immunol. 2019;10:1392.
- 77. Tran E, Ahmadzadeh M, Lu YC, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. *Science*. 2015;350(6266):1387–1390.
- Peri A, Salomon N, Wolf Y, et al. The landscape of T cell antigens for cancer immunotherapy. Nat Cancer. 2023;4(7):937–954.
- Brennan CW, Verhaak RGW, McKenna A, et al; TCGA Research Network. The somatic genomic landscape of glioblastoma. *Cell*. 2013;155(2):462–477.
- Gfeller D, Liu Y, Racle J. Contemplating immunopeptidomes to better predict them. Semin Immunol. 2023;66(101708):101708.
- Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687–692.
- Sade-Feldman M, Jiao YJ, Chen JH, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. *Nat Commun*. 2017;8(1):1136.
- McClellan BL, Haase S, Nunez FJ, et al. Impact of epigenetic reprogramming on antitumor immune responses in glioma. *J Clin Investig.* 2023;133(2):e163450.
- 84. Sun T, Li Y, Yang W, et al. Histone deacetylase inhibition up-regulates MHC class I to facilitate cytotoxic T lymphocyte-mediated tumor cell killing in glioma cells. J Cancer. 2019;10(23):5638–5645.
- 85. Erhard F, Dölken L, Schilling B, Schlosser A. Identification of the cryptic HLA-I immunopeptidome. *Cancer Immunol Res.* 2020;8(8):1018–1026.
- **86.** Jayasinghe RG, Cao S, Gao Q, et al; Cancer Genome Atlas Research Network. Systematic analysis of splice-site-creating mutations in cancer. *Cell Rep.* 2018;23(1):270–281.e3.
- Li G, Mahajan S, Ma S, et al. Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy. *Sci Transl Med.* 2024;16(730):eade2886.
- Goswami M, Hourigan CS. Novel antigen targets for immunotherapy of acute myeloid leukemia. *Curr Drug Targets*. 2017;18(3):296–303.
- Kwok DW, Stevers NO, Nejo T, et al. Tumor-wide RNA splicing aberrations generate immunogenic public neoantigens. bioRxivorg. 2023.
- Baretti M, Yarchoan M. Epigenetic modifiers synergize with immunecheckpoint blockade to enhance long-lasting antitumor efficacy. *J Clin Invest*. 2021;131(16):e151002.
- **91.** Wells JN, Feschotte C. A Field guide to eukaryotic transposable elements. *Annu Rev Genet*. 2020;54:539–561.
- Bonaventura P, Alcazer V, Mutez V, et al. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci Adv. 2022;8(4):eabj3671.
- 93. Hu Z, Guo X, Li Z, Meng Z, Huang S. The neoantigens derived from transposable elements – A hidden treasure for cancer immunotherapy. *Biochimica et Biophysica Acta (BBA) - Reviews on Cancer*. 2024;1879(5):189126.

- Srivastava AK, Guadagnin G, Cappello P, Novelli F. Post-translational modifications in tumor-associated antigens as a platform for novel immuno-oncology therapies. *Cancers*. 2022;15(1):138.
- Vigneron N, Van den Eynde BJ. Proteasome subtypes and the processing of tumor antigens: increasing antigenic diversity. Curr Opin Immunol. 2012;24(1):84–91.
- Voo KS, Zeng G, Mu JB, et al. CD4+ T-cell response to mitochondrial cytochrome B in human melanoma. *Cancer Res.* 2006;66(11):5919–5926.
- 97. Prota G, Lechuga-Vieco AV, De Libero G. Mitochondrial proteins as source of cancer neoantigens. *Int J Mol Sci* . 2022;23(5):2627.
- Kalaora S, Nagler A, Nejman D, et al. Identification of bacteria-derived HLA-bound peptides in melanoma. *Nature*. 2021;592(7852):138–143.
- Grogan EA, Summers WP, Dowling S, et al. Two Epstein-Barr viral nuclear neoantigens distinguished by gene transfer, serology, and chromosome binding. *Proc Natl Acad Sci U S A*. 1983;80(24):7650–7653.
- Masaki A, Ishida T, Suzuki S, et al. Human T-cell lymphotropic/leukemia virus type 1 (HTLV-1) Tax-specific T-cell exhaustion in HTLV-1-infected individuals. *Cancer Sci.* 2018;109(8):2383–2390.
- Abd-Aziz N, Poh CL. Development of peptide-based vaccines for cancer. J Oncol. 2022;2022:9749363.
- 102. Lim MC, Choi YJ, Hur SY, et al. GX-188E DNA vaccine plus pembrolizumab in HPV 16- and/or 18-positive recurrent or advance cervical cancer: a phase 2 trial. EClinicalMedicine. 2024;74(102716):102716.
- Johanns TM, Dunn GP. Applied cancer immunogenomics: leveraging neoantigen discovery in glioblastoma. Cancer J. 2017;23(2):125–130.
- Dunn GP, Sherpa N, Manyanga J, Johanns TM. Considerations for personalized neoantigen vaccination in Malignant glioma. Adv Drug Deliv Rev. 2022;186(114312):114312.
- Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol. 2024;24(3):213–227.
- Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase lb glioblastoma trial. *Nature*. 2019;565(7738):234–239.
- 107. Johanns TM, Garfinkle EAR, Miller KE, et al. Integrating multisector molecular characterization into personalized peptide vaccine design for patients with newly diagnosed glioblastoma. Clin Cancer Res. 2024;30(13):2729–2742.
- 108. Saunders CT, Wong WSW, Swamy S, et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. *Bioinformatics*. 2012;28(14):1811–1817.
- 109. McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 2010;20(9):1297–1303.
- Hundal J, Carreno BM, Petti AA, et al. pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. *Genome Med.* 2016;8(1):11.
- 111. Hundal J, Kiwala S, McMichael J, et al. PVACtools: A computational toolkit to identify and visualize cancer neoantigens. *Cancer Immunol Res.* 2020;8(3):409–420.
- 112. Wells DK, van Buuren MM, Dang KK, et al; Tumor Neoantigen Selection Alliance. Key parameters of tumor Epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. *Cell*. 2020;183(3):818–834.e13.
- Jaeger AM, Stopfer LE, Ahn R, et al. Deciphering the immunopeptidome in vivo reveals new tumour antigens. *Nature*. 2022;607(7917):149–155.
- 114. Jurtz V, Paul S, Andreatta M, et al. NetMHCpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. *J Immunol*. 2017;199(9):3360–3368.
- Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCllpan-4.0: improved predictions of MHC antigen presentation by

- concurrent motif deconvolution and integration of MS MHC eluted ligand data. *Nucleic Acids Res.* 2020;48(W1):W449–W454.
- 116. Chong C, Coukos G, Bassani-Sternberg M. Identification of tumor antigens with immunopeptidomics. Nat Biotechnol. 2022;40(2):175–188.
- Abelin JG, Keskin DB, Sarkizova S, et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate Epitope prediction. *Immunity*. 2017;46(2):315–326.
- Purcell AW, Ramarathinam SH, Ternette N. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. *Nat Protoc.* 2019;14(6):1687–1707.
- Liu K, Ye Y, Li S, Tang H. Accurate de novo peptide sequencing using fully convolutional neural networks. Nat Commun. 2023;14(1):7974.
- Bassani-Sternberg M, Bräunlein E, Klar R, et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun. 2016;7(1):13404.
- Kalaora S, Wolf Y, Feferman T, et al. Combined analysis of antigen presentation and T-cell recognition reveals restricted immune responses in melanoma. *Cancer Discov.* 2018;8(11):1366–1375.
- **122.** Genolet R, Bobisse S, Chiffelle J, et al. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs. *Cell Rep Methods*. 2023;3(4):100459.
- 123. Shugay M, Bagaev DV, Zvyagin IV, et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. *Nucleic Acids Res*. 2018;46(D1):D419–D427.
- Ebrahimi-Nik H, Moussa M, Englander RP, et al. Reversion analysis reveals the in vivo immunogenicity of a poorly MHC I-binding cancer neoepitope. Nat Commun. 2021;12(1):6423.
- 125. Gálvez J, Gálvez JJ, García-Peñarrubia P. Is TCR/pMHC affinity a good estimate of the T-cell response? An answer based on predictions from 12 phenotypic models. Front Immunol. 2019;10:349.
- Oliveira G, Stromhaug K, Klaeger S, et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. *Nature*. 2021;596(7870):119–125.
- 127. Roudko V, Bozkus CC, Orfanelli T, et al. Shared immunogenic poly-Epitope frameshift mutations in microsatellite unstable tumors. *Cell*. 2020;183(6):1634–1649.e17.
- Cimen Bozkus C, Blazquez AB, Enokida T, Bhardwaj N. A T-cell-based immunogenicity protocol for evaluating human antigen-specific responses. STAR Protoc. 2021;2(3):100758.
- Moravec Z, Zhao Y, Voogd R, et al. Discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening. *Nat Biotechnol*. 2024:1–9.
- 130. Gee MH, Han A, Lofgren SM, et al. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell. 2018;172(3):549–563.e16.
- Lee MN, Meyerson M. Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigenpresenting cells. Sci Immunol. 2021;6(55):eabf4001.
- **132.** Xu Y, Su GH, Ma D, et al. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. *Signal Transduct Target Ther.* 2021;6(1):312.
- **133.** Xu H, Hu R, Dong X, et al. ImmuneApp for HLA-I epitope prediction and immunopeptidome analysis. *Nat Commun.* 2024;15(1):8926.
- **134.** Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. *Immunity*. 2004;21(2):137–148.
- **135.** Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. *Neurosurgery*. 2012;71(2):201–22; discussion 222.
- Kane JR, Zhao J, Tsujiuchi T, et al. CD8+ T-cell-mediated immunoediting influences genomic evolution and immune evasion in murine gliomas. Clin Cancer Res. 2020;26(16):4390–4401.

- Aum DJ, Kim DH, Beaumont TL, et al. Molecular and cellular heterogeneity: the hallmark of glioblastoma. Neurosurg Focus. 2014;37(6):E11.
- 138. Verhaak RGW, Hoadley KA, Purdom E, et al; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.
- **139.** Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. *Cancer Cell*. 2017;32(1):42–56.e6.
- **140.** Schaettler MO, Richters MM, Wang AZ, et al. Characterization of the genomic and immunologic diversity of malignant brain tumors through multisector analysis. *Cancer Discov.* 2022;12(1):154–171.
- Barish ME, Weng L, Awabdeh D, et al. Spatial organization of heterogeneous immunotherapy target antigen expression in high-grade glioma. Neoplasia. 2022;30(100801):100801.
- 142. Mathewson ND, Ashenberg O, Tirosh I, et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. *Cell*. 2021;184(5):1281–1298.e26.
- 143. Pombo Antunes AR, Scheyltjens I, Lodi F, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. *Nat Neurosci*. 2021;24(4):595–610.
- 144. Ravi VM, Neidert N, Will P, et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat Commun. 2022;13(1):925.
- **145.** Abdelfattah N, Kumar P, Wang C, et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. *Nat Commun.* 2022;13(1):767.
- 146. Müller S, Kohanbash G, Liu SJ, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. *Genome Biol.* 2017;18(1):234.
- 147. Ochocka N, Segit P, Walentynowicz KA, et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. *Nat Commun.* 2021;12(1):1151.
- Himes BT, Geiger PA, Ayasoufi K, et al. Immunosuppression in glioblastoma: current understanding and therapeutic implications. Front Oncol. 2021;11:770561.
- Qian J, Luo F, Yang J, et al. TLR2 promotes glioma immune evasion by downregulating MHC class II molecules in microglia. *Cancer Immunol Res*. 2018;6(10):1220–1233.
- Schartner JM, Hagar AR, Van Handel M, et al. Impaired capacity for upregulation of MHC class II in tumor-associated microglia. *Glia*. 2005;51(4):279–285.
- 151. Kamran N, Kadiyala P, Saxena M, et al. Immunosuppressive myeloid cells' blockade in the glioma microenvironment enhances the efficacy of immune-stimulatory gene therapy. *Mol Ther.* 2017;25(1):232–248.
- 152. Woroniecka K, Chongsathidkiet P, Rhodin K, et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res. 2018;24(17):4175–4186.
- Davidson TB, Lee A, Hsu M, et al. Expression of PD-1 by T cells in malignant glioma patients reflects exhaustion and activation. *Clin Cancer Res.* 2019;25(6):1913–1922.
- **154.** Watowich MB, Gilbert MR, Larion M. T cell exhaustion in malignant gliomas. *Trends Cancer*. 2023;9(4):270–292.
- **155.** Lee J, Nicosia M, Hong ES, et al. Sex-biased T-cell exhaustion drives differential immune responses in glioblastoma. *Cancer Discovery*. 2023;13(9):2090–2105.
- Naulaerts S, Datsi A, Borras DM, et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer. Sci Transl Med. 2023;15(691):eadd1016.

- 157. Wang AZ, Mashimo BL, Schaettler MO, et al. Glioblastoma-infiltrating CD8+ T cells are predominantly a clonally expanded GZMK+ effector population. *Cancer Discov*. 2024;14(6):1106–1131.
- 158. Fecci PE, Mitchell DA, Whitesides JF, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. *Cancer Res.* 2006;66(6):3294–3302.
- Humphries W, Wei J, Sampson JH, Heimberger AB. The role of tregs in glioma-mediated immunosuppression: potential target for intervention. *Neurosurg Clin N Am.* 2010;21(1):125–137.
- **160.** Nduom EK, Wei J, Yaghi NK, et al. PD-L1 expression and prognostic impact in glioblastoma. *Neuro Oncol.* 2016;18(2):195–205.
- 161. Wainwright DA, Balyasnikova IV, Chang, AL et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18(22):6110–6121.
- 162. Zhai L, Bell A, Ladomersky E, et al. Tumor cell IDO enhances immune suppression and decreases survival independent of tryptophan metabolism in glioblastoma. Clin Cancer Res. 2021;27(23):6514–6528.
- **163.** Ladomersky E, Zhai L, Lenzen A, et al. IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. *Clin Cancer Res.* 2018;24(11):2559–2573.
- 164. Ichinose M, Masuoka J, Shiraishi T, Mineta T, Tabuchi K. Fas ligand expression and depletion of T-cell infiltration in astrocytic tumors. *Brain Tumor Pathol.* 2001;18(1):37–42.
- 165. Wastowski IJ, Simões RT, Yaghi L, et al. Human leukocyte antigen-G is frequently expressed in glioblastoma and may be induced in vitro by combined 5-aza-2'-deoxycytidine and interferon-γ treatments: results from a multicentric study. Am J Pathol. 2013;182(2):540–552.
- 166. Wischhusen J, Friese MA, Mittelbronn M, Meyermann R, Weller M. HLA-E protects glioma cells from NKG2D-mediated immune responses in vitro: implications for immune escape in vivo. *J Neuropathol Exp Neurol*. 2005;64(6):523–528.
- Pearson JRD, Cuzzubbo S, McArthur S, et al. Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Front Immunol. 2020;11:582106.
- 168. Piao Y, Henry V, Tiao N, et al. Targeting intercellular adhesion molecule-1 prolongs survival in mice bearing bevacizumab-resistant glioblastoma. *Oncotarget*. 2017;8(57):96970–96983.
- **169.** Brown NF, Carter TJ, Ottaviani D, Mulholland P. Harnessing the immune system in glioblastoma. *Br J Cancer*. 2018;119(10):1171–1181.
- Batich KA, Reap EA, Archer GE, et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. *Clin Cancer Res*. 2017;23(8):1898–1909.
- 171. Vik-Mo EO, Nyakas M, Mikkelsen BV, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. *Cancer Immunol Immunother*. 2013;62(9):1499–1509.
- Latzer P, Zelba H, Battke F, et al. A real-world observation of patients with glioblastoma treated with a personalized peptide vaccine. *Nat Commun*. 2024;15(1):6870.
- 173. Migliorini D, Dutoit V, Allard M, et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. *Neuro Oncol*. 2019;21(7):923–933.
- 174. Awada H, Paris F, Pecqueur C. Exploiting radiation immunostimulatory effects to improve glioblastoma outcome. *Neuro Oncol.* 2023;25(3):433–446. https://academic.oup.com/neuro-oncology/article-abstract/25/3/433/6761020
- Karachi A, Dastmalchi F, Mitchell DA, Rahman M. Temozolomide for immunomodulation in the treatment of glioblastoma. *Neuro Oncol.* 2018;20(12):1566–1572.

- Daniel P, Sabri S, Chaddad A, et al. Temozolomide induced hypermutation in glioma: evolutionary mechanisms and therapeutic opportunities. Front Oncol. 2019;9:41.
- Wick W, Wick A, Sahm F, et al. VXM01 phase I study in patients with progressive glioblastoma: final results. *J Clin Oncol.* 2018;36(15_suppl):2017–2017.
- 178. Moscatello DK, Ramirez G, Wong AJ. A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors. *Cancer Res.* 1997;57(8):1419–1424.
- 179. Heimberger AB, Sampson JH. The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients. Expert Opin Biol Ther. 2009;9(8):1087–1098.
- 180. Rahman M, Ghiaseddin A, Deleyrolle P, et al. Ctim-07. Phase ii randomized, blinded, placebo-controlled trial testing pp65 cmv mRNA dendritic cell vaccine and tetanus-diphtheria toxoid for newly diagnosed gbm (attac ii, nct02465268). Neuro-Oncology. 2022;24(Supplement_7):vii60—vii61.
- 181. Wen PY, Reardon DA, Forst DA, et al. Evaluation of tumor responses and overall survival in patients with recurrent glioblastoma (GBM) from a phase lla trial of a CMV vaccine immunotherapeutic candidate (VBI-1901). J Clin Oncol. 2022;40(16_suppl):2014–2014.
- **182.** Thompson E, Landi D, Thompson E, et al. CTIM-21. peptide vaccine directed to CMV pp65 for treatment of recurrent malignant glioma and medulloblastoma in children and young adults: preliminary results of a phase I trial. *Neuro-Oncology*. 2020;22(Supplement_2):ii37—ii37.
- 183. Fenstermaker RA, Ciesielski MJ, Qiu J, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother. 2016;65(11):1339–1352.
- **184.** Fu S, Piccioni DE, Liu H, et al. A phase I study of the WT2725 dosing emulsion in patients with advanced malignancies. *Sci Rep.* 2021;11(1):22355.
- 185. Suginobe N, Nakamura M, Takanashi Y, Ban H, Gotoh M. Mechanism of action of DSP-7888 (adegramotide/nelatimotide) emulsion, a peptidebased therapeutic cancer vaccine with the potential to turn up the heat on non-immunoreactive tumors. Clin Transl Oncol. 2023;25(2):396–407.
- **186.** Dhodapkar MV, Sznol M, Zhao B, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. *Sci Transl Med*. 2014;6(232):232ra51.
- Prins RM, Wang X, Soto H, et al. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. *J Immunother*. 2013;36(2):152–157.
- 188. Boockvar J, Bodhinayake I, Brooks C, et al. It-02 * initiation of clinical studies with sI-701, a synthetic multi-peptide vaccine with enhanced immunostimulatory properties targeting multiple glioma-associated antigens, in adults with first recurrence of glioblastoma. *Neuro Oncol.* 2014;16(suppl 5):v110–v110.
- 189. Crittenden M, Bahjat KS, Li R, et al. Phase I study of safety and immunogenicity of ADU-623, a live-attenuated listeria monocytogenes vaccine (ΔactA/ΔinIB) expressing EGFRVIII and NY-ESO-1, in patients with who grade III/IV astrocytomas. J ImmunoTher Cancer. 2015;3(Suppl 2):P162.
- 190. Tabatabai G, Von Baumgarten L, Van Den Bent MJ, et al; CV-GBLM-001 Study Group. Phase 1 dose-finding study to evaluate safety and tolerability of CVGBM in patients with newly diagnosed and surgically resected MGMT-unmethylated glioblastoma. *J Clin Oncol*. 2024;42(16_suppl):TPS2095—TPS2095.
- Wang QT, Nie Y, Sun SN, et al. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. *Cancer Immunol Immunother*. 2020;69(7):1375–1387.
- Narita Y, Arakawa Y, Yamasaki F, et al. A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. *Neuro Oncol.* 2019;21(3):348–359.

- 193. Narita Y, Okita Y, Arakawa Y. Evaluation of the efficacy and safety of TAS0313 in adults with recurrent glioblastoma. *Cancer Immunol Immunother*. 2022;71(11):2703–2715.
- 194. Holland-Frei Cancer Medicine. https://www.ncbi.nlm.nih.gov/books/ NBK12354/
- Dutoit V, Herold-Mende C, Hilf N, et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. *Brain*. 2012;135(Pt 4):1042–1054.
- 196. Neidert MC, Kowalewski DJ, Silginer M, et al. The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cell-based immunotherapy. Acta Neuropathol. 2018;135(6):923–938.
- Zagzag D, Salnikow K, Chiriboga L, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. *Lab Invest*. 2005;85(3):328–341.
- 198. Nonaka Y, Tsuda N, Shichijo S, et al. Recognition of ADP-ribosylation factor 4-like by HLA-A2-restricted and tumor-reactive cytotoxic T lymphocytes from patients with brain tumors. *Tissue Antigens*. 2002;60(4):319–327.
- **199.** Liu G, Yu JS, Zeng G, et al. AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. *J Immunother.* 2004;27(3):220–226.
- Hatano M, Eguchi J, Tatsumi T, et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia. 2005;7(8):717–722.
- 201. Schmitz M, Temme A, Senner V, et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br J Cancer. 2007;96(8):1293–1301.
- Schmitz M, Wehner R, Stevanovic S, et al. Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX11. Cancer Lett. 2007;245(1-2):331–336.
- 203. Jin M, Komohara Y, Shichijo S, et al. Identification of EphB6 variant-derived epitope peptides recognized by cytotoxic T-lymphocytes from HLA-A24+ malignant glioma patients. *Oncol Rep.* 2008;19(5):1277—1283.
- 204. Okada H, Kalinski P, Ueda R, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29(3):330–336.
- Morgan RA, Chinnasamy N, Abate-Daga D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–151.
- Xu Q, Liu G, Yuan X, et al. Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells. 2009;27(8):1734–1740.
- Mineo JF, Bordron A, Baroncini M, et al. Low HER2-expressing glioblastomas are more often secondary to anaplastic transformation of low-grade glioma. J Neurooncol. 2007;85(3):281–287.
- 208. Koka V, Potti A, Forseen SE, et al. Role of Her-2/neu overexpression and clinical determinants of early mortality in glioblastoma multiforme. Am J Clin Oncol. 2003;26(4):332–335.
- Phuphanich S, Wheeler CJ, Rudnick JD, et al. Phase I trial of a multiepitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. *Cancer Immunol Immunother*. 2013;62(1):125–135.
- Liu G, Ying H, Zeng G, et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. *Cancer Res.* 2004;64(14):4980–4986.
- 211. Shichijo S, Nakao M, Imai Y, et al. A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. *J Exp Med*. 1998;187(3):277–288.
- **212.** Imaizumi T, Kuramoto T, Matsunaga K, et al. Expression of the tumor-rejection antigen SART1 in brain tumors. *Int J Cancer.* 1999;83(6):760–764.

- 213. Yajima N, Yamanaka R, Mine T, et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. *Clin Cancer Res.* 2005;11(16):5900–5911.
- 214. Kondo S, Shimizu T, Koyama T, et al. First-in-human study of the cancer peptide vaccine TAS0313 in patients with advanced solid tumors. *Cancer Sci.* 2021;112(4):1514–1523.
- 215. Wen PY, Reardon DA, Armstrong TS, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 2019;25(19):5799–5807.
- 216. Peereboom D, Nabors LB, Kumthekar P, et al. 3730 Results of phase II trial of SL-701, a novel immunotherapy targeting IL-13Ra2, EphA2, and survivin, in adults with second-line recurrent glioblastoma (GBM). *Ann Oncol.* 2018;29:viii122—viii123.
- 217. Liu TF, Tatter SB, Willingham MC, et al. Growth factor receptor expression varies among high-grade gliomas and normal brain: epidermal growth factor receptor has excellent properties for interstitial fusion protein therapy. *Mol Cancer Ther.* 2003;2(8):783–787.
- 218. Saikali S, Avril T, Collet B, et al. Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRVIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. *J Neurooncol*. 2007;81(2):139–148.
- 219. Jaén M, Martín-Regalado A, Bartolomé RA, Robles J, Casal JI. Interleukin 13 receptor alpha 2 (IL13Ro2): expression, signaling pathways and therapeutic applications in cancer. *Biochim Biophys Acta Rev Cancer*. 2022;1877(5):188802.
- 220. Newman JP, Wang GY, Arima K, et al. Interleukin-13 receptor alpha 2 cooperates with EGFRvIII signaling to promote glioblastoma multiforme. Nat Commun. 2017;8(1):1–17.
- 221. Wang AZ, Bowman-Kirigin JA, Desai R, et al. Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response. Genome Med. 2022;14(1):49.
- 222. Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. *Clin Cancer Res.* 2002;8(9):2851–2855.
- 223. Peereboom D, Lindsay R, Badruddoja M, et al. Ctim-06. A phase 2 study of a novel immunotherapy sI-701 in adults with recurrent glioblastoma: exploring the prognostic value of treatment-induced cd8+cd57+ t-cells as a marker for survival. Neuro-Oncology. 2023;25(Supplement_5):v61–v62.
- 224. Wick W, Idbaih A, Vieito M, et al. E02401 (E) peptide immunotherapy + nivolumab (N) +/- bevacizumab (B) in recurrent glioblastoma (GB): E0GBM1-18/R0SALIE. *J Clin Oncol*. 2023;41(16 suppl):2020–2020.
- 225. Wheatley SP, Altieri DC. Survivin at a glance. J Cell Sci. 2019;132(7).
- **226.** Ciesielski MJ, Ahluwalia MS, Munich SA, et al. Antitumor cytotoxic T-cell response induced by a survivin peptide mimic. *Cancer Immunol Immunother.* 2010;59(8):1211–1221.
- **227.** Guvenc H, Pavlyukov MS, Joshi K, et al. Impairment of glioma stem cell survival and growth by a novel inhibitor for Survivin-Ran protein complex. *Clin Cancer Res.* 2013;19(3):631–642.
- Chakravarti A, Noll E, Black PM, et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol. 2002;20(4):1063–1068.
- 229. Shirai K, Suzuki Y, Oka K, et al. Nuclear survivin expression predicts poorer prognosis in glioblastoma. *J Neurooncol*. 2009;91(3):353–358.
- 230. Zhang S, Zhang C, Song Y, Zhang J, Xu J. Prognostic role of survivin in patients with glioma. *Medicine (Baltim)*. 2018;97(17):e0571.
- 231. Rampling R, Peoples S, Mulholland PJ, et al. a cancer research UK first time in human phase I trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in patients with newly diagnosed glioblastoma. *Clin Cancer Res*. 2016;22(19):4776–4785.

- 232. Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. *Nature*. 2014;512(7514):324–327.
- 233. Han S, Liu Y, Cai SJ, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer. 2020;122(11):1580–1589.
- Wu AH, Xiao J, Anker L, et al. Identification of EGFRvIII-derived CTL epitopes restricted by HLA A0201 for dendritic cell based immunotherapy of gliomas. J Neurooncol. 2006;76(1):23–30.
- Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. *Proc Natl Acad Sci U S A*. 1990;87(21):8602–8606.
- 236. Felsberg J, Hentschel B, Kaulich K, et al; German Glioma Network. Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res. 2017;23(22):6846–6855.
- 237. An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. *Oncogene*. 2018;37(12):1561–1575.
- Montano N, Cenci T, Martini M, et al. Expression of EGFRvIII in glioblastoma: prognostic significance revisited. *Neoplasia*. 2011;13(12):1113–1121.
- Hoogstrate Y, Ghisai SA, de Wit M, et al. The EGFRvIII transcriptome in glioblastoma: a meta-omics analysis. *Neuro-Oncology*. 2021;24(3):429–441.
- **240.** Swartz AM, Li QJ, Sampson JH. Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. *Immunotherapy*. 2014;6(6):679–690.
- 241. Swaminathan A, Lucas RM, Dear K, McMichael AJ. Keyhole limpet haemocyanin a model antigen for human immunotoxicological studies. *Br J Clin Pharmacol*. 2014;78(5):1135–1142.
- 242. Heimberger AB, Crotty LE, Archer GE, et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors1. Clin Cancer Res. 2003;9(11):4247–4254.
- 243. Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–4729.
- 244. Reardon DA, Desjardins A, Vredenburgh JJ, et al; ReACT trial investigators. Rindopepimut with bevacizumab for patients with relapsed EGFRVIII-expressing glioblastoma (ReACT): results of a double-blind randomized phase II trial. *Clin Cancer Res.* 2020;26(7):1586–1594.
- 245. Schuster J, Lai RK, Recht LD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. *Neuro Oncol.* 2015;17(6):854–861.
- 246. Choi BD, Gerstner ER, Frigault MJ, et al. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N Engl J Med. 2024;390(14):1290–1298.
- 247. Johanns TM, Miller CA, Liu CJ, et al. Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. *Oncoimmunology*. 2019;8(4):e1561106.
- **248.** Valentini D, Rao M, Meng Q, et al. Identification of neoepitopes recognized by tumor-infiltrating lymphocytes (TILs) from patients with glioma. *Oncotarget*. 2018;9(28):19469–19480.
- **249.** Yi X, Liao Y, Wen B, et al. caAtlas: an immunopeptidome atlas of human cancer. *iScience*. 2021;24(10):103107.
- Morozov AV, Karpov VL. Proteasomes and several aspects of their heterogeneity relevant to cancer. Front Oncol. 2019;9:761.
- 251. Nakao M, Shichijo S, Imaizumi T, et al. Identification of a gene coding for a new squamous cell carcinoma antigen recognized by the CTL. J Immunol. 2000;164(5):2565–2574.

- 252. Bonté PE, Arribas YA, Merlotti A, et al. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep. 2022;39(10):110916.
- Shah NM, Jang HJ, Liang Y, et al. Pan-cancer analysis identifies tumorspecific antigens derived from transposable elements. *Nat Genet*. 2023;55(4):631–639.
- 254. Kong Y, Rose CM, Cass AA, et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. *Nat Commun*. 2019;10(1):1–14.
- 255. Shah AH, Govindarajan V, Doucet-O'Hare TT, et al. Differential expression of an endogenous retroviral element [HERV-K(HML-6)] is associated with reduced survival in glioblastoma patients. Sci Rep. 2022;12.
- **256.** Shah AH, Rivas SR, Doucet-O'Hare TT, et al. Human endogenous retrovirus K contributes to a stem cell niche in glioblastoma. *J Clin Invest.* 2023;133(13).
- 257. Mitchell DA, Xie W, Schmittling R, et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. *Neuro Oncol.* 2008;10(1):10–18.
- **258.** Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. *J Neurooncol*. 2011;103(2):231–238.
- **259.** El Baba R, Pasquereau S, Haidar Ahmad S, et al. EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. *Oncogene*. 2023;42(24):2031–2045.
- Dziurzynski K, Wei J, Qiao W, et al. Glioma-associated cytomegalovirus mediates subversion of the monocyte lineage to a tumor propagating phenotype. *Clin Cancer Res.* 2011;17(14):4642–4649.
- Cobbs CS, Harkins L, Samanta M, et al. Human cytomegalovirus infection and expression in human malignant glioma. *Cancer Res.* 2002;62(12):3347–3350.
- **262.** Nair SK, De Leon G, Boczkowski D, et al. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. *Clin Cancer Res.* 2014;20(10):2684–2694.
- Mitchell DA, Batich KA, Gunn MD, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. *Nature*. 2015;519(7543):366–369.
- **264.** Smith C, Lineburg KE, Martins JP, et al. Autologous CMV-specific T cells are a safe adjuvant immunotherapy for primary glioblastoma multiforme. *J Clin Invest.* 2020;130(11):6041–6053.
- Schuessler A, Smith C, Beagley L, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. *Cancer Res.* 2014;74(13):3466–3476.
- **266.** Weathers SP, Penas-Prado M, Pei BL, et al. Glioblastoma-mediated Immune dysfunction limits CMV-specific T Cells and therapeutic responses: results from a phase I/II trial. *Clin Cancer Res.* 2020;26(14):3565–3577.
- Su Z, Dannull J, Yang BK, et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. *J Immunol*. 2005;174(6):3798–3807.
- **268.** Chen AC, Xu R, Wang T, et al. HER2-LAMP vaccines effectively traffic to endolysosomal compartments and generate enhanced polyfunctional T cell responses that induce complete tumor regression. *J ImmunoTher Cancer*. 2020;8(1):e000258.
- **269.** Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. *Science*. 2020;368(6494):973–980.
- 270. Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma stem cells: driving resilience through Chaos. *Trends in cancer*. 2020;6(3):223–235.

- 271. Walter S, Weinschenk T, Stenzl A, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. *Nat Med.* 2012;18(8):1254–1261.
- 272. Klenerman P, Zinkernagel RM. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. *Nature*. 1998:394(6692):482–485.
- 273. McMichael AJ. The original sin of killer T cells. *Nature*. 1998;394(6692):421–422.
- 274. Wang AF, Hsueh B, Choi BD, Gerstner ER, Dunn GP. Immunotherapy for brain tumors: Where we have been, and where do we go from here? Curr Treat Options Oncol. 2024;25(5):628–643.
- Ryschich E, Nötzel T, Hinz U, et al. Control of T-cell—mediated immune response by HLA class I in human pancreatic carcinoma. *Clin Cancer Res.* 2005;11(2):498–504.
- 276. Slingluff CL, Jr, Petroni GR, Chianese-Bullock KA, et al. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. *Clin Cancer Res.* 2007;13(21):6386–6395.
- Alspach E, Lussier DM, Miceli AP, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. *Nature*. 2019;574(7780):696–701.
- 278. Ninmer EK, Zhu H, Chianese-Bullock KA, et al. Multipeptide vaccines for melanoma in the adjuvant setting: long-term survival outcomes and post-hoc analysis of a randomized phase II trial. *Nat Commun*. 2024;15(1):2570.
- 279. Kreiter S, Vormehr M, van de Roemer N, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. *Nature*. 2015;520(7549):692–696.
- 280. Macy AM, Herrmann LM, Adams AC, Hastings KT. Major histocompatibility complex class II in the tumor microenvironment: functions of nonprofessional antigen-presenting cells. *Curr Opin Immunol.* 2023;83(102330):102330.
- Grassl N, Poschke I, Lindner K, et al. A H3K27M-targeted vaccine in adults with diffuse midline glioma. Nat Med. 2023;29(10):2586–2592.
- **282.** Boschert T, Kromer K, Lerner T, et al. H3K27M neoepitope vaccination in diffuse midline glioma induces B and T cell responses across diverse HLA loci of a recovered patient. *Sci Adv.* 2024;10(5):eadi9091.
- 283. Wang J, Weiss T, Neidert MC, et al. Vaccination with designed neopeptides induces intratumoral, cross-reactive CD4+ T-cell responses in glioblastoma. *Clin Cancer Res.* 2022;28(24):5368–5382.
- De Martino M, Padilla O, Daviaud C, et al. Exploiting radiation therapy to restore immune reactivity of glioblastoma. Front Oncol. 2021;11:671044.
- Verdegaal EME, van der Burg SH. The potential and challenges of exploiting the vast but dynamic neoepitope landscape for immunotherapy. Front Immunol. 2017;8:1113.
- 286. Ma R, Rei M, Woodhouse I, et al. Decitabine increases neoantigen and cancer testis antigen expression to enhance T-cell-mediated toxicity against glioblastoma. *Neuro Oncol.* 2022;24(12):2093–2106.
- 287. Konkankit VV, Kim W, Koya RC, et al. Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas Ligand pathway. *J Transl Med*. 2011;9(1):192.
- Basri N, Jang J, Shah N, Liang H, Wang T. 55. Epigenetic therapyinduced transposable element antigens in Glioblastoma. *Cancer Genetics*. 2022;268-269:18.
- 289. Griffiths EA, Srivastava P, Matsuzaki J, et al. NY-ESO-1 vaccination in combination with decitabine induces antigen-specific T-lymphocyte responses in patients with myelodysplastic syndrome. *Clin Cancer Res.* 2018;24(5):1019–1029.
- Wang J, Cazzato E, Ladewig E, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48(7):768–776.

- **291.** van den Bent MJ, Gao Y, Kerkhof M, et al. Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. *Neuro Oncol.* 2015;17(7):935–941.
- Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. *Methods Mol Biol*. 2018:1711:243

 –259.
- 293. Tang X, Xu P, Chen A, et al. Prognostic and predictive value of an immunoscore signature in glioblastoma multiform. Front Genet. 2020;11:514363.
- **294.** Schaettler MO, Desai R, Wang AZ, et al. TCR-engineered adoptive cell therapy effectively treats intracranial murine glioblastoma. *J ImmunoTher Cancer.* 2023;11(2):e006121.
- Tian S, Maile R, Collins EJ, Frelinger JA. CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. *J Immunol*. 2007:179(5):2952–2960.
- 296. Sibener LV, Fernandes RA, Kolawole EM et al. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell. 2018;174(3):672–687.e27.
- 297. Zhao X, Kolawole EM, Chan W, et al. Tuning T cell receptor sensitivity through catch bond engineering. *Science*. 2022;376(6589):eabl5282.
- 298. Nauerth M, Weißbrich B, Knall R, et al. TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. *Sci Transl Med.* 2013;5(192):192ra87.
- 299. Dutoit V, Rubio-Godoy V, Dietrich PY, et al. Heterogeneous T-cell response to MAGE-A10(254-262): high avidity-specific cyto-lytic T lymphocytes show superior antitumor activity. Cancer Res. 2001;61(15):5850–5856.
- **300.** Johnson LA, Heemskerk B, Powell DJ, Jr, et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. *J Immunol*. 2006;177(9):6548–6559.
- Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. *Nat Rev Drug Discov*. 2023;22(12):996–1017.
- **302.** Segal G, Prato S, Zehn D, Mintern JD, Villadangos JA. Target density, not affinity or avidity of antigen recognition, determines adoptive T cell therapy outcomes in a mouse lymphoma model. *J Immunol.* 2016;196(9):3935–3942.
- Johnson LA, Morgan RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. *Blood*. 2009;114(3):535–546.
- 304. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, et al. NY-ESO-1—specific TCR—engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914—921.
- **305.** Ma C, Cheung AF, Chodon T, et al. Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. *Cancer Discov.* 2013;3(4):418–429.
- **306.** Campillo-Davo D, Flumens D, Lion E. The quest for the best: How TCR affinity, avidity, and functional avidity affect TCR-engineered T-cell antitumor responses. *Cells*. 2020;9(7):1720.
- 307. Cameron BJ, Gerry AB, Dukes J, et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 2013;5(197):197ra103.
- Linette GP, Stadtmauer EA, Maus MV, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. *Blood*. 2013;122(6):863–871.
- **309.** Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. *Blood Cancer J.* 2021;11(4):69.
- Parums DV. Editorial: First regulatory approval for adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs) - lifileucel (Amtagvi). Med Sci Monit. 2024;30:e944927.

- Ayala Ceja M, Khericha M, Harris CM, Puig-Saus C, Chen YY. CAR-T cell manufacturing: Major process parameters and next-generation strategies. J Exp Med. 2024;221(2).
- Neeser A, Ramasubramanian R, Wang C, Ma L. Engineering enhanced chimeric antigen receptor-T cell therapy for solid tumors. *Immunooncol Technol*. 2023;19(100385):100385.
- 313. Choe JH, Watchmaker PB, Simic MS, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. *Sci Transl Med*. 2021;13(591).
- 314. Cao K, Hollenbach J, Shi X, et al. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. *Hum Immunol.* 2001;62(9):1009–1030.
- 315. Gonzalez-Galarza FF, McCabe A, Santos EJMD, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. *Nucleic Acids Res*. 2020;48(D1):D783–D788.

- Olivier T, Haslam A, Tuia J, Prasad V. Eligibility for human leukocyte antigen-based therapeutics by race and ethnicity. *JAMA Netw Open*. 2023;6(10):e2338612–e2338612.
- Budhu JA, Chukwueke UN, Jackson S, et al. Defining interventions and metrics to improve diversity in CNS clinical trial participation: a SNO and RANO effort. *Neuro Oncol.* 2024;26(4):596–608.
- 318. Taha B, Winston G, Tosi U, et al. Missing diversity in brain tumor trials. *Neurooncol. Adv.* 2020;2(1):vdaa059.
- Bailey ZD, Krieger N, Agénor M, et al. Structural racism and health inequities in the USA: evidence and interventions. *Lancet*. 2017;389(10077):1453–1463.
- Curry WT, Jr, Barker FG, 2nd. Racial, ethnic and socioeconomic disparities in the treatment of brain tumors. J Neurooncol. 2009;93(1):25–39.
- **321.** Brown LB, Johnston F. Racial disparities in physician decision making for primary brain tumours. *Lancet*. 2022;400(10368):2010–2011.
- **322.** Thomas G, Almeida ND, Mast G, et al. Racial disparities affecting postoperative outcomes after brain tumor resection. *World Neurosurg*. 2021;155:e665–e673.