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Abstract

Recent studies have highlighted the therapeutic potential of targeting tumor antigens (TAs) in glioblastoma (GBM).
Several classes of TAs, such as tumor-associated, cancer testis, and tumor-specific antigens, have proven to be im-
munogenic and used safely in vaccines. Many of these vaccines have focused on tumor-associated or cancer testis
antigens. However, tumor-specific antigens (TSA) present an ideal target due to the lack of tolerance and exclusive
tumor expression, mitigating the risk of off-target effects. Most research on TSAs in GBM has aimed to uncover
neoantigens, yet the dearth of shared neoantigens as well as the cost and labor-intensive process of identifying
personal neoantigens have acted as barriers to treatment. A better understanding of the individual antigens span-
ning all three TA classes is important to improve the design of GBM antigen therapies and understand, fundamen-
tally, the nature of immunologic specificity in glioma. We review the antigen classes in all cancers and howTAs are
discovered.Then, we focus on the unique properties of GBM and the antigens that have been identified and used
for therapy in GBM. Finally, we discuss translational considerations for future antigen-targeted treatments.

Key Points

e Numerous types of GBM antigens can be recognized by T cells, including tumor
associated antigens, cancer testis antigens and tumor specific antigens.

e Therapeutic applications of antigens include vaccines and adoptive cell therapy, both of

which have been shown to be safe in humans.

e Prior to targeting via therapy, antigens should be confirmed to be present in the
immunopeptidome, since often algorithm-identified “neoantigens” are not displayed by

the tumor.

e To combat GBM heterogeneity, antigen-focused therapies should target both MHC class |
and class |l restricted antigens, as well as multiple classes of antigens.

Glioblastoma (GBM) is the most common malignant central
nervous system (CNS) cancer in adults.! With standard therapy,
median survival is around 20 months,>* emphasizing the need
for novel therapies. Targeting tumor antigens (TAs), the peptides
presented by tumors on major histocompatibility complex (MHC)
molecules, either via vaccine®® or adoptiveT cell transfer (ACT)7-"2
has shown success in other cancers and holds promise for GBM.

As context for our discussion of TAs, it is important to
briefly consider our definition for “antigen.” We are exclu-
sively referring toT cell antigens: when we use the terms “an-
tigen,” “epitope,” or “peptide” we are referring to the 8-10
length or the 13-25 length amino acid sequence that is non-
covalently bound to an MHC class | (HLA-A, HLA-B, or HLA-

C) or MHC class Il (HLA-DP, HLA-DQ, or HLA-DR) molecule,
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respectively.’3'* During class | antigen processing, prote-
asomes typically cleave proteins in the cytosol into shorter
peptides, and during class Il processing, lysosomes com-
monly digest uptaken extracellular proteins into shorter
peptides.'’® The peptides capable of binding MHC mol-
ecules are loaded; then, the peptide-MHC complex (pMHC)
is presented on the cell surface.”® A class | pMHC can be
recognized by CD8+T cells, while a class Il pMHC can be
recognized by CD4+T cells.’3"*T cell activation requires T
cell receptor (TCR) contact with amino acids from both the
antigen and the MHC, as well as costimulating molecules.'®

Classes of T-Cell Tumor Antigens in Cancer

Tumors can present antigens on both class | and Il
MHCs."8"7 The value of targeting antigens in cancer stems
from the idea that vaccinations orTCR-based therapies can
augment a patient’'s immune response against antigens,
derived from intracellular and extracellular proteins, that
are presented on tumor cells. These approaches aim to in-
duce clonal expansion of antigen-specific T cells. Overall,
TAs can be classified into tumor-associated antigens

(TAAs), cancer testis antigens (CTAs), and tumor-specific
antigens (TSAs)'®'9 (Figure 1).

Tumor-Associated Antigens

TAAs, which are present in normal cells and tumor cells,
can be further subdivided into overexpressed or lineage-
specificTAAs." Overexpressed TAAs are self-antigens with
amplified expression in tumor cells. These include HER2
epitopes in breast cancer?® and P53 epitopes in squamous
cell carcinoma.?' Lineage-specific TAAs are self-antigens
that are normally restricted to a particular cell type. An
example of this class is the melanocyte differentiation
antigens (MDAs), like MART-1 epitopes,?® which are typ-
ically only expressed by melanocytes,?® but can also be
expressed in melanoma and GBM. 9222425 Despite endoge-
nous expression of TAAs and presumed negative selection
of TCRs reactive against them, studies have shown reac-
tivity against TAAs by cytotoxic lymphocytes (CTLs).26-28
Notably, Tebentasfusp, a first-in-class FDA-approved treat-
ment for metastatic uveal melanoma, is a bispecific mole-
cule that consists of (1) an affinity-enhanced TCR specific for
the HLA-A*02:01 restricted MDA gp100 peptide YLEPGPVTA

Classes of Tumor Antigens: Tumor Associated Antigen (TAA), Cancer Testis Antigen (CTA), and Tumor Specific Antigen (TSA)

Overexpressed TAA

Mutation derived TSA: Neoantigen | |Transposable element derived TSA| | Epigenetic modification derived TSA|

antigen

protein f

normal cell
(tumor precursor)

mutated protein

[genomic mutation:
e single nucleotide variant
* deletion or insertion
* _chromosomal fusion

6

tumor cell

neoantigen

tumor cell

TSA

transposon-modified protein

transposon, tumor DNA
DT rOTIRHVH

2OVDDLIDOTDDT

protein expressed due to
v epigenetic modification

hlslone tail tumor DNA
methylatloni hls%one ;“

transposon inserted into tumor DNA

| Lineage Specific TAA Viral TSA

Post translational modification
derived TSA

| | mRNA processing derived TSA |

melanocyte TAA

¥

i

Tumor Associated Antigens

viral protein

Tumor Specific Antigens

melanocyte protein tymor cell virus

viral DNA

alternatively spliced
protein

B
o)

tumor specific post-translational
protein modification

alternative splicing

| Cancer Testis Antigen |

Mitochondrial TSA

Proteasome variant derived TSA

| | Bacterial TSA |

testis specific protein

@ CTA mitochondria

| Cancer Testis Antigen I

germ cell tumor cell mitochondrial derived protein

TSA

i : normal cell

normal proteasome tymor proteasome

bacterial protein

Tumor Associated Antigens

Expression in Normal Tissue yes

Immune Tolerance yes

Cancer Testis Antigens Tumor Specific Antigens

highly restricted no

no no

Figure 1.

Tumor antigens can be ascribed to three classes: tumor-associated antigen (TAA), cancer testis antigen (CTA), and tumor-specific

antigen (TSA). TAAs are self-antigens that are present in tumor cells; they include the overexpressed and the lineage specific. While the pro-
teins from which CTAs derive are present in male germline cells and trophoblasts, antigen expression is mostly isolated to tumors. TSAs that
occur secondary to mutations, like single-nucleotide variants (SNVs), insertions or deletions of amino acids (INDELs), or gene fusions, are called
neoantigens. Myriad other causes of TSAs may include transposable elements, epigenetic modifications, viruses, altered mRNA processing
(such as alternative splicing), post-translational modifications, mutations in mitochondrial DNA, bacterial proteins, and proteasome variants. The
classes of TAs vary in their levels of expression in non-tumor tissue and in the degree of immune tolerance, factors that impact off-target effects

and efficacy, respectively, of antigen-focused therapy for cancer.



and (2) an anti-CD3 single chain variable fragment.22%0
Tebentasfusp binds the gp100 antigen-HLA complexes dis-
played by tumor cells and recruits and activates T cells via
CD3.% Tebentasfusp demonstrates the feasibility and thera-
peutic potential of targeting TAAs, particularly in cancers with
a low tumor mutational burden (TMB), a term that quantifies
the mutations in a cancer exome,®'?2 since uveal melanoma
has a medianTMB of 2.1 mutations per megabase.3

Cancer Testis Antigens

CTAs, also known as cancer germline antigens, are highly
restricted in normal tissues. They originate from proteins
that are lineage-restricted to male germline cells and tropho-
blasts’ and are expressed in cancers.3* A MAGE-1 CTA
was the first human TA ever identified.®® NY-ESO, a protein
from which CTAs can derive, is expressed in cancers such
as ovarian, breast, bladder, prostate, and hepatocellular car-
cinoma.® While male germline cells and trophoblastic cells
do not express MHC molecules,” potential TCRs reactive
against CTAs are likely subject to some self-tolerance due to
CTA protein and MHC molecule expression in the thymus.3%38
Despite this, CTLs reactive to CTAs have been observed.'926
Their immunogenicity, limited presentation in normal cells,
and association with oncogenicity and immune invasion,®
make CTAs promising therapeutic targets. In fact, the FDA
recently approved a TCR therapy against MAGE-A4 CTA for
patients with unresectable or metastatic synovial sarcoma.*®

Tumor-Specific Antigens

Finally, TSAs are antigens exclusive to tumor cells.* TSAs
occur when aberrant protein expression in cancer leads to
the expression of antigens novel to the immune system.®
TSAs can arise due to genomic mutations, in which case
the resulting antigen is called a neoantigen, or due to other
causes.'84247 Importantly, the host has not developed tol-
erance to TSAs, since they were not present during immu-
nologic development.

Neoantigens—Neoantigens are usually considered the TSAs
that arise due to mutations in the cancer cell genome.'® Some
neoantigens result from mutations that confer a selective ad-
vantage to cancer, termed “driver mutations, while the ma-
jority likely result from mutations that surface incidentally,
termed “passenger mutations.”#84° Neoantigens commonly
occur secondary to single-nucleotide variants (SNV), in which
one amino acid is substituted, resulting in a missense or non-
sense mutation.’® SNV mutations are frequent in melanoma,
with a reported average of 489 SNV mutations per tumor,°
and less frequent in pancreatic cancer, with a reported me-
dian of 48 SNVs per tumor.5" GBM has been described as
having 30-50 SNVs per tumor.'®52 Neoantigens can also
arise due to insertions or deletions of amino acids (INDELs),
which can cause either frameshift or in-frame mutations, like
EGFRvIIl in GBM."® INDEL neoantigens commonly accrue in
cancers that occur secondary to microsatellite instability, like
colon cancer.'®% INDEL neoantigens often promote greater
immunogenicity and may have stronger binding than SNV
neoantigens.® In three melanoma cohorts, the number of
frame-shift INDEL mutations, but neither the number of
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in-frame INDEL mutations nor SNV mutations, were associ-
ated with response to immune checkpoint blockade (ICB).5*
Finally, neoantigens can originate from gene fusions, like in
chronic myeloid leukemia,?® head and neck cancer,® or breast
cancer.”” One study determined that 21 of 92 tested GBM
samples had gene fusions, suggesting that a subset of GBM
patients may have gene fusion neoantigens.®®This represents
a potential vulnerability, since the immunogenicity of fusion
neoantigens has been reported as greater than those from
SNVs or INDELs.5#59

Personal vaccines targeting neoantigens have exhibited
strong potential as a treatment for some cancers.>®%8" |n a
phase | clinical trial for melanoma, four of the six patients
who received the personal neoantigen vaccine NeoVax, had
no recurrence at 25 months.® Two patients with recurrence
subsequently received anti-PD-1 therapy and experienced
complete regression.® This success is likely related to mel-
anoma having a median TMB of over 10 somatic mutations
per megabase®!®2—what the FDA considers the threshold for
defining a highTMB& —because highTMB is associated with
response to ICB in many cancers.?*% Since ICB’s mechanism
of action leverages the tumor immunity cycle,%¢67 which re-
quires the presentation of TAs,?? then transitively, high TMB
likely corresponds to a response to antigen therapy.

However, the relationship between TMB and tumor
neoantigen burden (TNB) is uncertain for two reasons. First,
the TMB calculation is typically restricted to only mutations
in the exome, the protein-coding regions of the genome.
Hence, the TMB does not account for mutations in the non-
coding regions, which comprise over 98% of the genome, and
likely serve as abundant sources of TSAs.326872 Second, most
mutations do not yield neoantigens,’®7 since only a select few
potential neoantigens are actually processed and presented,
let alone recognized by T cells.” For example, less than 2%
of identified somatic mutations in metastatic gastrointestinal
cancers were found to have corresponding reactive T cells.”’
Still, the higher the TMB, the greater the chance of exome mu-
tations leading to neoantigens.”®’® For low TMB cancers like
GBM, which has a medianTMB of around one to two somatic
mutations per megabase,?'’® and thus, presumably, a low
TNB, it may be necessary to target other types of TAs.

The lack of correlation between the existence of a mu-
tation and the presence of its corresponding neoantigen
can pose challenges to neoantigen vaccine design. The
GAPVAC clinical trial for GBM sought to vaccinate pa-
tients with both off-the-shelf, or premanufactured, TAs
and personal neoantigens.’? Of the 643 identified ge-
nomic mutations from 15 patients, zero were identified
by high-sensitivity mass spectrometry (M.S.) in the pa-
tients’ immunopeptidome, which refers to the antigens
in aggregate bound to MHC molecules.’?8 These results
did not seem to reflect a lack of sensitivity due to the suc-
cessful elution of both mutated antigens from non-tumor
tissues and neoantigens from a GBM patient not in the
study.? Plus, this result corroborates other studies’ find-
ings that only a small percentage of potential neoantigens
are processed and presented on MHC molecules.’37¢
As loss of antigenicity is one pathway by which tumors
evade the immune system,®' a process that can occur
secondary to mutations® or epigenetic changes,?8
this lack of antigen presentation is not totally surprising
and emphasizes the importance of confirming tumor
presentation of neoantigens prior to targeting them.




Hill et al.: Immunologic specificity in glioblastoma

Moreover, the GAPVAC personal vaccine only targeted
SNV neoantigens.’? As mentioned, GBM typically has
only around 30-50 SNVs per tumor,®? so the number of
presented SNV neoantigens is likely much lower.Thus, fu-
ture therapies for GBM and other low TMB cancers should
target other sources of neoantigens, like INDELs and fu-
sions, as well as other sources of TSAs.

Other Sources of Tumor-Specific Antigens—Although
studies have focused mostly on variant neoantigens in the
coding regions of DNA, it is important to recognize other
TSAs, as they may serve as a reservoir of additional tumor tar-
gets. One study investigating M.S. data from multiple cancers,
including GBM, discovered that for some HLA groups, non-
mutation-derived TSAs may account for up to 15% of MHC
class | restricted peptides.®® A source of these alternative TSAs
is altered mRNA processing. For instance, alternative splicing
has been predicted to occur in cancer at over double the fre-
quency of SNV mutations® and has been reported to cause
TSAs in cancers like melanoma®” or AML.88 Another study
identified alternative splicing-derived TSAs as immunogenic
across multiple cancers, including GBM.# Notably, this study
demonstrated that mRNA expression for the majority of GBM
neojunctions, borne from cancer-specific splicing events, were
conserved across multiple tumor regions. Thus, targeting al-
ternative splicing TSAs may be an effective strategy for can-
cers like GBM with significant spatial heterogeneity.

Other causes of TSAs could include changes in epige-
netic regulation® and transposable elements (TEs), which
are mobile DNA sequences that can change their location
in a genome,®®? as in the case of ovarian cancer, breast
cancer, or hepatocellular carcinoma.®® Post-translational
processing derived TSAs can arise, such as in pancreatic
cancer, melanoma, and lung cancer.®* Lastly, some studies
have suggested that abnormal proteasomal processing
can lead toTSAs,**46.9 put others have challenged this.8®

Even mitochondria,®®®” bacteria,®® and virus-derived pro-
teins may lead to TSAs. Viral TSAs occur secondary to in-
fections like human papillomavirus (HPV),® Epstein—-Barr
virus,® and human T-lymphotropic virus-1' in squamous
cell carcinoma, lymphoma, and leukemia, respectively.
Vaccines that target antigens of the oncogenic viruses HPV
and HBV are administered prophylactically against cer-
vical cancer and hepatocellular carcinoma, respectively.”
Viral antigen vaccines have also demonstrated promise
as a treatment for cervical cancer.'%? Overall, alternative
sources of TSAs represent potential therapy targets for
cancer, especially those with low TMB, and more research
is necessary to better characterize them.

Identifying and Validating Tumor
Antigens in Patients

Discovery of Antigens

Two general approaches can be taken for antigen dis-
covery: (1) a genomic approach, termed “cancer immuno
genomics,;’ 48103104 that uses next-generation sequencing
(NGS) to detect mutations, from which computational
algorithms predict neoantigen sequences, and (2) an

immunopeptidome approach that uses M.S. to detect
antigens bound to MHC molecules on the cell surface.’®®

The former, which exclusively identifies neoantigens in
protein-coding regions, begins with the detection of mu-
tations via comparing whole exome sequencing (WES)
of tumor DNA to normal DNA."06107 Multiple pipelines
for “mutation calling,” which is the process of identifying
somatic mutations'® are often used in conjunction to
increase confidence.'®%8-"" RNA-sequencing performed
in parallel to WES quantifies the expression of each mu-
tation."? (However, the logic of performing this RNA
sequencing is challenged by a study that compared pres-
entation of peptide to its corresponding mRNA levels in an
in vivo murine model, and found that peptides identified
in the immunopeptidome had low corresponding mRNA
levels."3) Then, mutation data and patient HLA allele in-
formation can be integrated into computational algorithms
that list predicted peptides and potential peptide-HLA
binding partners."%1"4"M5These algorithms often rank pep-
tides by estimated binding affinity to respective HLA al-
leles, which is complex due to the highly polymorphic
nature of the HLA locus." The algorithms vary widely in
their predictions and are typically better suited to predict
class | restricted peptides."? Importantly, this approach
does not necessarily confirm that the identified “antigens”
are actually in the immunopeptidome.

Immunopeptidomics, meanwhile, can be har
nessed for the identification of TAAs, CTAs or TSAs."®
Immunopeptidomics identifies HLA-bound peptides
isolated from tumor samples using M.S."7 In this ap-
proach, MHC molecules with attached antigens are
immunoprecipitated and eluted from tumor samples.
Peptide sequences can be determined using protein da-
tabase searching, library searching of antigens previously
characterized by M.S., or de novo sequencing, which uses
algorithms to predict antigen sequences directly from
the mass spectra data without any references.!6118119
Comparisons between peptides eluted from tumor and
normal tissue determine tumor specificity.

Determining the Immunogenicity of Discovered
Antigens

Once identified, peptides require further testing to validate
immunogenicity, since many do not elicit an immune re-
sponse.'?-122 Historically, TA immunogenicity was con-
firmed by screening patient-derived CTLs for recognition
of cells transfected with both the antigen of interest and
the matched HLA.78 At present, high-throughput screening
methods for TCR reactivity to antigens can be used.”®
Several variables make this validation difficult. First, lim-
ited algorithms are available for TCR and peptide-MHC
complex (pMHC) binding interactions.'®While databases of
publicly available TCRs are available for TCR comparison,
the majority of these are reactive against viral antigens.'?3
Second, the correlation between antigen affinity and im-
munogenicity is weak.?#1?5 A few key components are
required for antigen screening: (1) TCRs of interest, (2)
antigens of interest, (3) patient-specific HLA alleles, and (4)
sources of antigen-presenting cells (APCs).

Several methods are available for biased antigen
screens, which focus on select antigens.'?2126-129 |n prief,



healthy peripheral blood mononuclear cells (PBMCs) or
immortalized T cells are transduced with TCRs of interest.
APCs are transduced with patient-specific HLA alleles
and pulsed with either pools of target antigens or oligo-
nucleotides encoding target antigens. Following T cell and
APC co-culture, markers of T cell activation are measured
via flow cytometric analysis. Then, the cognate antigen
of the target TCR can be determined through an iterative
screening process.

Unbiased approaches have also been developed to
identify antigen and TCR pairs, in which selected TCRs are
screened against a wide range of peptides. Yeast display,
for example, involves yeast which individually expresses
a random peptide that is covalently linked to an HLA mol-
ecule.”® These yeast are then co-cultured with soluble
bead-multimerized TCR and iteratively enriched via affinity-
based selection. After several rounds of enrichment, yeast
are sequenced and the corresponding antigen sequences
are determined. Thus, even though thousands of indi-
vidual peptides presented by yeast are cultured together,
only those that express the cognate antigen of the target
TCR will be purified and eventually sequenced. Another
example of an unbiased approach is the use of cytokine-
capturing APCs.”3" In this system, APCs are transduced
with patient-specific HLA molecules and membrane-bound
antibodies that bind to either IL-2 or interferon-gamma
(IFNy). These APCs, which are also transduced with oligo-
nucleotide pools, are co-cultured with T cells expressing
target TCRs. When the target TCR binds to its cognate
antigen, the T cell will release cytokines which then are
“captured” by the APC. APCs with bound cytokine can be
isolated and sequenced to detect the cognate antigen of
the target TCR. Regardless of the screening method, con-
firmation of antigen immunogenicity is resource-intensive.
However, the recent advent of artificial intelligence in
cancer immunity research'3? has yielded tools'3 that may
expedite this process.

Unique Features of Glioblastoma
Relevant to Immunotherapy

As context for our discussion of TAs in GBM, it is important
to briefly consider its properties that impact antigen-based
therapy. In addition to the previously discussed low TMB,
these include (a) heterogeneity, (b) immunological dys-
function, and (c) standard treatment.

Spatial Heterogeneity of Glioblastoma

At a genetic level, GBM remains an incredibly difficult
tumor to treat due to the significant heterogeneity in
transcriptional expression, as well as somatic mutations,
and consequently antigens—likely a result of severe
immunoediting.'34-1% Several studies have highlighted
the transcriptional heterogeneity of GBM tumor sam-
ples,’37 with Verhaak et al. initially classifying 4 major
subtypes using bulk RNA-sequencing: proneural, neural,
classical, and mesenchymal.’®® Other classifications high-
light the complexity, and plasticity, of GBM tumor cells."3®
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Moreover, GBM tumors have been characterized as having
a high frequency of subclonal mutations,’ leading to a
lack of uniform antigen expression across a tumor spa-
tially.'! Overall, the intratumoral and intertumoral hetero-
geneity of GBM tumors, at the transcriptional, mutational,
and antigen level, should be considered during the design
of antigen-based therapy, discussed in more detail in a
later section.

Immunosuppression Characterizes Glioblastoma

Immunosuppression defines the microenvironment of
GBM tumors. GBM tumors are reported as infiltrated
by immunosuppressive tumor-associated macrophages
(TAMs).'#2147 Microglia have also been observed to
downregulate MHC class I, which would limit the pres-
entation of class ll-restricted antigen.'8-'%° The accumu-
lation of myeloid-derived suppressor cells (MDSCs) also
contributes to immunosuppression.’® Plus, T cells appear
to be dysfunctional within the tumor microenvironment.
Although some studies have highlighted the expression
of canonical exhaustion markers on T cells derived from
both human and mice tumors,'4152-155 gxhaustion does
not seem to be the predominant phenotype of GBM T
cells. 142145156157 gpecifically, studies demonstrate the lack
of a strong exhaustion signature, and instead reveal the
presence of CLEC2D expressing'? or GZMK expressing
T cells.’™ Also, immunosuppressive regulatory T cells
(Tregs) have been shown to comprise a significant propor-
tion of the CD4+ T cell compartment in both patients with
GBM and murine models.'%8159

GBM tumors also intrinsically contribute to immuno-
logical dysfunction. One study found that 61% of patients
had at least 1% or more PD-L1-positive tumor cells, and
PD-L1 expression was a negative prognostic factor.’6®
Indoleamine 2,3 dioxygenase (IDO) has been shown to
be expressed by GBM tumor cells and to increase the re-
cruitment of immunosuppressive Tregs.'®-163 Expression
of other proteins such as FasL'®* which inducesT cell ap-
optosis, non-classical MHC class | molecules'®66 which
enables evasion of immune cells, and ICAM-1, which pro-
motes immigration of myeloid cells, by GBM tumors have
also been reported.'®”'%8The microenvironment and tumor-
intrinsic sources of immunosuppression likely contribute
to the disease’s limited response to immunotherapy.

Standard Treatment of Glioblastoma May
Influence Response to Antigen Therapy

GBM treatments can cause further immunosuppression.'®®
Some clinical trials have observed that steroid adminis-
tration, commonly given to patients with GBM, was asso-
ciated with no immune response to antigen therapy,5%'06
and some trials have used steroid administration as an
enrollment exclusion criteria.'”®"" However, other trials
have had immune responses in patients that received
steroids.””2'73 Doubtlessly, timing and dose determine
the effect on immune response. Radiotherapy and chemo-
therapy, part of the standard of care for GBM, also likely im-
pact tumor response to immunotherapy. Radiotherapy can
promote the proliferation and infiltration of Tregs, as well
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as the differentiation and migration of MDSCs, fostering
immunosupression.'” Conversely, radiotherapy can cause
mutations that lead to new neoantigens, providing targets
for the immune system.'” Similarly, temozolomide (TMZ)
has been observed to cause immunosuppression, and in
particular, lymphopenia.'”® However, TMZ can also cause
a hypermutation phenomenon,’”® which presumably leads
to the presentation of more antigens novel to the immune
system. In fact, hypermutation has been observed to be
associated with increased levels of CD8 +T cell infiltra-
tion."¥ The impact of treatments like corticosteroids, radi-
ation, and chemotherapy on response to antigen therapy
requires further investigation.

Tumor Antigens in Glioblastoma
Glioblastoma Tumor Antigens

GBM TAAs have been used in several vaccines
(Supplementary Table S1). GBM CTAs (Supplementary
Table S2) and shared TSAs (Supplementary Table S3) have
also been used in vaccines or shown to be immunogenic
in vitro.Table 1 lists clinical trials that targetTAs in GBM via
vaccine.

As depicted in the “Antigen Discovery” section earlier,
for an epitope to be a true TA, two criteria must be met:
(1) the epitope is presented endogenously on HLA mol-
ecules by tumor cells and (2)T cells can bind the pMHC and
elicit an immune response.' For criterion one, antigen
presentation can be confirmed by eluting antigens from
tumor cells via M.S. An indirect way to confirm criterion
one, while simultaneously confirming criterion two, occurs
when CTLs that are specific for a particular antigen lyse
tumor cells because this process requires tumor display of
the antigen. IFNy ELISpot assays, tetramer assays, or an-
tigen screens can confirm criterion two (antigen immuno-
genicity) but not criterion one.

A caveat: while almost every TA listed in the supple-
mentary tables have been shown to be immunogenic,
not all the antigens listed are necessarily presented by
MHC molecules on GBM cells, despite the expression of
the protein from which the antigen is derived. While this
is in part due to HLA restriction of peptides,' it does not
fully account for such discrepancies. One study highlighted
this phenomenon when different antigens with the same
MHC restriction and originating from the same source pro-
tein were differentially expressed in tumor and normal
brain.’® Normal brain and tumor cells both expressed the
mRNA for the protein PTPRZ1."% However, while one HLA-
A*02-restricted PTPRZ1-derived antigen was exclusively
presented in tumor but not the normal brain, another HLA-
A*02-restricted PTPRZ1-derived antigen was expressed in
both tumor and normal brain."®® In a separate study, TAs
with the same HLA restriction from the same source pro-
tein were not always simultaneously presented by HLA-
matched GBM."6 |t is possible that technical artifact could
contribute to the observed lack of concordance between
protein expression and antigen presentation. However,
other biological reasons might include different expres-
sions of proteasomes, different binding strength to MHCs,

r

preferential display of more immunogenic peptides, or
the opposite: MHC downregulation to facilitate immune
escape.' Further investigation should be done in preclin-
ical models to interrogate the mechanisms underpinning
tissue or tumor specificity of the immunopeptidome. This
can be explored via an in vivo murine model that allows for
the tagging of MHC | complexes from defined cell popu-
lations."3 Moreover, the differential display of antigens by
tumor tissue underscores the importance of directly con-
firming MHC presentation of antigens on tumor cells be-
fore targeting them with therapy.

Tumor-Associated Antigens in Glioblastoma

Many identified GBM TAs belong to the TAA class
(Supplementary Table S1). Overexpressed TAAs in GBM in-
clude peptides derived from ARF4L,'% GALT3,'%8 AIM-2,'9°
HER-2,22 EphA2,222%0 tyrosinase,?? Sox2,2' Sox11,2°2 and
EphB6v.2%% Lineage-specific TAAs include MDAs from TRP-
2,%5 Mart-1,?2 and gp100.22 While not tumor-specific, GBM
TAAs have successfully induced immune responses from
T cells either in vitro,?? ex vivo,'98200-203 gndogenously
without intervention,® or endogenously after vaccina-
tion.?5204 Although targeting these TAAs with an exogenous
intervention risks deadly autoimmune reactions,2%®* many
GBMTAASs have been used safely in vaccines (Table 1).

HER2 antigens—Human Epidermal Growth Factor
Receptor 2 (HER2) is often overexpressed in GBM, in-
cluding in glioblastoma stem cells (GSCs),?°¢ and is associ-
ated with primary GBM?2%7 and worse survival.28The HER2
antigen KIFGSLAFL has been shown to be immunogenic,
as antigen-specific T cells lysed HLA-matched glioma cells
ex vivo.?? A phase | clinical trial of a dendritic cell (DC)
based vaccine that included this antigen showed that
some patients developed antigen-specific CD8+T cells.®”
However, the presence of CD8+T cells to the vaccine
TAs did not correlate with improved survival.'® In phase
| of the ICT-107 trial, which included the HER2 antigen
VMAGVGSPYV, HER2 was shown to be downregulated in
recurrent tumors, suggesting either successful targeting
of HER2-expressing cells or a degree of immunoediting.?%®
However, HER2 mRNA is expressed in normal brain,?'° so
prior to targeting any HER2 antigens in the future, MHC
display of HER2 antigens should be evaluated both on
GBM and on normal brain.

Cancer Testis Antigens in Glioblastoma

CTAs in GBM have been reported as immunogenic both
in vivo and in vitro (Table S2). The first TA discovered
in brain cancer was the CTA SART1(259)690-698 pep-
tide (EYRGFTQDF). The antigen was originally identified
in squamous cell carcinoma?" and was subsequently
demonstrated in glioma cell lines, as CTLs specific for
the antigen could lyse HLA-matched glioma cells ex-
pressing Sart1(259).2'2 Other GBM CTAs include pep-
tides derived from Sart-3, I-13Ra2, Mage1, MageC2,

and Survivin. CTAs have been used in many vaccines for
GBIV, 171.183,188,192,193,204,209,213-216


http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf028#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf028#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf028#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf028#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf028#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf028#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf028#supplementary-data
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IL-13Ra2 antigens—Sixty-seven percent to ninety-
six percent?'72'® of GBM tumors express IL-13Ra2, an
IL13 receptor subunit, which is implicated in GBM in-
vasion?'9220 and cooperates with EGFRvIIl to promote
GBM proliferation.??® Multiple GBM clinical trials have
used antigens from IL-13Ra2.204215221 A clinical trial
using peptide-pulsed DCs included a variant of an en-
dogenous IL-13Ra antigen.2%4222 |n this trial, 10 of 19 pa-
tients who received the vaccine were found to have an
immune response to the antigen.?*This same IL-13Ra2
antigen variant was included in SL-701 vaccine; in a clin-
ical trial for this vaccine, patients’T cell response to the
vaccine did not correlate with survival.??3 In phase | of
ICT-107, which also vaccinated with an IL-13Ra2 antigen,
IL-13Ra2 was shown to be downregulated in recurrent
tumors after vacination.?%® Moreover, in phase Il of the
ICT-107 trial, vaccination with a cocktail of antigens
showed therapeutic benefit with an increased OS of
1.6 months in treated compared to untreated groups.
However, it is unclear which of the vaccine peptides, in-
dividually or in combination, may have conferred the
survival benefit. Overall, antigens from IL-13Ra2 repre-
sent potential therapeutic targets in GBM due to their
minimal expression in normal tissue, role in tumor pro-
gression and proliferation, and confirmed immunoge-
nicity in vaccinated GBM patients. I-13Ra2 antigens’
therapeutic application for GBM is under investigation
in another clinical trial.??*

Survivin antigens—Survivin (also known as BIRC5)
inhibits apoptosis?®® and is expressed in 80-90% of
GBM,?22%6 jncluding GSCs.??7 Survivin expression in
GBM correlates with worse prognosis.??6-230 Notably,
survivin has been shown to have low intratumoral
heterogeneity and high expression across GBM
tumor samples.™® A phase | clinical trial vaccinated
seven newly diagnosed GBM patients with DCs trans-
fected with mRNA encoding survivin and hTERT.'”!
Strikingly, the median progression-free survival (PFS)
for the treated group was 694 days, which was 2.9
times longer than the median PFS of 236 days in the
control.”" Separately, the IMA950 vaccine included
the class Il HLA-DR-restricted survivin 97-111 antigen,
and in a phase | trial with the vaccine in combination
with poly-ICLC, 11 of 16 treated patients developed
peptide-specific CD4+T cells.'””® However, no tumor
infiltrating vaccine-specific T cells were detected.'’3
Additionally, there was no association between pa-
tient T cell response to TAs and survival in an IMA-
950 vaccine trial that used granulocyte-macrophage
colony-stimulating factor (GM-CSF) as an adjuvant.??
Finally, the SurvmaxM vaccine includes a peptide that
contains multiple HLA-restricted survivin epitopes, and
it induced antigen-specific CD8+T cells in patients.'®
Overall, survivin antigens represent a potentially
promising target for GBM therapy due to their high ex-
pression, low variance across samples, and immunoge-
nicity. A phase Il trial including SurvmaxM is currently
underway (NCT05163080), and another active clinical
trial includes a survivin antigen (NCT05283109).
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Tumor-Specific Antigens in Glioblastoma

GBM shared neoantigen: EGFRVIII (LEEKKGNY
VVTDHC)—Besides the IDH1 neoantigen,?3? which is more
common in lower grade glioma and secondary GBM,23 the
only shared neoantigen discovered to date in GBM is one
from EGFRVIII,?3* a constitutively active variant of EGFR with
a mutated extracellular domain, resulting from an in-frame
deletion of EGFR exons 2-7.23523% The EGFRvIIl mutation
has been shown in vitro to promote cell proliferation, an-
giogenesis, and invasion,?® and studies indicate that it is
expressed in 17-64% of GBM tumors.?'8235 However, the
presence of the mutation in GBM has an equivocal associa-
tion with survival.2%823The administration of rindopepimut,
the EGFRvIIl neoantigen (LEEKKGNYVVTDHC) conjugated
to keyhole limpet hemocyanin (KLH),2*° did not show sur-
vival benefit in a phase Ill trial.> However, this may be be-
cause rindopepimut was not designed as a T cell neoantigen
therapy. While KLH can serve as an adjuvant for induction
of antigen-specific CD8+T cells,'® KLH primarily activates
an antibody response.?*' In fact, in one preclinical study
of rindopepimut, vaccinated mice did not develop signifi-
cant cytotoxic responses, but instead developed increased
antibody titers.?*> Moreover, the EGFRvIII neoantigen in
rindopepimut is HLA restricted.'”%23 Yet, clinical trials did
not restrict enrollment based on HLA.3243-245 Thus, a vac-
cine trial designed to augment the T cell response against a
EGFRVIII neoantigen has yet to be developed. Importantly,
CTLs specific for the EGFRvVIII neoantigen have been able
to lyse glioma cells expressing the mutated protein in
vitro in an HLA-restricted manner.2®* As such, this shared
neoantigen is still a promising target for future therapies.
The recent results of a Chimeric Antigen Receptor (CAR)
therapy against both EGFRvIIl and EGFR?* provide further
reason to be cautiously optimistic about the therapeutic po-
tential of the EGFRvIII neoantigen.

GBM personal neoantigens—In contrast to shared
neoantigens, which are mutated TSAs present in multiple
patients with GBM, personal neoantigens are mutated
TSAs presented only by one or a very minimal subset of
patients. In GBM neoantigens identified in personal vac-
cines?¥7248 and the Cancer Antigen Atlas,?*® the majority
are personal, likely a reflection of their status as passenger
mutations. While personal neoantigens will not be com-
prehensively covered here, they are still incredibly relevant
to therapy.’® Neoantigen vaccines for GBM have been
demonstrated to induce neoantigen-specific T cells in pa-
tients,106172.247 with one study showing that vaccination
can induce neoantigen reactive TILs."%® Encouragingly, a
recent clinical trial demonstrated that in 173 GBM patients
vaccinated with a median of 19 personal neoantigens, pa-
tients who hadT cell responses to multiple peptides had a
median survival of 53 months compared to 27 months in
those with a response to one or zero."?These studies rep-
resent the promise that antigen-based therapies have for
improving outcomes for GBM patients.

TSA of unknown etiology in glioblastoma: BCAN478-
486—Some nonmutant glioblastoma antigens have been
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identified as tumor-specific; however, the reason for their
selective presentation by tumor cells is unknown. Their
tumor-exclusive presentation could be due to any of the
previously mentioned causes, including differential mMRNA
processing, post-translational modification, and/or pro-
teasome processing.®?% The TSAs of unknown etiology
include a group of HLA-A*02 restricted neoantigens identi-
fied by Dutoit et al.’ Of these, BCAN478-486 is promising,
since brevican (encoded by BCAN) is a brain-specific ex-
tracellular matrix molecule involved in tumor invasion and
expressed by GSCs.'® Brevican has also been implicated
in migration and metastasis, and over-expression is linked
to decreased survival in GBM.'%® When tested, eight out of
eight GBM patients’T cells mounted an immune response
ex vivo to BCAN478-486 in the original Dutoit et al. study,'%
and the subsequent use of this antigen in vaccines induced
immune responses in patients.52'7% GBM samples taken
before and after vaccination with IMA950, which included
the peptide, and Poly-ICLC showed a lower percentage of
BCAN positive cells, indicating that vaccination may have
resulted either in successful targeting of the cells with the
antigen, or in antigen downregulation.'® However, as
previously mentioned, no association between T cell re-
sponse to any IMA950 peptides and survival was seen in
the IMA950 plus GM-CSF trial.??" Overall, BCA478-486 has
potential as an antigen target for GBM due to brevican’s
potential role in oncogenicity, its association with de-
creased survival, and its demonstrated immunogenicity in
vaccines.

TSA of unknown etiology: SART2-93 DYSARWNEI[—
The SART2 protein was first identified in squamous cell
carcinoma and has been shown to be expressed in adeno-
carcinoma, melanoma, renal cell carcinoma, and glioma.?’
This protein has been determined to be absent in normal
tissue, including testis and fetal liver.?5" In the phase llI
ITK-1 multipeptide vaccine trial for 88 patients with recur-
rent GBM in Japan, receiving vaccination of the SART2-93
DYSARWNEI peptide conferred a negative impact on sur-
vival."? In this randomized double-blind trial, each patient
in the vaccinated group was given a vaccine of four pep-
tides out of twelve possible HLA-A24 restricted peptides
based on their pre-vaccination IgG levels for each peptide.
The median OS for the 13 patients that received the SART2-
93 antigen in their vaccine was 6.6 months compared to
eight matched placebo patients with a median survival
of 22 months.’ This difference in survival was not nec-
essarily mediated by receiving the SART2-93 antigen and
may instead reflect the immune function of the patients
for whom the antigen was selected. Investigators found
that prior to vaccination, the patients that were ultimately
selected to receive SART2-93 had baseline lower CTL and
B cell activity against all possible vaccine peptides, as
measured by ex vivo IFNy assays and antibody assays, re-
spectively.'®? Despite this, investigators still opted to use
the same antigen in the TAS0313 vaccine.'932' A phase /Il
clinical trial for the vaccine in patients with recurrent GBM
has not yet published its overall survival (OS), but the me-
dian PFS was 1.7 months.'%The function of SART2 and the
reason for its tumor-specific expression remains unknown.
While most antigen vaccines have not been harmful and

often provided benefit, the mechanism underlying the neg-
ative association between the SART2-93 antigen and sur-
vival merits further investigation.

Transposable element derived TSAs in glioblastoma—
Recent studies have shown that antigens derived from
transposable elements (TE) are presented by GBM tumor
cells and generate an immune response.?? Specifically,
Bonte et al. identified fifteen TE-derived antigens in GBM
that were validated as immunogenic by tetramer-binding
assays.?%2 While TE-derived antigens have been classified
as tumor-specific,3?53 the study indicated that many TEs
are expressed at low levels in normal tissues.?®2 Another
study identified 19 TE-derived antigens on GBM sam-
ples?®*; however, this study did not confirm the immuno-
genicity of these peptides. One TE that warrants further
investigation is human Endogenous Retrovirus K, since it is
differentially expressed in GBM and likely contributes to its
stem cell niche.?5525%¢ No clinical trials have used antigens
fromTEs for GBM, but given the large number of candidate
antigens, they hold promise for future therapy.

Viral tumor-specific antigens in glioblastoma—Studies
have indicated that 51-100% of GBM tumors, including
GSCs, are CMV-positive,?7-260 while surrounding brain
tissue is CMV-negative.?®”261 As such, GBM TSAs include
peptides from the CMV pp65 protein. One study found that
when PBMCs from patients with GBM were exposed to
DCs transfected with RNA for CMV pp65 peptides, peptide-
specific T cells expanded and could subsequently lyse au-
tologous tumor cells endogenously expressing pp65.262
However, since many GBM patients are seropositive for
CMV,%7 CMV antigens likely are not a bona fide tumor-
specific target. In fact, an IMA-950 vaccine trial used a
CMV-derived peptide as an internal positive control for ex
vivo immunogenicity experiments, citing the high levels of
chronic infection with the virus."”® Nonetheless, both CMV
antigens’%263 and CMV-specific T cells?®4266 have been
used safely in clinical trials.

In a clinical trial for 25 patients receiving ACT specific for
CMV antigens, at 65 months, ten patients were alive and
five were disease free.?%4 In addition, in a clinical trial that
administered GM-CSF mixed with DCs pulsed with the
mRNA of pp65 fused to lysosome-associated membrane
protein (LAMP), along with dose intensified TMZ, median
PFS was 20, and OS was 33.4 months."° The strategy of
fusing the antigenic target (in this case, pp65) mRNA to
LAMP mRNA has previously demonstrated enhanced
activation of the MHC class Il pathway and thus, subse-
quent induction of CD4+T cells.?67268 Both in this trial, and
another CMV peptide vaccine clinical trial, investigators
did not confirm the presence of CMV in patients before
enrolling them.170.263

Contrastingly, a study that analyzed the
immunopeptidome in 19 primary and recurrent GBM sam-
ples found no virus-derived antigens.*?> Nonetheless, the
increased survival seen in the early clinical trials focused
on CMV antigens justify further trials to better explore their
therapeutic potential, many of which are already in prog-
ress (Table 1).



Bacterial TSAs in glioblastoma—Intracellular microbes
have been reported in GBM tumor cells.?59The previously
mentioned study that analyzed the antigens present in
19 GBM tumor samples found between 5 and 54 unique
HLA class ll-restricted bacterial derived antigens per
patient,*? some of which were demonstrated to be rec-
ognized by TILs.*> However, findings from this study
challenged the utility of bacterial antigens as therapy for
GBM: (1) some bacterial antigens were also found in the
brain tissues of control brain tissue (taken from healthy
patients or those with multiple sclerosis), and (2) there
was minimal overlap of bacteria and bacterial antigens
between patients. One clinical trial currently underway
targets bacterial antigens from the gut that are designed
to induce T cells that are cross-reactive against GBM
TAAs and CTAs.??* However, since only a small number
of studies have reported intratumoral bacterial antigens
in GBM,*2289 further preclinical work should be under-
taken to validate and further elucidate this antigen type
before targeting in therapy.

Translational Considerations
Antigen Selection

Antigens can be harnessed therapeutically in GBM via vac-
cines or TCR-based therapies, and when selecting target
antigens, many factors should be considered (Figure 2).
First, the two criteria of being a TA should be confirmed:
presentation on tumor cells and immunogenicity. Antigen
presentation in the tumor compared to normal cells should
be evaluated, weighing the risks of potential autoimmune
reactions. Levels of antigen presentation should be evalu-
ated within a tumor, with a preference toward those that
are highly expressed. However, relatively low expression
of an antigen does not necessarily militate against the suc-
cess of an antigen as a target. GSCs are a small percentage
of total tumor but are drivers of recurrence.?’ Thus, GSC
antigens may provide key targets. Levels of antigen pres-
entation should additionally be considered across a tumor
spatially, since GBM tumors have been shown to be
intratumorally heterogeneous with distinct regions of the
tumor expressing different antigens.The function of the
antigen’s source protein should be considered, too, with
the prioritization of those that belong to driver mutations
or associate with decreased survival. Finally, HLA restric-
tion of antigens will need to be accounted for, as further
discussed below.

Multiple antigens should be targeted because immune
response to multiple vaccine antigens has been demon-
strated to be associated with prolonged survival in both
renal cell carcinoma?’! and in GBM."72 Polyvalent targeting
can counteract antigen heterogeneity, particularly re-
garding spatial variation in expression; indeed, Johanns
et al. demonstrated the feasibility of incorporating
multisector sampling of a GBM tumor into antigen vac-
cine design.'%%'%0 Directing therapy at multiple antigens
can also help mitigate dampened immune response
that may arise secondary to “original antigenic sin,” the
process where immune cells can have weak responses to
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epitopes that are similar to previously encountered foreign
epitopes.?’2273 | astly, targeting multiple antigens protects
against vaccine failure caused by antigen downregulation
on recurrent tumors, which has occurred in multiple GBM
antigen vaccine clinical trials.209.243.274.275

Targeting multiple antigens is feasible. GBM vaccine
trials have targeted multiple antigens and had varying
degrees of success inducing T cell responses to their pep-
tides.52106.173,192.215 A clinjcal trial for melanoma exhibited
that targeting multiple peptides does not decrease the im-
munogenicity of each peptide, and patients had a greater
total immune response to a twelve-peptide compared to
a four-peptide vaccine.?’® Lastly, the previously mentioned
Latzer et al. study produced personal neoantigen vaccines
for GBM patients in around 12 weeks."”?

Selecting antigens that encompass multiple TA classes
likely provides a therapeutic advantage. In two patients
who underwent adoptive transfer of tumor-infiltrating
lymphocytes (TILs) resulting in successful eradication of
their HPV+ cervical cancer, investigators looking into the
antigenic targets of the infused TILs discovered the TILs
were reactive against HPV antigens, neoantigens, and
CTAs.? They also demonstrated that these TILs remained
functional and elevated in patients’ blood during tumor re-
gression and remission.®

Targeting both MHC class | and Il peptides should be
prioritized. While the majority of studies have looked into
MHC class | epitopes, in part due to the limitation of pre-
diction algorithms, MHC class Il epitopes are important
for anti-tumor immunity.8277-27% Class Il expression by
tumor cells is associated with improved survival in many
cancers.?® Plus, CD4+T cells reactive to class ll-restricted
neoantigens have been observed in glioma.?3%281.282 One
multivalent neoantigen vaccine for GBM primarily induced
CD4+T cell responses, despite being designed to induce
CD8+T cell responses.®> Other neoantigen vaccines for
GBM have similarly demonstrated the ability to provoke
CD4+T cell responses.?4’283 | astly, targeting both classes
may be necessary to counteract tumor immune evasion
via tumor downregulation of either MHC class.®

Moreover, consideration should be paid to the changing
antigenic landscape that occurs temporally as GBM tumors
evolve, especially in response to standard therapy,'7528
antigen-based therapy,?’ and immune pressures.?®® While
personalized antigen vaccines can lead to antigenic loss,%®
treatments have also been shown to induce new antigenic
targets.'75:286-288 A potential approach to antigen targeting
might thus involve vaccinating patients against antigens
known to be induced by a treatment in conjunction with
administration of the treatment.?8® Lastly, recurrent tu-
mors are distinct from primary tumors?® with presumably
discrete antigenic targets and thus may require different
treatments. For example, tumors expressing the EGFRvIII
mutation at diagnosis have been observed to lose its ex-
pression at recurrence.?38:291

All these factors should bear upon the design of antigen-
directed therapy, as should other factors, like the immuno-
logical response state of each patient’s tumor, which can be
evaluated with techniques like CIBERSORT,?%22% as well as
the vaccine delivery platform, adjuvant therapies, and timing
and route of administration. These topics merit their own
review.
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Figure 2. Tumor antigens can be harnessed for therapy against GBM either via vaccines or TCR-based therapies. Considerations for the de-
sign of the therapy include: focusing on antigens confirmed to be immunogenic; prioritizing antigens that are confirmed to be present in the
immunopeptidome; focusing on antigens that have little to no expression in normal tissue to minimize the risk of autoimmune reactions; whether
the protein source of the antigen contributes to the tumor’s oncogenicity, with a preference toward antigens sourced from driver mutations to

target the most deleterious tumor cells; ensuring both MHC | and MHC Il

restricted antigens are targeted to activate both CD8+ and CD4+ T cells,

respectively; the intratumoral spatial heterogeneity caused by clonal and subclonal tumor populations with discrete antigen targets; intertumoral
heterogeneity of antigen expression; temporal evolution of antigen expression that occurs secondary to immune pressures and standard treat-
ment like temozolomide and radiotherapy; HLA restriction of antigens; accounting for the fact that HLA molecules are differentially expressed
across populations and ensuring that antigens of different HLA restrictions are studied to avoid excluding certain populations from benefiting
from therapy; antigen binding to TCRs, specifically the affinity, avidity and cross-specificity; method of delivery for antigen-based vaccines, which
could include DNA, mRNA, peptide, virus, or pulsed dendritic cell delivery platforms.

TCR Engineering

Recent preclinical advances in targeting GBM antigens via
ACT have been promising. One study demonstrated that
ACT specific for an endogenous neoantigen in the murine
GBM model GL261 resulted in intratumoral infiltration by
theT cells and long-term cures in the majority of the mice.?%

When developingTCR-based therapies, including ACT, three
important TCR qualities must be considered: (1) affinity, (2)
avidity, and (3) cross-specificity. Affinity describes the strength
of interaction between a TCR and cognate peptide-MHC mol-
ecule. While some studies suggest that TCR affinity relates to
T cell activation,?®® others show that TCR affinity does not re-
late toT cell response.’?41252% Qne group found that changing
the catch bond duration between a TCR and cognate pMHC,

while keeping the affinity the same, correlated with TCR ac-
tivity.?%” Structural avidity measures the number of inter-
actions between all the TCRs of aT cell and MHC molecules
on the target cell. Functional avidity measures the capacity of
aT cell to respond to a given concentration of peptide. Higher
avidity indicates that at lower concentrations of a peptide, a
T cell will be activated. Generally, higher functional avidity is
associated with increased T cell function?%8-300; however, TCR-
independent factors likeT cell differentiation states®®' and epi-
tope density3? can affect functional avidity levels.

Arguably, the most important variable to consider isTCR
cross-specificity. TCRs that have been synthetically affinity
matured have been powerful in clinical trials,303-306 put
have also led to significant adverse events due to cross-
reactivity. Although in vitro the affinity-enhanced MAGE-



A3-specific TCR did not bind off-target,?’ in clinical trials
two patients died due to cardiogenic shock,3% since the
TCR was cross-reactive against a titin-derived peptide.
Overall, these studies underscore the importance of thor-
ough preclinical testing of TCR-based therapies.

TCR Therapies Compared to CAR-T

A full exploration of CAR-based therapies for GBM is
not within the scope of this review, since the “antigens”
that CARs target are portions of whole proteins, not T cell
antigens. However, it is worth briefly delineatingTCR-based
versus CAR-based therapies, as they are two arms of cell-
based immunotherapy. Unlike TCR therapies that can use
endogenous or engineered TCRs to recognize HLA-bound
antigen displayed on the cells surface, CAR-based ther-
apies use engineered receptors to recognize cell-surface
targets that are not bound by MHC.2®Thus, CAR-T cells are
limited to surface-expressed proteins as targets but are not
limited by MHC restriction. ACT is constrained by MHC but
can target antigens derived from both intra- and extra- cel-
lular proteins. Plus, in the case of ACT therapy using TlLs,
like lifileucel, the FDA-approvedTIL therapy for use in mel-
anoma,®'? a patient’s T cells are removed from their tumor
and expanded ex vivo without any genetic engineering,
since the TCRs of the TILs presumably already have tumor
specificity. CAR-T cells on the other hand, are often man-
ufactured by taking T cells from a patient’s blood prior to
engineering them to recognize a defined target.3"

TCR and CAR therapy design should borrow princi-
ples from each other, as strategies have been developed
for CAR-T cells to mitigate tumor heterogeneity, antigen
escape, and off-target effects for non-tumor-specific
antigens.3'2 For example, SynNotch, which can be engin-
eered to require the presence of a tumor-specific antigen
in order to deploy a CAR against a non tumor-specific
antigen that is homogenously expressed in the tumor,
showed promise against targets in a GBM model in
mice.3'® Plus, it may be beneficial to administer CAR and
TCR therapies together, as using both modalities likely in-
creases the number of possible therapy targets and de-
creases the possible mechanisms of immune escape by
the tumor.

Developing Equitable Antigen Therapy

Antigens are often HLA-restricted: certain antigens only
bind particular HLA molecules.3'33'* Since HLA distribu-
tions vary across ethnic populations,?'43'5 in the case of de-
signing “off-the-shelf” vaccine peptides or TCR therapies,
the choice of which peptides to target and their concom-
itant HLA restriction has significant implications for who
benefits. For example, Tebentasfusp, the therapy for ad-
vanced uveal melanoma is FDA-approved only for patients
that are HLA-A*02:01 positive.?3'6 A recent cross-sectional
study of all U.S. clinical trials that required a certain HLA
for enrollment found that due to HLA enrollment criteria,
people of European descent were 46% more likely to be
eligible for a clinical trial with HLA restriction than those of
Asian or Pacific Islander descent and 60% more likely than
those of African descent.3'® Notably, in the United States,
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minorities are already underrepresented in both oncology
clinical trials®'” and brain tumor clinical trials.3'8

Itis imperative that GBM antigen therapies do not inadvert-
ently lead to structural racism3®"® or exacerbate the already
present disparities®?°322 in brain tumor care. The SurVaxM
vaccine presents a proof of concept for the design of equi-
table therapy, since it includes a peptide that encompasses
antigen binding motifs for multiple class | HLAs and success-
fully induced immune responses to a variety of HLA-restricted
peptides.'8 Designing equitable antigen therapy in the fu-
ture hinges on how research is conducted in the present:
investigating antigens that bind to HLAs of different classes.
Plus, prioritizing equity in research design will strengthen in-
sights and translate to improved patient outcomes.

Conclusion

Targeting TAs represents an exciting therapy for GBM.
Treatment design needs to account for the unique prop-
erties of GBM and overcome the limited neoantigens by
targeting multiple classes of TAs, and both MHC | and Il
restricted antigens. Additionally, further research must
be done to confirm target antigens are presented on
tumor cells and that immune responses to peptides in
vaccines translate to survival benefit. More broadly, un-
derstanding the immunogenic landscape of GBM is cru-
cial to knowing how the immune system discriminates
GBM from normal and, unquestionably will lead to trans-
lational insights that will change the lives of patients with
this disease.
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