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MRI Features for predicting brain invasion in meningiomas: A 

Systematic Review and Meta-Analysis 

Abstract 

PURPOSE: To systematically assess the MRI features of brain invasion 

(BI) in meningiomas and to evaluate the diagnostic performance of MRI 

for prediction of BI in meningiomas. 

METHODS: A comprehensive search was conducted on Web of Science, 

PubMed, and EMBASE from January 1, 2016, to August 1, 2024, to 

confirm concerned eligible original articles. Data extracted from the 

articles included sample size, number of patients with BI or without BI, 

mean age, male/female ratio, authors, publication year, duration of 

patients, study design, strength (T) of magnet field, imaging sequences 

utilized, utilization of radiomics, and the reference standard methodology.  

RESULTS: This systematic review included fourteen eligible articles 

investigating the MRI characteristics of BI in meningiomas. 

Meningiomas with BI exhibited higher volumes of peritumoral edema, 

irregular tumor shape, incomplete CSF cleft sign, heterogeneous contrast-

enhancement, larger sizes, unclear tumor-brain interface, and lower mean 

ADC value. The meta-analysis involved twelve original studies, the 

summary area under the curve (AUC) of MRI for predicting BI in 

meningiomas was 0.91 (95% CI, 0.88–0.93, SE=0.0165, p=0.0185), with 

summary sensitivity and specificity of 0.85 (95% CI, 0.81–0.89, p<0.001) 
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and 0.83 (95% CI, 0.76-0.89, p<0.001), respectively. In subgroup 

analyses, those studies incorporated two or more sequences demonstrated 

superior sensitivity (0.86 vs. 0.82) and specificity (0.85 vs. 0.68) 

than these studies involved one sequence, especially, in the addition of 

ADC appears to further increase diagnostic performance, with the 

summary sensitivity was 0.89 and the summary specificity was 0.88. 

Studies with a sample size larger than 200 patients had higher sensitivity 

(0.86 vs 0.79) and specificity (0.85 vs 0.76). Researches contained the 

features from brain-to-tumor interface showed better sensitivity (0.89vs. 

0.81) and DOR (44.3vs. 20.1), but similar specificity (0.84 vs 0.83). In 

addition, researches using radiomics showed better specificity (0.85 vs. 

0.80) and DOR (34.8 vs. 28.9), but exhibited a lower sensitivity (0.83 vs. 

0.91).  

CONCLUSION: MRI demonstrated favorable diagnostic efficacy for 

prediction of BI in meningiomas. The diagnostic performance of MRI 

was notably influenced by the specific MR sequences employed, sample 

size, and the characteristics observed at the brain-tumor interface. 

KEYWORDS: Meningioma, brain invasion (BI), MRI, tumor-brain 

interface. 
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MRI Features for predicting brain invasion in meningiomas: A 

Systematic Review and Meta-Analysis 

 

1. Introduction 

Brain invasion (BI) in meningiomas is characterized by tumor cells 

infiltrating the surrounding cerebral parenchyma in the absence of 

leptomeningeal structures 1, 2. In 2016, BI was identified independent 

criterion for grade 2 meningioma in the World Health Organization 

(WHO) Classification of Tumors of the Central Nervous System (CNS) 3. 

Although, some scholars have failed to establish a correlation between BI 

and meningioma prognosis4, a classification that has been retained in the 

most recent 2021 edition 5. BI of meningioma as a classification criterion 

for meningioma has been controversial. However, Li et al.6 demonstrated 

a significant stratification of relapsed-free survival between grade 1 

meningiomas and grade 1 meningiomas with BI in a study that included 

1006 samples. In addition, Luo et al.7 confirmed through retrospective 

analysis that compared with grade 1 meningiomas, grade 1 meningiomas 

complicated with brain invasion were more similar to grade 2 

meningiomas in clinical manifestations and imaging features. As a result, 

they proposed the classification of, grade 1 meningiomas complicated 

with brain invasion as grade 2 meningiomas. Furthermore, BI has 

performed an important role in determining adjuvant radiotherapy and 
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trial inclusion8-10. Numerous, studies demonstrated BI as a stronger 

predictor for perioperative complication11, 12, with the presence of BI 

increasing the risks of preoperative seizures and postoperative 

hemorrhage13, 14. Moreover, compared to non-invasive atypical 

meningiomas, BI showed a 3.5-fold increased incidence of tumor 

recurrence15. Considering the growing clinical significance, especially 

before surgery intervention, a comprehensive understanding of BI in 

meningiomas is imperative. This knowledge will significantly contribute 

to preoperative evaluations and the formulation of personalized treatment 

strategies for patients with meningiomas.  

At present, the golden standard of BI in meningiomas relies on 

postoperative histopathological examination16. However, surgical biopsies 

may under-sample areas that have histological characteristics such as 

aggressiveness, potentially resulting in misdiagnosis of meningioma 

grade. The limitation of surgical sampling provides an opportunity for 

medical imaging. For CNS tumors, MRI is the most commonly used 

preoperative imaging method, offering a non-invasive and reproducible 

method to characterize the entire tumor and its interface with the brain. 

Identifying MRI features associated with tumor invasion can aid in 

directing biopsy placement. Therefore, the non-invasive and 

comprehensive assessment of meningioma BI by MRI before surgery 

may have great potential in clinical practice. 
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Several researchers have reported the MRI features and the diagnostic 

efficacy of MRI for the prediction of BI in meningiomas17-20. However, to 

our knowledge, a comprehensive systematic evaluation of MRI for 

predicting BI in meningiomas has not been conducted. Therefore, we aim 

to systematically assess the MRI features of BI in meningiomas and to 

evaluate the diagnostic efficacy of MRI for the prediction of BI in 

meningiomas. 

2. Methods 

This study was performed following the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines21. 

2.1 Literature search 

  We conducted a comprehensive search on Web of Science, PubMed, and 

EMBASE from January 1, 2016, to August 1, 2024, to identify relevant 

original studies meeting the inclusion criteria. The search strategy utilized: 

((((Magnetic Resonance Imaging) OR (MRI)) OR (MRI)) AND 

((meningioma) OR (meningiomas))) AND ((brain invasion) OR (brain 

infiltration))). Besides, the bibliographies of the confirmed original 

articles were manually filtered to enlarge the search. The literature search 

was limited to publications in the English language. 

2.2 Inclusion criteria and Exclusion criteria 

Studies were included based on the following criteria: 1) all patients 

with meningioma suffered operative treatment and were explicitly graded 
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by histopathological analysis; 2) MRI was performed before operative 

resection; 3) BI was confirmed by the pathological records or operative 

records which described apparent conglutination between the margin of 

the tumor and the brain parenchyma; 4) Original articles provided data 

necessary to establish a 2 x 2 table, including true-positive (TP), false-

positive (FP), false-negative (FN), and true-negative (TN) values. Studies 

were excluded if they met the following criteria: 1) abstracts from 

conferences, reviews, letters, comments, or case reports/case series with 

fewer than 10 patients; 2) not focused on the application of MRI for 

predicting BI in meningiomas; and 3) overlapping patient cohorts in 

multiple studies.  

2.3 Data extraction and quality assessment 

The following data were extracted from the selected studies: sample 

size, number of patients with BI or without BI, mean age, male/female 

ratio, authors, publication year, duration of patients, study design, 

strength (T) of magnet field, imaging sequences utilized, utilization of 

radiomics, and the reference standard methodology. Two investigators 

independently extracted these data, resolving any discrepancies through 

discussion. The quality assessment of the involved studies applied the 

Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)22.  

2.4 Statistical analysis 

Statistical analysis was conducted using Stata SE 15.0 and Meta-Disc 
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1.4 software. 2×2 tables were reconstructed from the eligible studies to 

compute the sensitivities, specificities, positive likelihood ratios (PLR), 

negative likelihood ratios (NLR), and diagnostic odds ratios (DOR). The 

pooled sensitivity, specificity, PLR, NLR, DOR, and their 95% 

confidence intervals (95% CIs) were computed by a bivariate random 

effect model. An integrated hierarchical summary receiver operating 

characteristic (HSROC) map and the curve area under the HSROC curve 

(AUC) were applied to calculate the diagnostic efficiency of MRI for 

predicting BI in meningioma. Heterogeneity was assessed based on the 

following ways: (1) Cochran’s Q test, with a p-value > 0.1 indicating no 

significant; (2) Higgins inconsistency index (I2) test, an I2 value higher 

than 50% indicated noteworthy heterogeneity. A Spearman correlation 

coefficient of less than 0.6 indicates the absence of a threshold effect. In 

Deeks’ funnel plot asymmetry test, the p-value＞0.05 was considered the 

absence of publication bias. Subgroup analysis and sensitivity analysis 

were performed to seek out the factors for heterogeneity. The covariates 

of the subgroup covered: 1) magnet field strength; 2) methods of 

reference standard; 3) containing the features from the brain-to-tumor 

interface, in some studies of the included studies, the brain-to-tumor 

interface ROI refers to a boundary region which the script concurrently 

move the outline N mm inward and N mm outward generated a 2 × N 

mm extension of the tumor boundary; 4) study using radiomics; 5) 
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sample size; and 6) scanning sequences. 

3. Results 

3.1 Literature search 

 This study included fourteen eligible articles estimating the MRI features 

of BI in meningioma, involving a total of 7593 patients, were involved in 

this study. The process of literature selection is described in Figure 1. 

3.2 Characteristics of included studies 

  Table 1 presents the characteristics of the studies and patients included 

in the analysis.  All the studies were of retrospective nature. The sample 

size of the studies ranged from 55 to 1728. Among the fourteen included 

studies17, 19, 20, 23-33, five utilized both pathology results and operative 

records as the reference standard for identifying BI in meningiomas24 26, 27, 

33, 34, while the remaining nine studies utilized only pathology result as the 

reference standard17, 19, 20, 23, 25, 28, 29, 32, 35. Two studies utilized 3.0T MRI 

scanner32, 35,while eleven studies utilized 1.5T and 3.0T MRI scanners17, 19, 

20, 23, 24, 26-29, 33, 34, The magnetic field strength of the MRI scanner was not 

reported in one study 25. All studies employed conventional MRI 

sequences, with three studies utilizing a single sequence, specifically 

T2WI or CE-T1WI,25, 28, 35, and the remaining eleven studies 

incorporating two or more sequences, including T1WI, T2WI, DWI, 

FLAIR, CE-T1WI, ADC17, 19, 20, 23, 24, 26, 27, 29, 32-34. Among the included 

studies, eight employed the radiomics approach 17, 24, 26-28, 33-35, with six of 
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them including additional validation cohorts23, 26-28, 33, 34. In the eight 

radiomics researches, various classification models were classification 

performed, including random forest, logistic regression, Convolutional 

Neural Network, nomogram, and support vector machine. In twelve of 

the fourteen involved articles, the investigators were blinded to the BI 

status17, 19, 20, 23, 24, 26-29, 32, 33, 35; however, this information, was not reported 

in the remaining two studies25, 34. Three studies contained the information 

from brain-to-tumor interface27, 28, 34. 

3.3 Imaging Characteristics of Meningiomas with BI: A Systematic 

Review  

Eight studies revealed that meningiomas with BI showed more 

peritumoral edema volume than meningiomas without BI(χ²=246.970, 

p<0.001)20, 25, 26, 28, 29, 32-34. Additionally, four studies showed that irregular 

tumor shape was significantly more frequent in BI meningiomas(χ²

=102.028, p<0.001)19, 25, 26, 33. Four studies demonstrated meningiomas 

with BI have unclear tumor-brain interface(χ²=28.750, p<0.001) (li, luo, 

jiang, zhang2022). Three study indicated the sizes of meningiomas with 

BI were significantly larger than meningiomas without BI(χ²=41.448 

p<0.001) (jiang) 20, 26.  Two studies found that the incomplete CSF cleft 

sign was more frequent in meningiomas with BI(χ²=21.274, p<0.001)28, 29. 

Heterogeneous contrast enhancement was revealed in BI meningiomas (χ

²=22.976, p<0.001)19, 26. Besides, on DWI, meningiomas with BI showed 
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lower mean ADC value than meningiomas without BI20, 23, 31. One study 

suggested in meningiomas with BI, features such as lobulated sign, 

vascular flow void, bone invasion, unclear tumor-brain boundary, finger-

like protrusion, and mushroom sign were more familiar than in 

meningiomas without BI 20. Furthermore, one study showed that 

meningiomas with BI were more commonly located in the anterior cranial 

fossa but less frequently found in the midline convexity. These BI-

associated meningiomas exhibited higher rates of hyperostosis and a 

hypointense signal on T2-weighted imaging compared to meningiomas 

without BI 28. Additionally, a rare finding that enlarged pial feeding artery 

was found in BI 29.  

3.4 Diagnostic Efficacy of MRI for Prediction of BI: A Meta-Analysis 

Twelve studies17, 19, 20, 23, 24, 26-28, 32-35, involving a total of contained 6449 

patients, assessed the diagnostic efficacy of MRI for predicting BI in 

patients with meningiomas. The results of the quality assessment of these 

studies using the QUADAS-2 tool are depicted in Figure 2. The 

sensitivities of the individual involved articles were 0.69 to 0.93, while 

the specificities were 0.68 to 0.98. The Q test revealed that heterogeneity 

existed (Q=43.4, p<0.001) in the Twelve articles. Higgins I2 statistic 

demonstrated moderate heterogeneity in sensitivity (I2= 79.83%) and 

obvious heterogeneity in specificity (I2= 95.80%). The Spearman 

correlation coefficient was 0.018 (p = 0.957), indicating no threshold 
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effect. The pooled sensitivity was 0.85 (95% CI, 0.81–0.89, p<0.001), 

and the pooled specificity was 0.83 (95% CI, 0.76-0.89, p<0.001), Figure 

3. The diagnostic odds ratio (DOR) was 29 (95% CI, 17-50, p<0.001). 

The area under the HSROC curve (AUC) was 0.91 (95% CI, 0.88–0.93, 

SE=0.0165, p=0.0185), Figure 4. Deeks funnel plot demonstrated that 

publication bias was not significant (p=0.42), as shown Figure 5.  

To explore the reasons for heterogeneity, a meta-regression analysis 

and subgroup analysis were conducted. Among these potential covariates 

examined, magnetic field strength, utilization of radiomics, and the 

reference standard methodology, along with the inclusion of features 

from the brain-to-tumor interface, sample size of training group were 

found to be associated with the heterogeneity in sensitivity, MR sequence 

was found to be associated with the heterogeneity in sensitivity and 

specificity. Subgroup analysis demonstrated that MR sequences and 

sample size significantly affected the diagnostic efficacy of MRI in 

predicting BI (Table 2). When comparing to studies involving one 

sequence, those studies that incorporating two or more sequences 

demonstrated superior diagnostic performance, with a summary 

sensitivity of 0.86 and specificity of 0.85, especially, in the addition of 

ADC appears to further increase diagnostic performance, with the 

summary sensitivity was 0.89 (95% CI, 0.85-0.93, p=0.002, I2=84.3%) 

and the summary specificity was 0.88 (95% CI, 74%–95%, p<0.001, 
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I2=98.6%). In the present meta-analysis, studies with a sample size larger 

than 200 patients had higher sensitivity (0.86 vs 0.79), specificity (0.85 vs 

0.76), and DOR (37.8 vs. 9.9). Researches contained the features from 

brain-to-tumor interface showed better sensitivity (0.89vs. 0.81) and 

DOR (44.3vs. 20.1), but similar specificity (0.84 vs 0.83). Researches 

using radiomics showed better specificity (0.85 vs. 0.80) and DOR (34.8 

vs. 28.9), but exhibited a lower sensitivity (0.83 vs. 0.91).  

4. Discussion 

Our study found that meningiomas with BI may exhibit characteristics 

such as increased peritumoral edema, irregular tumor shape, lower ADC 

values, indistinct tumor-brain boundary, absence of CSF cleft sign, 

presence of enlarged pial feeding arteries, and heterogeneous contrast 

enhancement.  The study underscored the significance of peritumoral 

edema volume as a crucial imaging predictor of BI in meningiomas25, 27. 

This observation could be attributed to several factors, including the 

absence of an intact arachnoid surface at the interface between the tumor 

and brain parenchyma, damaged pial artery supply, and decreased 

vascular endothelial growth factor (VEGF) expression36, 37. However, it is 

important to acknowledge that benign meningiomas without BI often 

exhibit peritumoral brain edema due to compressive ischemia, 

mechanical venous obstruction, and increased hydrostatic pressure within 

the tumor. Although Adeli et al. 25have proposed a specific cut-off value 
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for the volume of peritumoral edema (3.64 ccm), further extensive 

validation of these conventional imaging features is warranted. 

Additionally, the determination of a definitive cut-off value for 

peritumoral edema volume should be confirmed in the further studies. 

Based on these MRI features, multidisciplinary teams can develop 

patient-specific surgical plans, enabling complete resection of the lesion 

while the preserving as much normal surrounding brain tissue as possible. 

Simultaneously, these MRI features can help in stratifying meningioma 

patients into different risk categories for BI. Patients with high-risk 

features should undergo intensified postoperative surveillance to reduce 

the perioperative complications, such as hemorrhage. Furthermore, a 

preliminary estimate of BI can be made based on the MRI features of 

meningiomas in advance, guide specimen sampling, improve the 

accuracy of the pathological diagnosis of brain invasion. This could help 

patients receive timely adjuvant therapy after surgery, thereby improving 

overall outcomes. 

The current study demonstrated that MRI exhibited a favorable 

diagnostic efficacy (AUC=0.91) in noninvasively predicting BI in 

meningiomas. The pooled sensitivity was 0.85 (95% CI, 0.81–0.89), and 

the pooled specificity was 0.83(95% CI, 0.76-0.89). This meta-analysis 

demonstrated that the studies that contained the features from the brain-

to-tumor interface showed a better diagnostic performance than those 
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studies that only focused on mass features. This improvement could be 

linked to the behavior of malignant central nervous system tumors, such 

as glioblastoma, which typically grow invasively and infiltrate 

surrounding tissues. The actual tumor boundaries may extend beyond 

what is visible macroscopically by several millimeters 38. Similarly, in 

invasive meningiomas, infiltrative and cluster-like invasion patterns may 

not be easily detected using conventional medical imaging techniques16. 

Joo et al.27 and Li et al.28 utilized AFNI/Skimage for the automated 

segmentation of the brain-to-tumor interface ROI, employing a 

morphology approach where the boundary was expanded internally and 

externally to create a brain-to-tumor area of 10 mm thickness. In the 

study by Xiao et al.34, each patient had four brain-to-tumor areas with 

widths of 10, 8, 6, and 4 mm. They stated that brain-tumor interface MRI 

features with a boundary width of 8 mm showed the best diagnostic 

performance. However, the incorporation of the brain-to-tumor interface 

ROI is limited in current studies, underscoring the need for further 

investigations to validate these findings and determine optimal widths of 

the brain-to-tumor interface. 

Assessments incorporating two or more MRI sequences, particularly 

ADC images, demonstrated markedly enhanced diagnostic performance 

in contrast to those utilizing only a single sequence, in the subgroup 

analysis. T2 images are more effective at measuring edema and are 
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typically used on water-rich tissue 39. T2-FLAIR images can effectively 

suppress the high signal from free water and enhance lesion. T1C images 

are not only typically used to represent tumor boundary and blood flow 

but can also be used to assess the level of tumor invasiveness40. DWI and 

ADC images provide information on the diffusion of water molecules 

within tissues, and help in delineating the boundaries and extent of 

tumors. As a result, multisequence models may be more sensitive in 

display details about tumors and have a higher diagnostic capacity than 

use a single sequence alone. Despite the heterogeneity, in multi-sequence 

study, in the addition of ADC appears to further increase diagnostic 

performance, with the summary sensitivity was 0.89 (95% CI, 0.85-0.93, 

p=0.002, I2=84.3%) and the summary specificity was 0.88 (95% CI, 74%

–95%, p<0.001, I2=98.6%).  Therefore, we cautiously recommend a 

variety of imaging sequences including ADC for the detection BI in 

meningiomas. Moreover, in the current meta-analysis, studies involving 

patients less than 200 had lower diagnostic performance than studies 

performed with a larger sample (≥200). A larger sample size enhances the 

statistical power of diagnostic tests, stabilizes the estimation of sensitivity 

and specificity, and narrows the confidence intervals, thereby improving 

diagnostic efficacy. Consequently, it is imperative to maximize the 

sample size in diagnostic trials to enhance the accuracy and reliability of 

the diagnosis.  
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The present meta-analysis involved 7 studies that assessed the 

diagnostic performance of radiomics methods in predicting BI in 

meningiomas, with a summary sensitivity of 0.83(95% CI, 0.80–0.87) 

and a summary specificity of 0.85(95% CI, 0.78–0.92). Radiomics can 

extract numerous parameters from tumors and related regions, containing 

intensity texture and geometric features that are typically challenging to 

discern on conventional imaging and imperceptible to the human eyes41. 

Currently, radiomics methods are widely used in predicting molecular 

and biological behavior characteristics of CNS tumors42-45, often 

exhibiting superior diagnostic performance compared to traditional 

methodologies. Furthermore, Xiao et al.34 and Joo et al.27  have 

demonstrated that the inclusion of radiomics features alongside 

peritumoral edema volume results in enhanced diagnostic performance 

for distinguishing meningiomas with BI when compared to models based 

solely on edema volume. However, our analysis of studies incorporating 

radiomics methods revealed higher DOR and specificity, albeit with 

lower pooled sensitivity compared to other investigations.  This 

discrepancy may be attributed to the data-driven nature of radiomics 

methods, which heavily relies on data quality. The lack of standardized 

protocols across institutions introduces variability, that encompass 

imaging protocols, feature extraction, feature selection, and classification 

models. This is a significant challenge and limitation in the field of 
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radiomics. Hence, more large sample size, multi-center studies are 

required to explore the most suitable MRI sequences, radiomics features 

and machine learning algorithms. Furthermore, Overfitting is a prevalent 

issue in radiomics, wherein models exhibit high performance on training 

data but demonstrate limited generalizability to slightly different 

scenarios, unless trained on a highly diverse dataset 46. To mitigate this 

problem, it is recommended to employ strategies such as increasing 

sample size, utilizing cross-validation, and incorporating multiple 

imaging methods in the training cohort. Additionally, the inclusion of a 

separate test cohort is essential to ensure the diagnostic efficacy in the 

training cohort47, 48.  

This meta-analysis revealed substantial heterogeneity in the sensitivity 

(I2 =79.83%) and specificity (I2 =96.9%). While the meta-regression and 

subgroup analysis provided insights into some sources of heterogeneity, 

some other reasons of the heterogeneity had not been found. In our meta-

analysis, seven studies took pathology as the reference standard, whereas 

the remaining five studies utilized both pathology and operative records 

as reference standards. It has been noted that a significant proportion of 

surgical specimens may be deemed unassessable pathologically 49, 50, 

potentially contributing to the substantial heterogeneity observed in 

sensitivity and specificity estimates. However, it is difficult to obtain 

extensive tumor-brain interface specimen tissue during surgical resection. 
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Besides, the utilization of cavity ultrasonic aspirators intra-operative is an 

additional reason for the heterogeneous assessment of BI. The 

establishment of standardized criteria for surgical sampling and 

neuropathological analyses related to BI remains a subject of debate. 

Consequently, BI in meningiomas may not be consistently identified 

solely through histopathological examination. It is imperative to establish 

a noninvasive, efficient, and reliable method for detecting BI. To discern 

whether a meningioma has infiltrated the surrounding brain tissue, the 

development of imaging standardization protocols for BI should be 

guided by established pathological evidence. 

Limitations 

It is noteworthy that this study is subject to a few limitations. First of 

all, a variety of MR sequences was applied to predict BI in meningiomas 

in the included studies, resulting in varying levels of heterogeneity in 

sensitivity and specificity. To conquer the heterogeneity, meta-regression 

and subgroup analysis, were implemented. Secondly, while meningioma 

is a prevalent brain tumor, this systematic review only encompassed 14 

original articles, and the meta-analysis included 12 studies involving a 

total of 6449 patients. In the future, more research including larger 

sample sizes from various centers are required. Thirdly, it is essential to 

note that all the studies included in this analysis were retrospective in 
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nature. Moreover, there was variation in the standardization of MRI 

characteristics across the included studies. Establishing criteria for MRI 

acquisition, processing, and image analysis is crucial for the effective 

utilization of MRI as a reliable predictor for BI in meningiomas. 

Conclusion 

MRI was testified a good diagnostic efficacy for the prediction of BI in 

meningioma. The diagnostic efficacy was influenced by factors such as 

the MR sequences, sample size, and features from the brain-to-tumor 

interface. Future studies focusing on the application of MRI for BI 

prediction are warranted to further investigate the diagnostic efficacy of 

radiomics methods. It is advised to consider employing larger sample 

sizes, using multi-MR sequences analysis involving ADC images etc, 

integrating characteristics from both the brain-to-tumor interface and 

tumor parenchyma in the analysis of BI in meningiomas.  
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dy 

no. 

Author 

(year of 

publication) 

No. of 

total 

patients 

No. of 

patients 

with brain 

invasion 

No. of 

patients 

with non-

brain 

invasion 

Mean 

age 

(years) 

Male: 

female 

Duration 

of 

patients 

Study 

design 

Blinding 

to 

reference 

standard 

Methods of reference 

standard 

Magnet field 

strength 

(T) 

Scanning 

sequence  

Radiomics 

( classificati

on model) 

Validatio

n method 

ROI 

contain 

brain-to-

tumor 

interface 

1 
Friconnet et al 

(2022) 
101 13 88 60.2 34:67 2012-2019 

Retrospe

ctive 
Yes 

Pathology 
1.5T/3.0T 

T1WI, CE-

T1WI 

No / N 

2 
Jiang et al 

(2023) 
675 108 567 50.8 210:465 2006-2022 

Retrospe

ctive 
Yes 

Pathology 

1.5T/3.0T 

T1WI, T2WI, 

CE-T1WI, 

ADC 

No / N 

3 
Joo et al 

(2021) 
604 117 487 55.7 173:431 2012-2017 

Retrospe

ctive 
Yes 

Pathology+ ope   

ration record 1.5T/3.0T 

T1WI, T2WI, 

CE-T1WI, 

FLAIR 

Yes( random 

forest) 

Yes(valid

ation) 

Y 

4 

Kandemirli et 

al 

(2020) 

108 56 52 NR NR 2010-2019 
Retrospe

ctive 
Yes 

Pathology 

1.5T/3.0T CE-T1WI 

Yes(random 

forest) 

no N 

5 Li et al (2021) 284 173 111 56.8 108:176 2011-2020 
Retrospe

ctive 
Yes 

Pathology 
1.5T/3.0T 

T1WI, T2WI, 

CE-T1WI, 

Yes(logistic 

regression) 

Yes(valid

ation) 

Y 

6 
TL Liu et al 

(2022) 
800 62 738 61.3 204:596 2016-2021 

Retrospe

ctive 
Yes 

Pathology 

3.0T 
CE-T1WI, 

FLAIR, ADC 

Yes(Convolu

tional 

Neural 

Network） 

no N 

7 
Xiao et al 

(2021) 
719 154 565 53.3 176:543 2012-2020 

Retrospe

ctive 
NR 

Pathology+ operation 

record 
1.5T/3.0T 

T1WI, CE-

T1WI, FLAIR 

Yes(random 

forest and  

logistic 

regression) 

Yes(valid

ation) 

Y 

8 
XW Liu et al 

(2022) 
55 25 30 54.1 21:34 2020-2022 

Retrospe

ctive 
Yes 

Pathology 
3.0T CE-T1WI 

No / N 

9 
Zhang et al 

(2020) 
1728 335 1393 51.9 414:1314 2010-2019 

Retrospe

ctive 
Yes 

Pathology+ operation 

record 1.5T/3.0T 
T2WI, CE-

T1WI 

Yes(support 

vector 

machine) 

Yes(valid

ation) 

N 

10 
Zhang et al 

(2022) 
658 81 577 52.2 136:522 2010-2020 

Retrospe

ctive 
Yes 

Pathology+ operation 

record 1.5T/3.0T 
T1WI, T2WI, 

CE-T1WI 

Yes(logistic 

regression) 

Yes(valid

ation) 

N 

11 
Ong et al 

(2020) 
100 60 40 60.4 37:63 2005-2016 

Retrospe

ctive 
Yes 

Pathology 

1.5T/3.0T 

T1WI, T2WI, 

DWI, FLAIR, 

CE-T1WI 

No / / 

12 
Adeli et al 

(2018) 
617 24 593 59.0 176:441 NR NR NR 

Pathology 
NR T2WI 

No / / 

13 
Luo et al 

(2023) 
675 108  567 50.8 210:465 2006-2022 

Retrospe

ctive 
Yes 

Pathology 

1.5T/3.0T 

T1WI, 

T2WI,ADC, 

FLAIR, CE-

NO   
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T1WI 

14 
Yu 

(2024) 
469 262 207 52.5 206:263 2016-2022 

Retrospe

ctive 
Yes 

Pathology+ operation 

record 1.5T/3.0T 
FLAIR,T2WI,  

CE-T1WI 

Yes(logistic 

regression) 

Yes(valid

ation) 
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Analysis No. of studies Pooled sensitivity  p  Pooled specificity  p  Pooled DOR  p 

Value(95%CI) I2(%) value  Value(95%CI) I2(%) value  Value(95%CI) I2(%) value 

Magnet field strength(T)    0.01    0.92    0.003 

3 T 2 0.81(0.68-0.94) 42.9   0.92(0.83-1.00) 97.1   49.0(4.6-523.9) 88.4  

1.5 and 3.0T 10 0.86(0.82-0.90) 78.5   0.82(0.74-0.90) 91   26.0(14.6-46.3) 88.3  

Radiomics    <0.001    0.56    <0.001 

yes 8 0.83(0.80-0.87) 69.4   0.85(0.78-0.92) 97.7   34.8(8.7-82.9) 92.0  

no 4 0.91(0.86-0.96) 53.1   0.80(0.68-0.92) 47.8   28.0(13.6-57.5) 50.6  

Sample size of training group 
   <0.001 

 

   <0.001 

 

   <0.001 

≥200 9 0.86(0.82-0.90) 79.7   0.85(0.80-0.91) 97.3   37.8(19.0-73.7) 91.8  

＜200 3 0.79(0.67-0.91) 10.2   0.76(0.59-0.93) 75.5   9.9(5.2-18.9) 0  

MR Sequence    <0.001    <0.001    <0.001 

one sequence 2 0.82(0.69-0.94) 32.1   0.68(0.45-0.92) 0   8.9(4.3-18.5) 0  

two or more sequences 10 0.86(0.80-0.90) 78.0   0.85(0.80-0.91) 97   35.8(16.5-77.5) 90.8  

Containing the features from brain-to-tumor interface    <0.001    0.15    0.001 

yes 5 0.89(0.85-0.93) 52.7   0.84(0.73-0.93) 91.7   44.3(23.0-85.6) 79.1  

no 7 0.81(0.76-0.86) 67.2   0.83(0.74-0.91) 97.7   20.1(9.2-46.6) 89.4  

Methods of reference standard    <0.001    0.15    <0.001 

pathology+ operation record 5 0.85(0.80-0.91) 78.8   0.82(0.71-0.92) 95.6   26.0(11.2-60.0) 92.2  

pathology 7 0.86(0.80-0.91) 71.7   0.85(0.77-0.92) 96.4   31.7(14.8-68.0) 81.3  
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BI =brain invasion  

MRI= magnetic resonance imaging  

CSF= Cerebrospinal Fluid 

AUC=the area under the curve 

WHO =World Health Organization  

CNS=central nervous system 

PRISMA =Preferred Reporting Items for Systematic Reviews and Meta-

Analyses  

QUADAS-2=Quality Assessment of Diagnostic Accuracy Studies-2  

HSROC =hierarchical summary receiver operating characteristic  
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