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Glioblastoma (GB) remains a major challenge owing to its extremely aggressive nature and resistance to con-
ventional therapies. This review focuses on the intricate roles of progenitor cells, microglia, and non-coding
RNAs (ncRNAs) in orchestrating GB pathogenesis and therapy resistance. Glioma stem cells (GSCs), derived
from progenitor cells, are important drivers of tumor initiation and recurrence and exhibit remarkable plasticity
and resistance to treatment. Microglia, the immune cells of the brain, are hijacked by GB cells to create an

immunosuppressive microenvironment that supports tumor growth and resistance to therapy. Non-coding RNAs,
including microRNAs and long noncoding RNAs, regulate multiple resistance mechanisms by modulating gene
expression and influencing the interactions between progenitor cells and microglia. This review highlights new
insights into these interconnected signaling pathways and explores potential therapeutic strategies targeting
these molecular players to overcome treatment resistance and improve outcomes in patients with GB.

1. Introduction

Glioblastoma (GB) is the most aggressive and deadly form of primary
brain tumor in adults, accounting for over 50 % of all gliomas [1]. It is
characterized by rapid growth, strong invasion of the surrounding brain
tissue, and marked cellular heterogeneity, making treatment difficult
[2]. Current therapeutic approaches include maximal surgical resection
followed by concurrent chemoradiotherapy and chemotherapy, usually
with temozolomide (TMZ) [3,4]. However, even with aggressive treat-
ment, the prognosis remains dismal, with a median survival of 12-15
months and a 5-year survival rate of less than 10 % [1]. A major chal-
lenge is the incomplete surgical removal of the tumor due to its diffuse
infiltration into healthy brain tissue, as well as the development of
resistance to radiation and chemotherapy [5]. Furthermore, the tumor

microenvironment (TME) and molecular complexity, including genetic
and epigenetic alterations, contribute to poor treatment outcomes. Un-
derstanding the intricate cellular and molecular mechanisms that drive
GB pathogenesis and resistance to therapy is crucial for developing new
and effective treatment strategies.

This review provides a comprehensive overview of three key com-
ponents of GB progression: progenitor cells, microglia, and non-coding
RNAs (ncRNAs). Progenitor cells, particularly glioma stem-like cells
(GSCs), are a source of tumor recurrence and resistance because of their
ability to self-renew and differentiate into various cell types within the
tumor. Microglia, the resident immune cells of the brain, are often
reprogrammed by the tumor to create an immunosuppressive environ-
ment, aiding in invasiveness and resistance to therapies. In addition,
ncRNAs, such as microRNAs (miRNAs) and long non-coding RNAs
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(IncRNAs), have emerged as crucial regulators of gene expression,
modulating pathways that drive GB malignancy and resistance to con-
ventional treatments.

By focusing on these components, we discuss how their interactions
contribute to the development and persistence of GB and how they can
be targeted for novel therapeutic interventions. The overarching goal is
to highlight promising research avenues that could lead to more effec-
tive targeted therapies, improve patient outcomes, and overcome cur-
rent therapeutic challenges.

2. Progenitor cells in GB: drivers of tumorigenesis and
resistance

2.1. Progenitor cells in the Central Nervous System (CNS)

Neural progenitor cells (NPCs) are essential components of the CNS
and are responsible for generating various types of neural cells during
brain development. They exhibit the capacity for self-renewal and dif-
ferentiation, and play a critical role in maintaining brain homeostasis
and responding to injury [6,7]. However, in the GB, certain progenitor
cells, particularly GSCs, undergo an aberrant transformation, becoming
key drivers of tumorigenesis (Fig. 1). GSCs share many characteristics
with normal NPCs, including self-renewal and multipotency, but they
also exhibit enhanced survival, proliferation, and resistance to standard
therapies [7]. This malignant stem-like population is thought to be
responsible for the initiation, growth, and recurrence of GB, making
them pivotal players in the aggressive nature [7].

Sustained Self
renewal Stem Cell
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2.2. Transformation of progenitor cells into GSCs

The transformation of progenitor cells into GSCs is a complex process
driven by both genetic and epigenetic alterations [8]. Mutations in key
oncogenes and tumor suppressor genes such as TP53 and IDHI are
common in gliomas and contribute to the malignant transformation of
these cells [9]. TP53 mutations, a hallmark of many cancers, disrupt
normal cell cycle regulation and promote genomic instability. Mean-
while, mutations in IDH1, particularly in lower-grade astrocytomas and
oligodendrogliomas, are linked to the production of the oncometabolite
2-hydroxyglutarate, which interferes with cellular differentiation and
promotes a stem-like state [10-12]. Epigenetic modifications such as
DNA methylation and histone modification further contribute to the
stem-like phenotype of GB cells. These changes alter gene expression
patterns and maintain progenitor cells in an undifferentiated and pro-
liferative state [13]. In addition, the TME plays a crucial role in the
transformation and maintenance of GSCs. Hypoxia is a hallmark of most
malignancies, including GB-TME, and has been connected to worse pa-
tient outcomes and aggressive metastatic features. GSC survival and
stemness are supported by the hypoxic condition they occasionally
encounter, which is thought to be regulated by hypoxia-inducible factor
signaling [14]. Cytokines and growth factors within the TME, including
interleukin-6 (IL-6) and transforming growth factor-beta (TGF-p),
further promote the plasticity and self-renewal capabilities of progenitor
cells, enabling their adaptation to the tumor niche [15-17].

2.3. Progenitor cells and tumor growth

GSCs are pivotal not only in tumor initiation but also in driving the

’/ Tumor Initiation
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Glioma Cell

Glioma Cell

SOX2, Olig2, BMil, SRY

Fig. 1. CSC functional characteristics include sustained self-renewal, persistent proliferation, and tumor initiation upon intracranial transplantation, defining their
role in GB. Additionally, CSCs share similarities with somatic stem cells, exhibiting tissue/tumor-specific frequency, stem cell marker expression (e.g., Bmil, Olig2,

Sox2), and multilineage progeny potential.
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Fig. 2. Role of Progenitor Cells in GB. Cellular plasticity, genetic mutations, self-renewal capacity, and interactions with the microenvironment are key drivers of
tumorigenesis, while DNA repair mechanisms, drug efflux transporters, and hypoxia-induced stemness and regulatory non-coding RNAs contribute to therapeutic
resistance in GB. Progenitor cells play a dual role in GB by promoting aggressiveness and survival challenges.

continuous growth and invasion of GB [18]. These cells display
enhanced proliferative potential and are highly invasive, contributing to
the diffuse infiltration of the GB throughout the brain [19,20]. Unlike
more differentiated tumor cells, GSCs possess the ability to migrate
along white matter tracts and blood vessels, enabling them to evade
surgical resection and seed new tumor foci [21]. The presence of GSCs
within the tumor mass also contributes to its heterogeneity, which is a
defining feature of GB. GSCs can differentiate into various cell types
within the tumor, leading to a heterogeneous population of cells with
varying levels of susceptibility to treatment [2,22]. This heterogeneity is
a significant factor in the development of therapy resistance, as GSCs can
survive treatments that effectively eliminate differentiated tumor cells.
As a result, GSCs are often implicated in tumor recurrence as they can
repopulate the tumor following therapy [5,23].

2.4. Progenitor cells and therapy resistance

Progenitor cells, particularly GSCs, are highly resistant to conven-
tional therapies, including radiation and chemotherapy. This resistance
is attributed to several factors, including enhanced DNA repair mecha-
nisms, slow cell cycle progression, and activation of survival pathways
that protect cells from apoptosis [24-26]. For instance, GSCs exhibit
increased expression of DNA repair proteins such as MGMT, which
confers resistance to TMZ, the standard chemotherapeutic agent used in
GB treatment [27,28]. Furthermore, GSCs often reside in protective
niches within tumors, such as perivascular or hypoxic regions, where
they are shielded from therapeutic agents and radiation [5,24-26].

The cellular plasticity of GSCs also plays a significant role in resis-
tance to therapy. These cells can dynamically switch between stem-like
and differentiated states in response to therapeutic pressure, allowing
them to survive treatment and re-establish the tumor. This adaptability
makes targeting GSCs a crucial focus for the development of new ther-
apeutic strategies [22,29,30].

Emerging therapies targeting key signaling pathways involved in
GSC maintenance and self-renewal, such as the Notch, Wnt, and Sonic
Hedgehog pathways, have shown promise in preclinical studies [26,31].
These pathways are critical for the regulation of stemness and differ-
entiation of both normal progenitor cells and GSCs. Inhibitors of these
pathways, such as gamma-secretase inhibitors (targeting Notch
signaling), are being investigated as potential therapies to specifically
target the GSC population, thereby overcoming resistance and reducing
the likelihood of tumor recurrence [26,31-33].
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3. Microglia in GB: tumor-associated immune cells
3.1. Microglia and their role in brain homeostasis

Microglial brain resident immune cells are pivotal in maintaining the
health and homeostasis of the CNS. Originating from yolk sac pro-
genitors, these unique cells constitute approximately 10-15 % of the
total cells in the brain. Unlike other immune cells that circulate in the
bloodstream, microglia are strategically positioned throughout the CNS,
enabling them to respond quickly to various stimuli, including injury,
infection, and disease [34,35]. In their resting state, microglia exhibit a
characteristic ramified morphology with long, thin processes that extend
into the surrounding environment. This morphology allows them to
constantly survey the CNS for changes or damage. Through their highly
motile processes, microglia engage in the active surveillance of synap-
ses, contributing to synaptic pruning, a critical process during devel-
opment that eliminates excess synapses to optimize neural circuit
functions [35,36].

In addition to synaptic pruning, microglia play an essential role in
neurogenesis, supporting the survival and maturation of new neurons.
When faced with injury or pathological changes, the microglia undergo
rapid activation. This activation leads to a transformation from a resting
ramified state to an amoeboid shape, which enhances their ability to
engulf cellular debris, dead cells, and pathogens. Activated microglia
release a variety of pro-inflammatory cytokines, including tumor ne-
crosis factor-alpha (TNF-a), interleukin-1 beta (IL-1p), and IL-6. These
cytokines play essential roles in recruiting other immune cells to the
injury site, thereby initiating the healing process [35,37]. While acute
microglial activation is crucial for repair and recovery, prolonged or
dysregulated activation can lead to chronic neuroinflammation, which is
associated with various neurodegenerative diseases, such as Alzheimer’s
disease and multiple sclerosis. Thus, maintaining a balance in microglial
activation is critical for brain health, underscoring their dual roles as
protectors and potential contributors to pathology [36,37].

3.2. Microglial infiltration into the GB microenvironment

In the context of GB, which is one of the most aggressive forms of
brain cancer, the role of microglia has become increasingly complex. GB
is characterized by its highly infiltrative nature, extensive cellular het-
erogeneity, and unique TME that includes not only tumor cells, but also
stromal cells, vascular components, and immune cells, particularly
microglia. Microglial infiltration into the GB microenvironment is a
dynamic process influenced by multiple factors. GB cells release a
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plethora of signaling molecules, including cytokines, chemokines, and
extracellular vesicles, which play critical roles in recruiting and
reprogramming microglia [37-39]. For instance, the secretion of TGF-p
by GB cells is a key factor that drives microglial activation and polari-
zation toward a tumor-promoting phenotype. Once recruited, microglia
undergo significant reprogramming, altering their function and pheno-
type in response to TME. This reprogramming often results in a shift
from a protective role to pro-tumor activities [35,36]. Factors such as
interleukin-10 (IL-10), a cytokine with anti-inflammatory properties,
and the release of extracellular vesicles carrying miRNAs and other
bioactive molecules from tumor cells can further influence microglial
behavior. This interaction results in a population of tumor-associated
microglia that is markedly different from their resting counterparts.
These tumor-associated microglia often exhibit features characteristic of
the M2-phenotype, which is associated with immune suppression, tissue
repair, and promotion of tumor growth [36,37]. In this altered state,
microglia can support GB progression by enhancing the survival and
proliferation of tumor cells, promoting angiogenesis, and facilitating the
invasion of the surrounding brain tissue. Moreover, the TME can create a
feedback loop that perpetuates microglial activation. As microglia
become more involved in supporting tumor growth, they may release
additional signals that further enhance GB cell proliferation and sur-
vival, creating a vicious cycle that complicates treatment efforts [39,40].

3.3. Microglial polarization and GB progression

Microglia are well-known for their remarkable plasticity, which en-
ables them to adopt various functional states in response to environ-
mental cues. In the context of GB, microglial polarization can be broadly
classified into two main phenotypes, M1 and M2. The balance between
these two phenotypes plays a critical role in determining the overall
outcome of tumor-host interaction [37,40].

M1 Microglia: Pro-Inflammatory Phenotype: M1 microglia are
classically activated in response to pro-inflammatory signals and are
associated with antitumor immune responses. They secrete a variety of
pro-inflammatory cytokines such as IL-12 and interferon-gamma (IFN-
v), which can enhance the activity of other immune cells, including T-
cells and natural killer (NK) cells. This pro-inflammatory environment
can inhibit tumor growth and promote tumor cell apoptosis. However, in
GB, the M1 response is often overshadowed by the predominance of M2
microglia, which limits the effectiveness of this anti-tumor response. The
transition from M1 to M2 is facilitated by the TME, which is rich in
immunosuppressive factors [36,41].

M2 Microglia: Tumor-Promoting Phenotype: M2 microglia, on
the other hand, are associated with tissue repair and resolution of
inflammation. They produce anti-inflammatory cytokines, such as IL-10
and TGF-p, which can suppress the activity of effector immune cells and
promote tumor survival. In the GB microenvironment, M2 microglia
contribute to several tumor-promoting functions. For example, M2
microglia secrete various angiogenic factors, such as vascular endothe-
lial growth factor (VEGF), which promotes the formation of new blood
vessels [41]. This is crucial for tumor growth as it ensures that GB cells
receive the necessary nutrients and oxygen to thrive. Immunosuppres-
sion: By producing anti-inflammatory cytokines, M2 microglia creates a
microenvironment that inhibits effective antitumor immune responses
[40-42]. This immunosuppression can lead to evasion of immune sur-
veillance, allowing GB cells to proliferate and metastasize more easily.
Tumor Invasion: M2 microglia can facilitate the invasion of GB cells into
the surrounding brain tissue by remodeling the extracellular matrix [42,
43]. This remodeling process involves the secretion of matrix metal-
loproteinases (MMPs), which degrade the components of the extracel-
lular matrix, thereby enabling tumor cells to migrate more freely. The
polarization of microglia toward the M2 phenotype is thus a key factor
in GB progression [44]. This shift not only promotes tumor growth but
also complicates treatment approaches, as targeting the immune
response becomes increasingly challenging in a microenvironment that
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favors tumor survival.
3.4. Microglia and therapeutic resistance

The interplay between GB cells and microglia significantly contrib-
utes to therapeutic resistance, which is a major challenge in the treat-
ment of aggressive cancer. GBs are notoriously resistant to conventional
therapies, including surgery, chemotherapy, and radiation, and micro-
glia play several roles in this resistance.

Mechanisms of Inmune Evasion: One of the primary mechanisms
by which microglia contribute to immune evasion is the secretion of
growth factors that enhance GB cell survival. For example, insulin-like
growth factor-1 is a potent survival factor that can be released by
microglia, promoting resistance to apoptosis in GB cells even when
subjected to chemotherapeutic agents [44,45]. This interaction effec-
tively enables tumor cells to withstand treatments that would typically
induce cell death. Additionally, microglia can upregulate immune
checkpoint proteins such as programmed death-ligand 1 (PD-L1), which
inhibits T-cell activation and promotes an immunosuppressive envi-
ronment. By expressing PD-L1, microglia can contribute to the evasion
of immune surveillance, allowing GB cells to proliferate unchecked [46,
47].

Radiation Resistance: Microglia have also been implicated in ra-
diation resistance, which is a significant concern for GB therapy.
Following radiation treatment, activated microglia secrete neuro-
protective factors and cytokines that aid tumor cell survival. For
instance, microglial release of IL-6 can activate signaling pathways in GB
cells that promote survival and proliferation, thereby counteracting the
intended effects of radiation therapy. This radiation-induced activation
of microglia can lead to a vicious cycle, wherein tumor cells stimulate
microglial activation and, in turn, activated microglia support the sur-
vival of tumor cells. This cycle not only undermines the efficacy of ra-
diation therapy but also creates a challenging environment for the
development of novel treatment strategies [5,23,46].

Potential Therapeutic Strategies Targeting Microglia: Given the
significant role of microglia in GB progression and therapeutic resis-
tance, targeting these cells is a promising avenue for improving treat-
ment outcomes. Several strategies have been proposed:

CSF-1R Inhibitors: Colony-stimulating factor-1 receptor (CSF-1R)
inhibitors aim to disrupt the recruitment and activation of microglia in
the TME. By inhibiting CSF-1R, these agents can reduce the population
of pro-tumor M2 microglia, potentially restoring a more protective im-
mune environment [48].

Immune Checkpoint Blockade: Combining immune checkpoint in-
hibitors with strategies to modulate microglial behavior may enhance
anti-tumor immunity. For example, by blocking PD-L1 interactions,
immune checkpoint blockade can reinvigorate T-cell responses, poten-
tially overcoming the immunosuppressive effects of tumor-associated
microglia [49,50].

Reprogramming Microglia: Approaches aimed at reprogramming
microglia from the M2 to the M1 phenotype hold promise for enhancing
antitumor responses. Therapeutic agents that promote M1 polarization
or inhibit M2 signaling pathways could shift the balance toward a more
favorable immune environment for combating GB [51]. In GB, a variety
of therapeutic agents have demonstrated the ability to rewire
tumor-associated microglia (TAMs) from the M2 to the M1 phenotype.
CSF-1R blockers (e.g., PLX3397) inhibit the survival of M2 macro-
phages, thereby diminishing their immunosuppressive impact. [52].
STAT3 inhibitors WP1066, STAT3 inhibitors, block M2-polarizing
transcriptional programs and promote M1 gene expression [53]. By
boosting the release of pro-inflammatory cytokines, TLR agonists stim-
ulate innate immune signaling. PI3Ky modulators (e.g., IPI-549) inter-
fere with immunosuppressive signaling in myeloid cells, reprogramming
TAMs [54].

Combination therapies: Combination therapies that incorporate
standard treatments (such as chemotherapy and radiation) with
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microglial-targeted therapies could provide synergistic effects, improve
treatment efficacy, and overcome resistance mechanisms [55,56].

4. NcRNAs in GB: key regulators of pathogenesis and resistance

NcRNAs are a vital component of the genome, encompassing a wide
array of RNA molecules that do not translate into proteins but play
crucial regulatory roles in gene expression and cellular functions. Their
importance in various biological processes, particularly cancer, has
garnered significant attention in recent years. Below, we explore the
types of ncRNAs, their mechanisms of action, and their implications in
diseases, such as GB, cancer, and TB [57-60].

4.1. MiRNAs and their role in GB

They are short, typically 20-22 nucleotides in length, single-stranded
RNA molecules that primarily function in post-transcriptional regula-
tion. MiRNAs bind to complementary sequences in target mRNAs,
leading to mRNA degradation or translational repression. This process
modulates gene expression and can have profound effects on various
cellular functions, including proliferation, differentiation, and
apoptosis. MiRNAs are emerging as vital regulators in GB, influencing
many aspects of tumor biology [57,61,62]. Research has identified
several key miRNAs that are significantly implicated in GB pathogenesis.

miR-21: Often referred to as an “oncomiR”, miR-21 is frequently
overexpressed in GB tissues and is associated with aggressive tumor
behavior [63]. It promotes cell proliferation and invasion by targeting
tumor suppressor genes, such as phosphatase and tensin homolog
(PTEN), and RECK (reversion-inducing cysteine-rich protein with Kazal
motifs). Upregulation of miR-21 correlates with poorer patient prog-
nosis, highlighting its potential as a therapeutic target.

miR-10b: This miRNA enhances the invasive properties of GB cells.
By downregulating HOXD10, a gene known for its tumor-suppressive
functions, miR-10b facilitates tumor cell migration and invasion,
thereby contributing to the aggressive nature of GB [64].

miR-34a: Acting as a tumor suppressor, miR-34a regulates critical
pathways involved in cell cycle control and apoptosis. Its expression is
frequently downregulated in GB, leading to unchecked cell proliferation
and enhanced survival of tumor cells in response to stress [65,66].

miR-181a: In GB, miR-181a is a brain-enriched miRNA that has two
roles. Most of the research focuses on its tumor-suppressive properties.
GB tissues and GSCs commonly downregulate it; restoring it inhibits
tumor cell invasion and proliferation and encourages apoptosis. One of
the main ways that miR-181a works is by specifically downregulating
BCL-2, a crucial anti-apoptotic protein, which makes GB cells more
susceptible to TMZ-induced apoptosis [67]. Additionally, miR-181a in-
hibits inflammation and slows the growth of tumors by targeting genes
involved in the NF-kB signaling pathway. Additionally, by preventing
DNA damage repair mechanisms, miR-181a may improve the response
of GB cells to radiation therapy, according to some research [68].

The mechanisms by which miRNAs exert their effects on GB include
the following.

Regulation of Proliferation: MiRNAs, such as miR-34a, target genes,
are involved in cell cycle progression. By inhibiting these targets, miR-
34a can prevent tumor cells from progressing through the cell cycle,
thereby reducing their proliferation. Conversely, loss of miR-34a
expression can lead to enhanced cell growth.

Promotion of Invasion: MiRNAs such as miR-10b facilitate GB in-
vasion by targeting cell adhesion molecules and extracellular matrix
components [65,66]. This regulation allows tumor cells to detach from
their primary site and invade the surrounding tissues, a hallmark of GB
aggressiveness.

Maintenance of Stemness: MiRNAs are crucial for the maintenance
of cancer stem cell characteristics that are linked to tumor recurrence
and treatment resistance. For example, miR-21 promotes stemness in GB
cells, enabling them to survive in harsh microenvironments and resist
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therapy [65,69].
MiRNAs also play significant roles in GB resistance to therapies:

1. Drug Efflux Mechanisms: miRNAs influence the expression of ATP-
binding cassette (ABC) transporters, which are responsible for drug
efflux. The overexpression of specific miRNAs can enhance the
expression of these transporters, leading to decreased intracellular
concentrations of chemotherapeutic agents and reduced drug
efficacy.

2. Evasion of Apoptosis: By down-regulating pro-apoptotic factors and
up-regulating anti-apoptotic factors, miRNAs enable GB cells to
evade programmed cell death. This mechanism is particularly
important in the context of chemotherapy and radiation, where the
induction of apoptosis is a primary therapeutic goal [65,70] (see
Fig. 2).

4.2. LncRNAs and their role in GB

Defined as ncRNAs longer than 200 nucleotides, IncRNAs exhibit a
wide range of biological activities. They can interact with chromatin,
transcription factors, and other RNA molecules, influencing gene
expression at multiple levels. LncRNAs are involved in regulating
cellular processes such as cell cycle progression, differentiation, and
responses to stress [58-60,71]. LncRNAs are increasingly recognized for
their roles in GB pathogenesis. Key IncRNAs involved in GB are sum-
marized in Fig. 3, and some of them are discussed below.

HOTAIR: Homeobox transcript antisense intergenic RNA (HOTAIR)
is a well-studied IncRNA associated with poor prognosis in GB [72,73].
HOTAIR facilitates tumor metastasis through chromatin remodeling,
which alters the expression of genes involved in invasion and migration.
Its overexpression correlates with increased tumor aggressiveness and
enhanced metastatic potential [74]. The HOTAIR serves as an epigenetic
scaffold and is upregulated in GB. Its 5’ domain binds the LSD1/CoREST
complex and Polycomb repressive complex 2 (PRC2; EZH2/-
SUZ12/EED) to cause H3K4 demethylation and H3K27 trimethylation at
target loci [75]. This silences genes (e.g., at the HOXD locus), promoting
tumor progression. In resistant GB cells, HOTAIR also acts as a
competing endogenous RNA: it sponges miR-214, leading to activation
of Wnt/p-catenin signaling and upregulation of MGMT. The net effect is
enhanced DNA  repair and TMZ  resistance via a
miR-214/p-catenin/MGMT axis [76,77].

MALATI1: Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is overexpressed in GB and plays a critical role in regulating
cell proliferation and migration, and correlates with poor outcome.
MALAT1 promotes TMZ chemoresistance by acting as a molecular
“sponge” for tumor-suppressive miRNAs, thereby modulating the
expression of target genes that control cell cycle progression and tumor
growth [78]. MALAT1 binds and downregulates miR-203, a miRNA that
normally targets thymidylate synthase (TS) mRNA. By repressing
miR-203, MALAT1 derepresses TS expression, enabling enhanced DNA
synthesis and survival under TMZ. Consequently, MALAT1 knockdown
restores miR-203 levels, reduces TS, and resensitizes GB cells to TMZ
[79]1.

NEATI1: Nuclear paraspeckle assembly transcript 1 (NEAT1) is
essential for the formation of paraspeckles, nuclear structures involved
in gene expression regulation. NEAT1 contributes to GB progression by
promoting cell survival, influencing the stress response, and modulating
immune responses within the TME [80,81]. NEAT1 is highly regulated
in GB, and its expression is correlated with poor prognosis and increased
tumour aggressiveness. NEAT1 promotes survival of tumour cells by
modulating stress response pathways, such as those activated by hyp-
oxia and DNA damage, allowing the GB cells to withstand the harsh
microenvironment and the therapeutic insults of chemotherapy [82].

Mechanistically, NEAT1 acts as a molecular reservoir for several
tumor suppressor miRNAs such as miR-449b-5p, which de-activate key
oncogenic targets such as c-Met and STAT3, which are key players in cell
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Fig. 3. Schematic summary of various IncRNAs and miRNAs that play important roles in regulating glioma Angiogenesis, EMT, Invasion, Cell Proliferation, self-

renewal, growth suppressor, metastasis, and therapy resistance.

proliferation, invasion, and apoptosis [83]. NEAT1 also modulates the
immune landscape in the TME by modulating inflammatory mediators
and promoting immunosuppression, which is conducive to tumour
progression. In addition, NEAT1 has been shown to confer resistance to
TMZ by increasing the ability to repair DNA and maintaining the char-
acteristics of stem cells by interacting with the EZH2-PRC2 complex,
resulting in epigenetic silencing of pro-apoptotic genes [84].

SBF2-AS1: The antisense IncRNA SBF2-AS1 is highly expressed in
TMZ-resistant GB and is secreted in exosomes. Its transcription is driven
by ZEB1, which binds the SBF2-AS1 promoter. Overexpression of SBF2-
AS1 in GB cells increases TMZ resistance, whereas knockdown sensitizes
cells [85]. Mechanistically, SBF2-AS1 functions as a competitive
endogenous RNA for miR-151a-3p: by sponging miR-151a-3p, it relieves
repression of XRCC4, a DNA double-strand break repair protein. The
elevated XRCC4 enhances DNA repair capacity and survival after
TMZ-induced damage. Exosomal SBF2-AS1 from resistant tumors can
transfer this resistance to other GB cells, and high serum levels predict
poor TMZ response [85,86].

Lnc-TALC: The IncRNA Inc-TALC (“TMZ-associated IncRNA in
glioblastoma recurrence”) is upregulated in TMZ-resistant GB cells. It
acts as a sponge for miR-20b-3p, thereby de-repressing c-Met (MET)
expression and activating downstream AKT signaling. Through a c-Met/
STAT3/p300 pathway, Inc-TALC recruits the histone acetyltransferase
p300 to the MGMT promoter, increasing H3K9/27/36 acetylation and
elevating MGMT levels. The result is enhanced O"6-methylguanine
repair and robust TMZ resistance in GB cells [87]. Additionally,
Inc-TALC may alter the GB microenvironment and decrease tumor
sensitivity to TMZ chemotherapy. This suggests that the cross-talk be-
tween GB cells and microglia mediated by Inc-TALC may inhibit the
effectiveness of chemotherapy and suggest possible combination ther-
apy approaches to address TMZ resistance in GB [88].

H19: The imprinted IncRNA H19 is also implicated in TMZ resis-
tance. H19 is overexpressed in resistant GB and acts as a decoy for miR-
138-5p and miR-22-3p. Both miRNAs normally target BMP2 mRNA. By
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sponging miR-138/miR-22, H19 de-represses BMP2 expression. BMP2
signaling then promotes GB cell survival under TMZ. Thus, H19 en-
hances chemoresistance via a miR-138/22-BMP2 regulatory axis [89,
90].

PVT1: The IncRNA PVT1 is highly expressed in gliomas and corre-
lates with aggressive progression. PVT1 drives TMZ resistance by
engaging the JAK/STAT pathway. Transcriptomic analyses show PVT1
positively correlates with IL6, JAK3, STAT1/3, etc., and PVT1 knock-
down significantly reduces JAK3 and STAT3 protein levels. By acti-
vating IL6/JAK/STAT signaling, PVT1 promotes cell survival and
therapy resistance. In GB models, PVT1 depletion enhances TMZ sensi-
tivity, confirming its role as a chemoresistance mediator [91-93].

4.2.1. LncRNAs exert their regulatory functions through several
mechanisms

Tumor Growth: By interacting with chromatin-modifying com-
plexes, IncRNAs like HOTAIR can enhance the expression of oncogenes,
driving tumor growth. They can also recruit transcription factors to
specific gene loci, influencing the transcriptional landscape of GB cells.

Stem Cell Maintenance: Certain IncRNAs are involved in maintain-
ing cancer stem cell populations, which contribute to tumor heteroge-
neity and the capacity for self-renewal. This characteristic is crucial for
the resilience of GB against therapeutic interventions.

Immune Modulation: LncRNAs can influence the immune landscape
within the TME. By regulating the expression of cytokines and immune
checkpoint molecules, IncRNAs may affect the recruitment and activity
of immune cells, allowing GB to evade immune surveillance [94] Fig. 4.

4.3. Circular RNAs (circRNAs) and their emerging role in GB

These are unique, covalently closed RNA molecules formed by back-
splicing of exons. CircRNAs are often stable and resistant to degradation,
allowing them to serve as important regulators in the cell. They can
function as sponges for miRNAs, binding to them and preventing their
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Fig. 4. Functional Roles of oncogenic and tumor-suppressive IncRNAs in cancer: Oncogenic IncRNAs promote tumorigenesis by enhancing cell proliferation,
inhibiting apoptosis, and facilitating metastasis, while tumor-suppressive IncRNAs counteract these processes to prevent cancer progression.

interaction with target mRNAs, thus modulating gene expression [95,
96]. The study of ncRNAs has revealed their critical involvement in the
pathogenesis of various cancers, including GB, where they play key roles
in tumor growth, metastasis, and therapeutic resistance. CircRNAs are a
novel class of ncRNAs that have garnered attention for their unique
structures and regulatory roles in GB.

Key examples of circRNAs include

circ-FBXW7: This CircRNA acts as a sponge for miR-197, thus
enhancing the expression of FBXW7, a tumor suppressor that plays a
vital role in regulating cell proliferation and survival by down-
regulating miR-197 [97,98]. circ-FBXW7 promotes the degradation of
oncogenic proteins, thereby inhibiting GB progression.

circHIPK3: Another important circRNA, circHIPK3, is involved in
regulating cell proliferation and apoptosis in GB. It sponges several
miRNAs, influencing the expression of genes that control these critical
cellular processes [99]. CircHIPK3 is an endogenous RNA that competes
with other RNAs and primarily uses miRNA sponging to cause cancer.
miR-654 is one of its best-studied targets; it typically suppresses tumors
by preventing the expression of genes linked to metastasis and prolif-
eration. CircHIPK3 absorbs miR-654 to alleviate the inhibition of
IGF2BP3, a protein that promotes tumor growth and stabilizes onco-
genic transcripts [100]. CircHIPK3 has also been shown to sponge
miR-124, a well-known brain-specific tumor suppressor miRNA, which
promotes the migration and proliferation of glioma cells by derepressing
its downstream targets, including CDK6 and STAT3 [101]. The signifi-
cance of circHIPK3 in regulating miRNA activity and influencing the
pathophysiology of gliomas is demonstrated by these interactions.

CircRNAs can modify interactions between proteins and between
proteins and RNA by serving as scaffolds or decoys for RNA-binding
proteins (RBPs). Circ-FBXW?7, for example, has been demonstrated to
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interact with and stabilize the tumor suppressor FBXW?7. It can also be
translated into a functional protein (FBXW7-185aa), which impedes the
growth of GB by decreasing the stability of c-Myc [98]. Similar to this,
circ-SHPRH encodes SHPRH-146aa, a tumor-suppressive protein that
prevents full-length SHPRH from degrading and thereby stops the
growth of gliomas [102]. CircRNAs are also involved in the regulation of
transcription and  alternative splicing. CircRNAs that are
nuclear-localized, like circ-ITCH, work with the RNA polymerase II
complex and Ul snRNP to enhance the transcription of their parent
genes [103]. Furthermore, through intricate networks of RNA-protein
and RNA-RNA interactions, circRNAs can contribute to stemness, in-
vasion, and resistance to treatment in GSCs. The potential of circRNAs as
GB therapeutic targets and diagnostic markers is highlighted by their
diverse roles.

4.3.1. Mechanism of regulatory role of circRNAs in sponging miRNA

CircRNAs primarily function as miRNA sponges, sequestering miR-
NAs and preventing them from binding to their target mRNAs. This
sponging activity can lead to the upregulation of oncogenes or down-
regulation of tumor suppressors, thereby impacting GB biology. By
modulating miRNA availability, circRNAs can significantly influence
gene expression and contribute to the aggressive nature of GB.

4.4. Enhancer RNA (eRNA)

Enhancer RNAs (eRNAs) are ncRNAs transcribed from enhancer re-
gions, and their expression abundance reflects the activity of enhancers
[104]. They are typically short, non-polyadenylated, and
nuclear-localized, playing roles in promoting chromatin accessibility
and facilitating transcriptional activation of target genes. Therefore,
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elucidating the mechanism of eRNA regulation in gliomas is likely to
provide valuable insights into the pathogenesis of both primary and
recurrent gliomas. eRNAs might contribute to enhancer activity and
facilitate the formation of enhancer-promoter loops through the
recruitment of RNA polymerase II and various TFs, thereby modulating
the transcription of target genes [105,106].

Recent studies have demonstrated that enhancers can maintain a
drug-resistant state via their targeted transcriptional programs [107,
108]. Therefore, identifying drug response-related eRNAs and their
regulatory programs might contribute to the development of precision
therapies and biomarkers for gliomas. The global dynamic expression
landscape of eRNAs during the initiation and progression of primary and
recurrent gliomas, including LGG and GB, reveals that most eRNAs are
highly dynamically expressed in different stages of gliomas, suggesting
that eRNAs might have stage-specific characteristics [108,109].

eRNAs like TMZR1-eRNA, derived from the STAT3 locus, have been
found to regulate key signaling pathways in GB. These eRNAs can affect
the expression of oncogenes, thereby affecting tumor growth and sur-
vival. Certain eRNAs regulate GB cell sensitivity to TMZ, a standard
chemotherapeutic agent. Specifically, TMZR1-eRNA inhibition has been
shown to decrease the expression of STAT3, a protein linked to
chemotherapy resistance, which has been shown to enhance the efficacy
of treatment in GB cells [110]. These studies suggest that these mole-
cules could serve as potential biomarkers for prognosis and therapeutic
targets in GB treatment. The identification of eRNAs specific to glioma
stem cells raises the possibility of designing tailored RNA-based thera-
pies aimed at these resistant cell populations. In a study using chromatin
immunoprecipitation sequencing (ChIP-seq), researchers found that GB
stem cells contained multiple eRNAs that were specific to GB cells.
Significant correlations were found between certain eRNAs and patient
outcomes, emphasizing the potential for eRNAs to act as novel epige-
netic regulators within tumorigenesis [108].

4.5. Exosomal ncRNAs in GB

Exosomal ncRNAs play a crucial role in regulating GB pathways, and
influencing tumor progression and therapeutic responses. For instance,
miR-21 is often upregulated in GB, promoting cell proliferation by tar-
geting tumor suppressor genes like PTEN, which enhances survival and
growth. The 3’ untranslated region (3-UTR) of PTEN mRNA is directly
bound by miR-21, which results in post-transcriptional repression. By
constitutively activating this prosurvival signaling cascade, the ensuing
downregulation of PTEN, a tumor suppressor and negative regulator of
the PI3BK/AKT pathway, promotes glioma cell invasion, proliferation,
and resistance to apoptosis [111,112]. Similarly, miR-221/222 inhibits
pro-apoptotic factors, further aiding cell survival, while exosomal
IncRNAs such as H19 can drive cell cycle progression [113,114]. In
terms of invasion, miR-10b enhances the migratory capacity of GB cells
by targeting genes involved in cell adhesion, and exosomes can promote
epithelial-mesenchymal transition (EMT), facilitating local invasion.
Exosomal ncRNAs also contribute to angiogenesis, with miR-125b pro-
moting blood vessel formation, and they play a role in immune evasion
by modulating immune responses through miR-155, which helps the
tumor escape immune detection [70,114]. Additionally, ncRNAs are
implicated in therapeutic resistance; for example, downregulation of
miR-34a can lead to increased resistance to chemotherapy. Finally,
ncRNAs can enhance cancer stem cell properties, contributing to tumor
maintenance and recurrence [70]. The complex interactions of exosomal
ncRNAs in these pathways highlight their potential as targets for ther-
apeutic intervention and as biomarkers for GB management.

4.6. NcRNAs in therapeutic resistance
The role of ncRNAs in therapeutic resistance is a critical area of

research in GB. ncRNAs influence resistance mechanisms through
various pathways:
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Chemotherapy Resistance: NcRNAs can regulate the expression of
genes involved in drug metabolism, efflux, and apoptosis. For instance,
certain IncRNAs can enhance the expression of drug transporters, lead-
ing to decreased efficacy of chemotherapeutic agents. ABCB1 (P-glyco-
protein), a well-characterized ABC transporter that is known to efflux
chemotherapeutic agents from tumor cells, is upregulated by the IncRNA
SBF2-AS1, promoting TMZ resistance [85]. Multidrug
resistance-associated protein 1 (MRP1/ABCCl), another efflux pump
involved in drug clearance, has also been demonstrated to be activated
by IncRNA H19, increasing resistance [115]. Additionally, miRNAs may
target pro-apoptotic genes, promoting cell survival and resistance to
chemotherapy [65,70,73].

Radiotherapy Resistance: NcRNAs are implicated in the cellular
response to radiation therapy. Some miRNAs can enhance DNA repair
pathways, allowing GB cells to survive radiation exposure and continue
proliferating [73].

Targeted Therapy Resistance: NcRNAs can also influence the
expression of targets for specific therapies. For example, IncRNAs may
modulate the expression of receptor tyrosine kinases, affecting the
sensitivity of GB to targeted therapies [114].

5. Interplay between progenitor cells, microglia, and NcRNAs in
GB

5.1. Progenitor cell-microglia cross-talk

The interaction between progenitor cells and microglia within the
GB-TME is a crucial factor driving tumor progression [116]. GSCs, which
originate from transformed neural progenitor cells, actively influence
microglial behavior through direct and indirect signaling mechanisms
[117]. Roles of progenitor cells, microglia, and ncRNAs in pathogenesis
and therapeutic resistance in GB are summarized in Table 1.

Progenitor Cell Influence on Microglia: Progenitor cells release
various signaling molecules, including chemokines and cytokines, which
affect microglial polarization [118]. This polarization shifts microglia
towards a tumor-supportive phenotype, often described as M2-like po-
larization [35]. These M2-polarized microglia support the immunosup-
pressive and pro-tumorigenic environment by releasing factors that
promote glioma growth and inhibit anti-tumor immune responses [35,
371.

Microglial Support for GSCs: Microglia, in response to progenitor
cell signals, secrete various cytokines (IL-6, TGF-p) and growth factors
(CSF-1, VEGF) that enhance the survival, self-renewal, and proliferation
of GSCs [34,37]. This reciprocal interaction between progenitor cells
and microglia fosters a symbiotic relationship where both cell types
promote each other’s survival, facilitating tumor growth, invasion, and
resistance to therapies [37,38,118].

5.2. ncRNAs as mediators of cellular interactions

NcRNAs, which include miRNAs, IncRNAs, and circRNAs, have
emerged as key regulators of cellular communication within the GB-
TME [72]. They modulate the cross-talk between progenitor cells and
microglia, influencing the course of GB development [72,73].

Subtype-specific miRNA expression profiles have been demonstrated
in recent research to be important in promoting or sustaining these
transcriptional states. For example, miR-10b and miR-21, which are
linked to invasion and proliferation, are enriched in the mesenchymal
subtype and support its aggressive characteristics [119]. On the other
hand, miR-128, miR-34a, and miR-137 are primarily expressed in the
proneural subtype, where they target genes linked to stemness to control
differentiation and inhibit carcinogenesis [120]. In addition to being
potential biomarkers for diagnosis or prognosis, these miRNA signatures
provide information about treatment vulnerabilities specific to each
subtype of GB.

ncRNA-Mediated Modulation of Communication: ncRNAs can act
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Table 1
Roles of progenitor cells, microglia, and ncRNAs in GB pathogenesis and

resistance.

Types Role in GB Pathogenesis ~ Mechanism of Ref
Resistance

Progenitor Cells

Neural Progenitor Provide cells with self- High drug-efflux pump [131]
Cells (NPCs) renewal and activity, enhanced DNA

differentiation repair, and
potential; Mutations can maintenance of
trigger tumorigenic stemness properties.
transformation.

GSCs Promote tumor growth Quiescence, increased [132]
and recurrence with DNA repair, hypoxic
stem-like properties and  niche protection
contribute to GB
heterogeneity.

Oligodendrocyte Potential cell of origin Activation of PI3K/Akt/  [133,
Progenitor Cells in the proneural GB; mTOR signaling 134]
(OPCs) Dysregulation of OPCs pathways; Adaptation

promotes tumor to microenvironmental
progression stressors

Mesenchymal Differentiation into Enhance invasion, [135]
Progenitor Cells tumor-associated angiogenesis, and
(MPCs) stromal cells; supports immune evasion

aggressive growth of the
mesenchymal subtype.

Endothelial Support Maintain a hypoxic [136]
Progenitor Cells neovascularization, environment, protect
(EPCs) increase blood supply to  from radiotherapy, and

the tumor, and facilitate ~ support angiogenesis.
invasion.

Microglia

Tumor-Associated Support tumor growth Immunosuppressive [137]
Microglia/ through secretion of environment, increased
Macrophages growth factors and secretion of anti-

(TAMs) cytokines; promote GB inflammatory cytokines
invasion and
vascularization.

M1 Microglia Transiently suppress GB  Reduced activity due to ~ [138]
(Pro- progression by releasing  tumor-derived
inflammatory) pro-inflammatory immunosuppressive

cytokines (e.g., TNF-a, signaling and metabolic
IL-1B) reprogramming

M2 Microglia Promote tumor growth High resistance through  [35,
(Anti- by enhancing secretion of growth 139]
inflammatory) angiogenesis, factors (e.g., TGF-B) and

immunosuppression, anti-inflammatory
and extracellular matrix ~ cytokines
remodeling.

Reactive Microglia  Activated in response to  Secrete MMPs that [140]
GB-induced support tumor invasion
inflammation; secretes
factors promoting GB
proliferation and matrix
remodeling.

Perivascular Facilitate the invasion Protect tumor cells by [141]

Microglia of GB cells along blood promoting a supportive
vessels and contribute niche and maintaining
to the formation of the BBB integrity.
perivascular niche.

Glioma-Associated ~ Specialized microglia in ~ Promote therapeutic [142]
Microglia GB interact closely with  resistance by
(GAMs) GSCs and tumor cells to maintaining stemness

promote proliferation and supporting immune
and invasion. evasion.

Non-Coding RNAs

miR-21 Promotes GB cell Increases resistance by [143,
proliferation and activating anti- 144]
invasion and inhibits apoptotic signaling
apoptosis by targeting pathways and reducing
tumor suppressor genes sensitivity to
(e.g., PTEN, PDCD4). chemotherapy

miR-10b Facilitates tumor cell Induces therapeutic [145]

invasion and promotes
stem cell-like properties

resistance through
upregulation of pro-
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Types Role in GB Pathogenesis ~ Mechanism of Ref
Resistance
survival pathways and
inhibition of apoptosis

HOTAIR Enhances GB cell Contributes to [77,

migration, invasion, and radioresistance by 146,
EMT promoting DNA 147]
damage repair and
enhancing stemness
properties
MALAT1 Supports tumor growth Enhances resistance by [79,
and angiogenesis modulating autophagy 148,
through modulation of and promoting anti- 149]
gene expression apoptotic mechanisms

circHIPK3 Promotes GB Mediates [99,

proliferation and chemoresistance 150]
invasiveness by through PI3K/AKT

sponging tumor- signaling activation

suppressive miRNAs (e.

g., miR-124)

SNHG12 (Small Enhances GB Increases resistance by [151,
Nucleolar RNA proliferation, migration, modulating immune 152]
Host Gene 12) and immune evasion checkpoints and

enhancing anti-
apoptotic signaling
miR-155 Promotes tumor Contributes to [153,
progression by targeting  radioresistance and 154]

tumor suppressor genes
and facilitating
immunosuppression

chemoresistance by
improving DNA repair
mechanisms

as molecular bridges, modulating signaling pathways and transcrip-
tional networks between progenitor cells and microglia [74,121]. For
instance, miRNAs such as miR-124 and miR-21 are known to regulate
microglial polarization and progenitor cell behavior, either suppressing
anti-tumor responses or promoting the M2-like phenotype that supports
tumor growth [61,62,121].

Regulatory Feedback Loops: NcRNAs can establish complex regu-
latory feedback loops. For example, miRNAs may inhibit the expression
of specific transcription factors that would otherwise limit progenitor
cell proliferation, while IncRNAs and circRNAs may act as “sponges” for
these miRNAs, reducing their activity and thus maintaining the stem-
like state of glioma cells. These regulatory interactions create a finely
tuned system that promotes GB progression [62,95,113,122].

Impact on TME: NcRNAs not only affect individual cells but also
modulate the broader TME [123]. They influence the secretion of cy-
tokines and growth factors, reshape immune cell recruitment, and alter
the extracellular matrix composition, thereby facilitating
tumor-promoting conditions. The dysregulation of ncRNAs amplifies
cellular cross-talk, reinforcing GB malignancy [61,73,113].

5.3. NcRNAs-microglia in GB progression

miR-155: MiR-155, a well-known pro-inflammatory miRNA, is
upregulated in M1-type activated microglia. Because it inhibits tumor-
supportive pathways and increases the production of inflammatory cy-
tokines, it enhances anti-tumor responses in the GB microenvironment.
But neurotoxicity can also result from over-activation [124].

miR-124: A quiescent, anti-inflammatory state is maintained by
miR-124, a miRNA that is abundant in resting (homeostatic) microglia.
A change toward the tumor-supportive M2 phenotype is correlated with
its downregulation in GB-associated microglia, which promotes the
progression of GB [125].

miR-146a: In the NF-xB pathway, it targets IRAK1 and TRAF6 to
function as a negative feedback regulator of inflammation. Upregulated
miR-146a in microglia can inhibit pro-inflammatory reactions, which
could lead to an immunosuppressive GB microenvironment [126].

LncRNA GAS5: GASS5 is known to be expressed in microglia and
regulates phagocytic activity, cytokine production, and microglial
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apoptosis. Downregulation of GAS5 has been linked to reduced immune
surveillance and tumor support [127].

5.4. Implications for tumor progression and resistance

The intricate interplay between progenitor cells, microglia, and
ncRNAs creates a feedback system that accelerates GB progression and
strengthens therapeutic resistance.

Tumor Progression: The continuous cross-talk between progenitor
cells and microglia, mediated by ncRNAs, enhances the invasive ca-
pacity of GSCs, and promotes tumor heterogeneity [23,37,81]. This
complex cellular and molecular environment supports the creation of a
highly adaptive and aggressive tumor. GSCs, supported by
microglial-derived factors and ncRNA signaling, maintain their
self-renewal and invasive properties, contributing to the relentless
growth of GB [5,15,19,20].

Synergistic Roles in Therapeutic Resistance: This tripartite inter-
action is also a major contributor to therapy resistance. Progenitor cells
and GSCs exhibit high plasticity, which allows them to survive con-
ventional treatments such as radiotherapy and chemotherapy [20,29,
128,129]. Microglial-derived cytokines further protect these cells from
therapy-induced apoptosis [37]. Moreover, ncRNAs can upregulate
resistance-related genes, such as those involved in DNA repair and drug
efflux, reinforcing the tumor’s ability to withstand therapeutic pressure
[60,122]. The synergistic action of these elements thus creates a robust,
multi-layered defense against current treatment strategies [22,130].

6. Therapeutic implications and future directions
6.1. Current therapeutic strategies

GB treatment remains a significant challenge, particularly due to the
involvement of progenitor cells, microglia, and ncRNAs in tumor pro-
gression and therapeutic resistance [130,155,156]. Current GB man-
agement includes surgical resection followed by adjuvant radiotherapy
with TMZ, an alkylating agent (the most widely used chemotherapeutic
drug for glioma management), and followed by chemotherapy alone [3,
4,157,158]. Emerging therapeutic strategies target progenitor cells,
microglia, and ncRNAs to disrupt the GB microenvironment and limit
tumor growth [32].

Treatments Targeting Progenitor Cells: Therapeutic approaches
aimed at progenitor cells and GSCs primarily focus on differentiation
therapy and the inhibition of key signaling pathways [26,159,160].
Differentiation therapy attempts to drive GSCs into more differentiated,
less tumorigenic states, thereby reducing their proliferative capacity
[161,162]. Drugs that target critical signaling pathways, such as the
Notch, Wnt, and Hedgehog (SHH) pathways, aim to inhibit the
self-renewal and maintenance of stem cells [163,164].

Microglia-Targeted Therapies: Therapies targeting microglia seek
to reprogram these immune cells from a pro-tumorigenic to an anti-
tumorigenic state [50,165]. One promising approach involves using
CSF-1R inhibitors to block signals that promote microglial support for
GB growth. In addition, strategies to polarize microglia towards an
M1-like phenotype (anti-tumor) or prevent their recruitment into the
TME are being explored [35,48]. With better CNS penetration and
durability than current treatments, ASOs show great promise as adju-
vant therapy for high-grade gliomas. Even though early findings are
promising, more investigation is required to confirm the efficacy and
safety of ASO therapy in clinical settings. [166]. For example, re-
searchers have developed ASOs designed to degrade the mRNA of the
K27M variant, which is known to promote gliomagenesis. These ASOs
have been shown to effectively reduce the levels of K27M mutant mRNA,
thereby reversing aberrant epigenetic changes in preclinical models
[167].

ncRNA-Based Therapies: The therapeutic potential of ncRNAs lies
in their regulatory roles in gene expression and tumorigenesis [168,
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169]. Antisense oligonucleotides (ASOs), miRNA mimics, and miRNA
inhibitors have been developed to target oncogenic ncRNAs or restore
the function of tumor-suppressive ncRNAs [170-172]. For instance,
miRNA mimics can be introduced to restore miRNA levels that suppress
glioma growth, while inhibitors can block oncogenic miRNAs that
contribute to tumorigenesis. Clinical trials are ongoing to assess the ef-
ficacy of ncRNA-based therapies in GB [170,173-177].

6.2. Challenges in targeting the progenitor cells-microglia-ncRNA axis

Despite advances in therapeutic approaches, targeting the progenitor
cells-microglia-ncRNA axis presents several significant challenges:

Blood-Brain Barrier (BBB): The BBB is a major obstacle in deliv-
ering therapeutic agents to the brain. Its highly selective permeability
limits the efficacy of many treatments, including small molecule in-
hibitors, antibodies, and nucleic acid-based therapies such as ASOs and
miRNA mimics. Overcoming the BBB remains a critical hurdle in
developing effective GB therapies [178-180].

Tumor Heterogeneity: GB is characterized by extreme tumor het-
erogeneity, not only in its genetic and epigenetic landscape but also in
the behavior of GSCs and microglia [128,181]. This heterogeneity re-
sults in diverse treatment responses, with different tumor cell pop-
ulations exhibiting varying levels of resistance [2]. Microglia and GSCs
can adapt to therapeutic pressure, leading to recurrence even after
aggressive treatment. These adaptive responses significantly complicate
the development of effective therapies that can target all tumor sub-
populations [5,20,37].

6.3. Emerging therapeutic approaches

To overcome these challenges, several emerging therapeutic ap-
proaches are being developed to address the multifaceted nature of GB
pathogenesis.

Combination Therapies: Single-agent therapies have shown limited
success due to the complex and adaptive nature of GB [55]. Combination
therapies, which target multiple components of the TME simulta-
neously, are being explored to improve treatment outcomes [55,56,
182]. For instance, co-targeting progenitor cell pathways (e.g., Notch or
Wnt) along with microglia modulation (CSF1R inhibitors or immuno-
modulators) and ncRNA-based interventions could potentially address
both the cellular and molecular components driving GB [48,163,183].

Personalized Therapies Based on ncRNA Profiles: The advent of
precision medicine offers the possibility of tailoring treatments based on
the specific ncRNA expression profiles of individual tumors [184].
Personalized therapeutic approaches could involve the use of miRNA
mimics or inhibitors specifically chosen to target the dysregulated
ncRNAs driving the patient’s tumor [185]. This approach could help
overcome tumor heterogeneity by targeting the unique molecular
characteristics of each tumor [96,186,187].

Advances in Drug Delivery Systems: Recent advances in nano-
particle and exosome-based delivery systems show promise in
enhancing drug delivery across the BBB and directly targeting glioma
cells [179,188]. Nanoparticles can be engineered to carry therapeutic
agents such as pathway inhibitors or ncRNAs, improving their
bioavailability and specificity [189,190]. Exosomes, natural carriers of
RNA and proteins, have emerged as a potential vehicle for delivering
miRNA-based therapies to the tumor site, offering a novel approach to
overcoming the BBB [191-194].

7. Conclusion

GSCs, which arise from progenitor cells, are central to tumor initia-
tion, recurrence, and resistance, due to their plasticity and self-renewal
capabilities. The transformation of progenitor cells into GSCs, driven by
genetic mutations and epigenetic changes, creates a pool of tumor-
initiating cells that exhibit resistance to conventional therapies.
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Microglia, co-opted by GB cells, play a pivotal role in creating an
immunosuppressive microenvironment that fosters tumor growth. The
cross-talk between microglia and GSCs, mediated by cytokines and
growth factors, enhances GSC survival and therapy resistance.
Furthermore, ncRNAs, particularly miRNAs and IncRNAs, regulate the
expression of key genes involved in tumor growth and the cellular in-
teractions between progenitor cells and microglia. These ncRNAs also
contribute to the maintenance of the stem-like phenotype in GSCs and
modulate immune responses, further promoting tumor progression and
resistance to treatments.

The complexity of GB, with its diverse and interconnected cellular
and molecular components, necessitates the development of multi-
targeted therapeutic approaches. Future research should focus on un-
derstanding the dynamic interactions between progenitor cells, micro-
glia, and ncRNAs. Identifying the precise mechanisms by which these
components communicate within the TME is crucial for designing more
effective therapies. One promising avenue is the personalization of
therapies based on individual tumor profiles, including ncRNA expres-
sion. Moreover, combination therapies that simultaneously target GSCs,
microglia, and ncRNAs hold the potential for overcoming treatment
resistance.

Understanding the roles of progenitor cells, microglia, and ncRNAs
in GB pathogenesis opens novel therapeutic avenues that go beyond
conventional treatments. Targeting the progenitor cells-microglia-
ncRNA axis can potentially disrupt the cellular and molecular net-
works that drive tumor growth and therapy resistance. Novel therapies
such as pathway inhibitors for progenitor cells, immunomodulatory
agents targeting microglia, and ncRNA-based therapeutics are being
developed to improve patient outcomes. These therapies, combined with
advanced drug delivery technologies, could lead to more effective
treatments that minimize resistance, slow tumor progression, and
extend survival in patients with GB.
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