

Journal Pre-proof

Analytical Insights into the Epidemiology of Glioma and Treatment Modalities

Meichen Ji, Dan Tian, Qing Qi, Liwei Zhao, Peixin Tan, Peixu Lin, Qing Li, Jian Wu, Yanzhen Lai, Yue Cheng, Hongcheng Yang, Haiqing Ma

PII: S1878-8750(25)01114-3

DOI: <https://doi.org/10.1016/j.wneu.2025.124757>

Reference: WNEU 124757

To appear in: *World Neurosurgery*

Received Date: 17 September 2025

Accepted Date: 20 December 2025

Please cite this article as: Ji M, Tian D, Qi Q, Zhao L, Tan P, Lin P, Li Q, Wu J, Lai Y, Cheng Y, Yang H, Ma H, Analytical Insights into the Epidemiology of Glioma and Treatment Modalities, *World Neurosurgery* (2026), doi: <https://doi.org/10.1016/j.wneu.2025.124757>.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 The Author(s). Published by Elsevier Inc.

Analytical Insights into the Epidemiology of Glioma and Treatment Modalities

Meichen Ji^{1,2}, Dan Tian^{1,2},Qing Qi³, Liwei Zhao³, Peixin Tan⁴, Peixu Lin⁵, Qing Li⁶, Jian Wu^{1,2},
Yanzhen Lai^{1,2}, Yue Cheng^{1,2}, Hongcheng Yang^{1,2}, Haiqing Ma^{1,2,7,8}

From the ¹ Department of Oncology, Heyuan People's Hospital, Guangdong Provincial People's Hospital Heyuan Hospital, Heyuan 517000, Guangdong, China ; ² Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment, Doctors Station of Guangdong province, Heyuan People's Hospital, Heyuan, Guangdong, China ; ³ Cancer Center, Affiliated Hospital, Hebei University of Engineering, Handan 056002, Hebei, China ; ⁴ Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China ;⁵ Department of Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China ;⁶ Department of Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), South China University of Technology, Guangzhou 510000, Guangdong, China; ⁷ Department of Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China; ⁸ Department of Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), South China University of Technology, Guangzhou 510000, Guangdong, China

To whom correspondence should be addressed: Haiqing Ma, M.D. [E-mail: mahaiqing@gdph.org.cn]

1 **Manuscript Number: WNS-25-1075**

2

3

4 **Analytical Insights into the Epidemiology of Glioma and Treatment Modalities**

5

6 Meichen Ji^{1,2}, Dan Tian^{1,2},Qing Qi³, Liwei Zhao³, Peixin Tan⁴, Peixu Lin⁵, Qing Li⁶, Jian Wu^{1,2},
7 Yanzhen Lai^{1,2}, Yue Cheng^{1,2}, Hongcheng Yang^{1,2}, Haiqing Ma^{1,2,7,8}

8

9

10 ¹ Department of Oncology, Heyuan People's Hospital, Guangdong Provincial People's Hospital Heyuan Hospital, Heyuan
11 517000, Guangdong, China ; ²Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment, Doctors
12 Station of Guangdong province, Heyuan People's Hospital, Heyuan, Guangdong, China ; ³ Cancer Center, Affiliated Hospital,
13 Hebei University of Engineering, Handan 056002, Hebei, China ; ⁴Department of Radiation Oncology, Guangdong Provincial
14 People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong,
15 China ;⁵ Department of Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences),
16 Southern Medical University, Guangzhou 510000, Guangdong, China ; ⁶ Department of Oncology, Guangdong Provincial
17 People's Hospital (Guangdong Academy of Medical Sciences), South China University of Technology, Guangzhou 510000,
18 Guangdong, China; ⁷ Department of Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical
19 Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China; ⁸ Department of Oncology, Guangdong
20 Provincial People's Hospital (Guangdong Academy of Medical Sciences), South China University of Technology, Guangzhou
21 510000, Guangdong, China

22

23

24 **To whom correspondence should be addressed:** Haiqing Ma, M.D. [E-mail: mahaiqing@gdph.org.cn]

25

26 **Abstract**

27 **Background.** Glioma is a common malignant intracranial tumor. This study investigated different
28 treatment strategies and multiple epidemiological characteristics—including age, sex, ethnicity, and
29 income—on the risk of developing glioblastoma and patient survival outcomes.

30 **Methods.** We obtained data from 44,778 patients treated for gliomas (1980–2019) from the
31 Surveillance, Epidemiology, and End Results (SEER) database. The survival curve was plotted using
32 the Kaplan-Meier method, and Cox regression analysis was employed for prognostic factor analysis.

33 **Results.** This study analyzed the incidence and survival trends of glioma based on population data from
34 the SEER database. The overall incidence rate exhibited a downward trend, with a higher incidence
35 rate among Whites, men, and people aged >60 years. The survival rate of each subgroup gradually
36 increased. Surgical treatment yields the best survival rates in grade 1–2 gliomas. In grade 3–4 gliomas,
37 survival outcomes are better when treated with surgery, followed by chemotherapy. Cox regression
38 analysis of the prognosis of patients undergoing postoperative radiotherapy revealed that chemotherapy
39 (HR, 0.386; 95% CI, 0.272-0.549) and IDH mutations (HR, 0.181; 95% CI, 0.097-0.335) were
40 protective factors, whereas grade 3–4 tumors (HR, 2.179; 95% CI, 1.303-3.645) and age \geq 50 years (HR,
41 1.746; 95% CI, 1.239-2.461) were risk factors. For patients with IDH mutations and/or 1p/19q
42 codeletion, surgery combined with chemoradiotherapy offers the best therapeutic efficacy.

43 **Conclusion.** These findings reveal the dynamic changes in the incidence pattern of glioma, the
44 continuous improvement in survival rates, and the prognostic value of molecular characteristics and

45 socioeconomic factors, deepening the understanding of the effects of different treatment modalities and
46 providing a basis for clinical diagnosis and treatment strategies.

47 **Keywords:** glioma; surveillance, epidemiology, and end Results; survival; isocitrate dehydrogenase;
48 chromosome 1p/19q deletion;

49

50

51 **Introduction**

52 Gliomas are the most common primary central nervous system (CNS) tumors, accounting for over
53 40% of all CNS tumors¹. Originating from glial cells or precursor cells, gliomas include astrocytomas,
54 oligodendrogiomas, glioblastomas (GBMs), ventricular meningiomas, and other rare tumors. Common
55 glioma symptoms include rapid growth or destruction of brain structures, with neurological symptoms
56 that include focal neurological signs, altered mental status, and elevated intracranial pressure. In
57 addition, the incidence and survival of these patients vary significantly by histological type, age at
58 diagnosis, sex, race, ethnicity, and geographic location^{2,3}.

59 Despite remarkable breakthroughs in molecular targeted therapies and immunotherapies for
60 various cancer types, their therapeutic value in glioma remains limited, potentially because of the
61 selective permeability of the blood–brain barrier, which severely restricts most therapeutic drugs from
62 entering the CNS and accumulate in effective therapeutic concentrations in brain tumor regions⁴.
63 Furthermore, glioma cells exhibit highly invasive growth characteristics, allowing them to invade
64 diffusely into normal brain tissue and complicating complete surgical resection. These core therapeutic
65 bottlenecks for glioma necessitate in-depth characterization to advance precision medicine and improve
66 patient outcomes⁵.

67 The current standard of care for glioma is a comprehensive, multimodal approach that combines
68 surgery with radiotherapy, chemotherapy, targeted agents, and tumor-treating fields (TTFields)⁶.
69 Treatment strategies require rigorous individualization according to specific tumor molecular and
70 clinicopathological profiles. To this end, we examined glioma incidence and survival patterns stratified
71 by age, sex, race, and income status. Furthermore, we assessed and compared the therapeutic efficacy
72 of various treatment modalities over a 40-year period for gliomas of different grades and genetic
73 backgrounds. These insights will enhance the understanding of glioma heterogeneity and contribute to
74 evidence-based clinical decision-making.

75 **Patients and methods**

76 The analyzed data were obtained from the Surveillance, Epidemiology, and End Results (SEER)
77 database, a population-based cancer registry maintained by the National Cancer Institute. We identified
78 44,778 patients treated for gliomas (classified per the World Health Organization International
79 Classification of Diseases of Oncology, Third Edition [ICD-O-3] codes C71.0–C71.9) between 1980
80 and 2019 from eight SEER registries on incidence, survival, and treatment for patients with gliomas.
81 We analyzed incidence and survival rates based on tumor grade (grades 1–4) and genetic profiles,
82 including chromosome 1p/19q deletion (data available from 2010 onward) and Isocitrate
83 Dehydrogenase (IDH) mutation status (data available from 2018 onward). To adjust for differences in
84 distribution by ethnicity, incidence rates were normalized to the 2000 U.S. population and reported per
85 100,000 population. Survival rate were evaluated using period analysis. Rank-sum ratios (RSR) were
86 derived by comparing the absolute survival rate of patients with gliomas with the expected survival rate
87 for individuals of the same age, sex, and ethnicity to determine the survival rate associated with
88 gliomas.

89 Because the SEER database has been tracking median household income inflation since 1990,
 90 income data collected from patients in 1980–1989 were excluded. From 1990 to 2019, income level
 91 was categorized as low (<\$35,000–\$49,999), middle (\$50,000–\$69,999), or high (>\$70,000). Sex was
 92 classified as male or female, and ethnicity was classified as White, Black, or other ethnic groups
 93 (American Indian/Alaskan Native or Asian/Pacific Islander). Age at diagnosis was stratified into five
 94 groups: 0–19, 20–39, 40–59, and ≥60 years. RSR estimates were calculated using the Ederer II method
 95 and expressed as percentages. Standard statistical techniques were performed with SEER*Stat
 96 software.

97 Herein, R Studio (version 4.1.0) and GraphPad Prism (version 10.1.2) software were used for
 98 statistical analysis and chart drawing. The Kaplan–Meier method was used to compare the differences
 99 in survival rates among groups with different clinicopathological characteristics and treatment methods
 100 and to plot the survival curve. The log-rank test was used to compare between groups. We applied the
 101 Cox proportional hazards regression model to analyze the characteristics of patients undergoing
 102 postoperative radiotherapy. Initially, potential prognostic variables were screened through univariate
 103 analysis. Then, variables with $P < 0.05$ were included in the multivariate model for stepwise regression
 104 analysis to correct for influencing confounding factors and determining independent prognostic
 105 predictors. The results were expressed with hazard ratios (HR) and its 95% confidence intervals (CI).

106 Results

107 *Incidence of gliomas in 1980–2019*

108 Gliomas increased every decade from 1980–2019, with GBM comprising the highest percentage.
 109 The incidence estimates for GBM (48.9% in 1980–1989, 56.5% in 1990–1999, 62.4% in 2000–2009,
 110 and 67.1% in 2010–2019), astrocytoma (32.5%, 15.2%, 8.2%, and 7.0%, respectively), astrocytoma
 111 anaplastic (6.2%, 8.1%, 7.1%, and 9.5%, respectively), oligodendrogloma (4.5%, 8.4%, 7.6%, and
 112 4.6%, respectively), Oligodendrogloma anaplastic (0.3%, 1.6%, 3.0%, and 2.5%, respectively),
 113 Pilocytic astrocytoma (2.3%, 5.3%, 7.4%, and 6.6%, respectively), fibrillary astrocytoma (2.7%, 2.6%,
 114 2.2%, and 0.8%, respectively) and Gemistocytic astrocytoma (1.7%, 1.2%, 0.7%, and 0.4%,
 115 respectively) and other tumors (1.1%, 1.1%, 1.4%, and 1.6%, respectively) showed different patterns of
 116 increases and decreases over the period (Supplement Table 1 and Figure 1).

117 *Trends in incidence of grade 1 gliomas*

118 From 1980–2019, the incidence of grade 1 glioma cases registered in the SEER database was
 119 0.1/100,000, 0.2/100,000, 0.1/100,000, and 0.1/100,000, respectively. Overall, the incidence of grade 1
 120 gliomas was stable and did not differ significantly by ethnicity, sex, age, or income (Supplement Table
 121 2 and Figure 2 A1–A4).

122 *Trends in incidence of grade 2 gliomas*

123 From 1980–2019, the incidence of grade 2 glioma cases registered in the SEER database showed a
 124 decreasing trend, to 0.5/100,000, 0.5/100,000, 0.3/100,000, 0.2/100,000. Patients identifying as White
 125 had a slightly higher incidence than other ethnicity; the incidence was lower in patients younger than
 126 19 (Supplement Table 3 and Figure 2 B1–B4).

127 *Trends in incidence of grade 3 gliomas*

128 From 1980–2019, the incidence of grade 3 glioma cases registered in the SEER database showed a
 129 decreasing trend to 0.7/100,000, 0.4/100,000, 0.2/100,000, 0.1/100,000. Males demonstrated a higher
 130 incidence than females; this trend increased with age (Supplement Table 4 and Figure 2 C1–C4).

131 *Trends in incidence of grade 4 gliomas*

132 From 1980–2019, the incidence of grade 4 glioma cases registered in the SEER database remained

133 stable at 1.6/100 000, 1.9/100 000, 1.7/100 000, 1.8/100,000. Whites had a higher incidence than other
 134 ethnic groups; males had a higher incidence than females. Glioma incidence increased across the board
 135 with age; middle-income patients had the highest incidence (Supplement Table 5 and Figure 2 D1–D4).

136 ***Relative survival estimates of grade 1 gliomas***

137 For 1980–1989, 1990–1999, 2000–2009, and 2010–2019, the 12-month (90.4%, 93.4%, 95.2%,
 138 and 95.8%, respectively), 36-month (79.1%, 88.1%, 90.7%, and 91.6% respectively), and 60-month
 139 (71.1%, 84.7%, 85.2%, and 90.8%, respectively) survival rates for each subgroup steadily increased.
 140 Women demonstrated slightly better survival than men; older patients consistently demonstrated lower
 141 survival (Supplement Table 6 and Figure 3–5).

142 ***Relative survival estimates of grade 2 gliomas***

143 For 1980–1989, 1990–1999, 2000–2009, and 2010–2019, the 12-month (78.4%, 84.9%, 92.4%,
 144 and 93.2%), 36-month (63.9%, 72.6%, 81.8%, and 82.1%), and 60-month (55.1%, 65.1%, 72.4%, and
 145 79.3%) overall survival (OS) and survival rates mostly improved for each subgroup mostly improved.
 146 Older patients with grade 2 gliomas demonstrated worse survival than their younger counterparts
 147 (Supplement Table 7 and Figure 3–5).

148 ***Relative survival estimates of grade 3 gliomas***

149 For 1980–1989, 1990–1999, 2000–2009, and 2010–2019, the 12-month (44.6%, 43.5%, 48.5%,
 150 and 57.1%), 36-month (21.4%, 20.6%, 27.1%, and 30.6%), and 60-month (15.0%, 16.7%, 21.3%, and
 151 21.8%) survival rates for each subgroup mostly improved. The higher the age, the lower the survival
 152 rate and it decreased significantly for patients aged 60 years and older. The survival rate of patients
 153 aged 20–39 years at 36 months increased significantly after 2000 (Supplement Table 8 and Figure 3–5).

154 ***Relative survival estimates of grade 4 gliomas***

155 The survival rate was lowest for patients with grade 4 gliomas. The 12-month (41.5%, 40.5%,
 156 47.4%, and 61.4%, respectively), 36-month (18.6%, 16.3%, 21.2%, and 31.1%, respectively), and
 157 60-month (14.8%, 12.2%, 16.5%, and 24.3%, respectively) survival rates for each subgroup showed
 158 upward trends in 1980–1989, 1990–1999, 2000–2009, and 2010–2019. The survival rate for other
 159 ethnicities was higher than that of patients who identified as Black or White. The survival rate
 160 decreased with age, and 20–39-year-olds had the highest survival rate among all groups. The higher the
 161 income, the better the survival rate (Supplement Table 9 and Figure 3–5).

162 ***Relative survival of gliomas by age, sex, ethnicity, and income***

163 There was no significant difference between ethnicity in grade 1–3 glioma, but the survival rate of
 164 other ethnicity and the survival rate of black race were higher than that of White race in grade 4 glioma
 165 ($P < 0.05$). The survival rate of women in grade 1 and grade 2 gliomas was higher than that of men (P
 166 < 0.05). The survival rate decreased with age, but the survival rate was highest in grade 4 gliomas aged
 167 20–39 years ($P < 0.05$). Income-related differences were evident for patients with grade 1, 2, and 4
 168 gliomas ($P < 0.05$). Higher-income patients had better survival; however, there was no significant
 169 difference in grade 3 gliomas (Table 6–9 and Figure 6).

170 ***Survival analysis of treatment patterns for gliomas***

171 For grade 1 and 2 gliomas, surgery alone can significantly improve the survival rate. Furthermore,
 172 surgery plus chemotherapy (SCT) also yielded very good outcomes. Particularly, the survival rate for
 173 postoperative radiotherapy (PORT) was significantly higher than that for preoperative radiotherapy
 174 between 1990 and 1999. No significant trend existed between treatment modalities in grade 3 gliomas
 175 from 1980–1999. From 2000–2019, SCT was most effective at improving survival. In grade 4 gliomas,
 176 SCT showed the best improvement in survival among all treatments, followed by SCRT. The effects of

177 RT or surgery alone were the worst (Figure 7).

178 Univariate analysis was conducted on various clinical and molecular characteristics of patients
 179 with glioma who received PORT. The variables investigated were sex, ethnicity, age, tumor location,
 180 chemotherapy use, IDH mutation status, 1p/19q codeletion status, income, and tumor grade and size.
 181 Reportedly, the differences in variables, such as age, chemotherapy, IDH status, 1p/19q codeletion
 182 status, and tumor grade were all statistically significant ($P < 0.05$). Stepwise analysis performed using
 183 the multivariate Cox proportional hazards regression model indicated that age ≥ 50 years (HR, 1.746;
 184 95% CI, 1.239–2.461), grade 3–4 gliomas (HR, 2.179; 95% CI, 1.303–3.645) are independent risk
 185 factors for patient mortality and significantly increased mortality risk ($P < 0.05$). Conversely,
 186 chemotherapy (HR, 0.386; 95% CI, 0.272–0.549) and the presence of IDH mutations (HR, 0.181; 95%
 187 CI, 0.097–0.335) were protective factors that could significantly reduce mortality risk (Supplement
 188 Table 10 and Figure 8).

189 ***Survival analysis of glioma with IDH mutations and chromosome 1p/19q deletion***

190 Patients with IDH mutant glioma accounted for 13.3% of all patients, including 167 grade 2
 191 gliomas and 178 grade 3 gliomas. The patients with 1p/19q deletion accounted for 5.1% of all patients
 192 ($n = 110$ grade 2, $n = 70$ grade 3, and $n = 165$ grade 4 cases). Of the patients with IDH mutation and
 193 chromosome 1p/19q codeletion glioma, 76 were grade 2, and 66 were grade 3.

194 Survival analysis showed that in grade 2 gliomas, the survival rate of patients with IDH mutations
 195 was higher than that of patients with IDH mutations combined with 1p/19q codeletion. Among grade 3
 196 patients, although the survival rate of the 1p/19q codeletion was higher than that of the simple IDH
 197 mutation type, the difference was not significant ($P = 0.125$). In terms of treatment, the IDH-mutant
 198 type is more suitable for SCRT, while the 1p/19q deletion type has a better therapeutic effect with SCT.
 199 For patients with IDH mutations combined with 1p/19q codeletion, SCRT is recommended as the first
 200 choice (Figure 9).

201 **Discussion**

202 Glioma is one of the most common malignant CNS tumors. Analysis of the data collected between
 203 1980 and 2019 revealed that the overall incidence of gliomas showed a decreasing trend, along with a
 204 continuous improvement in patient survival. Surgical treatment alone yielded the best therapeutic
 205 efficacy for grade 1–2 gliomas, whereas SCT is more effective for grade 3–4. Notably, although the
 206 overall benefit of combined CRT in grade 1–2 gliomas is limited, this treatment regimen still
 207 significantly improved survival in patients with specific molecular subtypes with IDH mutations and/or
 208 1p/19q deletions. Furthermore, IDH-mutant status and chemotherapy are associated with prolonged
 209 survival in patients with PORT gliomas. These findings provide an important rationale for precision
 210 treatment strategies for gliomas.

211 This study demonstrates a clear sex dimorphism in glioma, characterized by a significantly higher
 212 incidence of grade 2–4 gliomas in men than in women but a more favorable survival prognosis in
 213 women. This gender dimorphism may be multifactorial; genetic analysis revealed that female patients
 214 with low-grade gliomas (LGG) had significantly higher X-chromosome mutations loads than males,
 215 which is consistent with previous findings on sex differences in GBM (male-to-female incidence ratio,
 216 1.61:1)^{7–9}. Notably, the male incidence advantage persists, even in IDH-mutant gliomas^{10, 11}. These
 217 findings provide crucial clues for understanding sex-specific mechanisms in glioma development.

218 Consistent with the results of other studies^{12–14}, the incidence of gliomas was significantly higher
 219 in White than other ethnic populations; however, the survival prognosis was relatively poorer. This
 220 epidemiological difference may be attributed to population-specific differences in susceptibility allele

221 frequencies and genetic pathways of tumorigenesis in different racial groups¹⁵. Reportedly, non-White
 222 patients with glioma have higher p53 mutation loads, a molecular feature that may partially explain the
 223 higher incidence in White groups¹⁶. Notably, non-Hispanic White patients have the worst clinical
 224 prognosis of all racial groups¹⁵. Several factors must be considered while interpreting these results.
 225 First, the SEER database used herein suffers from overrepresentation of the non-Hispanic White
 226 population, which may affect the external validity of the study conclusions¹⁷. Second, the higher
 227 morbidity in the White population may be associated with a better healthcare coverage system, which
 228 may facilitate higher disease detection rates and diagnostic accuracy^{18, 19}.

229 Herein, no significant difference was found in morbidity between income subgroups, although the
 230 survival rate of high-income patients was significantly higher than that of the low-income group. This
 231 finding is consistent with evidence from previous studies that patients with high socioeconomic status
 232 usually show a better survival prognosis^{20, 21}. Possible explanations include low levels of exposure to
 233 environmentally harmful factors in high-income groups²² and better access to quality, comprehensive
 234 healthcare resources, which are protective factors that effectively reduce the mortality risk in this
 235 population²³.

236 This study confirms significant age differences in the incidence and prognosis of gliomas. Older
 237 patients show a higher incidence and worse survival prognosis, which is consistent with Ladamersky's
 238 findings of 3.4- and 7-fold increases in the incidence and mortality rates, respectively, for GBM in
 239 people aged >65 years compared with other age groups²⁴. *IDH1/2* mutations (primarily *IDH1* R132H)
 240 occur in 5%-10% of primary GBM in adults, whereas the mutation rate in secondary GBM can
 241 reach >80%. This mutation inhibits α -ketoglutarate-dependent dioxygenase through 2-hydroxyglutarate
 242 accumulation, affects epigenetic regulation, and is often accompanied by methylation of the
 243 methylguanine methyltransferase (MGMT) promoter methylation, which may enhance temozolomide
 244 (TMZ) sensitivity. In contrast, although the IDH mutation rate is <5% in pediatric patients, *H3F3A*
 245 mutations are more common²⁵, inducing RT resistance by activating the ATM/ATR repair pathway,
 246 which may be a key mechanism of the poor prognosis in children²⁶.

247 Surgery has always been the primary treatment method in patients with grade 1 glioma. Between
 248 1980 and 1999, OS was significantly higher than that of other treatment regimens. Sequence volume
 249 measurement by fluid-attenuated inversion recovery confirmed that the 5-year OS of patients with
 250 glioma decreased with the extent of resection: gross total resection (GTR) 95%, near-total resection
 251 (NTR) 80%, and subtotal resection (STR) 70%²⁷. Thus, GTR was established as a key prognostic
 252 factor for long-term survival. However, in 2000–2019, the survival benefit of SCT exceeded that of
 253 stereotactic radiotherapy (SRT). This is consistent with earlier research findings. The Southwest
 254 Oncology Group trial on partially resected²⁸. LGG in 1993 found that the objective response rate (ORR)
 255 of RT alone (79%) was significantly higher than that of RT combined with lomustine chemotherapy
 256 (CCNU; 54%). Furthermore, chemoradiotherapy (CRT) did not improve survival rates²⁹. This may be
 257 because RT technology was still imperfect, and chemotherapeutic drugs were in the exploratory stage.
 258 The survival trends following treatment were similar between grade 1 and 2 gliomas. In 1980–1999,
 259 the survival benefit of SRT was significantly superior, whereas the clinical efficacy of SCT gradually
 260 improved after 2000. In 2010–2019, the OS of patients undergoing SRT, SCT, and SCRT were
 261 comparable. The single-arm phase II trial by Wahl et al. (2017) found that TMZ monotherapy in 120
 262 patients with WHO grade II gliomas (57 oligodendroglomas, 20 oligodendrogloma-astrocytomas, and
 263 43 astrocytomas) achieved a median OS of 9.7 years, indicating efficacy in high-risk LGG
 264 (IDH-mutant non-1p/19q codeletion and 1p/19q codeletion). Thus, TMZ monotherapy could serve as a

265 transitional strategy for delaying or omitting RT²⁸. The RTOG 0424 Phase II trial confirmed that RT
 266 combined with concurrent/adjuvant TMZ treatment for high-risk LGG achieved a 3-year OS rate of
 267 73.1%³⁰. In a prospective trial conducted in 2016, LGG was stratified based on age and GTR
 268 status. The low-risk group (<40 years old and GTR) was observed and followed up. In the
 269 high-risk group (≥ 40 years old and/or STR/NTR), RT combined with PCV significantly prolonged
 270 median survival compared with radiotherapy alone (13.3 vs 7.8 years)³¹. The abovementioned study
 271 demonstrates the therapeutic significance of chemotherapy in grade 1–2 gliomas. Furthermore, RT may
 272 be suitable for patients with high-risk factors. Herein, surgery alone yields the best therapeutic efficacy,
 273 followed by SCT. This result may have several explanations. The SEER database lacks detailed data on
 274 surgical resection margins, and it only recently began incorporating molecular typing data into the
 275 grading system. Furthermore, our study did not perform risk stratification for grade 1–2 gliomas.
 276 Therefore, simple surgical treatment may have been more suitable for some patients classified as lower
 277 risk.

278 Notably, because of technological advancement in surgical techniques, the survival outcomes of
 279 patients with all grades of glioma who undergo surgery alone have gradually improved. However, for
 280 grade 3–4 gliomas, the efficacy of simple surgery remains limited, and the role of chemotherapy is
 281 becoming increasingly important. The 2012 RTOG 9402 trial established procarbazine (PCV)
 282 combined with RT as the standard treatment regimen for anaplastic oligodendrogloma with 1p/19q
 283 codeletion³². In addition, IDH mutation status predicts benefit from PCV chemotherapy independent
 284 from 1p/19q codeletion. The long-term follow-up results of the EORTC 26951 and RTOG 9402 studies
 285 were published in 2022³³. The EORTC 26951 study demonstrated that PORT combined with six cycles
 286 of PCV adjuvant chemotherapy significantly improved patient survival compared with RT alone. The
 287 median OS was 3.5 years in the combination group and 2.6 years in the RT group, with 14-year OS
 288 rates of 25.1% and 13.4%, respectively, and 20-year OS rates of 16.8% and 10.1%, respectively. The
 289 benefit was even more pronounced in the 1p/19q codeletion subgroup, with a median OS of 14.2 vs.
 290 9.3 years; 14-year OS rate of 51.0% vs. 26.2%; and 20-year OS rate of 37.1% vs. 13.6%. The RTOG
 291 9402 study demonstrated that four cycles of neoadjuvant PCV followed by RT doubled the 20-year OS
 292 rate compared with RT alone (24.6% vs. 11.2%); however, no significant difference was found in
 293 median OS between the two groups. In the 1p/19q codeletion subgroup, combined therapy also
 294 demonstrated a clear survival advantage, with a median OS of 13.2 vs. 7.3 years; 14-year OS rate of
 295 46.1% vs. 25.0%; and 20-year OS rate of 37% vs. 14.9%. Herein, the survival rate of SCRT after 2000
 296 was indeed higher than that of SRT; however, both were lower than that of SCT. The CATNON trial
 297 published in 2017 demonstrated that for patients with IDH-mutant and 1p/19q non-codeletion
 298 anaplastic glioma, adjuvant TMZ after RT significantly improved survival, with a 5-year OS of 55.9%³⁴.
 299 This finding theoretically supports the phenomenon observed herein—the introduction of TMZ
 300 adjuvant chemotherapy after 2,000 significantly prolonged OS following SCT. However, the
 301 therapeutic effect of RT alone was poor in gliomas of any grade, whereas the survival rate of PORT
 302 was lower than that of SCT. Because of the scarcity of clinical studies on these two treatment methods,
 303 the patients who can benefit from PORT could not be determined. Cox regression analysis revealed that
 304 IDH mutations and chemotherapy were associated with increased survival in patients undergoing PORT.
 305 In an RTOG trial, combination chemotherapy improved progression-free survival (PFS) in LGG
 306 compared with PORT (4.0 vs. 10.4 years)³¹. Patients with IDH mutations who received radiotherapy
 307 achieved a median survival of 10.1 years, whereas patients without mutations undergoing radiotherapy
 308 had a median survival of only 7.8 years³⁵.

309 In the treatment of grade 4 gliomas, although the short-term survival benefit of SCT is comparable
 310 with other combination regimens, its long-term survival benefit is more pronounced. The Stupp
 311 regimen, proposed in 2005, established the standard treatment for GBM, involving concurrent RT and
 312 TMZ followed by six cycles of adjuvant TMZ therapy³⁶. This regimen significantly improved patient
 313 survival, with median OS increasing from 12.1 to 14.6 months, and the 2-year OS improving from 10.4%
 314 to 26.5%. Currently, various novel treatment strategies for grade 4 gliomas have emerged. *MGMT* and
 315 *TERT* promoter mutations provide important prognostic value in WHO grade 4 IDH-mutant
 316 astrocytomas. The methylation status of the MGMT promoter is a key predictive marker for the
 317 efficacy of TMZ therapy. In patients with GBM and MGMT promoter methylation, CCNU and TMZ
 318 combination therapy significantly prolonged median OS compared with TMZ monotherapy (median
 319 OS: 48.1 vs. 31.4 months), potentially establishing it as the new therapeutic standard for this
 320 subgroup³⁷. Targeted therapy has also demonstrated significant efficacy. In 2009, the FDA approved
 321 bevacizumab for treating recurrent GBM, providing an imaging response rate of 63% and a 6-month
 322 PFS of 38%³⁸. However, it did not improve OS. The 2019 INDIGO trial demonstrated that vorasidenib
 323 extended PFS to 27.7 months in patients with IDH-mutant gliomas and delayed indications for
 324 subsequent RT and chemotherapy. Considerably, the FDA has approved vorasidenib for treating
 325 patients aged ≥ 12 years with IDH1/2 mutations who have undergone surgery for grade II astrocytoma
 326 or oligodendrogloma. Furthermore, IDH-mutant tumors may be more sensitive to immune checkpoint
 327 inhibitors, with an ORR of 36.1%, compared with 22.6% in the control group³⁹. This sensitivity may be
 328 associated with higher tumor mutational burden. Reportedly, a genetically modified oncolytic
 329 adenovirus with enhanced antitumor activity demonstrated adequate safety and tolerability in patients
 330 with high-grade glioma, with a median PFS and OS of 9.1 and 18.4 months, respectively⁴⁰. TTFields
 331 have also demonstrated significant efficacy. The EF-14 trial published in 2015 showed that in patients
 332 with newly diagnosed GBM, TTFields combined with TMZ treatment extended the median OS to 20.9
 333 months and increased the 5-year survival rate to 13%, compared with only 5% in the control group⁴¹.
 334

335 **Limitations**

336 Although the SEER database is one of the most comprehensive data sources for assessing cancer
 337 incidence and survival patterns, it has certain limitations. The WHO classification system for gliomas
 338 has evolved from an early emphasis on histopathology (1st and 2nd Editions) to incorporating molecular
 339 markers as supplementary criteria (3rd and 4th Editions). In the 2021 5th Edition guidelines, an
 340 integrated diagnostic approach has been completely adopted, with IDH mutations and 1p/19q
 341 codeletion serving as core classification criteria; this implies that changes in classification standards
 342 may affect the probability of different grades occurring within the same tumor. For example, lesions
 343 previously classified as grade II astrocytomas must now be differentiated from IDH-mutant and
 344 wild-type variants. Oligodendrogloma diagnosis requires a concurrent IDH mutation and 1p/19q
 345 codeletion; if only IDH mutation is present, it is classified as astrocytoma; if IDH is wild-type, further
 346 evaluation is required to determine whether it is IDH wild-type GBM or another subtype. These
 347 changes may introduce bias by assigning different grades to the same glioma type. Although this study
 348 analyzed patients based on IDH status and 1p/19q deletion, the number of patients with IDH mutations
 349 registered in the SEER database was insufficient, which prevented more detailed stratified studies. In
 350 our study, SCT was associated with the most substantial survival benefit among patients with grade 3–4
 351 gliomas. These findings suggest that besides surgery and chemotherapy, other treatments—like
 352 radiotherapy, targeted therapy, TTFields, and immunotherapy—may be more effective for certain

353 patient groups or those with specific molecular features. However, the SEER database does not include
 354 data on many of these treatments. In addition, the limited availability of genetic mutation data makes it
 355 difficult to perform detailed analyses of how treatments interact with molecular subtypes. Future work
 356 will focus on collecting more data to test these hypotheses and identify which patients benefit most
 357 from each treatment.

358

359 Conclusion

360 From 1980 to 2019, the incidence of grade 2–3 gliomas declined, and survival rates for all grades
 361 continued to improve. The results varied according to race, sex, age, and income. Surgery alone is the
 362 best treatment for grade 1–2 gliomas; however, SCT is superior for treating grade 3–4 gliomas. For
 363 glioma patients with PORT, chemotherapy and IDH mutations can significantly improve their survival
 364 prognosis. Overall, patients with IDH mutations and/or chromosome 1p/19q codeletion derive the
 365 greatest benefit from SCRT. The increasing precision of glioma molecular typing is expected to more
 366 accurate incidence and survival statistics. This improved classification will also guide the selection of
 367 more personalized treatment plans.

368

369

370

371 **DATA AVAILABILITY STATEMENT** Publicly available datasets were analyzed in this study. These
 372 data were derived from the following resources available in the public domain: Surveillance,
 373 Epidemiology, and End Results (SEER) (<http://seer.cancer.gov/>).

374

375 Ethics declaration

376 Review and/or approval by an ethics committee was not needed for this study because it only included
 377 analyses of secondary and publicly available data. Informed consent was not required for this study
 378 because it only included analyses of secondary and publicly available data.

379

380 **ACKNOWLEDGMENTS** We thank the National Cancer Institute for providing the Surveillance,
 381 Epidemiology, and End Results (SEER); We thank Home for Researchers editorial team
 382 (www.home-for-researchers.com) for language editing service.

383

384

385 **AUTHOR CONTRIBUTIONS** Conception and design: Meichen Ji and Haiqing Ma. Collection and
 386 assembly of data: Meichen Ji and Qing Qi. Data analysis and interpretation: Liwei Zhao, Peixu Lin,
 387 Qing Li and Jian Wu. Manuscript writing: Yue Cheng and Yanzhen Lai. Critical review of the
 388 manuscript: Meichen Ji and Haiqing Ma. Final approval of manuscript: all authors.

389

390 **Funding** This study was supported by the Guangdong Medical Science and Technology Research Fund
 391 (B2023320). This study was supported by grants from the National Natural Science Foundation of
 392 China (82072719), the Natural Science Foundation of the Guangdong Province (2021A1515010790,
 393 2023A1515012872), and High-level Hospital Construction Research Project of Heyuan People's
 394 Hospital. This study was supported by Heyuan City 2024 Guangdong Provincial Science and
 395 Technology Support for the 'Hundreds of Thousands of Tens of Thousands Project' Special Funds
 396 Second Batch Project Plan (250314091471340).

397

398 **Compliance with ethical standards**

399

400 **Conflict of interest** The authors report no conflict of interest concerning the materials or methods used
401 in this study or the findings specified in this paper.

402

403

404

Reference

- [1] Ostrom QT, Cioffi G, Waite K, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. *Neuro-oncology*. 2021; 12 Suppl 2: iii1-iii105.
- [2] Nunna RS, Khalid S, Ryoo JS, et al. Radiotherapy in adult low-grade glioma: nationwide trends in treatment and outcomes. *Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico*. 2021; 3: 628-637.
- [3] Tabrizi S, Shih HA. The path forward for radiation therapy in the management of low-grade gliomas. *Neuro-oncology*. 2020; 6: 748-749.
- [4] Stupp R, Mason WP, Van Den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. *The New England journal of medicine*. 2005; 10: 987-996.
- [5] Oronsky B, Reid TR, Oronsky A, et al. A Review of Newly Diagnosed Glioblastoma. *Frontiers in oncology*. 2020; 574012.
- [6] Bush NA, Chang SM, Berger MS. Current and future strategies for treatment of glioma. *Neurosurgical review*. 2017; 1: 1-14.
- [7] Bello-Alvarez C, Camacho-Arroyo I. Impact of sex in the prevalence and progression of glioblastomas: the role of gonadal steroid hormones. *Biology of sex differences*. 2021; 1: 28.
- [8] Kabat GC, Etgen AM, Rohan TE. Do steroid hormones play a role in the etiology of glioma? *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology*. 2010; 10: 2421-2427.
- [9] Zhang H, Liao J, Zhang X, et al. Sex difference of mutation clonality in diffuse glioma evolution. *Neuro-oncology*. 2019; 2: 201-213.
- [10] Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. *Neuro-oncology*. 2015; Suppl 4: iv1-iv62.
- [11] Miller JJ, Gonzalez Castro LN, Mcbrayer S, et al. Isocitrate dehydrogenase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. *Neuro-oncology*. 2023; 1: 4-25.
- [12] Das A, Tan WL, Teo J, et al. Glioblastoma multiforme in an Asian population: evidence for a distinct genetic pathway. *Journal of neuro-oncology*. 2002; 2: 117-125.
- [13] Mochizuki S, Iwadate Y, Namba H, et al. Homozygous deletion of the p16/MTS-1/CDKN2 gene in malignant gliomas is infrequent among Japanese patients. *International journal of oncology*. 1999; 5: 983-989.
- [14] Abecasis GR, Altshuler D, Auton A, et al. A map of human genome variation from population-scale sequencing. *Nature*. 2010; 7319: 1061-1073.
- [15] Ostrom QT, Cote DJ, Ascha M, et al. Adult Glioma Incidence and Survival by Race or Ethnicity in the United States From 2000 to 2014. *JAMA oncology*. 2018; 9: 1254-1262.
- [16] Chen P, Aldape K, Wiencke JK, et al. Ethnicity delineates different genetic pathways in malignant glioma. *Cancer research*. 2001; 10: 3949-3954.
- [17] Kuo TM, Mobley LR. How generalizable are the SEER registries to the cancer populations of the USA? *Cancer causes & control : CCC*. 2016; 9: 1117-1126.
- [18] Jemal A, Ward EM, Johnson CJ, et al. Annual Report to the Nation on the Status of Cancer,

1975-2014, Featuring Survival. *Journal of the National Cancer Institute*. 2017; 9: 1-10.

[19] Curry WT, Jr., Barker FG, 2nd. Racial, ethnic and socioeconomic disparities in the treatment of brain tumors. *Journal of neuro-oncology*. 2009; 1: 25-39.

[20] Plascak JJ, Fisher JL. Area-based socioeconomic position and adult glioma: a hierarchical analysis of surveillance epidemiology and end results data. *PLoS one*. 2013; 4: e60910.

[21] Wigertz A, Lönn S, Hall P, et al. Non-participant characteristics and the association between socioeconomic factors and brain tumour risk. *Journal of epidemiology and community health*. 2010; 8: 736-743.

[22] Pappas G, Queen S, Hadden W, et al. The increasing disparity in mortality between socioeconomic groups in the United States, 1960 and 1986. *The New England journal of medicine*. 1993; 2: 103-109.

[23] Cote DJ, Ostrom QT, Gittleman H, et al. Glioma incidence and survival variations by county-level socioeconomic measures. *Cancer*. 2019; 19: 3390-3400.

[24] Ladomersky E, Scholtens DM, Kocherginsky M, et al. The Coincidence Between Increasing Age, Immunosuppression, and the Incidence of Patients With Glioblastoma. *Frontiers in pharmacology*. 2019; 200.

[25] Fontebasso AM, Liu XY, Sturm D, et al. Chromatin remodeling defects in pediatric and young adult glioblastoma: a tale of a variant histone 3 tail. *Brain pathology (Zurich, Switzerland)*. 2013; 2: 210-216.

[26] Yang P, Liu Q, Tao R, et al. Integrated analysis of the genomic and transcriptional profile of high-grade gliomas in different age groups. *Clinical immunology (Orlando, Fla)*. 2021; 108719.

[27] Chammas M, Saadeh F, Maaliki M, et al. Therapeutic Interventions in Adult Low-Grade Gliomas. *Journal of clinical neurology (Seoul, Korea)*. 2019; 1: 1-8.

[28] Wahl M, Phillips JJ, Molinaro AM, et al. Chemotherapy for adult low-grade gliomas: clinical outcomes by molecular subtype in a phase II study of adjuvant temozolomide. *Neuro-oncology*. 2017; 2: 242-251.

[29] Eyre HJ, Crowley JJ, Townsend JJ, et al. A randomized trial of radiotherapy versus radiotherapy plus CCNU for incompletely resected low-grade gliomas: a Southwest Oncology Group study. *Journal of neurosurgery*. 1993; 6: 909-914.

[30] Fisher BJ, Hu C, Macdonald DR, et al. Phase 2 study of temozolomide-based chemoradiation therapy for high-risk low-grade gliomas: preliminary results of Radiation Therapy Oncology Group 0424. *International journal of radiation oncology, biology, physics*. 2015; 3: 497-504.

[31] Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus Procarbazine, CCNU, and Vincristine in Low-Grade Glioma. *The New England journal of medicine*. 2016; 14: 1344-1355.

[32] Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendrogloma: long-term results of RTOG 9402. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2013; 3: 337-343.

[33] Lassman AB, Hoang-Xuan K, Polley MC, et al. Joint Final Report of EORTC 26951 and RTOG 9402: Phase III Trials With Procarbazine, Lomustine, and Vincristine Chemotherapy for Anaplastic Oligodendroglial Tumors. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2022; 23: 2539-2545.

[34] Van Den Bent MJ, Baumert B, Erridge SC, et al. Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for

1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. *Lancet* (London, England). 2017; 10103: 1645-1653.

[35] Jenkins RB, Blair H, Ballman KV, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendrogloma. *Cancer research*. 2006; 20: 9852-9861.

[36] Stupp R, Mason WP, Bent MJVD, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. 2005; 10: 987-996.

[37] Herrlinger U, Tzarisidis T, Mack F, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. *Lancet* (London, England). 2019; 10172: 678-688.

[38] Tsien CI, Pugh SL, Dicker AP, et al. NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2023; 6: 1285-1295.

[39] Huang Z, Li Y, Zhao H, et al. Mutation of isocitrate dehydrogenase indicates favorable outcomes in pan-cancer immune checkpoint blockade. *Journal of translational medicine*. 2025; 1: 155.

[40] Fares J, Ahmed AU, Ulasov IV, et al. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. *The Lancet Oncology*. 2021; 8: 1103-1114.

[41] Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. *Jama*. 2017; 23: 2306-2316.

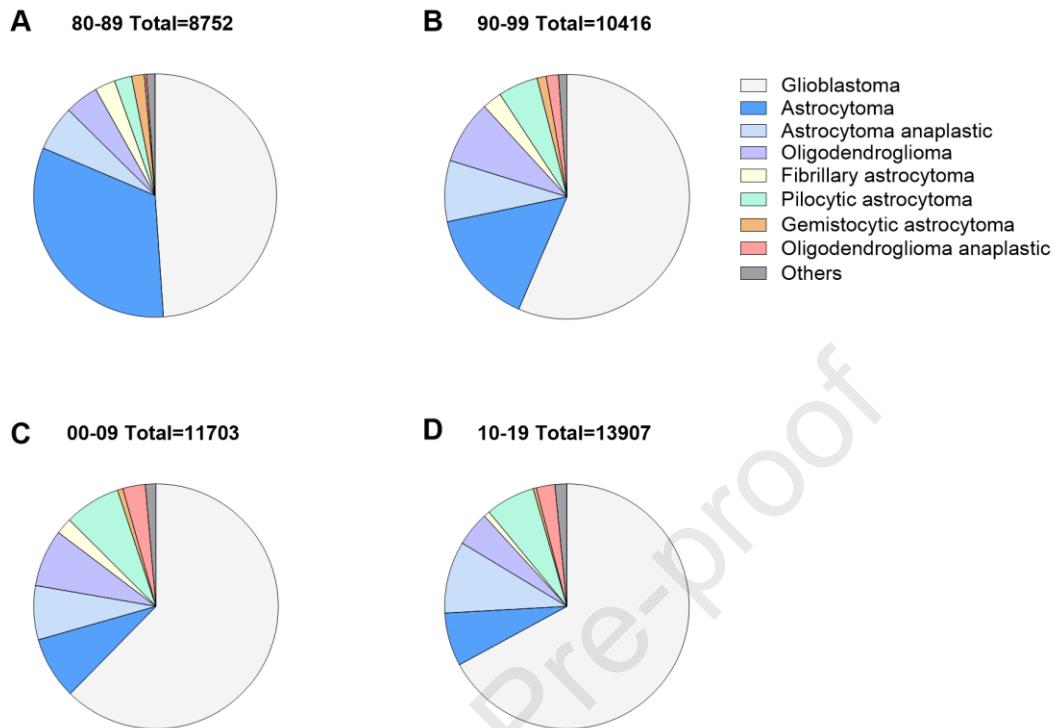


Figure 1. Distribution of different pathological types of tumors in gliomas, 1980-2019.

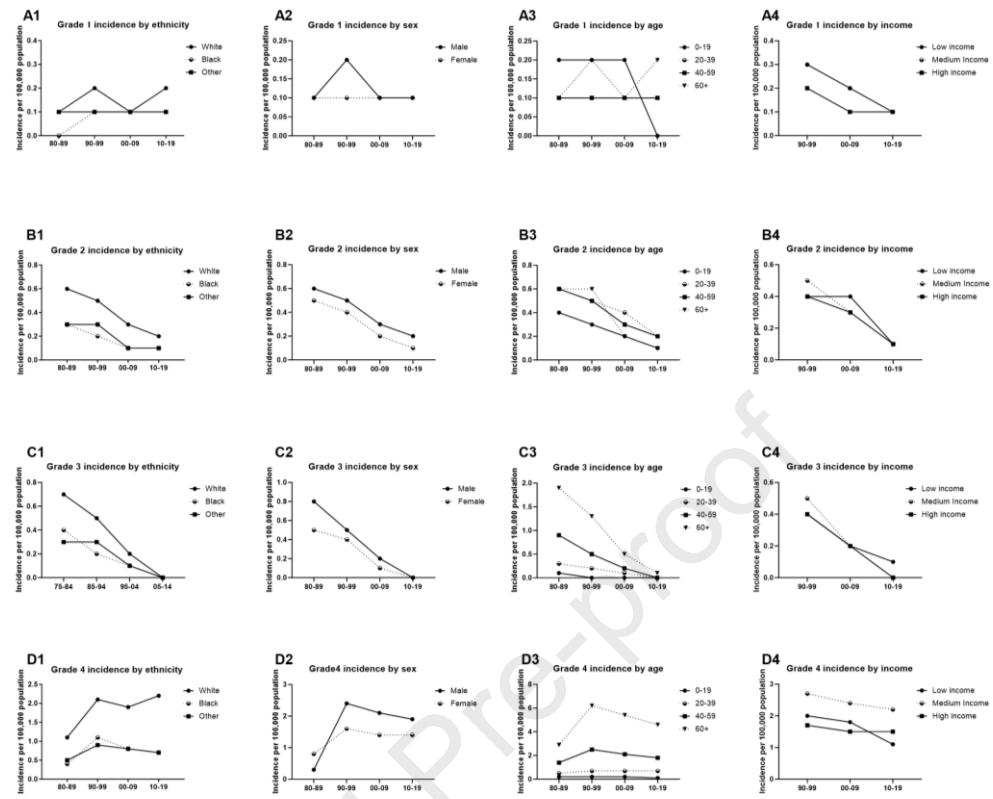


Figure 2. Trends in grade 1–4 gliomas incidence according to ethnicity, sex, age, and income, 1980–2019.

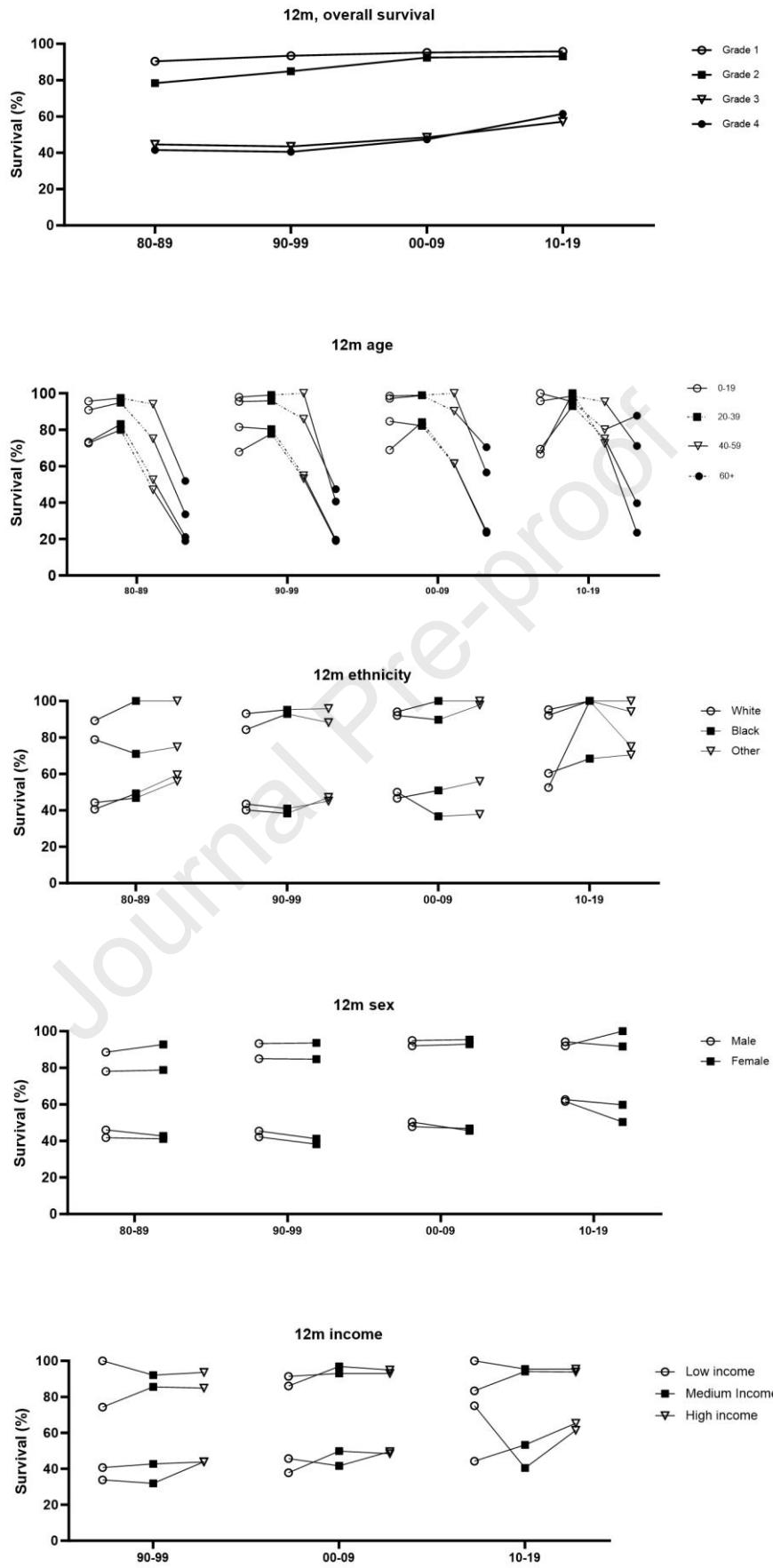


Figure 3. The 12-month overall survival rates for glioma patients from 1980 to 2019, stratified by age, race, sex, and income level. Data from top to bottom represent WHO grades 1–4 gliomas.

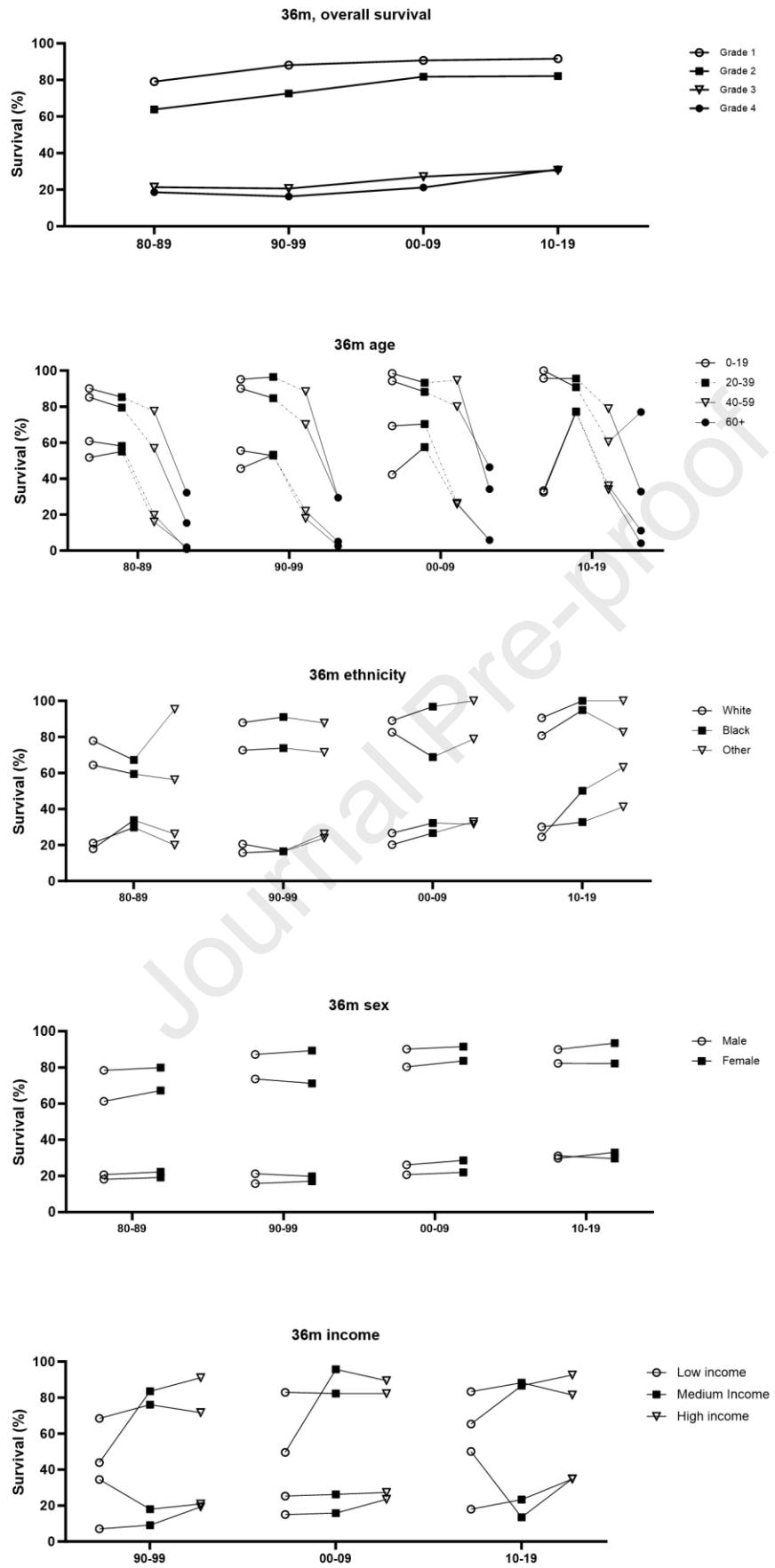


Figure 4. The 36-month overall survival rates for glioma patients from 1980 to 2019, stratified by age, race, sex, and income level. Data from top to bottom represent WHO grades 1–4 gliomas.

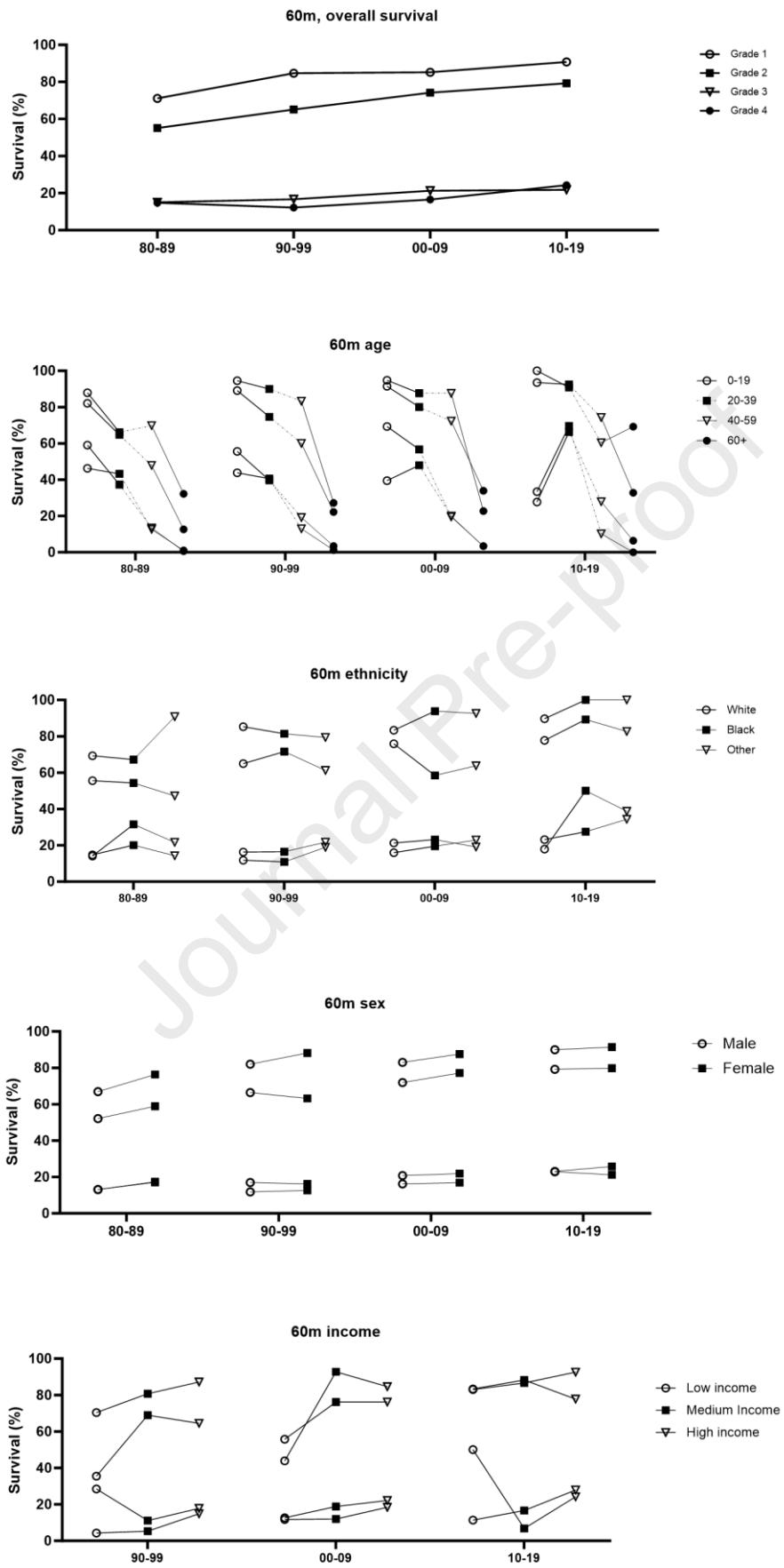


Figure 5. The 60-month overall survival rates for glioma patients from 1980 to 2019, stratified by age, race, sex, and income level. Data from top to bottom represent WHO grades 1–4 gliomas.

Figure 6. Kaplan-Meier survival analysis according to age, sex, ethnicity, and income, 1980–2019.

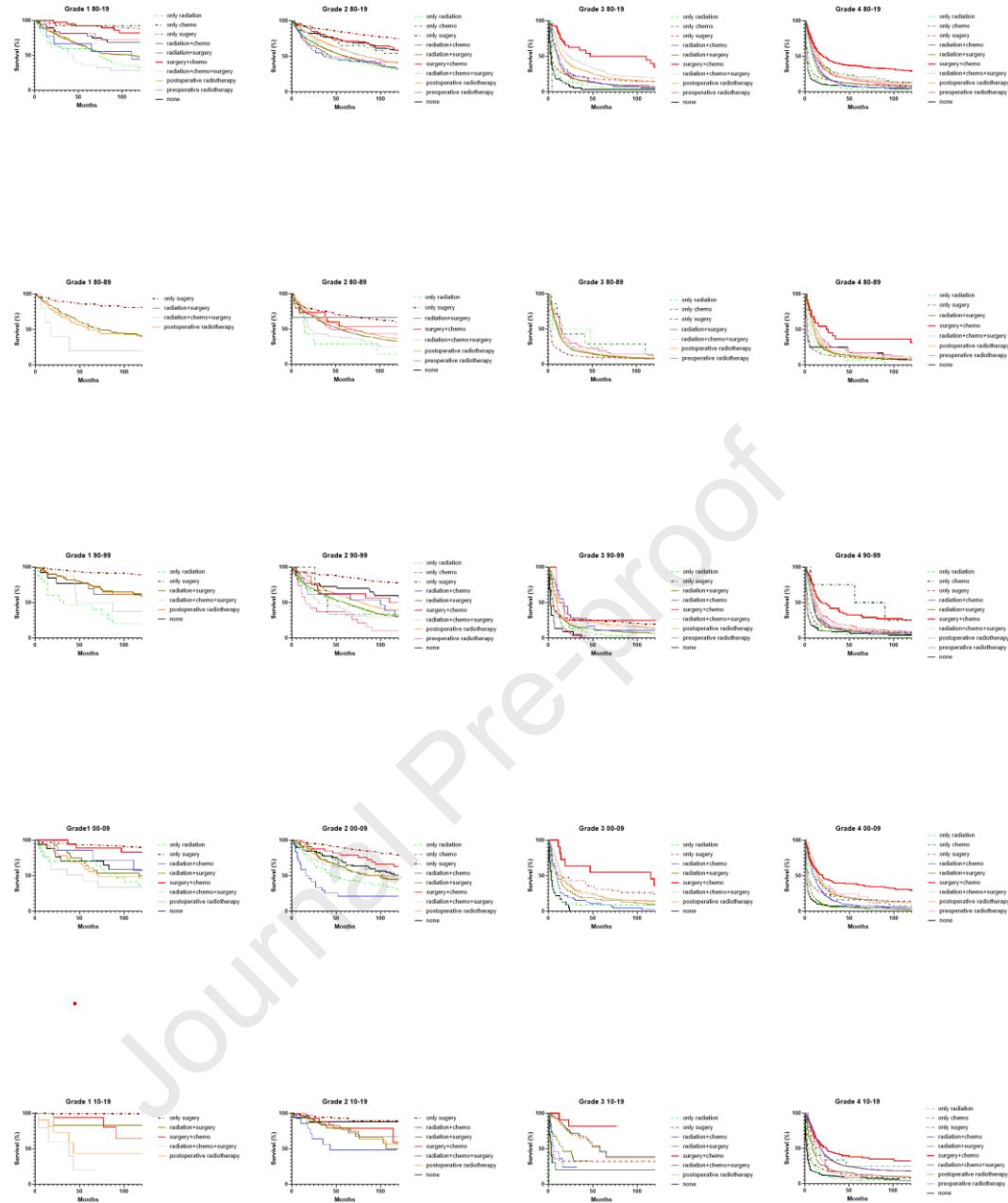


Figure 7. Analysis of Kaplan-Meyer survival rates for grades 1-4 gliomas by different treatment patterns, 1980-2019. The monotherapy is indicated by dashed lines, while combination therapy is indicated by solid lines.

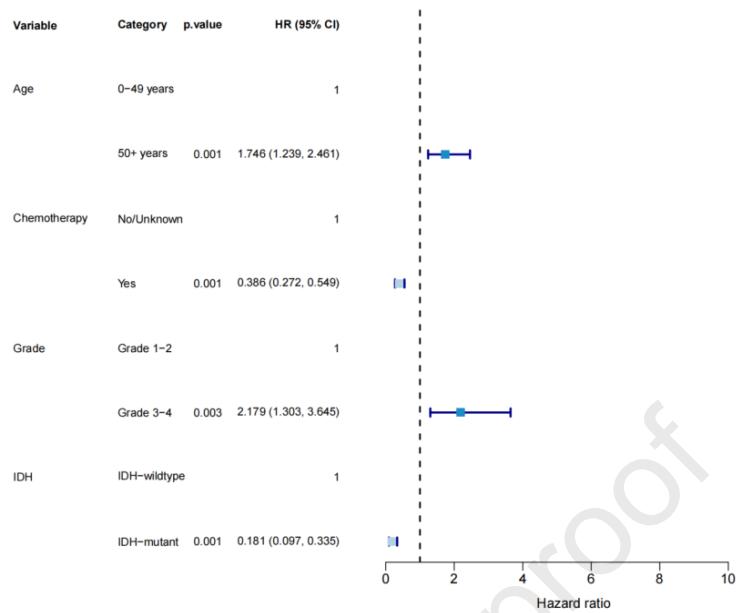
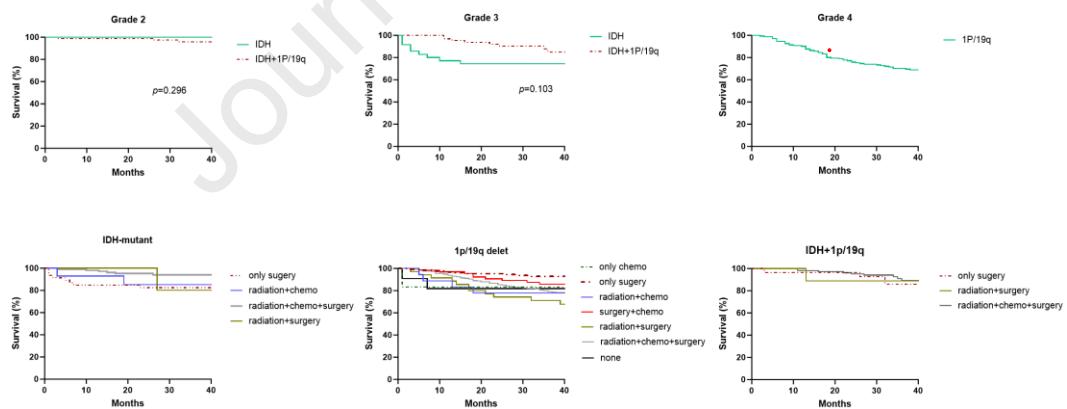
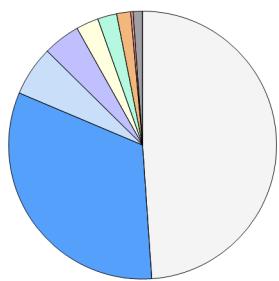
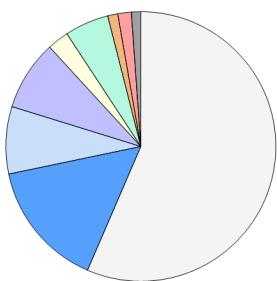
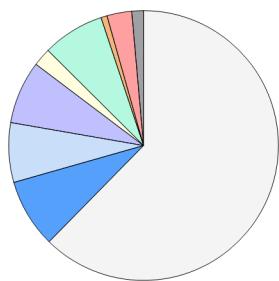
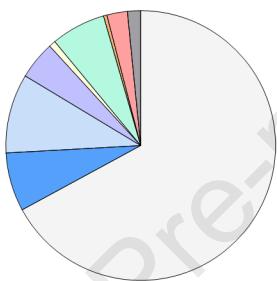
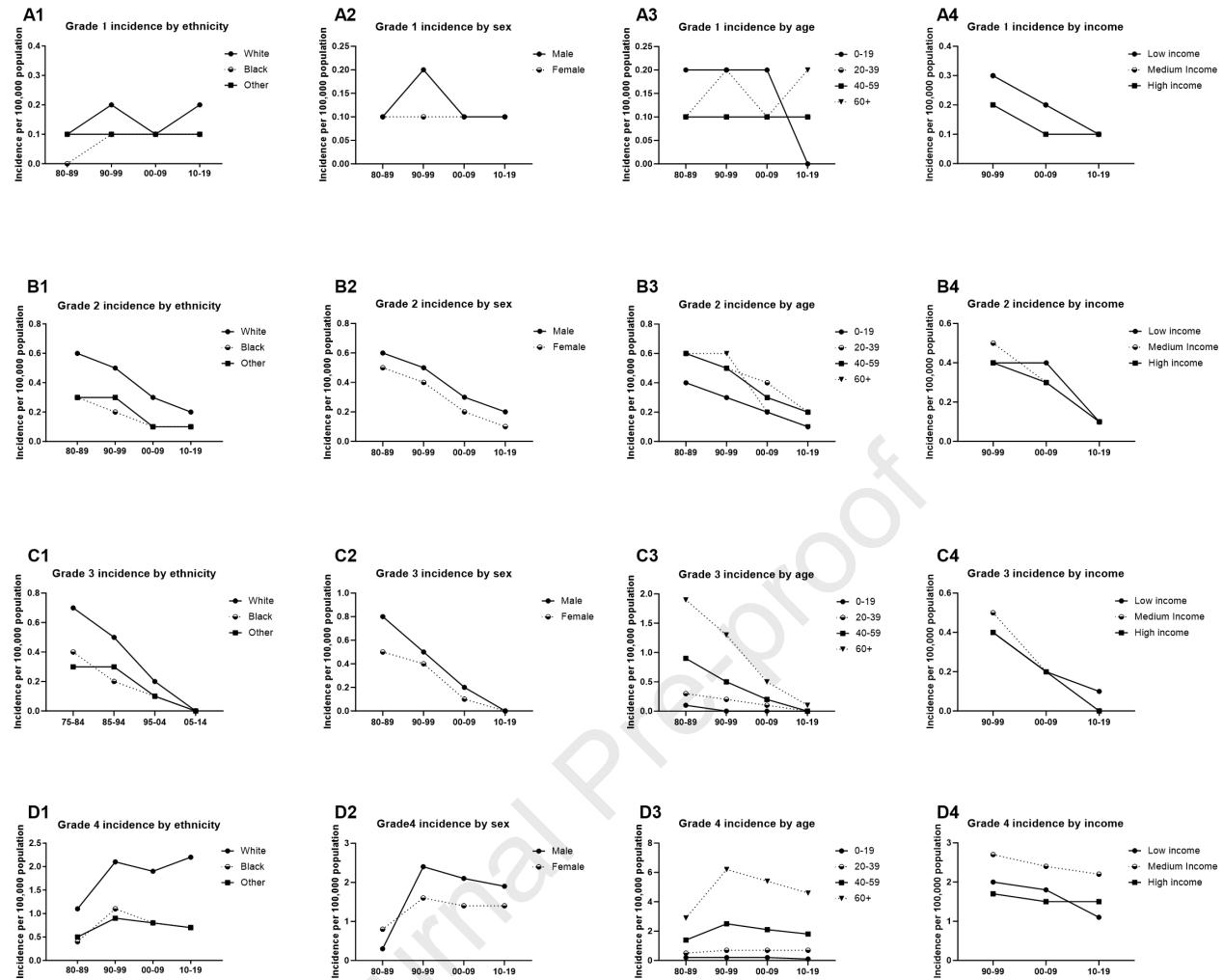
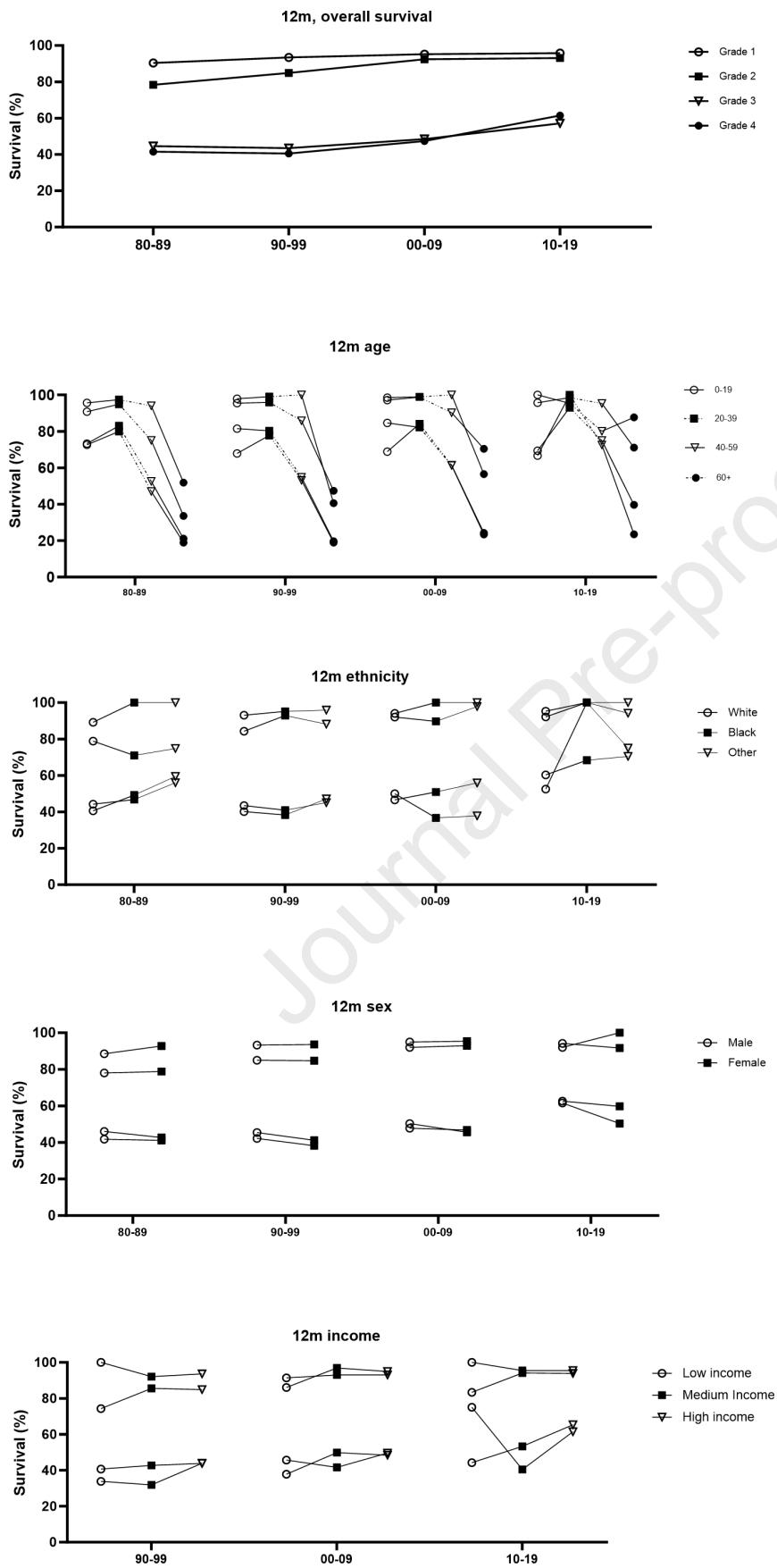
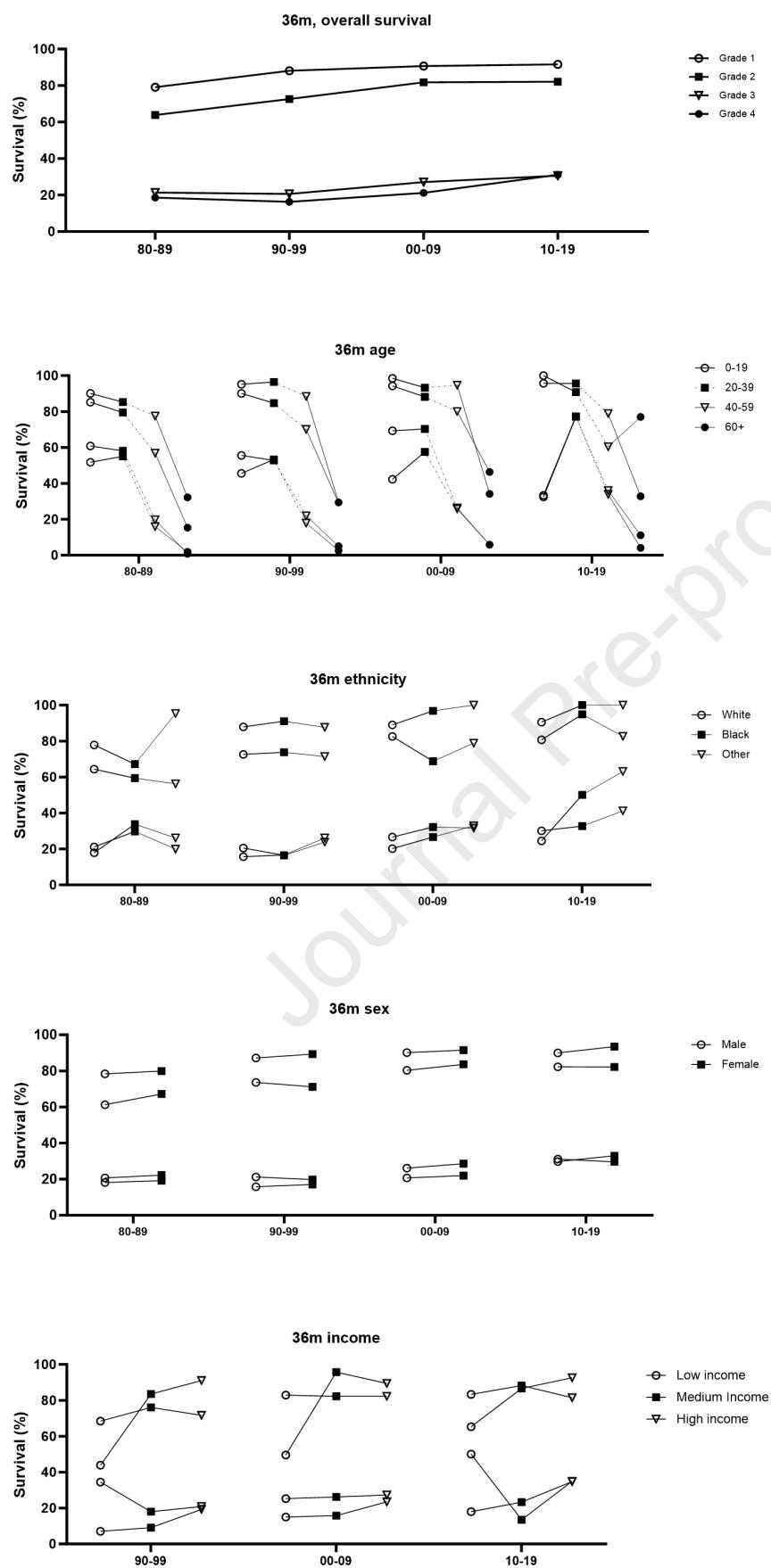
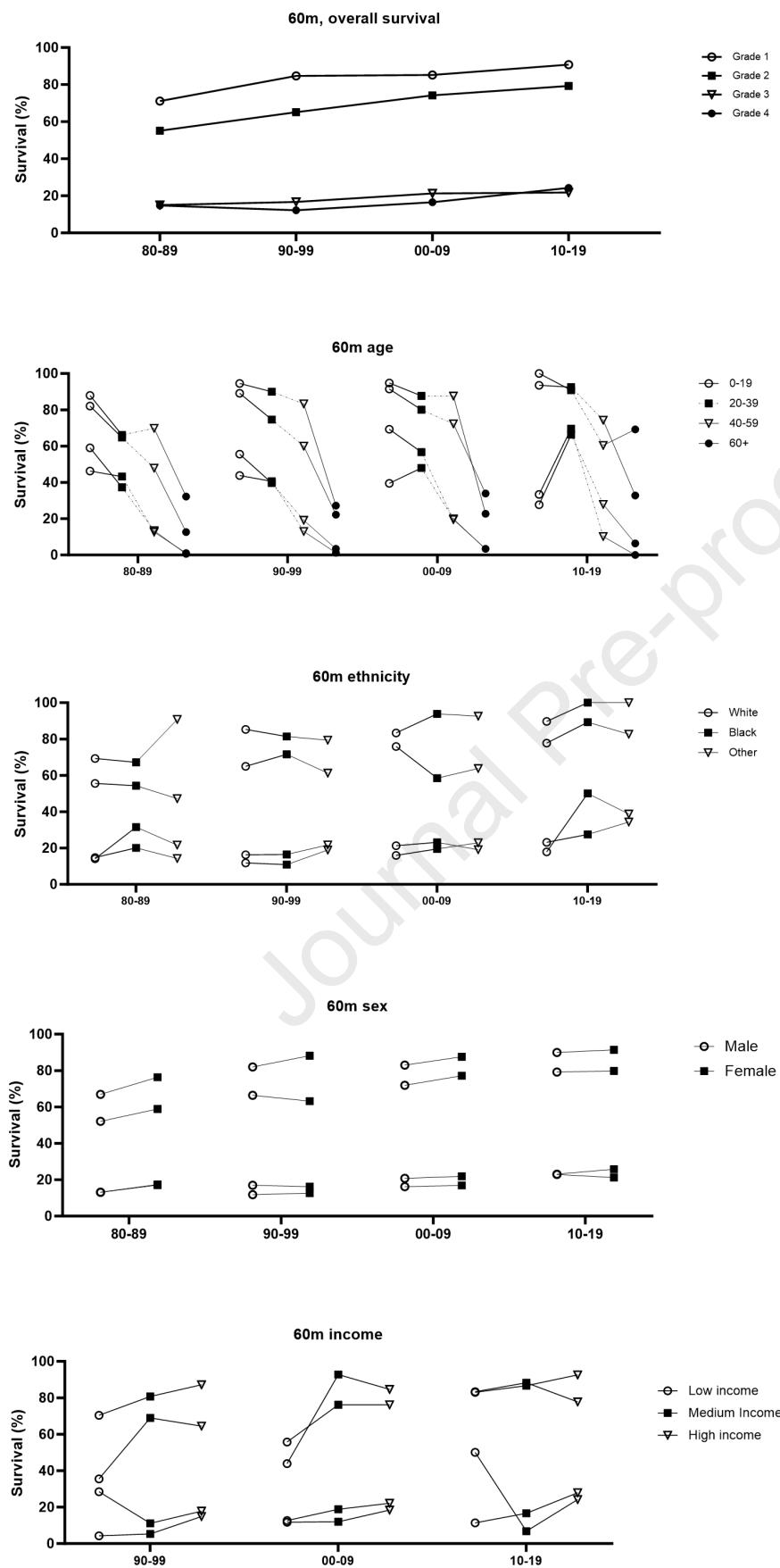
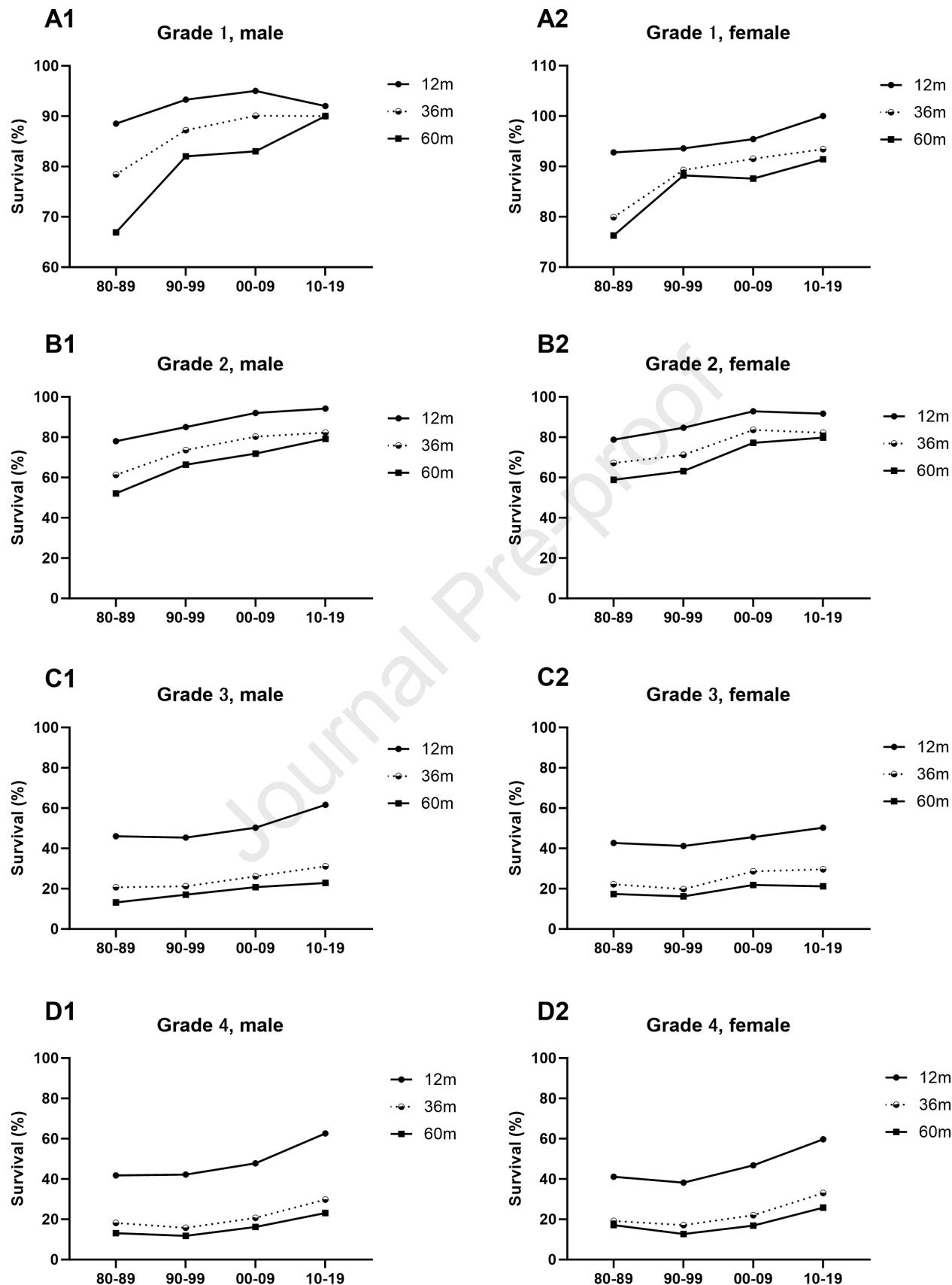
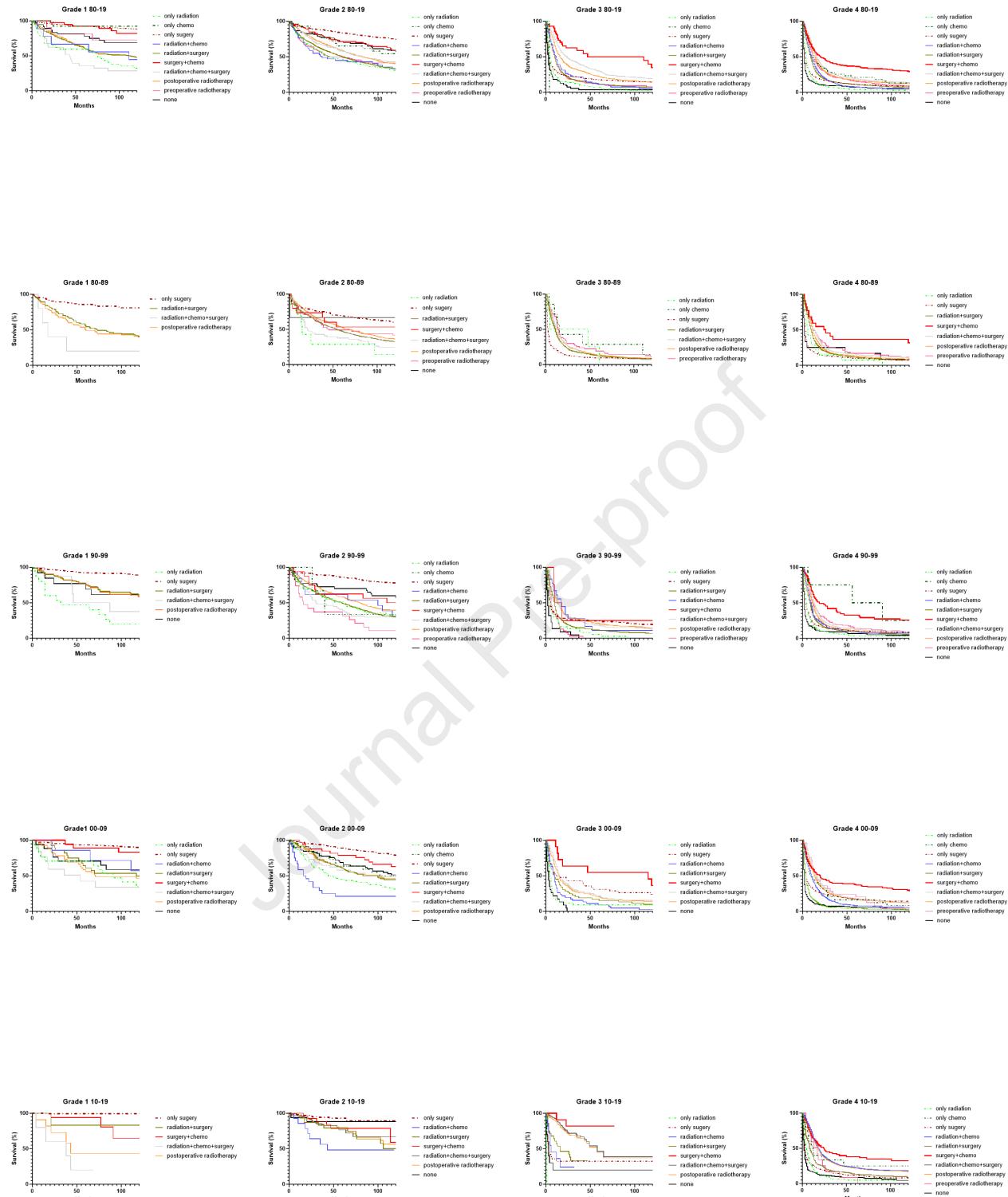


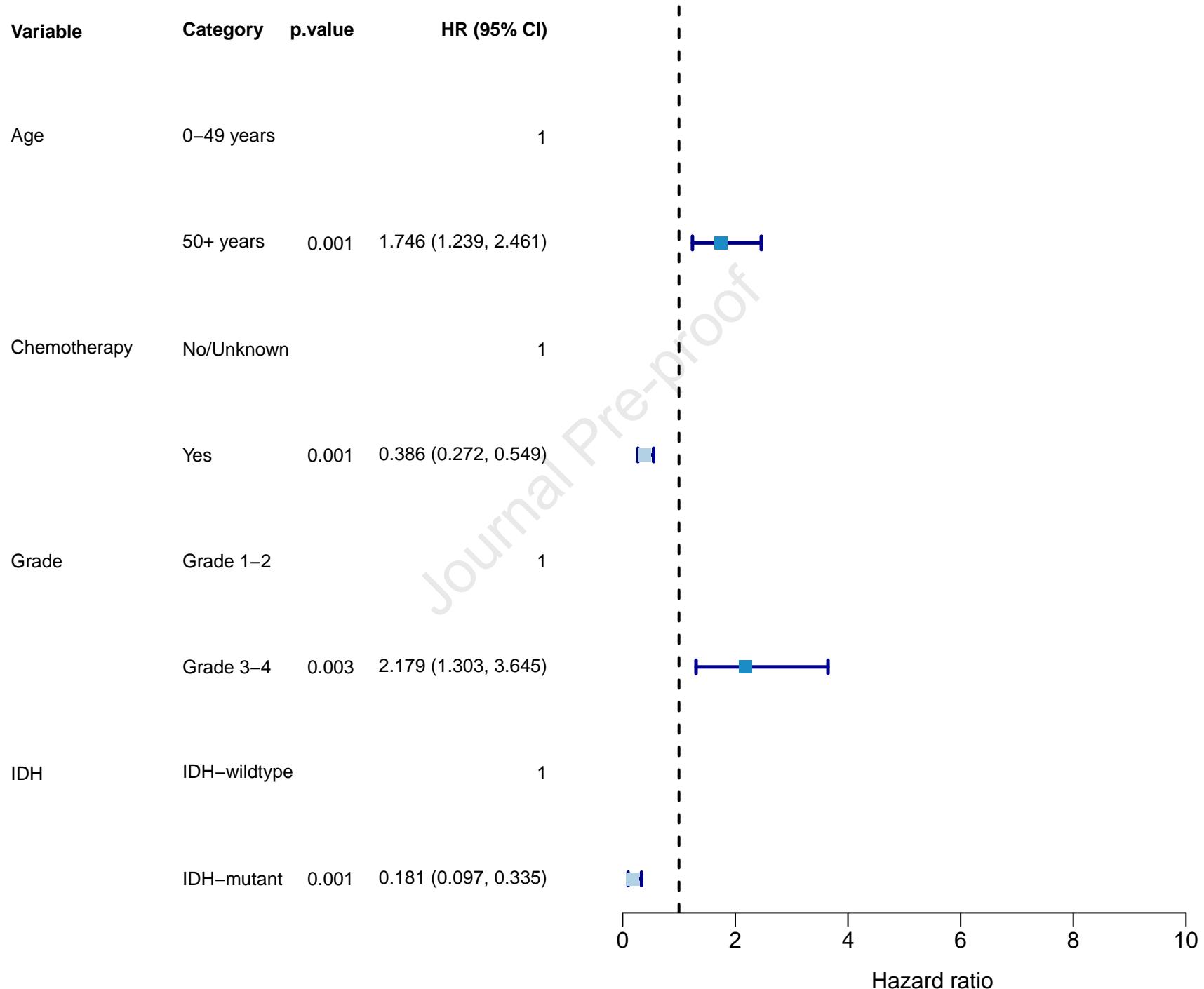
Figure 8. Multivariate COX Regression Analysis Results for Postoperative Radiotherapy in Gliomas.

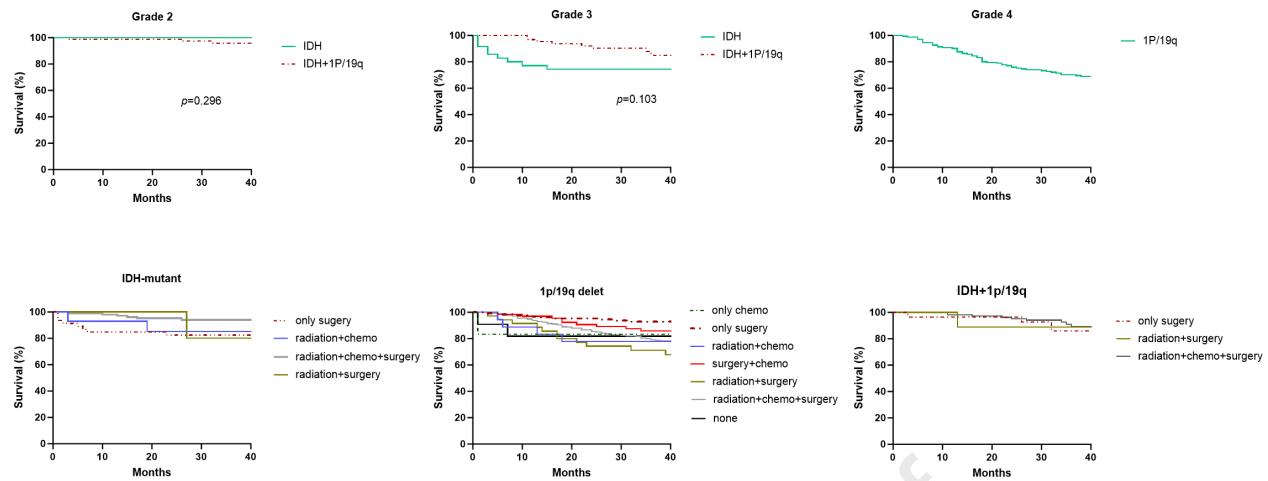










Figure 9. Kaplan-Meier survival analysis of gliomas with IDH and chromosome 1p/19q deletion in different grades and treatment patterns.


A 80-89 Total=8752**B 90-99 Total=10416****C 00-09 Total=11703****D 10-19 Total=13907**







SEER database: Surveillance, Epidemiology, and End Results database
CRT: chemoradiotherapy
IDH: isocitrate dehydrogenase
CNS: central nervous system
RT: radiotherapy
RSRs: Rank sum ratios
SCT: surgery combined with chemotherapy
PORT: postoperative radiotherapy
IDH: Isocitrate Dehydrogenase
SCRT: surgery combined with chemoradiotherapy
GBM: glioblastoma
TTFields: tumor-treating fields
WHO: World Health Organization
ICD-O-3: International Classification of Diseases of Oncology, Third Edition
HR: Hazard Ratio
CI: Confidence Interval
LGG: low-grade gliomas
MGMT: methylguanine methyltransferase
GTR: gross total resection
NTR: near total resection
STR: subtotal resection
mOS: median overall survival
TERT: telomerase reverse transcriptase
ICIs: immune checkpoint inhibitors

Journal Pre-proof

Conflict of Interest Disclosure Statement

Manuscript Title:

Analytical Insights into the Epidemiology of Glioma and Treatment Modalities

Authors:

Meichen Ji, Dan Tian, Qing Qi, Liwei Zhao, Peixin Tan, Peixu Lin, Qing Li, Jian Wu, Yanzhen Lai, Yue Cheng, Hongcheng Yang, Haiqing Ma

We, the authors of this manuscript, hereby disclose any potential conflicts of interest that might be perceived to influence the results or interpretation of our work.

Financial Interests

This study was supported by the Guangdong Medical Science and Technology Research Fund (B2023320). This study was supported by grants from the National Natural Science Foundation of China (82072719), the Natural Science Foundation of the Guangdong Province (2021A1515010790, 2023A1515012872), and High-level Hospital Construction Research Project of Heyuan People's Hospital. This study was supported by Heyuan City 2024 Guangdong Provincial Science and Technology Support for the 'Hundreds of Thousands of Tens of Thousands Project' Special Funds Second Batch Project Plan (250314091471340).

No financial support or compensation from any entity related to the content of this manuscript has been received.

Personal or Institutional Relationships

No personal or institutional relationships with third parties could influence this work.

Intellectual Property

No intellectual property conflicts are declared.

Ethical Compliance

No Ethical Compliance

Final Declaration:

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.