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Abstract

Background and objectives Isocitrate dehydrogenase (IDH) wildtype (wt) astrocytomas without the microscopic features of
glioblastoma have high recurrence rates and were re-classified in the presence of certain molecular features as CNS WHO
grade 4 tumors in the latest WHO classification of 2021. This study examines the clinical heterogeneity within this histologi-
cally defined group and explores implications for treatment decisions, with particular focus on the role of surgical resection.
Methods Data acquisition was conducted as a multi-center retrospective analysis at 6 University Hospitals (2016-2019).
Patients with IDH-wt diffuse astrocytoma without histological features of glioblastoma were enrolled. Patients presenting
with IDH-wt classical glioblastoma from one institution served as controls. Primary outcome parameters were extent of
resection (EOR) according to RANO 2.0 criteria, progression-free survival (PFS), and overall survival (OS).

Results 160 patients with IDH-wt astrocytoma (37.5 % females) and 203 patients with IDH-wt glioblastoma (43.8 %
females), were enrolled. The median age in patients with astrocytoma was younger (58.1 vs. 67.6 years; p<0.0001). Mean
overall survival was significantly longer in astrocytomas (36.1 +15.1 months) compared to glioblastomas (17.9 +2.7 months)
(p<0.0001). The extent of tumor resection is a significant factor for PFS and OS in both groups. In IDH-wt astrocytoma OS
is doubled after resection of more than 50% of radiographic tumor and tripled if resection of >98% is achieved. In IDH-wt
glioblastoma, resection of more than 80% of the tumor volume is needed to achieve tripled OS. MGMT methylation was not
associated with longer survival in IDH-wt astrocytoma (p=.2124). While concomitant radiochemotherapy (Stupp/CeTeG)
was superior to monotherapy in IDH-wt glioblastoma (p=.0094) it is non-superior to sequential therapy (radiotherapy fol-
lowed by chemotherapy) in IDH-wt astrocytoma (p=.1134).

Conclusion The presented data suggests that the clinical course of IDH-wt astrocytoma, is different from IDH-wt glioblas-
toma with an early onset and longer survival. As concomitant radiochemotherapy is non-superior in IDH-wt astrocytoma,
maximum safe resection is even more important than in classical IDH-wt glioblastoma.
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Introduction

The classification of astrocytomas WHO grade II and III
according to 2007 WHO classification predominantly relied
on the evaluation of histopathology and immunohistochem-
istry (e.g., no microvascular proliferation or necrosis) [1,
2]. In recent years, molecular markers have been shown to
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have significant potential as a means of classifying astro-
cytomas, in addition to the conventional histologic crite-
ria [1, 2]. Therefore, the 2016 WHO classification of CNS
tumors included the first molecular markers to type and
grade gliomas [3]. Subsequently, the Consortium to Inform
Molecular and Practical Approaches to CNS Tumor Tax-
onomy (C-IMPACT NOW initiative) increasingly precise
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categorized CNS tumors based on more specific molecular
markers [4]. The presence of isocitrate dehydrogenase 1
(IDH1) and 2 (IDH2) mutations has been observed in dif-
fuse astrocytomas (WHO grade II) and anaplastic astrocyto-
mas (WHO grade I1I). These mutations have been shown to
be associated with a more benign clinical course, suggesting
that distinct tumor subtypes may be encompassed under a
unified diagnostic categorization [2, 5]. In contrast, growing
evidence indicates that the unfavorable prognosis of IDH-
wildtype (wt) WHO grade II and III astrocytoma reflects
the presence of previously unrecognized glioblastoma [6,
7]. Nevertheless, a subset of gliomas showed similarities in
magnetic resonance imaging (MRI) criteria and histological
findings consistent with WHO grade II and III astrocyto-
mas. However, the 2018 cIMPACT-NOW Update reclassi-
fied these IDH1/2 -wt histologically grade II and III gliomas
as WHO grade IV tumors when certain molecular features
are present [3]. Notwithstanding the reclassification, the
clinical course manifests as similar but not identical to that
of classic IDH-wt glioblastomas [8]. Due to the perceived
more aggressive tumor behavior closer to that of IDH-wt
glioblastoma, neuro-oncologists tended to apply high-grade
glioma treatment regimens [5, 9—13]. However, the random-
ized, open-label, phase 3 CATNON trial sheds doubt on the
efficacy of either concurrent or adjuvant temozolomide in
IDH1/2-wt tumors [14, 15]. This lack of informed treatment
data entails doubt regarding the most suitable treatment par-
adigm in patients with IDH-wt astrocytoma.[16—18]

The main objective of this study was to evaluate progres-
sion-free and overall survival (PFS and OS) depending on
the extent of resection (EOR) and adjuvant treatment in the
largest contemporary cohort of IDH-wt astrocytoma for-
merly classified as WHO grade II-11I. It is important to note
that the present study was conducted during a transitional
period in neuro-oncological diagnostics (2016-2019), when
comprehensive molecular characterization according to the
subsequently published WHO 2021 classification was not
yet routinely implemented. Therefore, it is also an objec-
tive to explore whether this heterogenous cohort demon-
strates treatment responses distinct from classical IDH-wt
glioblastoma.

Methods

Patient samples, study design, and outcome
measures

A retrospective multi-center analysis of diffuse IDH-wt
astrocytomas formerly classified as WHO grade II and
III included surgically treated consecutive patients from
six neurosurgical university departments in Germany and
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Austria over a period of four years (2016-2019) were col-
lected. Original tissue samples were not re-examined for the
purpose of this study. Classic IDH-wt glioblastoma from
one department were used as comparator.

Inclusion criteria

Newly diagnosed IDH-wt astrocytomas histologically
graded as WHO grade II or III and classic IDH-wt glioblas-
tomas in patients >18years at the time of diagnosis and at
least one postoperative follow-up > 3 months. Demographic
and clinical data such as sex, age at surgery, tumor location,
tumor size, the extent of tumor resection, neuropathologi-
cal parameters, postoperative adjuvant treatment, follow-
up duration, progression rates and survival were assessed.
Postoperative follow-up was conducted via clinical investi-
gation and evaluation of neuroimages, obtained from either
magnetic resonance imaging (MRI) or, in cases where MRI
was not available or contraindicated, computed tomography
(CT) scans. The presence of tumor regrowth in follow-up
imaging was documented as progression or recurrence,
evaluated in accordance with the RANO 2.0 criteria.[19]

Extent of resection

EOR was stratified according to definition given by the
RANO resect group [20]. EOR was stratified into supramar-
ginal- (SMR), complete- (CR), near total- (NTR), subtotal
resection (STR) and biopsy. Volumetric analysis of tumor
size and EOR was performed on T2-weighted images,
T2-weighted fluid attenuation inversion recovery images,
and T1-weighted MRI images before and after applying
intravenous contrast agent using a navigation planning soft-
ware (iPlan 2.1, Brainlab, Miinchen, Germany).

Molecular analysis

Pathological diagnosis was based on 2016 WHO criteria for
CNS tumor classification, and the c-IMPACT NOW Update
3 [21, 22]. Tumor marker analysis was performed using
established and validated methods based on the preference
of the participating center. All hospitals used methylation-
specific PCR (MSP) for MGMT-promotor methylation
analysis. Negative MGMT methylation levels for gqMSP
were below the cut-off point of 0.35. IDH-mutation status
was analyzed using immune-staining. Additionally, Sanger
Sequencing of genomic DNA from formalin-fixed, paraffin-
embedded samples was used to analyze IDH.
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Statistics

Data analysis was performed using GraphPad Prism version
10.0.0 for Mac OS (GraphPad Software, Boston, Massachu-
setts USA, http://www.graphpad.com). Unpaired categorica
1 and binary variables were analyzed in contingency tables
using Fisher’s exact test. For non-normally distributed vari-
ables, continuous variables were summarized as median
and range, normally distributed variables as mean+SD and
categorical variables as absolute and percentage values. For
the comparison of continuous variables, the Mann—Whitney
U-test was chosen because the data were predominantly
not normally distributed. OS was analyzed by the Kaplan—
Meier method using Gehan—Breslow—Wilcoxon test. The
hazard ratio was calculated using the Mantel-Haenszel test.
Finally, a stepwise backward method was used to construct
a multivariate logistic regression model to analyze age,
ECOG, KPS, MGMT, radio-, chemotherapy and EOR as
predictors of PFS and OS. A p-value<0.05 was considered
statistically significant. Adjustment for multiple testing was
not performed.

Ethical approval

Data acquisition and analysis were performed anonymously
and in accordance with the Declaration of Helsinki. The
study was approved by the Ethics Committees of the Medi-
cal Association of Rhineland Palatinate, Germany (No:
2020—15140-retrospektiv). According to local laws, further
consent is not necessary for retrospective analysis.

Data availability statement

All data sets analyzed in this study are available upon rea-
sonable request from the corresponding author.

Table 1 Baseline demographics and histology

Results
Demographics

A total of 160 patients with newly diagnosed IDH-wt astro-
cytoma, and 203 patients with IDH-wt glioblastoma were
included in our study. Patients presenting with IDH-wt astro-
cytomas were younger (58.1£1. 1 years), compared to those
with IDH-wt glioblastoma (67.6+0.8years) (p<0.0001).
Sex distribution was similar in both groups (astrocytoma:
37.5% female, glioblastoma: 43.8% female; p=0.24). The
median ECOG score at the time of admission was | (range
0-4; p=0.72). Methylation of the MGMT promotor was
detected in 38.1% of all IDH-wt astrocytomas, and 49.0%
of all IDH-wt glioblastomas (p=0.0579). All tumors were
IDH-wt (Table 1).

Tumor locations in IDH-wt astrocytoma were temporal
(55; 30.9%), followed by frontal (41; 23.0%), parietal (39
patients; 21.9%), insular (27 patients; 15.2%), thalamic
(12 patients; 6.7%) and occipital (4 patients; 2.2%). Two
or more lobes were involved in 63 patients (39.4%), both
hemispheres in 11 patients (6.9%). In comparison, in IDH-
wt glioblastoma two or more lobes were involved in 66
patients (32.5%, p=0.186) and occurred primarily in both
hemispheres in 18 patients (8.9%, p=0.561).

Survival data

Mean progression free survival was 11.54+8.4months
in IDH-wt astrocytoma, and 8.22+9.5months in IDH-wt
glioblastoma (p=0.4804). The distribution of OS in IDH-
wt astrocytoma appears to be bimodal with the main peak
at around 1-year and a second peak around 2-years. (Figs.
1, a, b) Mean overall survival was significantly longer in
IDH-wt astrocytoma (36.1£15.1 months) compared to IDH-
wt glioblastoma (17.942.7months) (p<0.0001). (Figs. 1,
Ic) Univariate analyses of predictors of PFS and OS were

IDH-wt Astrocytoma IDH-wt Glioblastoma P-Values

Patients (n) 160 203
Age (SE, CI) 58.1 (1.1; 56-87) 67.6 (0.8; 67-71) <0.0001
Sex female (%) 60 (37.5) 89 (43.8) 0.2383
Mean ECOG (range) 1(0-4) 1(0-4) 0.7203
MGMT methylation (n, %)

No 86 (61.9) 100 (51.0) 0.0579

Yes 53 (38.1) 96 (49.0)

Not available 21 (13.1) 73.4)
IDH-mutation (n, %)

wildtype 160 (100) 203 (100) >0.999

mutant 0(0) 0(0)

Not available 0(0) 0(0)
Progression free survival 11.54+8.4 8.2249.5 0.4804
Overall survival 36.1£15.1 17.942.7 <0.0001
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Fig. 1 The distribution of OS in IDH-wt astrocytoma appears to be
bimodal with the main peak at around 1-year and a second peak around
2-years. (A) Mean progression-free survival was not different between
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both groups. (B) Mean overall survival was significantly longer in
IDH-wt astrocytoma (36.1£15.1 months) compared to IDH-wt glio-
blastoma (17.9+2.7 months) (p<0.0001). (C)

Table 2 Factors associated with os in astrocytoma, IDH1/2-wt (CNS WHO Grade 4) and glioblastoma, IDH1/2-wt (CNS WHO Grade 4)

IDH-wt Astrocytoma

IDH-wt Glioblastoma

HR 95% C1 p Value HR 95% CI p Value
Age
<65years 0.431 0.257-0.724 0.0015 0.598 0.442-0.809 0.0003
>65 years 2.318 1.380-3.894 1.673 1.240-2.251
ECOG
0-2 0.168 0.016-1.767 <0.0001 0.432 0.239-0.780 <0.0001
>3 5.930 0.566-12.74 2.317 1.282-4.188
MGMT
methylated 0.909 0.511-1.619 0.2124 0.694 0.512-0.939 0.0142
non-methylated 1.100 0.618-1.95 1.441 1.064-1.952
Extent of Resection (compared to biopsy)
SMR/CR 0.303 0.169-0.541 <0.0001 0.277 0.168-0.456 <0.0001
NTR 0.169 0.079-0.363 0.0026 0.313 0.194-0.506 <0.0001
STR 0.351 0.175-0.705 0.0218 0.376 0.233-0.605 <0.0001
PR 0.253 0.138-0.463 <0.0001 0.740 0.449-1.220 0.253
Radiochemotherapy
(compared to mono-therapy)
Stupp/CeTeG 0.594 0.126-2.808 0.597 0.538 0.295-0.985 0.0094
Sequential therapy 0.749 0.076-7.348 0.774 - - -
Monotherapy 1.334 0.136-1.307 0.774 0.349 0.215-0.563 <0.0001
No therapy - - - 2.870 1.773-4.644 <0.0001
performed by categorizing patients according to age, sex, Extent of resection

ECOG status, extent of resection and adjuvant treatment.
Older age (IDH-wt astrocytoma: p=0.0005; IDH-wt glio-
blastoma p=0.0003) is a predictor of shorter OS in both
entities. However, older patients with IDH-wt astrocytoma
had a longer OS (14.1£12.7) compared to those with IDH-
wt glioblastoma (9.5+1.1). (Table 2) Likewise, better func-
tional performance (ECOG 0-2) is a predictor of better OS
(IDH-wt astrocytoma: p=<0.0001; IDH-wt glioblastoma:
p=<0.0001).

@ Springer

The extent of tumor resection is a significant factor for PFS
and OS in both groups. In IDH-wt astrocytoma, resection
significantly prolonged PFS (mean 12.8+10.6 months,
HR: 0.605, 95%Cl 0.333-1.06, p=0.0296) and OS
(mean 26.98+10.6 months, HR: 0.162, 95%CI 0.088-0.2,
p<0.0001) compared to biopsy. Fluorescence-guided resec-
tion using 5-Ala was used in 122 patients (76.2%) with
astrocytoma and 146 patients (72%) with glioblastoma.
Awake craniotomies were performed more often in IDH-wt
astrocytomas (32.5%) compared to IDH-wt glioblastomas
(26.1%2).
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According to the RANO categories for EOR in IDH-wt
glioblastoma, SMR/CR (IDH-wt astrocytoma 41 patients
(25.6%); IDH-wt glioblastoma 65 patients (31.5%)), NTR
(IDH-wt astrocytoma: 9 patients (5.6%); IDH-wt glioblas-
toma: 40 patients (19.7%)) and STR (IDH-wt astrocytoma:
40 patients (25.0%); IDH-wt glioblastoma: 24 patients
(11.8%)) were achieved more often in IDH-wt glioblastoma
(CR+NTR: p=0.0094; STR: p=0.014). No difference was
found in PR (IDH-wt astrocytoma: 18 patients (11.3%);
IDH-wt glioblastoma: 24 patients (11.8%), p=0.99) and
biopsy (IDH-wt astrocytoma: 52 patients (32.5%); IDH-wt
glioblastoma: 50 patients (25.2%), p=0.286). (Figs. 2, 2a)
In IDH-wt astrocytoma, CR significantly prolonged PFS
(»p=0.0031), while PR, NTR and CR all significantly pro-
longed OS (p<0.005) compared with biopsy alone. (Figs. 2,
2b) (Table 2). Likewise, in IDH-wt glioblastoma, all types
of resections significantly prolonged PFS (p<0.0001) and
OS (p<0.0001) compared to biopsy. CR significantly pro-
longed PFS (p=0.0326), while STR, NTR and CR all signif-
icantly prolonged OS (p<0.0001, respectively) compared to
biopsy alone (Figs. 2,c).

In IDH-wt astrocytoma OS is doubled after resection of
more than 50% of radiographic tumor and tripled if resec-
tion of>98% is achieved. In IDH-wt glioblastoma, resec-
tion of more than 80% of the tumor volume is needed to
achieve tripled OS.

Non-surgical treatment data

Treatment decisions were made at local interdisciplin-
ary tumor conferences based on clinical status, the extent
of resection, and histopathological findings, including
molecular markers. Adjuvant treatment was performed in
151 patients (74.4%) with IDH-wt glioblastoma and 158
(98.8%) with IDH-wt astrocytoma. Many patients received
concomitant treatment with temozolomide (TMZ, 75mg/
m?) during radiotherapy (RT), followed by 6 cycles adju-
vant TMZ (150-200 mg/m?) for 5 days out of 28 days (Stupp
protocol) (IDH-wt Astrocytoma: 56 (35.0%), IDH-wt glio-
blastoma: 87 (42.9%)) or concomitant treatment using TMZ
(75mg/m2) during hypofractionated (hf) RT, followed by
6 cycles adjuvant TMZ (150-200 mg/m2) for 5days out of
28 days (Perry protocol) (IDH-wt Astrocytoma: 6 (3.8%);
IDH-wt glioblastoma: 34 (16.7%)). Concomitant treatment
using TMZ (150mg/m2) and CCNU/Lomustine during
hfRT, followed by 6 cycles adjuvant TMZ (150-200 mg/
m?2) for 5days out of 28 days, the CeTeG protocol, (6-week
courses of oral combined CCNU/TMZ (CCNU 100 mg/m?
on day 1, TMZ 100-200mg/m> on days 2—6) starting in
the first week of radiotherapy) was considered in patients
with methylated MGMT promotor in patients with IDH-
wt glioblastoma only (=6 (2.9%)). Sequential treatment

(radiation followed by chemotherapy) was considered in
patients with former IDH-wt astrocytoma (n=88, 55.0%).
Other regimens included radiation as monotherapy (IDH-wt
astrocytoma: 4 (2.5%); IDH-wt glioblastoma: 16 (7.9%)),
Nordic radiation scheme (IDH-wt astrocytoma: 0 (-); IDH-
wt glioblastoma: 4 (2.0%)) and best-supportive care. In
IDH-wt astrocytoma IDH1/2-wt, treatment according to
Stupp- or CeTeG protocol resulted in similar PFS and OS
compared to those treated with radiotherapy followed by
sequential chemotherapy (p=0.1134). (Figs. 3, 3a) (Table 2)
In IDH-wt glioblastoma, concomitant radiochemotherapy
(Stupp/CeTeG) was superior to monotherapy (p=0.0094)
and each treatment regimen superior to best-supportive care
(»<0.0001) (Figs. 3,b) (Table 2).

Molecular markers

Not all molecular markers were assessed on a routine basis
in the participating centers. In the cohort of the IDH-wt
astrocytomas the TERT promoter was mutated in 28 of
41 analyzed patients (68.3%); EGFR amplification was
detected in 23 out of 48 analyzed patients (47.9%); and
nuclear ATRX loss was detected in 12 (9.6%) patients,
while it was retained in 113 (90.4%). The presence of a
TERT mutation and strong EGFRVIII expression was asso-
ciated with an impaired survival in the respective subgroup
(23.0months, 95CI10.0-30.6; p=0.011). Furthermore
TERT-mutant cases were older (mean 61.8+10.2years)
compared to TERT-wildtype cases (mean 54.1+12.7 years),
though this difference did not reach statistical significance
(»=0.058). MGMT-promoter methylation was examined in
140 IDH-wt astrocytoma patients; data were not available in
20 patients. In 54 patients (38.6%) the promotor was meth-
ylated and in 86 (61.4%) non-methylated (Table 1). MGMT
methylation was not associated with longer survival in IDH-
wt astrocytoma (HR: 0.909 (0.511-1.619), p=0.2124) but
is associated with a favorable therapy response in IDH-wt
glioblastoma (HR: 0.694 (0.512-0.939), p=0.0142) (Fig. 4)
(Table 2).

Multivariate analysis

Variables associated with statistically significant differences
in survival in patients with IDH-wt astrocytoma found in
univariate analyses (age> 65 years, ECOG, EOR) as well as
several putatively clinically significant variables (adjuvant
treatment, MGMT methylation status) were included in a
multivariate survival analysis. The extent of resection SMR/
CR (p=0.0012), NTR (p=0.0014), older age (»=0.009) and
unfavorable ECOG (p=0.0004) remained statistically sig-
nificant factors for OS. (Table 3)
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Fig. 2 CR and concomitant therapy were used more often in IDH- alone. (B) in IDH-wt glioblastoma, all types of resections significantly

wt glioblastoma compared to IDH-wt astrocytoma. (A) in IDH-wt prolonged PFS (»p<0.0001) and OS (p<0.0001) compared to biopsy.
astrocytoma, CR significantly prolonged PFS (»p=0.0031). CR, NTR ©)
and PR significantly prolonged OS (p<0.005) compared with biopsy
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protocol resulted in similar PFS and OS compared to those treated with
radiotherapy followed by sequential chemotherapy (p=0.1134). (A) in

Discussion

IDH-wt astrocytomas are a heterogeneous group of tumors
that have undergone numerous diagnostic reclassifications
over time. Based on molecular markers, the majority is clas-
sified as IDH-wt glioblastomas CNS WHO grade 4 accord-
ing to the 2021 WHO classification.[1, 3]

Despite higher recurrence rates and poor clinical outcome,
imaging features of these tumors resemble low-grade glio-
mas [23, 24]. These tumors lack histological criteria of clas-
sic IDH-wt glioblastoma such as microvascular proliferation
and necrosis [16—18, 25]. However, higher recurrence rates
and more aggressive growth patterns are observed in these
tumors [5, 7, 9, 10, 26]. Increasing evidence from multiple
studies suggests, that the poor clinical outcome stems from
a considerable proportion of unrecognized glioblastoma
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IDH-wt glioblastoma, concomitant radiochemotherapy (stupp/CeTeG)
was superior to monotherapy (p=0.0094) and each treatment regimen
superior to best-supportive care (p<0.0001). (B)

in this group [5, 9]. In the presented data, distribution of
survival from IDH-wt astrocytoma is distinguished into
two larger groups of less and longer than 20 months. This
finding confirms that different tumors are subsumed under
this entity. Driven by the admixture of TERT-mutant and
EGFR overexpressing cases, these tumors might cluster in
a shorter survival peak. The latest WHO 2021 classification
integrates the combination of histological and molecular
grading by incorporating additional genetic data such as
TERT promoter mutation, EGFR amplification, and/or copy
number changes (7 gain/10 loss) in IDH1/2-wt astrocyto-
mas, as outlined in the cIMPACT-NOW criteria, to define
IDH-wt glioblastoma [1]. The higher proportion of TERT
promotor mutations (68.3%) and EGFRVIII expression
(47.9%) in those IDH-wt astrocytoma that where tested,
strongly suggests that a substantial number of these cases
would be reclassified as “molecular IDH-wt glioblastoma
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Fig.4 MGMT promotor methylation was not associated with longer survival in IDH-wt astrocytoma (HR: 0.909 (0.511-1.619), p=0.2124) but is
associated with a favorable therapy response in IDH-wt glioblastoma (HR: 0.694 (0.512-0.939), p=0.0142) (A, B)

CNS WHO grade 4” according to WHO 2021 criteria.
These data validate the concerns raised by the cIMPACT-
NOW updates and the WHO 2021 classification regarding
the heterogeneity of histologically diagnosed low-grade
IDH-wt astrocytomas. The remaining 31.7% of TERT-
wildtype cases of our cohort of IDH-wt astrocytomas cases
may represent true IDH-wt astrocytomas without molecu-
lar glioblastoma features, molecular IDH-wt glioblastomas
with alternative defining alterations (EGFR amplification
or +7/-10) that were not comprehensively assessed, or a
mixture of both categories. Although missing a molecular
work-up of the whole cohort, these findings underscore that

@ Springer

our cohort represents a heterogenous mixture rather than a
single biological entity. This has important implications for
interpretation of treatment outcomes and clinical decision-
making. While prospective adjuvant treatment data remains
unavailable, the subsequent treatment perception has been
adapted towards the more aggressive stance used in IDH-wt
glioblastoma.[16—18]

The presented data highlights the important associations
between more extensive resection and outcome in IDH-wt
astrocytoma in the largest contemporary multicenter cohort
so far. The data provides evidence for a rather favorable
clinical course compared to IDH-wt glioblastomas, even
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Table 3 Association of patient- and tumor characteristics with survival
(multivariate analysis) in IDH-wt astrocytomas without the micro-
scopic features of IDH-wt glioblastoma

HR (95% CI) P value
Extent of resection
SMR/CR 0.278 (0.125-0.594) 0.0012
NTR 0.109 (0.669-3.468) 0.0014
Age (> 65years) 2.613 (1.007-1.050) 0.009
ECOG (=3) 3.57 (2.179-7.857) 0.0004
MGMT (methylation status) 1.156 (0.398-1.252) 0.247

Adjuvant treatment

Stupp/CeTeG 0.839 (0.111-17.67) n.s.
Sequential therapy 0.709 (0.061-9.829) n.s.
Monotherapy 1.151(0.067-20.08) n.s.

Multivariate Cox Proportional Hazards Regression analysis, back-
ward conditional selection method used, step 6 is displayed for PFS
and step 4 for OS

in case of comparable post-resection residual tumor vol-
ume. However, the benefit obtained by maximal safe sur-
gical resection is substantially higher compared to classic
IDH-wt glioblastoma. This observation stands in contrast to
previous studies observing similar outcomes between both
entities following surgery and radiation [27]. The presented
data emphasize the importance of the resection of non-CE
tumor portions. This observation is supported by other ret-
rospective studies indicating that IDH-wt glioblastomas
with <5.4cm? non-CE postoperative tumor and no residual
CE tumor benefit from resection [24]. The RANO resect
group previously published similar findings indicating that
resection of non-CE tumor beyond the CE tumor margins
has prognostic implications in glioblastoma arguing against
conclusion from prior studies that glioblastomas with non-
CE do not benefit from resection [20, 23, 28].

No difference in OS with the use of concomitant radio-
chemotherapy according to Stupp- or CeTeG protocol,
compared to sequential therapy (radiotherapy followed by
adjuvant chemotherapy) was observed in IDH-wt astrocyto-
mas. These findings seem to align well with previous studies
reporting similar survival outcomes after radiotherapy or the
addition of concurrent (and/or adjuvant) TMZ [27]. It is of
note, that all of the analyzed patients were treated with either
concomitant or sequential radiochemotherapy. As there was
no difference between both treatment strategies and none
of the patients received either of these treatment modalities
alone, it remains elusive if adjuvant treatment improves sur-
vival and if so, which of these treatment modalities possess
the higher efficacy.

In IDH-wt glioblastoma response to alkylating chemo-
therapy is better in tumors with methylated MGMT promoter
[29 PJromoter methylation is detected in about 40% of all
patients with IDH-wt astrocytomas and IDH-wt glioblasto-
mas [30, 31]. Similar MGMT promotor methylation rates
were detected in the presented cohort. Limited data suggests

a prognostic role of MGMT promoter methylation in IDH-
wt astrocytomas with regard to chemotherapy response and
OS [31]. The randomized, open-label, phase IIl CATNON
trial in patients with 1p/19q non—co-deleted anaplastic glio-
mas indicated futility of concurrent temozolomide with
radiation and adjuvant temozolomide in patients with IDH-
wt tumors. Benefit was restricted to adjuvant treatment in
IDH-mutant tumors [14, 15]. A post-hoc analysis from the
CATNON study population, identifying 159 IDH-wt tumors
with molecular features of a IDH-wt glioblastoma, similarly
revealed no additional benefit of temozolomide in regard to
PFS and OS compared to radiotherapy alone [32]. MGMT
promoter methylation provided no clinical benefit with
either concurrent or adjuvant temozolomide [14, 15]. This
observation falls in line with our data revealing no survival
difference given the MGMT methylation status in response
to therapy and survival in IDH-wt astrocytoma as known
from IDH-wt glioblastoma.

Limitations of this study

The retrospective design is an inherent limitation of the
presented study. As treatment decisions were based in
local practice and judgment, it may influence outcome
and survival data. Further, it was impossible to control for
treatment regimens after surgery that might affect progres-
sion-free and overall survival. Because the original clinical
diagnoses were included without central neuropathological
review, the data was not homogenized for specific diagnos-
tic algorithms but instead represent the clinical interpreta-
tion of current EANO and WHO diagnostic criteria of the
time and therefore do not represent the most up-to-date
classifications. Without systematic assessment of molecu-
lar markers, the cohort analyzed on this study likely repre-
sents a heterogenous mixture of true IDH-wt astrocytomas
and unrecognized molecular IDH-wt glioblastomas. This
limitation provides an opportunity to examine the clinical
consequences of incomplete molecular classification and to
assess whether treatment responses that might inform clini-
cal decision-making in settings where complete molecular
profiling is not immediately available. We emphasize these
limitations not to diminish the clinical observations but to
highlight the challenges in clinical practice during the WHO
classification transition period.

Conclusion
This study showed that the clinical course of patients with

IDH-wt astrocytomas is better than that of IDH-wt glio-
blastoma. The presented data highlights the important
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associations between more extensive resection and out-
come in IDH-wt astrocytoma, even in case of similar post-
resection residual tumor volume. The benefit obtained by
maximal safe surgical resection is substantially higher com-
pared to classic IDH-wt glioblastoma. The data indicates the
importance of non-CE tumor resection in this entity.

However, MGMT promotor methylation is of no prog-
nostic value for survival in this cohort, while no difference
between concomitant and sequential radiochemotherapy
was observed. The findings of this study implicate a refined
treatment paradigm starting with a maximum safe resec-
tion and followed by a tailored approach depending on the
molecular characteristics.
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