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PERSPECTIVE                                             

Surgical decision making in the era of supramarginal glioma resections: a 
current perspective and narrative review

Max O. Krucoffa,b,c 

aDepartment of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; bDepartment of Biomedical Engineering, 
Medical College of Wisconsin & Marquette University Graduate Program, Milwaukee, Wisconsin, USA; cDepartment of Biophysics, 
Medical College of Wisconsin Graduate School, Milwaukee, Wisconsin, USA 

ABSTRACT 
Whether to surgically resect a margin of grossly normal appearing brain around anatomically 
amenable diffuse gliomas (i.e., perform a supratotal, supramarginal, or supramaximal resection) 
has been controversial. Over the past 5-10 years, however, evidence published by multiple inde
pendent groups has established a substantial survival benefit to this approach, moving the field 
towards a consensus that supramarginal resections should be offered when possible. However, 
many practitioners remain hesitant to offer supratotal resections due to concerns for variable 
neuropsychological outcomes and a mindset of “first, do no harm.” Unfortunately, and perhaps 
counterintuitively, available data also suggest that opting for more conservative surgical 
approaches when more aggressive resections are possible may result in both suboptimal long- 
term functional and survival outcomes. To explore this complex and actively evolving issue, 
here I review evidence surrounding the multidimensional clinical impacts of supramarginal 
resections across all diffuse glioma subtypes. I then evaluate what is known about anatomical- 
functional relationships subserving cognition, behavior, and mood regulation, and I examine 
ethical considerations that arise when counseling patients at the difficult time of diagnosis. I 
then conclude with a set of case examples that demonstrate how the principles explored in this 
review can be applied in real-world situations to optimize, individualize, and humanize onco
logical and functional outcomes.
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1. Introduction

Adult diffuse gliomas (World Health Organization 
[WHO] grades 2–4) are incurable primary brain tumors 
that cause substantial morbidity [1,2]. Although we 
learn more about genetic and molecular markers of 
these tumors every day, current data strongly support 
the need for early, maximal safe surgical resections in 
virtually all glioma subtypes [3–7]. Amongst lesions that 
are anatomically amenable to complete radiographical 
resection, whether neurosurgeons should also resect a 
margin of otherwise radiographically and/or grossly 
normal appearing brain around the lesion (i.e., a supra
total, supramarginal, or supramaximal resection) histor
ically has been controversial [8–12]. Over the past 5– 
10 years, however, iterative evidence published by mul
tiple independent groups has consistently bolstered the 
case that supramarginal resections offer a substantial 
survival benefit for patients with both higher and lower 

grade lesions, moving the field toward a consensus that 
supramarginal resections should be the first-line surgi
cal approach when possible [5,10,11,13–27]. However, 
many practitioners who treat glioma patients remain 
hesitant to offer supratotal resections and instead con
tinue to opt for lesionectomies, or removal of the gross 
tumor only. The reluctance to perform a more aggres
sive surgery involving otherwise grossly normal- 
appearing brain is a multifaceted issue that can be 
rooted in (1) a desire to “do no harm;” (2) a concern for 
unpredictable cognitive, personality, and/or behavioral 
changes; and/or (3) a mistrust or misunderstanding of 
published data, among other factors. Unfortunately, 
and perhaps counterintuitively, available data also sug
gest that when more conservative surgical approaches 
are taken in tumors that are anatomically amenable to 
aggressive resections, both long-term functional and 
survival outcomes may be suboptimal [21,27,28]. To 
explore this complex and actively evolving issue, here I 
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review published evidence surrounding the multidi
mensional clinical impacts of supramaximal resections, 
and I attempt to distill the plethora of information into 
tangible, applicable surgical principles to aid in a priori 
surgical decision making. In doing so, I evaluate what 
we know about anatomical-functional relationships sub
serving cognition and behavioral regulation, and I 
examine active ethical considerations that arise when 
counseling patients at the difficult time of diagnosis. I 
then present several real-world case examples to dem
onstrate how the principles explored above can be 
applied to individual cases, and I conclude with a brief 
look into some of the remaining unanswered questions 
and future directions in glioma surgery.

2. Oncological goals of glioma surgery

Diffuse gliomas are, by definition, non-curable diseases 
that require multidisciplinary treatment [29–33]. Years 
of cumulative data support beginning treatment with 
surgical resection, and a strong relationship has been 
established between expected survival and residual 
postoperative tumor volumes (i.e., extents of resection) 
for virtually all diffuse glioma subtypes [3,6,7,19,34–40]. 

Historically, oncological goals of glioma surgery have 
included: (1) procurement of tissue for pathological 
confirmation and molecular profiling, (2) cytoreduction 
(i.e., minimizing the number of cancer cells), and (3) 
reduction of lesional mass effect, all while preserving 
neurological function [41]. Newer insights into the 
nature of gliomas, however, have somewhat broadened 
these goals, as we now know diffuse gliomas behave 
less like local tumor masses (e.g., cerebral metastases, 
cavernomas, or grade 1 gliomas) and more like infiltra
tive diseases that (a) likely originate from subventricular 
zones, (b) spread either via radial, ontogenetic, or white 
matter tracts, and (c) disseminate well beyond gross 
lesional margins [12,42–47]. We also now know that gli
oma cells interact directly with neurons to form func
tional “cancer networks” whose edges, if left in place 
after surgery, can lead to more rapid local recurrence 
[44,48]. With these insights in mind, there has been a 
conceptual shift away from approaching glioma surgery 
as a “debulking” or “lesionectomy” procedure and more 
toward a “functional-anatomical amputation” of the 
affected brain region that additionally incorporates 
brain beyond the gross lesional boundaries when safe 
to do so (Figure 1) [8,10,28,44,49]. This idea is supported 

Figure 1. Illustration by Yoo et al. showing the conceptual difference between gross total and supratotal surgical approaches and 
their resultant recurrence patterns [18]. While gross total resection removes the tumor bulk, residual infiltrative cells lead to local 
recurrence more quickly than with supratotal resections. Recurrence in supratotal resections tend to happen later and more fre
quently at distant sites. Surgically, supratotal resections aim for functional-anatomical boundaries beyond gross tumor, ideally 
incorporating microscopic infiltrating tumor edges into the resection. This often delays recurrence until the mutated neural stem 
cells generate further tumor cells that spread via available white matter tracts or ontogenetic pathways. CE – contrast enhancing, 
NCE – non-contrast enhancing, GBM – glioblastoma, GTR – gross total resection, SupTR – supratotal resection. Reproduced with 
permission from Yoo et al [18].
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by data that demonstrate recurrences after supratotal 
resections tend to happen later and more often at ana
tomically distant sites (i.e., >2cm from the resection 
cavity margin) when compared to gross or subtotal 
resections, which tend to recur sooner and more often 
perilesionally [18,50]. Practically speaking, treating uni
lobar lesions (especially within the frontal and non- 
dominant temporal lobes) with a functional- 
amputational approach often results in a complete or 
partial lobectomy (Figure 2) [14]. However, if a tumor 
infiltrates critical functional tissue, standard practice still 
dictates that the resection is stopped at a subtotal mar
gin to prioritize maintenance of function over extent of 
resection [28,41,51]. This practice is consistent with data 
showing that new, permanent motor or language defi
cits acquired in surgery can negate the oncological sur
vival benefit gained from the operation [27,52–54].

In sum, cumulative data from the past 10 years has 
augmented the oncological goals of glioma surgery 
toward amputating the “cancer network” by resecting 
as much of a margin beyond gross tumor as safely 
possible. Seeking functional margins of the brain as 
resection borders rather than gross tumor boundaries 
has repeatedly and reproducibly outperformed clas
sical lesionectomies and debulking surgeries in virtu
ally every oncological and functional domain for 
virtually every glioma subtype across time, institu
tions, and countries [8,10,16,22,25–27,41,55,56]. The 
consistency and breadth of this data has pushed the 
field toward recommending supramarginal resections 
as the first-line approach for all diffuse glioma sub
types when feasible at the time of diagnosis [8,27]. 
This goal subsequently implies all diffuse gliomas 
should be referred to high-volume brain tumor cen
ters prior to their index operations, as supramarginal 
resections require subspecialized training and careful, 
longitudinal evaluations of neurological function 
[57,58]. In other words, there is no longer such an 
entity as a “simple” surgical glioma [57,58].

3. Radiographical evaluation of supramarginal 
extent of resection

Radiographically evaluating extent of supramarginal 
resections is an evolving field. Notably, the terms supra
marginal, supramaximal, and supratotal are used inter
changeably throughout the literature (and in this review) 
without widely agreed-upon definitions. Supramarginal 
resections tend to be quantified differently for contrast 
versus non-contrast enhancing lesions [26,34,59,60]. In 
lower and intermediate grade gliomas that are predom
inantly non-enhancing, T2 Fluid-Attenuated Inversion 

Figure 2. Examples of supratotal resections of diffuse gliomas 
published throughout literature. No consensus exists on how 
much of a margin needs to be resected beyond the lesion for 
maximum oncological benefit, but common practice includes 
taking resections to functional margins up to unilateral lobec
tomies when possible. Reproduced with permission from vari
ous sources [16,18,20,24,28].
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Recovery (FLAIR) lesions, supramarginal resections have 
been defined by both (1) the absence of residual T2 
FLAIR signal and (2) a larger postoperative resection cav
ity than preoperative lesional volume [20,25]. Ideally, 
extent of resection in non-enhancing lesions is evaluated 
either immediately postoperatively (preferably even with 
an intraoperative MRI) or 3-months postoperatively, as 
confounding FLAIR signal emerges and wanes between 
those timepoints due to evolving edema, retraction 
injury, and ischemia [34,61]. For contrast-enhancing 
masses, on the other hand, supramarginal resections 
tend to be defined by (1) a complete resection of the 
contrast-enhancing mass plus (2) a significant resection 
of the surrounding FLAIR [9,17,22,23,26,62–64]. Despite 
unresolved questions surrounding how much FLAIR 
needs to be resected for maximal oncological benefit, 
there does appear to be a clear trend toward more 
aggressive resections being associated with longer sur
vival [23,26,27,64]. While there is minimal data expressly 
evaluating the effect of resection beyond FLAIR margins 
in contrast-enhancing lesions, partial or complete ana
tomical lobectomies to functional borders have been 
reported and seem to be associated with the best sur
vival outcomes when possible (Figure 2) [14,16].

In 2022, the Response Assessment in Neuro-Oncology 
(RANO) resect group, an international, multidisciplinary 
group that aims to standardize radiographical glioma 
assessments, published and validated a new classification 
system for resections in WHO-grade 4 IDH-wt glioblasto
mas (Figure 3) [26]. In this schema, Class 1 resections 
represent supramarginal resections and are defined by 
(1) no residual contrast enhancing (CE) tumor and (2) 
<5cm3 of residual non-contrast enhancing (nCE) tumor. 
Class 2 resections are subdivided into Class 2a, formerly 
gross total resections (i.e., no residual CE but >5cm3 of 
residual nCE), and Class 2b, formerly near total resections 
(i.e., <1cm3 of residual CE). Class 3 represents subtotal 
resections and are also stratified into 3a/3b based on 
residual CE tumor volume, whereas Class 4 cases are 
biopsy only. While this classification scheme is likely to 
become the new standard for evaluating contrast- 
enhancing glioma resections, no such consensus evalu
ation system currently exists for supramarginal resections 
in primarily FLAIR lesions, to my knowledge [65].

4. Survival outcomes

Evidence from around the globe, especially over the 
past 10 years, consistently and invariably supports a 
significant survival advantage in people with all types 
of diffuse gliomas who undergo supratotal resections 
[5,9,10,13–26,28,33,62–64,66]. This relationship holds 

up as a strong, independent, modifiable predictor of 
survival, even in the age of molecular and genetic 
diagnosis. For example, the RANO resect group vali
dated their new classification system for extent of 
resection in 744 cases of WHO-grade 4 IDH-wt glio
blastomas treated with surgical resection followed by 
radiation and temozolamide (TMZ) (i.e., standard 
Stupp protocol) [26]. They found statistically significant 
differences in overall survival based on extent of 
resection classification with median overall survivals of 
24, 19, and 15 months for Class 1, 2, and 3 resections, 
respectively (Figure 4) [26]. This finding makes extent 
of resection the most impactful, modifiable risk factor 
for survival in IDH-wt glioblastoma, as it implies 
extending resections from Class 3 to Class 1 provides 
a shift of 9 months in the median survival curve. As a 
reference, the impact of TMZ plus Tumor-Treating 
Fields (i.e., alternating transcranial currents), which 
represents the current standard of care for adjuvant 
GBM treatment, has been shown to increase survival 
by about 8 months when added to radiation [29,30]. 
More recently, another group re-validated the prog
nostic impact of this classification scheme on 580 glio
blastoma patients and found that patients who 
underwent RANO Class 1 resections had a median 
overall survivals of 35.6 months (95% CI: 30.9–40.4), 
whereas patients who underwent non-Class 1 resec
tions survived only a median of 13.9 months (95% CI: 
13.0–14.7; p< 0.001), suggesting an even larger poten
tial influence on survival [22].

In IDH-mutant intermediate grade gliomas (WHO 
grades 2 and 3), Rossi et al. published a series of 319 
such cases who had undergone craniotomies for surgi
cal resection [25]. While controlling for molecular 
genotype, they noted profound progression-free, 
malignant progression-free, and overall survival advan
tages in patients who underwent supratotal resections 
versus gross total and subtotal resections (median over
all survivals not-reached at 92 months versus 29 months 
and 27.5 months, respectively) (Figure 5) [25]. This rela
tionship persisted when evaluating each molecular and 
histopathological subgroup of IDH-mut gliomas individu
ally. These large case series represent a small fraction of 
the published data and are each bolstered by innumer
able others that have replicated and/or produced similar 
findings, as well as multiple systematic reviews and 
meta-analyses that further establish extent of resection, 
up to and including supratotal resections, as the most 
impactful modifiable predictor of survival when com
bined with standard adjuvant treatment protocols.

Another underappreciated but critical modifiable pre
dictor of survival is the postoperative volume of 
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Figure 5. Progression-free survival curves for grade 2–3 IDH-mut diffuse gliomas separated by extent of resection. There is a pro
found progression-free survival advantage at 100 months postoperatively when a supratotal resection is achieved. EOR – Extent of 
Resection. P – partial, S – subtotal, T – gross total, ST – supratotal. Reproduced with permission from Rossi et al [25].

Figure 3. New RANO Resect classification system for evaluating extent of resection in IDH-wt glioblastomas. In this system, supra
maximal resections are Class 1, gross total resections are Class 2A, near total resections are Class 2B, subtotal resections are Class 
3A, and debulking operations are Class 3B. CE – contrast enhancement, nCE – non-contrast enhancement. Reproduced with per
mission from Karschnia et al [26].

Figure 4. Progression-free and overall survival curves for grade 4 IDH-wt glioblastomas separated by new RANO Resect extent of 
resection classifications (see Figure 3). The difference in median overall survival of 9-months between Class 1 and Class 3 resec
tions makes extent of resection the most impactful modifiable risk factor for this subgroup. mPFS - median progression-free sur
vival, mOS - median overall survival. Reproduced with permission from by Karschnia et al [26].
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surgically-induced brain ischemia, as several groups have 
demonstrated that higher volumes of postoperative 
infarction predict worse survival even independently 
from other known risk factors, such as new neurological 
deficits (Figure 6) [67–70]. A leading hypothesis to 
explain this phenomenon is that postoperative infarction 
may become a nidus for hypoxia-induced tumor prolifer
ation, as more aggressive patterns of recurrence, more 
diffuse disease burden, and shorter survivals have all 
been documented in cases with larger ischemic volumes 
[68–70]. The removal of otherwise residual ischemic 
brain in supratotal resections may also partially contrib
ute to its known oncological benefit, but this has yet to 
be established.

5. Postoperative chemo-radiation depends on 
extent of resection

Standard of care for adult diffuse glioma treatment 
involves a multidisciplinary approach, which, in most 
cases, includes radiation and chemotherapy either 
immediately after the index surgery or upon recur
rence [31,32,57]. Therefore, how radiation and chemo
therapy factor into long-term oncological and 
functional outcomes needs to be incorporated into 
upfront surgical decision making. As explored above, 
when planning an operation, treating physicians need 
to account for both the potential downside of delay
ing radiation in higher grade lesions because of 

functional status decline from surgery, as well as the 
potential upside of negating the need for upfront radi
ation in cases of completely resected lower grade 
tumors [27,31,32,71]. Supporting this calculus is recent 
evidence suggesting that biopsying anatomically 
resectable high-grade gliomas prior to definitive sur
gery has a negative impact on survival, likely due to a 
delay in the initiation of chemoradiation from the 
time of diagnosis [58]. In lower-grade gliomas, current 
societal guidelines acknowledge the impact of extent 
of resection up to gross total resection on the need 
for chemo-radiation after the index surgery, suggest
ing that initial observation is reasonable for lower- 
grade lesions that are gross totally resected (Figure 7) 
[32,71]. Because early chemo-radiation may result in 
well-known, long-term side effects such as cognitive 
decline, severe fatigue, pancytopenia, and fertility 
complications, delaying its initiation represents poten
tial long-term gains in quality of life, especially in 
younger individuals with longer natural life expectan
cies. In addition to quality-of-life benefits and compli
cation avoidance, there is also some oncological 
benefit to delaying radiation, as lower grade gliomas 
that recur after chemo-radiation are known to have 
higher rates of genetic mutations that portend worse 
prognoses, such as CDKN2A homozygous deletions, 
than those that recur after surgery alone [72,73]. With 
this in mind, many high-volume centers focus on max
imizing overall instead of progression-free survival, 

Figure 6. Overall survival curves for high-grade gliomas separated by volume of postoperative ischemic brain. The separation of 
these curves was found to be independent of new neurological deficit and other molecular markers, suggesting volume of infarc
tion may be an independent risk factor for survival. Left image: Categories of sizes of postoperative ischemia, B – none/minimal, 
C – small, D – medium, E – large. Right image: Associated survival curves for each category. Reproduced with permission from 
Aaronson et al [67].
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especially in younger patients with grade 2 tumors, by 
trying to delay the initiation of chemo-radiation in at- 
least gross totally resected tumors without evidence 
of early recurrence on surveillance MRIs. The differen
tial impact of supra- versus gross total resections on 
adjuvant treatment planning, however, has not yet 
been incorporated into societal guidelines and awaits 
more long-term data, especially for grade 3 tumors. 
Furthermore, how supratotal resections impact post
operative radiation planning (i.e., dose lines) around 
variably sized resection cavities is a burgeoning topic 
of great debate.

6. Cognitive, mood, and behavioral outcomes

Given the emerging clarity of data supporting survival 
benefits in supratotal glioma resection, what might 
account for the slow adoption of this technique into 
real-world practice [8]? While the answer has many fac
ets, a common theme is the physician’s desire to “do 
no harm,” along with the fear of inducing unpredict
able changes in personality, cognition, or behavioral 
regulation, by resecting more brain than otherwise 
might be necessary. Supporting these fears is a 

renewed awareness of “silently eloquent” areas of the 
brain, or the idea that no part of the brain is truly non
functional [74]. This challenge requires us to address 
the following critical question: what do we know about 
anatomical-functional relationships subserving cogni
tive, mood, and behavioral domains?

While there is much yet to be learned about the 
structural and functional anatomical relationships that 
subserve cognition, mood, and behavioral regulation, 
there are general principles that have long guided surgi
cal planning and patient counseling. Practically speak
ing, concerns about neuropsychological outcomes 
become most prevalent in frontal, temporal, and limbic- 
area tumors, where supramarginal resections are most 
frequently considered. It is critical to recognize that 
functional-anatomical relationships can have asymmet
rical representations across the cerebral hemispheres, 
such as language, which can define which side we con
sider the “dominant” hemisphere [75–77]. Known 
anatomical-functional associations include frontal lobe 
injury and abulia (particularly when involving the anter
ior cingulate cortex and/or dominant caudate) [78–80], 
non-dominant temporal lobectomies and depressive 
symptoms (most well documented in the epilepsy litera
ture) [81,82], non-dominant parietal lobe tumors with 
inattention and hemineglect [77,83,84], and limbic-area 
tumors with impaired mood regulation, attention, and 
verbal memory [77,85,86]. Recently, Ng et al. reported 
results from a detailed lesion-symptom mapping study 
that analyzed resected anatomy and non-recovered 
neuropsychological domains at 3-months in a cohort of 
400 patients with diffuse low-grade gliomas who under
went awake surgery with cognitive mapping. They 
found a lack of recovery in picture naming linked to the 
left inferior temporal gyrus and inferior longitudinal fas
ciculus, semantic fluency linked to the left precuneus/ 
posterior cingulate gyrus, phonological fluency linked to 
the left dorsomedial frontal cortex and frontal aslant 
tract, and spatial exploration linked to the right dorso
medial prefrontal cortex. Additionally, their data suggest 
that resections involving the left uncinate fasciculus, left 
corticostriatal tract, anterior corpus callosum, hippocam
pus, parahippocampus, and right frontal–mesial areas 
beyond the tumor margins were associated with a less 
pronounced recovery of each associated function [87]. 
On the other hand, Rossi et al. reported 1-year postoper
ative results in a similar cohort of 100 patients with low 
grade gliomas also underwent awake resections with 
cognitive mapping [28]. Of these cases, 60 underwent 
supratotal resections whereas 40 underwent gross total 
resections. Detailed neuropsychological evaluations dis
played significant immediate postoperative cognitive 

Figure 7. Current Society for Neuro-Oncology (SNO) guidelines 
for treatment after index surgery. For IDH-mut, WHO grade 2 
gliomas, postoperative observation is recommended when at 
least a gross total resection (GTR) is achieved, whereas adjuvant 
chemo-radiation is recommended for subtotal resections (STR). 
Reproduced with permission from Miller et al [32].
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declines in both supra- and gross total resection groups 
that were more pronounced in the supratotal group in 
most domains; however, both groups significantly recov
ered their deficits by 3-months such that no significant 
difference was measurable between the groups at 3- 

months or 1-year (Figure 8). Other notable outcomes 
from the Rossi et al. series include better long-term seiz
ure control in the supratotal resection group, and a 
higher deficit and complication rate in the subtotal 
resection group [28].

Figure 8. Neuropsychological outcomes after supratotal versus gross total resections of lower grade gliomas are roughly equiva
lent at 3-months and 1-year postoperatively. Higher scores indicate a higher probably of a deficit. Reproduced with permissiron 
from Rossi et al [28].

8 M. O. KRUCOFF



As contralesional homotopic brain regions are 
known to be critical for recovery, surgeons almost uni
versally will not operate on truly bifrontal or biparietal 
lesions with symmetrical homotopic involvement. This 
means patients with so-called “butterfly” gliomas that 
cross the corpus collosum to involve symmetrical par
enchyma of both hemispheres are typically not offered 
surgical resections [88]. However, as our knowledge of 
network-based neuroanatomy grows, several groups 
have challenged the dogma that all butterfly gliomas 
cannot be resected without poor neuropsychological 
outcomes [89–91]. For example, one group provided 
preliminary evidence that maintenance of the default 
mode network’s integrity (i.e., through its connections 
to the anterior cingulate gyrus) may be the key differ
entiating factor in acceptable versus poor postopera
tive cognitive outcomes in these cases [92]. For a 
more detailed look into how network neuroscience is 
starting to be applied to glioma surgery, we refer the 
readers to our recent review [93].

While this summary of anatomical-functional associa
tions is overly simplistic and notoriously heterogenous 
across individuals, it highlights the known stakes of 
intra-axial tumor resections, as some of the most feared 
outcomes involve permanent changes to cognition and 
personality [93,94]. Unfortunately, it is important to also 
note that, perhaps counterintuitively, data suggest that 
long term rates of neurological deficits are higher in 
cases of subtotal compared to supratotal resections, 
underscoring the relentless natural history of residual 
tumor that eventually leads to a deterioration of the 
neurological function the surgeon was hoping to pre
serve through a more limited resection [21,28]. For 
patients with diffuse gliomas, the difficult reality is that 
no matter the surgical approach, complete neuropsycho
logical preservation may not be possible in every case.

7. Intraoperative functional brain mapping

Modern intraoperative brain mapping can provide 
highly predictable motor and language outcomes in 
the hands of specially trained neurosurgical oncologists 
[54–56,95–97]. For example, integrity of the primary 
motor system can be reliably monitored in real-time 
under total intravenous anesthesia (TIVA) using continu
ous motor evoke potentials (cMEP) and subcortical 
monopolar stimulation [97]. Clinical data suggests that 
cases with stable MEPs and a subcortical stimulation 
thresholds of at least 5 mA result in no permanent, 
surgically acquired motor deficits at 3-months postoper
atively with near 100% accuracy (when excluding extra- 
operative causes) [95]. Alternatively, the gold standard 

for monitoring language, sensory, and higher-order 
mental processes is an awake craniotomy with real- 
time intraoperative testing [56]. During these proce
dures, bipolar stimulation is typically applied to the 
cortex or white matter while the patient performs a 
task, like picture naming, to test each brain site prior to 
and during its resection. While awake craniotomies 
used to be first line for motor mapping as well, there 
has been a general trend toward performing non- 
language, motor-only cases asleep to better differenti
ate potentially permanent deficits due to corticospinal 
tract injury from temporary deficits due to supplemen
tal motor area (SMA) syndrome (a well-known, tempor
ary hemiparesis that results from injury to the posterior 
superior frontal gyrus). In other words, while corticospi
nal tract injury versus SMA syndrome cannot be reliably 
differentiated based on awake clinical testing alone, 
they can be differentiated with asleep MEPs and 
monopolar white matter stimulation. Therefore, asleep 
motor mapping can permit more aggressive resections 
into the posterior superior frontal gyrus than awake 
craniotomies with a good assurance of recovery [97].

Whether cognitive and behavioral functions can be 
meaningfully and consistently mapped intraoperatively 
is controversial [98]. While some groups advocate for 
“a la carte” mapping of higher-order functions that are 
critical to an individual patient’s a priori stated quality- 
of-life goals [99], this is not widely adopted due to (1) 
practical constraints of intraoperative time, exposure, 
and expertise; (2) concerns that many cognitive and 
behavioral functions are not focally localizable; (3) 
knowledge that these functions can be highly context 
specific, and (4) awareness that, like SMA syndrome, 
many surgically-induced cognitive deficits are tempor
ary (Figure 8) [28]. A lot of work is being done to bet
ter predict long-term neuropsychological outcomes 
from different potential extents of resection, much of 
which is fueled by emerging knowledge generated by 
the human connectome project (HCP) on large-scale 
brain network function [93,100,101]. However, no con
sistent, usable, clinically validated data currently exists 
to guide treating physicians on individual-level cogni
tive or behavioral outcomes, to my knowledge.

Ultimately, outside of the general guiding principles 
and population-level data explored above, our collective 
ability to predict and map cognitive outcomes on an indi
vidual patient basis remains an area of needed innovation. 
However, it is widely accepted that the clinical experience 
of the treating team is critical to achieving the most per
sonalized outcomes [8,55]. In this light, there has been a 
recent trend toward recommending that all glioma cases 
be referred to high volume tertiary care centers with 
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multidisciplinary neurosurgical oncology teams that can 
offer this expertise [8,55].

8. Integrating the oncological and functional 
impacts of surgery by WHO grade

Recently, the RANO resect group published a detailed 
review integrating both positive and negative oncological 
and functional effects from surgery into an overall impact 
timeline stratified by 2021 WHO tumor grade (Figure 9) 
[27]. In this rigorous work, the authors demonstrate that, 
in more aggressive tumors, such as grade 4 IDH-wt glio
blastomas with median overall survivals of 12-17 months, 
the positive effects of more extensive resection become 
evident within weeks-to-months; however, the negative 
impacts of new neurological deficits that impair functional 
independence and prohibit initiation of chemo-radiation 
within 6-weeks postoperatively can be devastating and 

may shift the impact of surgery toward a net negative. In 
moderately aggressive tumors, such as grade 2 IDH-mut 
astrocytomas with median overall survivals ranging from 
5-12 years, the oncological benefits of aggressive resection 
become most evident after years 3–7 and can result in a 
profound increase in median overall survival with a differ
ence of up to 10 years [25,102,103]. Importantly, the 
authors note that tumor progression within the first dec
ade following complete radiographical resection is rarely 
reported. In the grade 2 IDH-mut astrocytoma subgroup, 
moderate postoperative deficits that resolve with time 
likely have less of a negative impact on overall survival 
when compared to higher grade tumors. With increasing 
grades of IDH-mutant astrocytomas, new deficits that 
might delay adjuvant therapy seem to become more 
impactful. For the least aggressive diffuse gliomas, grade 
2 IDH-mutant and 1p/19q-codeleted oligodendroglio
mas, the impact of extent of resection on survival tends 

Figure 9. Integrated impact of extent of resection and new neurological deficits on overall survival by 2021 WHO tumor classifica
tion. The impact of both extent of resection (positive) and neurological deficits (negative) on overall survival are evident on 
shorter timescales in more aggressive tumors. The impact of supramarginal resection appears to be the greatest in moderately 
aggressive tumors, such as WHO grade 2 IDH-mut astrocytomas, and moderate neurological deficits that recover over time are 
also less impactful in this group. Reproduced with permission from Karschnia et al [27].
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to emerge after greater than 6-years postoperatively. 
Because of the favorable natural history of oligodendro
gliomas, the authors argue that the overall impact of 
extent of resection cannot yet be precisely quantified, 
including supramarginal resections. However, it is rea
sonable to hypothesize that the impact is likely similar to 
grade 2 astrocytomas, just on a longer timescale.

9. Ethical considerations and patient counseling

Trying to convey complex, nuanced themes about bal
ancing survival with potential changes in cognition, 
personality, or behavior to a lay person who just 
received a devastating diagnosis of a brain tumor is 
incredibly difficult. Even with the best intentions of 
empowering individual choice through the informed 
consent process, how the presenting physician frames 

each option heavily impacts patient decisions, and 
often patients will defer to surgeon expertise. 
Therefore, the process of honing in on an appropri
ately tailored resection plan might be best be viewed 
as a team effort facilitated through a set of focused 
patient-physician interactions.

In cases where the anatomy of a glioma might be 
amenable to several surgical approaches with varying 
degrees of risk for temporary and/or permanent neuro
logical changes counter-balanced by varying expected 
survival curves (Figure 10), often discussing the following 
items with patients can elucidate the optimized 
approach: (1) what a normal day entails; (2) what activ
ities bring them joy; (3) what are they most looking for
ward to in the near future; (4) how risk-averse or 
proactive are they when dealing with their health; and 
(5) what scares them the most about their diagnosis and 

Figure 10. Potential resections for a 39-year-old female with a newly diagnosed right frontal FLAIR lesion (presumed to be an 
intermediate-grade diffuse glioma) projected onto the associated survival curves published by Rossi et al [25]. Green – central 
debulking (i.e., partial resection), Blue – subtotal resection, Purple – gross total resection (i.e., lesionectomy), Yellow – supratotal 
resections (rectangle – margin of normal tissue included in the resection, whereas the hemicircle represents a right frontal lobec
tomy). What remains unknown is the potential for permanent cognitive and/or behavioral consequences of each approach, as 
well as whether there would be any differential survival benefit between the two yellow resections.
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undergoing surgery. Sometimes, just through this initial 
conversation, the answer to an otherwise murky and 
ethically complex issue becomes clear. In other words, 
by combining knowledge about the functional neuro
anatomy of the tumor with the patient’s personality, 
goals, hopes, and fears, an approach that has the best 
chance optimize their multi-dimensional outcome can 
be found. This means that the same tumor presenting 
to the same surgeon in two different individuals may 
be approached differently, which reflects an appropri
ate level of respect and deference to each individual’s 
humanity.

It is critical to recognize that there is no scenario 
where a patient with a diffuse glioma can be treated 
without some form of intervention; and with or with
out treatment, their disease will eventually progress. 
Idealistic scenarios of perfect, long-lasting neurological 
preservation are not realistic in most instances, and 
attempts to apply the Hippocratic principle of “do no 
harm” to justify less aggressive approaches upfront, 
unfortunately, can paradoxically result in harm by 
under/inaction [21,104]. What has become clear to the 
community of physicians who subspecialize in and treat 
high volumes of gliomas is that patients tend to do bet
ter all-around when they have access to appropriately 
aggressive upfront treatments performed at specialized 
glioma centers with experienced multi-disciplinary care 
teams who navigate such scenarios frequently [8,21,55]. 
The counterintuitive finding that resecting more brain 
upfront can result better long-term combined outcomes 
is why specialized training in glioma surgery and brain 
mapping is so important, as it is it critical to (1) see 
patients do well from large surgeries to have the confi
dence to perform and guide patients and families 
through them, and (2) know the principles of anatom
ical boundaries, appropriate case selection, and critical 

mapping techniques necessary to perform aggressive 
surgeries without stepping over the edge of no return 
(i.e., non-recovery).

10. Case examples and decision making

Here I present four real-world cases that demonstrate 
how the principles gleaned from the data explored 
above can be used to inform surgical planning and 
patient counseling to design optimized, individualized 
resections aimed at balancing an individual’s onco
logical and functional goals.

10.1. Case 1: Newly diagnosed left anterolateral 
temporal lobe FLAIR lesion in a 35-year-old

10.1.1. Case presentation
A 35-year-old right-handed female presented after a first- 
time seizure and was found to have an expansile FLAIR 
lesion in her left anterolateral temporal lobe with min
imal contrast enhancement (Figure 11). Radiographically, 
this was most concerning for an intermediate-grade dif
fuse glioma. She was neurologically intact on exam, and 
a detailed neuropsychological assessment revealed a 
broadly normal cognitive profile. A task-based functional 
MRI confirmed strong left language dominance with 
functionally active speech/language areas at least 1 cm 
from the lesional borders. Discussion with the patient 
and her family revealed a strong desire to optimize lon
gevity, as she had young children that she wanted to 
see grow. This represented both her greatest desire and 
biggest fear. She also worked as teacher’s aide, and she 
wanted to be able to go back to work.

10.1.2. Surgery
The patient underwent an awake craniotomy with 
intraoperative language mapping and intraoperative 

Figure 11. Pre- and postoperative FLAIR MRIs from a 35-year-old right-handed female who presented with a first-time seizure 
demonstrating a supramarginal resection of a grade 3 IDH-mut astrocytoma. Yellow – preoperative tumor volume. Blue – postop
erative resection cavity.
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MRI to attempt a supramaximal resection of the lesion 
to functional boundaries, which appeared anatomically 
feasible based on preoperative functional imaging. 
The resection was taken at least one gyrus beyond 
the gross lesional boundaries in all directions (�1cm 
posteriorly) (Figure 11). The hippocampus was left 
intact to minimize the impact of surgery on verbal 
memory, as the mesial temporal structures were not 
radiographically involved. Intraoperatively, she began 
having trouble naming during the inferior-posterior 
portion of the resection while traversing the fusiform 
gyrus and the inferior longitudinal fasciculus (ILF). 
Where she began to have difficulty was deemed the 
posterior margin of the resection.

10.1.3. Postoperative course
Immediately postoperatively, the patient had a mod
erate-to-severe predominantly semantic aphasia that 
was most pronounced on postoperative days 1 and 
2. She began to significantly improve on postopera
tive day 3, and she was able to be discharged home 
with her family at that time. One month postopera
tively, the patient showed significant improvement 
in her language function, but she still had difficulty 
with verbal memory (i.e., she was fluent in conversa
tion and could name all presented visual objects but 
had difficulty explaining, for example, the subject of 
a podcast she had just listened to, per her family). 
Five months postoperatively, she and her family 
reported a full recovery of all language and cogni
tive symptoms, and repeat detailed neuropsycho
logical testing revealed only mild persistent deficits 
in memory and semantic naming that could only be 
elicited with rigorous testing. She was able to return 
to her original work and caring for her children full- 
time. The patient has since opted out of further 
neuropsychological testing, as neither she nor her 
family notices any persistent deficits in her daily life. 
Her pathology revealed a WHO grade 3 astrocytoma 
(IDH-mut, MGMT unmethylated). Consistent with 
current guidelines for WHO grade 3 astrocytomas, 
she underwent subsequent radiotherapy with con
current TMZ, followed by 6 cycles of adjuvant TMZ, 
and after which she declined further cycles. She is 
currently two-years out from diagnosis without evi
dence of progressive disease on her MRI.

10.1.4. Discussion & decision making
Data from Rossi et al. suggest that median progression 
free survivals for patients with grade 3 IDH-mut astrocy
tomas such as this who undergo subtotal resections is 
24.5 months, gross total resections (i.e., lesionectomies) 

is 35 months, and supratotal resections is >48 months 
[25]. In this case, therefore, the fundamental questions 
were, (1) are the temporary and/or permanent deficits 
expected from each of the resection possibilities worth 
the increase in survival to this individual, and (2) how 
well can we manage the risks of worse-than-expected 
deficits? As the tumor was located in the anterolateral 
dominant temporal lobe and the patient described a 
desire to be aggressive, our discussion, therefore, 
revolved around preparing the patient and her family 
for an awake craniotomy with temporary aphasia and 
relatively minor long-term deficits in verbal memory 
that would be unlikely to impact her life goals. Risks of 
worse functional outcomes were minimized here by 
performing the procedure awake, minimizing intraoper
ative arterial sacrifice, and avoiding a dominant-sided 
hippocampectomy.

10.2. Case 2: Initial subtotal resection of a left 
frontal oligodendroglioma (WHO grade 3)

10.2.1. Case presentation
A 35-year-old right-handed female presented after a 
first-time seizure and was found to have an expansile, 
predominantly FLAIR lesion encompassing much of 
the left anteromedial frontal lobe with subtle patchy 
areas of intrinsic contrast enhancement (Figure 12). 
The patient underwent a craniotomy for debulking of 
the mass at an outside hospital, and the pathology 
revealed an oligodendroglioma, IDH-mut, 1p/19q co- 
deleted, with increased mitotic activity (WHO grade 3). 
She was subsequently referred to neuro-oncology and 
radiation oncology for adjuvant treatment, who then 
referred her to our institution for consideration of fur
ther upfront resection prior to chemoradiation. Her 
neurological examination was grossly intact, and 
detailed neuropsychological testing revealed only mild 
deficits in executive functioning. Discussions with the 
patient revealed a proactive mindset, as well as a 
strong desire for longevity, especially to see her young 
child grow, with her biggest fear being a permanent 
change in her personality and forgetting how to inter
act with her child. She did express a desire not to 
undergo awake surgery if possible. Functional imaging 
revealed left-dominant language with the expressive 
speech centers remote from margins of the FLAIR 
abnormality.

10.2.2. Surgery
The patient underwent a second craniotomy under 
general anesthesia for supramarginal resection of the 
residual tumor with intraoperative motor mapping and 
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intraoperative MRI. The surgery incorporated the dorsal 
portion of the frontal pole, amputated the anterior cor
pus callosum just beyond the lesion, and extended just 
beyond the visible FLAIR margin in all directions with 
the closest margin being on the posterolateral edge 
(toward the anteromedial curve of superior longitudinal 
fasciculus [speech fibers]) (Figure 12).

10.2.3. Postoperative course
Immediately postoperatively, the patient was grossly 
neurologically intact with a slightly more blunted 
affect. At her two-week follow up, she and her mother 
noted some increased social withdrawal that was con
cerning to them both. By her 5-month follow up, they 
both reported that this had fully resolved, and neither 
noted any residual deficits. Repeat neuropsychological 
testing at 5-months noted continued mild deficits in 
executive function with a slight decrease in perform
ance in this domain after the second surgery, with sta
bility in all other domains. The patient was able to go 
back to work full-time running her own crafting busi
ness, and she was able to resume caring for and inter
acting normally with her family. Consistent with 
current guidelines for grade 3 oligodendrogliomas, 
she subsequently underwent radiotherapy followed by 
PCV for 6 cycles. She is currently 8-months out from 
her second surgery without evidence of disease 
progression.

10.2.4. Discussion & decision-making
Data from Rossi et al. suggest that progression-free 
survivals in patients with grade 3 IDH-mut, 1p19q 
codeleted oligodendrogliomas such as this who 
undergo subtotal resections is 23 months, gross total 
resections is 36 months, and supratotal resections is 
>48 months [25]. Importantly, the radiation oncologist 
who received the patient after the initial surgery rec
ognized that a maximal safe resection had not yet 
been achieved and referred the patient for a second 
surgical opinion. Given the dominant frontal lobe 
tumor location, the discussion with the patient 
revolved around expected temporary deficits from 
more extensive frontal lobe surgery, such as personal
ity changes, abulia, and decrease executive function
ing, and whether that merited the expected increase 
in longevity. To mitigate the possibility of these side 
effects becoming severe and permanent, the domin
ant caudate head (associated with abulia), inferior 
frontal gyri (associated with disinhibition), and lateral 
superior longitudinal fasciculus projections (associated 
with speech) were all protected. Notably, in this case, I 
felt it was surgically important to amputate the corpus 
callosum beyond the gross tumor margin to help pre
vent potential spread to the contralateral hemisphere 
(which would be functionally devastating), as anterior 
callosotomies are well-known to have minimal add
itional functional impacts. In a more ideal scenario, 
the patient would have been referred for specialized 

Figure 12. FLAIR MRIs from a 35-year-old right-handed female with a WHO grade 3 oligodendroglioma (IDH-mut, 1p/19q co- 
deleted) who underwent an initial craniotomy for debulking of the mass at an outside hospital and was subsequently referred for 
further surgical resection. According to data published by Rossi et al [25], extending her resection from subtotal (initial postop) to 
supramarginal (second postop) increased her median progression-free survival from 23 to >48 months.
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care upfront (i.e., prior to the index operation) to 
avoid having to undergo two operations.

10.3. Case 3: Initial subtotal resection of a right 
temporal glioblastoma (IDH-wt, WHO grade 4) 
with early recurrence

10.3.1. Case presentation
A 60-year-old right-handed male presented with 3- 
4 months of increased fatigue, nausea, headache, and 
unintended weight loss. A brain MRI revealed a 4.2 cm 
ring-enhancing anterolateral right temporal lobe mass 
with extensive surrounding vasogenic edema most 
concerning for a high-grade glioma (Figure 13). He 
underwent a craniotomy for debulking of the mass at 
an outside hospital where he received a RANO Class 
3 A resection [26]. Pathology revealed an IDH-wt, 
MGMT-unmethylated glioblastoma (WHO grade 4). 
This was followed by radiation with concurrent TMZ, 
and he elected not to use TTFields. On his 5-month 
surveillance MRI, substantial recurrence was noted, so 
he was referred to our center for consideration of fur
ther surgery. His neurological examination was grossly 
normal other than a partial left superior quadrantano
pia. A detailed neuropsychological evaluation revealed 
a mild deficit in visual learning and memory with 
otherwise normal cognition. Discussions with the 
patient revealed a desire to be aggressive and to 
maximize longevity, and the patient confirmed that a 
denser left visual field cut would not impair his quality 
of life or work as a sales consultant.

10.3.2. Surgery
The patient underwent a second craniotomy for exten
sion of the previous resection to include a full right 
temporal lobectomy (Figure 13). Pathology from the 
second operation confirmed tumor recurrence.

10.3.3. Postoperative course
Postoperatively, the patient was at his neurological 
baseline other than a denser left superior quadranta
nopia. The patient was discharged from the hospital 
on postoperative day 1 and resumed work within 
1 week of surgery. Due to a long travel burden and no 
noticeable neuropsychological deficits to the patient 
or his wife, he declined a five-month postoperative 
neuropsychological evaluation. He is now 5-months 
status post his second resection without evidence of a 
second recurrence despite electing to pursue only 
alternative treatment methods.

10.3.4. Discussion & decision-making
Data from Karschnia et al. suggest that the median 
overall survival in patients with grade 4 IDH-mut glio
blastomas such as this who undergo RANO class 3 
(subtotal) resections is 15 months, class 2 (gross or 
near total) resections is 19 months, and class 1 (supra
marginal) resections is 24 months [26]. Fortunately, in 
the non-dominant temporal lobe, functional deficits 
are known to be relatively minor and can include vis
ual field deficits and occasional temporarily increased 
depressive symptoms. Like Case 2, ideally this case 
should have been referred to a glioma center upfront, 
as evidence suggests that the delay in obtaining the 

Figure 13. T1-post contrast and FLAIR MRIs from a 60-year-old male with a right temporal glioblastoma (IDH-wt, WHO grade 4) 
who underwent an initial RANO Class 3 A resection at an outside hospital and experienced early perilesional recurrence, then sub
sequently underwent a temporal lobectomy. According to data published by Karschnia et al [26], extending his resection from a 
Class 3 (subtotal) to Class 1 (supramarginal) at his index operation would have extended his median overall survival by 9 months 
(15 to 24 months) when combined with standard radiation and TMZ.
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most aggressive, anatomically feasible resection likely 
affected his subsequent radiation plans and unneces
sarily decreased his life expectancy [58].

10.4. Case 4: Newly diagnosed right frontoparietal 
FLAIR lesion in a 71-year-old

10.4.1. Case presentation
A 71-year-old right-handed female presented with 
2 weeks of left hemibody and facial numbness, as well 
as left face and hand weakness. She was found to 
have an expansile predominantly FLAIR mass with 
patchy intrinsic contrast enhancement centered in the 
frontoparietal white matter and infiltrating the lateral 
pre- and postcentral gyri. Connectomic imaging 
revealed primary motor corticospinal/bulbar tracts run
ning through the superior and medial margins of the 
tumor (Figure 14). Additionally, ventral attention net
work hubs were straddling the lesion anteriorly and 
posteriorly, and they were connected via white matter 
along the medial margin of the lesion. Neurological 
examination revealed decreased sensation in the left 
hemibody and face, as well as 4/5 left hand intrinsic 
muscle strength and a mild left facial droop. 
Preoperative neuropsychological evaluation revealed 
moderate deficits in visuospatial reasoning and hand 
orientation tasks. Preoperative conversations with the 
patient revealed that she would prefer to avoid any 
worsening of both temporary and permanent deficits 
as much as possible, but that she wanted treatment 
to prolong her life. She was retired and independent 
in her activities of daily living prior to developing 
these symptoms, and she hoped to return to inde
pendence for as long as possible.

10.4.2. Surgery
At the patient’s request, she first underwent a stereo
tactic biopsy of the mass, which confirmed it to be a 
high-grade glioma. The patient then underwent an 
awake craniotomy with motor, sensory, and hemine
glect monitoring, as well as intraoperative MRI. The 
resection was taken until the corticospinal tracts 
could be stimulated with bipolar stimulation at 2 mA 
(60 Hz, 1 ms) at the medial and superior resection 
cavity margins, suggesting immediate proximity [97]. 
Although the intraoperative MRI demonstrated 
residual FLAIR signal in these areas, further resection 
was not pursued (Figure 14).

10.4.3. Postoperative course
Pathology confirmed this to be a diffuse pediatric-type 
high-grade glioma, H3-wildtype and IDH-wildtype, 
MGMT-met, WHO grade 4. Functionally, the patient 
was stable postoperatively. She was discharged to 
inpatient rehabilitation for 10 days prior to returning 
home. She underwent radiation with concurrent TMZ, 
followed by adjuvant TMZ. Despite multiple medical 
comorbidities including morbid obesity, she survived 
for 18-months after her surgery.

10.4.4. Discussion & decision-making
While detailed survival data does not exist for this spe
cific tumor type related to different extents of resec
tion to my knowledge, the same principles of maximal 
safe resection apply. In this case, because the mass 
infiltrated the corticospinal tracts, the tumor was not 
anatomically amenable to a supramarginal, or even a 
gross total, resection. To minimize the chance of wor
sening neurological deficits from surgery, which would 

Figure 14. FLAIR MRIs from a 70-year-old female with a right frontoparietal diffuse pediatric-type high-grade glioma, H3-wildtype 
and IDH-wildtype, MGMT-met, WHO grade 4, who underwent a maximal safe resection of her lesion. The infiltration of the tumor 
into the corticospinal tracts (colorful lines) prevented a gross total resection in this case.
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both negate any oncological benefits of cytoreduction 
and diminish her remaining quality of life, the surgery 
was performed awake to monitor for early signs of 
deficits known to be associated with the right inferior 
parietal lobe, such as hemineglect. Fortunately, this 
was not encountered, and about 80% of the tumor 
mass was able to be removed before reaching critical 
margins.

11. Remaining questions and future directions

Despite all we know about outcomes in supramarginal 
glioma surgery, there are many clinically important 
questions that remain unanswered. For example: (1) if 
one margin of the tumor abuts functional tissue, is 
there any benefit to supramarginal resections of the 
other margins?, and (2) how large does a supramarginal 
resection need to extend beyond the lesional borders 
to obtain maximum benefit, especially in low-grade gli
oma surgery? Toward answering these questions, sev
eral groups are currently examining advanced imaging 
techniques to predict areas of recurrence and differenti
ate edema from infiltrative tumor with promising but 
preliminary results [105–110]. In the functional and 
cognitive realms, while we know that many patients 
undergoing aggressive surgeries experience cognitive 
declines that significantly recover with time, predicting 
such outcomes on an individual basis is still a chal
lenge. What remains undefined is a precise threshold of 
injury (i.e., percent of network resected) for which defi
cits in these domains might be permanent (short of 
bilateral involvement). The translation of newer insights 
from network neuroscience into clinical practice is pro
viding hope for more precise surgical planning and pre
operative counseling [93]. Along with these insights 
may also come the development of novel neuromodu
lation techniques that can (1) preoperatively induce 
neuroplasticity to remap critical functions away from 
invasive tumors to improve extent of resection while 
protecting function, and (2) enhance postoperative 
functional recovery for those who do not naturally 
recover on their own [111–113]. My lab is particularly 
interested in this area, as we are looking into whether 
long-term neuropsychological deficits may be associ
ated with persistent abnormal functional connectivity 
of the remaining normal brain.

12. Limitations

The intent of this manuscript is to provide a useful 
distillation of the vast amount of recent surgical gli
oma evidence into guidance for treating physicians to 

use during the critical stage of preoperative surgical 
planning and patient counseling for patients with 
newly discovered diffuse gliomas. It is important to 
recognize that this is a perspective piece written by a 
single neurosurgeon who has trained and worked at 
only at academic tertiary care centers within the US, 
and, therefore, it does not encompass all perspectives. 
However, this analysis does incorporate data from 
around the world and a multitude of clinical care set
tings. These recommendations represent a good-faith 
assessment of currently available data, all of which 
can change in any moment with a single discovery. 
Additionally, this narrative review focuses on surgical 
factors for newly diagnosed tumors and does not 
delve deeply into non-surgical treatment modalities, 
management at the time of tumor recurrence, non- 
modifiable risk factors of disease, or advanced imaging 
techniques [114,115].

One of the challenges in making evidence-based rec
ommendations for clinical applications in glioma surgery 
is that clinical problems present prospectively and indi
vidually, whereas most data guiding these decisions are 
retrospective and population-based. For example, in 
most of the studies reviewed above, differences in a pri
ori surgical approaches are not assessed, as the sur
geon(s) set out for a goal of maximal safe resection in 
each case. Therefore, caution needs to be exercised in 
extrapolating from their results to different a priori 
approaches (as I do in Figure 10). However, the validity 
of this extrapolation is supported by several high-quality 
studies that did analyze different a priori surgical 
approaches in similar patient populations across different 
hospital settings and produced consistent results [3,55]. 
Additionally, the uniformity of the results across the 
many large, retrospective case series that span multiple 
settings, countries, and treatment teams with a notable 
paucity of contradictory evidence further supports the 
appropriate extrapolation of these findings.

The lack of prospective studies in glioma surgery is 
a topic that is widely discussed and is due to many 
factors that are difficult to overcome, including: (1) 
heterogeneity of tumor characteristics, presentations, 
and demographics; (2) relative rarity of gliomas com
pared to other diseases; (3) difficulty in recruiting 
patients and treating physicians willing to randomize 
their surgical approaches; and (4) lack of equipoise in 
data supporting alternative approaches to upfront 
maximal safe resections. While an argument might be 
made that a lack of prospective data means there is 
not enough evidence to recommend one approach 
over another, the perspective outlined in this piece 
reflects the counterargument: that we do not have 
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prospective data because the data we do have is so 
strong and consistent with the experiences of high- 
volume centers that any prospective study randomiz
ing an alternative approach would require an incred
ibly high bar to ethically justify. However, despite 
these limitations, there is one such study underway in 
glioblastomas that is designed to randomly and pro
spectively evaluate the effect of a priori attempts at 
supratotal versus gross total resections in anatomically 
feasible cases, which is a laudable undertaking [116].

13. Conclusions

While the mantra of “maximal safe resection” remains 
the standard surgical refrain in glioma surgery, in prac
tice, this phrase is translated into one of three main 
conceptual approaches: (1) the most conservative 
approach of “debulking” the tumor, where the sur
geon operates mainly within the grossly abnormal 
tumor margins to reduce its mass effect and the 
amount of viable tumor cells (i.e., cytoreduction) while 
minimizing the potential for injury to normal brain; (2) 
the very common approach of performing a 
“lesionectomy,” or resecting the tumor to its radio
graphically and/or grossly abnormal margins, in an 
attempt to achieve a gross total resection while mini
mizing injury to potentially functional surrounding 
brain; and (3) the functional, or “supramarginal,” 
approach, where brain is resected to functional bor
ders irrespective of gross or radiographical tumor 
boundaries, which can lead to any extent of resection 
(up to lobectomies) based on functional anatomy. 
While all three approaches attempt to prioritize long- 
term functional preservation over aggressive resection, 
a plethora of recent data now strongly supports the 
functional approach as superior, moving the field 
toward a consensus that this should be the first-line 
approach when feasible. The counterintuitive finding 
that resecting more brain upfront can result in equiva
lent-or-better long-term oncological and functional 
outcomes in many cases underscores the ominous 
natural history of gliomas, and it suggests that the 
intent to “do no harm” with more conservate 
approaches may not always match the outcome. In 
fact, the most recent data suggests that extent of 
resection is the most impactful modifiable survival 
risk-factor in many diffuse glioma cases. As the field 
moves away from considering simple debulking of dif
fuse gliomas to be within standard of care, it follows 
that there are no longer “simple” surgical glioma 
cases. In this light, current data strongly support 
upfront referrals to specialized glioma centers for all 

diffuse gliomas to maximize patient outcomes. 
Choosing the appropriate surgical approach for any 
individual case should be informed through the patient- 
physician interaction and can be individualized for each 
patient based on their approach to their own health
care, goals, hopes, and fears. Future directions for the 
field will be to develop techniques to more reliably pre
dict long-term neuropsychological sequelae for different 
surgical boundaries on an individual basis, as well as to 
develop neuromodulation techniques to improve neuro
logical recovery in cognitive and behavioral domains for 
those who may not recover on their own.

14. Article highlights

� Over the past 5-10 years, evidence has consistently 
and convincingly bolstered the case that supramar
ginal resections offer a substantial survival benefit 
for patients with both higher and lower grade dif
fuse gliomas, moving the field toward a consensus 
that supramarginal resections should be the first- 
line surgical approach when possible

� As the field moves away from considering simple 
debulking of diffuse gliomas to be within standard 
of care, it follows that there are no longer “simple” 
surgical glioma cases, and current data strongly 
support upfront referrals to specialized glioma cen
ters for all diffuse gliomas prior to their index sur
gery to maximize patient outcomes

� Extent of resection is now recognized as the most 
impactful modifiable risk factor for survival (when 
combined with standard adjuvant treatment) in 
many diffuse glioma cases

� Choosing the appropriate surgical approach for each 
case should be informed through the patient- 
physician interaction. In ideal scenarios, surgeries 
can be individually tailored by applying relevant 
functional-anatomical principles to the patient’s pre
ferred healthcare approach, goals, hopes, and fears.

� Future directions for the field will be to develop 
techniques to more reliably predict long-term neuro
psychological sequelae for different surgical bounda
ries on an individual basis, as well as to develop 
neuromodulation techniques to improve neuro
logical recovery in cognitive and behavioral domains 
for those who do not recover on their own.
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