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ABSTRACT

Whether to surgically resect a margin of grossly normal appearing brain around anatomically
amenable diffuse gliomas (i.e., perform a supratotal, supramarginal, or supramaximal resection)
has been controversial. Over the past 5-10 years, however, evidence published by multiple inde-
pendent groups has established a substantial survival benefit to this approach, moving the field
towards a consensus that supramarginal resections should be offered when possible. However,
many practitioners remain hesitant to offer supratotal resections due to concerns for variable
neuropsychological outcomes and a mindset of “first, do no harm.” Unfortunately, and perhaps
counterintuitively, available data also suggest that opting for more conservative surgical
approaches when more aggressive resections are possible may result in both suboptimal long-
term functional and survival outcomes. To explore this complex and actively evolving issue,
here | review evidence surrounding the multidimensional clinical impacts of supramarginal
resections across all diffuse glioma subtypes. | then evaluate what is known about anatomical-
functional relationships subserving cognition, behavior, and mood regulation, and | examine
ethical considerations that arise when counseling patients at the difficult time of diagnosis. |
then conclude with a set of case examples that demonstrate how the principles explored in this
review can be applied in real-world situations to optimize, individualize, and humanize onco-
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logical and functional outcomes.

1. Introduction

Adult diffuse gliomas (World Health Organization
[WHO] grades 2-4) are incurable primary brain tumors
that cause substantial morbidity [1,2]. Although we
learn more about genetic and molecular markers of
these tumors every day, current data strongly support
the need for early, maximal safe surgical resections in
virtually all glioma subtypes [3-7]. Amongst lesions that
are anatomically amenable to complete radiographical
resection, whether neurosurgeons should also resect a
margin of otherwise radiographically and/or grossly
normal appearing brain around the lesion (i.e., a supra-
total, supramarginal, or supramaximal resection) histor-
ically has been controversial [8-12]. Over the past 5-
10 years, however, iterative evidence published by mul-
tiple independent groups has consistently bolstered the
case that supramarginal resections offer a substantial
survival benefit for patients with both higher and lower

grade lesions, moving the field toward a consensus that
supramarginal resections should be the first-line surgi-
cal approach when possible [5,10,11,13-27]. However,
many practitioners who treat glioma patients remain
hesitant to offer supratotal resections and instead con-
tinue to opt for lesionectomies, or removal of the gross
tumor only. The reluctance to perform a more aggres-
sive surgery involving otherwise grossly normal-
appearing brain is a multifaceted issue that can be
rooted in (1) a desire to “do no harm;” (2) a concern for
unpredictable cognitive, personality, and/or behavioral
changes; and/or (3) a mistrust or misunderstanding of
published data, among other factors. Unfortunately,
and perhaps counterintuitively, available data also sug-
gest that when more conservative surgical approaches
are taken in tumors that are anatomically amenable to
aggressive resections, both long-term functional and
survival outcomes may be suboptimal [21,27,28]. To
explore this complex and actively evolving issue, here |

CONTACT Max O. Krucoff @ maxkrucoff@gmail.com @ Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article
has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.


http://crossmark.crossref.org/dialog/?doi=10.1080/20450907.2025.2571341&domain=pdf&date_stamp=2025-10-27
http://orcid.org/0000-0002-9577-8944
http://creativecommons.org/licenses/by-nc/4.0/
http://www.tandfonline.com
https://doi.org/10.1080/20450907.2025.2571341

2 M. O. KRUCOFF

review published evidence surrounding the multidi-
mensional clinical impacts of supramaximal resections,
and | attempt to distill the plethora of information into
tangible, applicable surgical principles to aid in a priori
surgical decision making. In doing so, | evaluate what
we know about anatomical-functional relationships sub-
serving cognition and behavioral regulation, and |
examine active ethical considerations that arise when
counseling patients at the difficult time of diagnosis. |
then present several real-world case examples to dem-
onstrate how the principles explored above can be
applied to individual cases, and | conclude with a brief
look into some of the remaining unanswered questions
and future directions in glioma surgery.

2. Oncological goals of glioma surgery

Diffuse gliomas are, by definition, non-curable diseases
that require multidisciplinary treatment [29-33]. Years
of cumulative data support beginning treatment with
surgical resection, and a strong relationship has been
established between expected survival and residual
postoperative tumor volumes (i.e., extents of resection)
for virtually all diffuse glioma subtypes [3,6,7,19,34-40].
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Historically, oncological goals of glioma surgery have
included: (1) procurement of tissue for pathological
confirmation and molecular profiling, (2) cytoreduction
(i.e, minimizing the number of cancer cells), and (3)
reduction of lesional mass effect, all while preserving
neurological function [41]. Newer insights into the
nature of gliomas, however, have somewhat broadened
these goals, as we now know diffuse gliomas behave
less like local tumor masses (e.g., cerebral metastases,
cavernomas, or grade 1 gliomas) and more like infiltra-
tive diseases that (a) likely originate from subventricular
zones, (b) spread either via radial, ontogenetic, or white
matter tracts, and (c) disseminate well beyond gross
lesional margins [12,42-47]. We also now know that gli-
oma cells interact directly with neurons to form func-
tional “cancer networks” whose edges, if left in place
after surgery, can lead to more rapid local recurrence
[44,48]. With these insights in mind, there has been a
conceptual shift away from approaching glioma surgery
as a “debulking” or “lesionectomy” procedure and more
toward a “functional-anatomical amputation” of the
affected brain region that additionally incorporates
brain beyond the gross lesional boundaries when safe
to do so (Figure 1) [8,10,28,44,49]. This idea is supported

At recurrence

Figure 1. lllustration by Yoo et al. showing the conceptual difference between gross total and supratotal surgical approaches and
their resultant recurrence patterns [18]. While gross total resection removes the tumor bulk, residual infiltrative cells lead to local
recurrence more quickly than with supratotal resections. Recurrence in supratotal resections tend to happen later and more fre-
quently at distant sites. Surgically, supratotal resections aim for functional-anatomical boundaries beyond gross tumor, ideally
incorporating microscopic infiltrating tumor edges into the resection. This often delays recurrence until the mutated neural stem
cells generate further tumor cells that spread via available white matter tracts or ontogenetic pathways. CE — contrast enhancing,
NCE - non-contrast enhancing, GBM - glioblastoma, GTR — gross total resection, SupTR — supratotal resection. Reproduced with

permission from Yoo et al [18].



by data that demonstrate recurrences after supratotal
resections tend to happen later and more often at ana-
tomically distant sites (i.e., >2cm from the resection
cavity margin) when compared to gross or subtotal
resections, which tend to recur sooner and more often
perilesionally [18,50]. Practically speaking, treating uni-
lobar lesions (especially within the frontal and non-
dominant temporal lobes) with a functional-
amputational approach often results in a complete or
partial lobectomy (Figure 2) [14]. However, if a tumor
infiltrates critical functional tissue, standard practice still
dictates that the resection is stopped at a subtotal mar-
gin to prioritize maintenance of function over extent of
resection [28,41,51]. This practice is consistent with data
showing that new, permanent motor or language defi-
cits acquired in surgery can negate the oncological sur-
vival benefit gained from the operation [27,52-54].

In sum, cumulative data from the past 10years has
augmented the oncological goals of glioma surgery
toward amputating the “cancer network” by resecting
as much of a margin beyond gross tumor as safely
possible. Seeking functional margins of the brain as
resection borders rather than gross tumor boundaries
has repeatedly and reproducibly outperformed clas-
sical lesionectomies and debulking surgeries in virtu-
ally every oncological and functional domain for
virtually every glioma subtype across time, institu-
tions, and countries [8,10,16,22,25-27,41,55,56]. The
consistency and breadth of this data has pushed the
field toward recommending supramarginal resections
as the first-line approach for all diffuse glioma sub-
types when feasible at the time of diagnosis [8,27].
This goal subsequently implies all diffuse gliomas
should be referred to high-volume brain tumor cen-
ters prior to their index operations, as supramarginal
resections require subspecialized training and careful,
longitudinal evaluations of neurological function
[57,58]. In other words, there is no longer such an
entity as a “simple” surgical glioma [57,58].

3. Radiographical evaluation of supramarginal
extent of resection

Radiographically evaluating extent of supramarginal
resections is an evolving field. Notably, the terms supra-
marginal, supramaximal, and supratotal are used inter-
changeably throughout the literature (and in this review)
without widely agreed-upon definitions. Supramarginal
resections tend to be quantified differently for contrast
versus non-contrast enhancing lesions [26,34,59,60]. In
lower and intermediate grade gliomas that are predom-
inantly non-enhancing, T2 Fluid-Attenuated Inversion
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Figure 2. Examples of supratotal resections of diffuse gliomas
published throughout literature. No consensus exists on how
much of a margin needs to be resected beyond the lesion for
maximum oncological benefit, but common practice includes
taking resections to functional margins up to unilateral lobec-
tomies when possible. Reproduced with permission from vari-
ous sources [16,18,20,24,28].
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Recovery (FLAIR) lesions, supramarginal resections have
been defined by both (1) the absence of residual T2
FLAIR signal and (2) a larger postoperative resection cav-
ity than preoperative lesional volume [20,25]. Ideally,
extent of resection in non-enhancing lesions is evaluated
either immediately postoperatively (preferably even with
an intraoperative MRI) or 3-months postoperatively, as
confounding FLAIR signal emerges and wanes between
those timepoints due to evolving edema, retraction
injury, and ischemia [34,61]. For contrast-enhancing
masses, on the other hand, supramarginal resections
tend to be defined by (1) a complete resection of the
contrast-enhancing mass plus (2) a significant resection
of the surrounding FLAIR [9,17,22,23,26,62-64]. Despite
unresolved questions surrounding how much FLAIR
needs to be resected for maximal oncological benefit,
there does appear to be a clear trend toward more
aggressive resections being associated with longer sur-
vival [23,26,27,64]. While there is minimal data expressly
evaluating the effect of resection beyond FLAIR margins
in contrast-enhancing lesions, partial or complete ana-
tomical lobectomies to functional borders have been
reported and seem to be associated with the best sur-
vival outcomes when possible (Figure 2) [14,16].

In 2022, the Response Assessment in Neuro-Oncology
(RANO) resect group, an international, multidisciplinary
group that aims to standardize radiographical glioma
assessments, published and validated a new classification
system for resections in WHO-grade 4 IDH-wt glioblasto-
mas (Figure 3) [26]. In this schema, Class 1 resections
represent supramarginal resections and are defined by
(1) no residual contrast enhancing (CE) tumor and (2)
<5cm? of residual non-contrast enhancing (nCE) tumor.
Class 2 resections are subdivided into Class 2a, formerly
gross total resections (i.e,, no residual CE but >5cm? of
residual nCE), and Class 2b, formerly near total resections
(e, <1cm? of residual CE). Class 3 represents subtotal
resections and are also stratified into 3a/3b based on
residual CE tumor volume, whereas Class 4 cases are
biopsy only. While this classification scheme is likely to
become the new standard for evaluating contrast-
enhancing glioma resections, no such consensus evalu-
ation system currently exists for supramarginal resections
in primarily FLAIR lesions, to my knowledge [65].

4, Survival outcomes

Evidence from around the globe, especially over the
past 10years, consistently and invariably supports a
significant survival advantage in people with all types
of diffuse gliomas who undergo supratotal resections
[5,9,10,13-26,28,33,62-64,66]. This relationship holds

up as a strong, independent, modifiable predictor of
survival, even in the age of molecular and genetic
diagnosis. For example, the RANO resect group vali-
dated their new classification system for extent of
resection in 744 cases of WHO-grade 4 IDH-wt glio-
blastomas treated with surgical resection followed by
radiation and temozolamide (TMZ) (i.e., standard
Stupp protocol) [26]. They found statistically significant
differences in overall survival based on extent of
resection classification with median overall survivals of
24, 19, and 15 months for Class 1, 2, and 3 resections,
respectively (Figure 4) [26]. This finding makes extent
of resection the most impactful, modifiable risk factor
for survival in IDH-wt glioblastoma, as it implies
extending resections from Class 3 to Class 1 provides
a shift of 9months in the median survival curve. As a
reference, the impact of TMZ plus Tumor-Treating
Fields (i.e., alternating transcranial currents), which
represents the current standard of care for adjuvant
GBM treatment, has been shown to increase survival
by about 8 months when added to radiation [29,30].
More recently, another group re-validated the prog-
nostic impact of this classification scheme on 580 glio-
blastoma patients and found that patients who
underwent RANO Class 1 resections had a median
overall survivals of 35.6 months (95% Cl: 30.9-40.4),
whereas patients who underwent non-Class 1 resec-
tions survived only a median of 13.9months (95% ClI:
13.0-14.7; p <0.001), suggesting an even larger poten-
tial influence on survival [22].

In IDH-mutant intermediate grade gliomas (WHO
grades 2 and 3), Rossi et al. published a series of 319
such cases who had undergone craniotomies for surgi-
cal resection [25]. While controlling for molecular
genotype, they noted profound progression-free,
malignant progression-free, and overall survival advan-
tages in patients who underwent supratotal resections
versus gross total and subtotal resections (median over-
all survivals not-reached at 92 months versus 29 months
and 27.5months, respectively) (Figure 5) [25]. This rela-
tionship persisted when evaluating each molecular and
histopathological subgroup of IDH-mut gliomas individu-
ally. These large case series represent a small fraction of
the published data and are each bolstered by innumer-
able others that have replicated and/or produced similar
findings, as well as multiple systematic reviews and
meta-analyses that further establish extent of resection,
up to and including supratotal resections, as the most
impactful modifiable predictor of survival when com-
bined with standard adjuvant treatment protocols.

Another underappreciated but critical modifiable pre-
dictor of survival is the postoperative volume of
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RANO categories for extent of resection in glioblastoma
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Figure 3. New RANO Resect classification system for evaluating extent of resection in IDH-wt glioblastomas. In this system, supra-
maximal resections are Class 1, gross total resections are Class 2A, near total resections are Class 2B, subtotal resections are Class
3A, and debulking operations are Class 3B. CE — contrast enhancement, nCE — non-contrast enhancement. Reproduced with per-
mission from Karschnia et al [26].
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Figure 4. Progression-free and overall survival curves for grade 4 IDH-wt glioblastomas separated by new RANO Resect extent of
resection classifications (see Figure 3). The difference in median overall survival of 9-months between Class 1 and Class 3 resec-
tions makes extent of resection the most impactful modifiable risk factor for this subgroup. mPFS - median progression-free sur-
vival, mOS - median overall survival. Reproduced with permission from by Karschnia et al [26].
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Figure 5. Progression-free survival curves for grade 2-3 IDH-mut diffuse gliomas separated by extent of resection. There is a pro-
found progression-free survival advantage at 100 months postoperatively when a supratotal resection is achieved. EOR - Extent of
Resection. P — partial, S — subtotal, T — gross total, ST — supratotal. Reproduced with permission from Rossi et al [25].
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surgically-induced brain ischemia, as several groups have
demonstrated that higher volumes of postoperative
infarction predict worse survival even independently
from other known risk factors, such as new neurological
deficits (Figure 6) [67-70]. A leading hypothesis to
explain this phenomenon is that postoperative infarction
may become a nidus for hypoxia-induced tumor prolifer-
ation, as more aggressive patterns of recurrence, more
diffuse disease burden, and shorter survivals have all
been documented in cases with larger ischemic volumes
[68-70]. The removal of otherwise residual ischemic
brain in supratotal resections may also partially contrib-
ute to its known oncological benefit, but this has yet to
be established.

5. Postoperative chemo-radiation depends on
extent of resection

Standard of care for adult diffuse glioma treatment
involves a multidisciplinary approach, which, in most
cases, includes radiation and chemotherapy either
immediately after the index surgery or upon recur-
rence [31,32,57]. Therefore, how radiation and chemo-
therapy factor into long-term oncological and
functional outcomes needs to be incorporated into
upfront surgical decision making. As explored above,
when planning an operation, treating physicians need
to account for both the potential downside of delay-
ing radiation in higher grade lesions because of

0.8

0.6

Probability of survival

0.2

0.0

functional status decline from surgery, as well as the
potential upside of negating the need for upfront radi-
ation in cases of completely resected lower grade
tumors [27,31,32,71]. Supporting this calculus is recent
evidence suggesting that biopsying anatomically
resectable high-grade gliomas prior to definitive sur-
gery has a negative impact on survival, likely due to a
delay in the initiation of chemoradiation from the
time of diagnosis [58]. In lower-grade gliomas, current
societal guidelines acknowledge the impact of extent
of resection up to gross total resection on the need
for chemo-radiation after the index surgery, suggest-
ing that initial observation is reasonable for lower-
grade lesions that are gross totally resected (Figure 7)
[32,71]. Because early chemo-radiation may result in
well-known, long-term side effects such as cognitive
decline, severe fatigue, pancytopenia, and fertility
complications, delaying its initiation represents poten-
tial long-term gains in quality of life, especially in
younger individuals with longer natural life expectan-
cies. In addition to quality-of-life benefits and compli-
cation avoidance, there is also some oncological
benefit to delaying radiation, as lower grade gliomas
that recur after chemo-radiation are known to have
higher rates of genetic mutations that portend worse
prognoses, such as CDKN2A homozygous deletions,
than those that recur after surgery alone [72,73]. With
this in mind, many high-volume centers focus on max-
imizing overall instead of progression-free survival,

Overall survival by volume of post-operative ischemia

-

—— Small
Medium
— large

p=.011

Months

Figure 6. Overall survival curves for high-grade gliomas separated by volume of postoperative ischemic brain. The separation of
these curves was found to be independent of new neurological deficit and other molecular markers, suggesting volume of infarc-
tion may be an independent risk factor for survival. Left image: Categories of sizes of postoperative ischemia, B — none/minimal,
C - small, D - medium, E - large. Right image: Associated survival curves for each category. Reproduced with permission from

Aaronson et al [67].
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Figure 7. Current Society for Neuro-Oncology (SNO) guidelines
for treatment after index surgery. For IDH-mut, WHO grade 2
gliomas, postoperative observation is recommended when at
least a gross total resection (GTR) is achieved, whereas adjuvant
chemo-radiation is recommended for subtotal resections (STR).
Reproduced with permission from Miller et al [32].

especially in younger patients with grade 2 tumors, by
trying to delay the initiation of chemo-radiation in at-
least gross totally resected tumors without evidence
of early recurrence on surveillance MRIs. The differen-
tial impact of supra- versus gross total resections on
adjuvant treatment planning, however, has not yet
been incorporated into societal guidelines and awaits
more long-term data, especially for grade 3 tumors.
Furthermore, how supratotal resections impact post-
operative radiation planning (i.e.,, dose lines) around
variably sized resection cavities is a burgeoning topic
of great debate.

6. Cognitive, mood, and behavioral outcomes

Given the emerging clarity of data supporting survival
benefits in supratotal glioma resection, what might
account for the slow adoption of this technique into
real-world practice [8]? While the answer has many fac-
ets, a common theme is the physician’s desire to “do
no harm,” along with the fear of inducing unpredict-
able changes in personality, cognition, or behavioral
regulation, by resecting more brain than otherwise
might be necessary. Supporting these fears is a
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renewed awareness of “silently eloquent” areas of the
brain, or the idea that no part of the brain is truly non-
functional [74]. This challenge requires us to address
the following critical question: what do we know about
anatomical-functional relationships subserving cogni-
tive, mood, and behavioral domains?

While there is much yet to be learned about the
structural and functional anatomical relationships that
subserve cognition, mood, and behavioral regulation,
there are general principles that have long guided surgi-
cal planning and patient counseling. Practically speak-
ing, concerns about neuropsychological outcomes
become most prevalent in frontal, temporal, and limbic-
area tumors, where supramarginal resections are most
frequently considered. It is critical to recognize that
functional-anatomical relationships can have asymmet-
rical representations across the cerebral hemispheres,
such as language, which can define which side we con-
sider the “dominant” hemisphere [75-77]. Known
anatomical-functional associations include frontal lobe
injury and abulia (particularly when involving the anter-
ior cingulate cortex and/or dominant caudate) [78-80],
non-dominant temporal lobectomies and depressive
symptoms (most well documented in the epilepsy litera-
ture) [81,82], non-dominant parietal lobe tumors with
inattention and hemineglect [77,83,84], and limbic-area
tumors with impaired mood regulation, attention, and
verbal memory [77,85,86]. Recently, Ng et al. reported
results from a detailed lesion-symptom mapping study
that analyzed resected anatomy and non-recovered
neuropsychological domains at 3-months in a cohort of
400 patients with diffuse low-grade gliomas who under-
went awake surgery with cognitive mapping. They
found a lack of recovery in picture naming linked to the
left inferior temporal gyrus and inferior longitudinal fas-
ciculus, semantic fluency linked to the left precuneus/
posterior cingulate gyrus, phonological fluency linked to
the left dorsomedial frontal cortex and frontal aslant
tract, and spatial exploration linked to the right dorso-
medial prefrontal cortex. Additionally, their data suggest
that resections involving the left uncinate fasciculus, left
corticostriatal tract, anterior corpus callosum, hippocam-
pus, parahippocampus, and right frontal-mesial areas
beyond the tumor margins were associated with a less
pronounced recovery of each associated function [87].
On the other hand, Rossi et al. reported 1-year postoper-
ative results in a similar cohort of 100 patients with low
grade gliomas also underwent awake resections with
cognitive mapping [28]. Of these cases, 60 underwent
supratotal resections whereas 40 underwent gross total
resections. Detailed neuropsychological evaluations dis-
played significant immediate postoperative cognitive
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declines in both supra- and gross total resection groups
that were more pronounced in the supratotal group in
most domains; however, both groups significantly recov-
ered their deficits by 3-months such that no significant
difference was measurable between the groups at 3-

months or 1-year (Figure 8). Other notable outcomes
from the Rossi et al. series include better long-term seiz-
ure control in the supratotal resection group, and a
higher deficit and complication rate in the subtotal
resection group [28].
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Figure 8. Neuropsychological outcomes after supratotal versus gross total resections of lower grade gliomas are roughly equiva-
lent at 3-months and 1-year postoperatively. Higher scores indicate a higher probably of a deficit. Reproduced with permissiron

from Rossi et al [28].



As contralesional homotopic brain regions are
known to be critical for recovery, surgeons almost uni-
versally will not operate on truly bifrontal or biparietal
lesions with symmetrical homotopic involvement. This
means patients with so-called “butterfly” gliomas that
cross the corpus collosum to involve symmetrical par-
enchyma of both hemispheres are typically not offered
surgical resections [88]. However, as our knowledge of
network-based neuroanatomy grows, several groups
have challenged the dogma that all butterfly gliomas
cannot be resected without poor neuropsychological
outcomes [89-91]. For example, one group provided
preliminary evidence that maintenance of the default
mode network’s integrity (i.e., through its connections
to the anterior cingulate gyrus) may be the key differ-
entiating factor in acceptable versus poor postopera-
tive cognitive outcomes in these cases [92]. For a
more detailed look into how network neuroscience is
starting to be applied to glioma surgery, we refer the
readers to our recent review [93].

While this summary of anatomical-functional associa-
tions is overly simplistic and notoriously heterogenous
across individuals, it highlights the known stakes of
intra-axial tumor resections, as some of the most feared
outcomes involve permanent changes to cognition and
personality [93,94]. Unfortunately, it is important to also
note that, perhaps counterintuitively, data suggest that
long term rates of neurological deficits are higher in
cases of subtotal compared to supratotal resections,
underscoring the relentless natural history of residual
tumor that eventually leads to a deterioration of the
neurological function the surgeon was hoping to pre-
serve through a more limited resection [21,28]. For
patients with diffuse gliomas, the difficult reality is that
no matter the surgical approach, complete neuropsycho-
logical preservation may not be possible in every case.

7. Intraoperative functional brain mapping

Modern intraoperative brain mapping can provide
highly predictable motor and language outcomes in
the hands of specially trained neurosurgical oncologists
[54-56,95-97]. For example, integrity of the primary
motor system can be reliably monitored in real-time
under total intravenous anesthesia (TIVA) using continu-
ous motor evoke potentials (cMEP) and subcortical
monopolar stimulation [97]. Clinical data suggests that
cases with stable MEPs and a subcortical stimulation
thresholds of at least 5mA result in no permanent,
surgically acquired motor deficits at 3-months postoper-
atively with near 100% accuracy (when excluding extra-
operative causes) [95]. Alternatively, the gold standard
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for monitoring language, sensory, and higher-order
mental processes is an awake craniotomy with real-
time intraoperative testing [56]. During these proce-
dures, bipolar stimulation is typically applied to the
cortex or white matter while the patient performs a
task, like picture naming, to test each brain site prior to
and during its resection. While awake craniotomies
used to be first line for motor mapping as well, there
has been a general trend toward performing non-
language, motor-only cases asleep to better differenti-
ate potentially permanent deficits due to corticospinal
tract injury from temporary deficits due to supplemen-
tal motor area (SMA) syndrome (a well-known, tempor-
ary hemiparesis that results from injury to the posterior
superior frontal gyrus). In other words, while corticospi-
nal tract injury versus SMA syndrome cannot be reliably
differentiated based on awake clinical testing alone,
they can be differentiated with asleep MEPs and
monopolar white matter stimulation. Therefore, asleep
motor mapping can permit more aggressive resections
into the posterior superior frontal gyrus than awake
craniotomies with a good assurance of recovery [97].
Whether cognitive and behavioral functions can be
meaningfully and consistently mapped intraoperatively
is controversial [98]. While some groups advocate for
“a la carte” mapping of higher-order functions that are
critical to an individual patient’s a priori stated quality-
of-life goals [99], this is not widely adopted due to (1)
practical constraints of intraoperative time, exposure,
and expertise; (2) concerns that many cognitive and
behavioral functions are not focally localizable; (3)
knowledge that these functions can be highly context
specific, and (4) awareness that, like SMA syndrome,
many surgically-induced cognitive deficits are tempor-
ary (Figure 8) [28]. A lot of work is being done to bet-
ter predict long-term neuropsychological outcomes
from different potential extents of resection, much of
which is fueled by emerging knowledge generated by
the human connectome project (HCP) on large-scale
brain network function [93,100,101]. However, no con-
sistent, usable, clinically validated data currently exists
to guide treating physicians on individual-level cogni-
tive or behavioral outcomes, to my knowledge.
Ultimately, outside of the general guiding principles
and population-level data explored above, our collective
ability to predict and map cognitive outcomes on an indi-
vidual patient basis remains an area of needed innovation.
However, it is widely accepted that the clinical experience
of the treating team is critical to achieving the most per-
sonalized outcomes [8,55]. In this light, there has been a
recent trend toward recommending that all glioma cases
be referred to high volume tertiary care centers with
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multidisciplinary neurosurgical oncology teams that can
offer this expertise [8,55].

8. Integrating the oncological and functional
impacts of surgery by WHO grade

Recently, the RANO resect group published a detailed
review integrating both positive and negative oncological
and functional effects from surgery into an overall impact
timeline stratified by 2021 WHO tumor grade (Figure 9)
[27]. In this rigorous work, the authors demonstrate that,
in more aggressive tumors, such as grade 4 IDH-wt glio-
blastomas with median overall survivals of 12-17 months,
the positive effects of more extensive resection become
evident within weeks-to-months; however, the negative
impacts of new neurological deficits that impair functional
independence and prohibit initiation of chemo-radiation
within 6-weeks postoperatively can be devastating and

may shift the impact of surgery toward a net negative. In
moderately aggressive tumors, such as grade 2 IDH-mut
astrocytomas with median overall survivals ranging from
5-12years, the oncological benefits of aggressive resection
become most evident after years 3-7 and can result in a
profound increase in median overall survival with a differ-
ence of up to 10years [25,102,103]. Importantly, the
authors note that tumor progression within the first dec-
ade following complete radiographical resection is rarely
reported. In the grade 2 IDH-mut astrocytoma subgroup,
moderate postoperative deficits that resolve with time
likely have less of a negative impact on overall survival
when compared to higher grade tumors. With increasing
grades of IDH-mutant astrocytomas, new deficits that
might delay adjuvant therapy seem to become more
impactful. For the least aggressive diffuse gliomas, grade
2 IDH-mutant and 1p/19g-codeleted oligodendroglio-
mas, the impact of extent of resection on survival tends
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Figure 9. Integrated impact of extent of resection and new neurological deficits on overall survival by 2021 WHO tumor classifica-
tion. The impact of both extent of resection (positive) and neurological deficits (negative) on overall survival are evident on
shorter timescales in more aggressive tumors. The impact of supramarginal resection appears to be the greatest in moderately
aggressive tumors, such as WHO grade 2 IDH-mut astrocytomas, and moderate neurological deficits that recover over time are
also less impactful in this group. Reproduced with permission from Karschnia et al [27].



to emerge after greater than 6-years postoperatively.
Because of the favorable natural history of oligodendro-
gliomas, the authors argue that the overall impact of
extent of resection cannot yet be precisely quantified,
including supramarginal resections. However, it is rea-
sonable to hypothesize that the impact is likely similar to
grade 2 astrocytomas, just on a longer timescale.

9. Ethical considerations and patient counseling

Trying to convey complex, nuanced themes about bal-
ancing survival with potential changes in cognition,
personality, or behavior to a lay person who just
received a devastating diagnosis of a brain tumor is
incredibly difficult. Even with the best intentions of
empowering individual choice through the informed
consent process, how the presenting physician frames
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each option heavily impacts patient decisions, and
often patients will defer to surgeon expertise.
Therefore, the process of honing in on an appropri-
ately tailored resection plan might be best be viewed
as a team effort facilitated through a set of focused
patient-physician interactions.

In cases where the anatomy of a glioma might be
amenable to several surgical approaches with varying
degrees of risk for temporary and/or permanent neuro-
logical changes counter-balanced by varying expected
survival curves (Figure 10), often discussing the following
items with patients can elucidate the optimized
approach: (1) what a normal day entails; (2) what activ-
ities bring them joy; (3) what are they most looking for-
ward to in the near future; (4) how risk-averse or
proactive are they when dealing with their health; and
(5) what scares them the most about their diagnosis and

60 80 100

Time
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Figure 10. Potential resections for a 39-year-old female with a newly diagnosed right frontal FLAIR lesion (presumed to be an
intermediate-grade diffuse glioma) projected onto the associated survival curves published by Rossi et al [25]. Green - central
debulking (i.e., partial resection), Blue — subtotal resection, Purple — gross total resection (i.e., lesionectomy), Yellow — supratotal
resections (rectangle — margin of normal tissue included in the resection, whereas the hemicircle represents a right frontal lobec-
tomy). What remains unknown is the potential for permanent cognitive and/or behavioral consequences of each approach, as
well as whether there would be any differential survival benefit between the two yellow resections.
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undergoing surgery. Sometimes, just through this initial
conversation, the answer to an otherwise murky and
ethically complex issue becomes clear. In other words,
by combining knowledge about the functional neuro-
anatomy of the tumor with the patient’s personality,
goals, hopes, and fears, an approach that has the best
chance optimize their multi-dimensional outcome can
be found. This means that the same tumor presenting
to the same surgeon in two different individuals may
be approached differently, which reflects an appropri-
ate level of respect and deference to each individual's
humanity.

It is critical to recognize that there is no scenario
where a patient with a diffuse glioma can be treated
without some form of intervention; and with or with-
out treatment, their disease will eventually progress.
Idealistic scenarios of perfect, long-lasting neurological
preservation are not realistic in most instances, and
attempts to apply the Hippocratic principle of “do no
harm” to justify less aggressive approaches upfront,
unfortunately, can paradoxically result in harm by
under/inaction [21,104]. What has become clear to the
community of physicians who subspecialize in and treat
high volumes of gliomas is that patients tend to do bet-
ter all-around when they have access to appropriately
aggressive upfront treatments performed at specialized
glioma centers with experienced multi-disciplinary care
teams who navigate such scenarios frequently [8,21,55].
The counterintuitive finding that resecting more brain
upfront can result better long-term combined outcomes
is why specialized training in glioma surgery and brain
mapping is so important, as it is it critical to (1) see
patients do well from large surgeries to have the confi-
dence to perform and guide patients and families
through them, and (2) know the principles of anatom-
ical boundaries, appropriate case selection, and critical
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mapping techniques necessary to perform aggressive
surgeries without stepping over the edge of no return
(i.e, non-recovery).

10. Case examples and decision making

Here | present four real-world cases that demonstrate
how the principles gleaned from the data explored
above can be used to inform surgical planning and
patient counseling to design optimized, individualized
resections aimed at balancing an individual’'s onco-
logical and functional goals.

10.1. Case 1: Newly diagnosed left anterolateral
temporal lobe FLAIR lesion in a 35-year-old

10.1.1. Case presentation

A 35-year-old right-handed female presented after a first-
time seizure and was found to have an expansile FLAIR
lesion in her left anterolateral temporal lobe with min-
imal contrast enhancement (Figure 11). Radiographically,
this was most concerning for an intermediate-grade dif-
fuse glioma. She was neurologically intact on exam, and
a detailed neuropsychological assessment revealed a
broadly normal cognitive profile. A task-based functional
MRI confirmed strong left language dominance with
functionally active speech/language areas at least 1cm
from the lesional borders. Discussion with the patient
and her family revealed a strong desire to optimize lon-
gevity, as she had young children that she wanted to
see grow. This represented both her greatest desire and
biggest fear. She also worked as teacher’s aide, and she
wanted to be able to go back to work.

10.1.2. Surgery
The patient underwent an awake craniotomy with
intraoperative language mapping and intraoperative

Coronal Language Network DTI

Figure 11. Pre- and postoperative FLAIR MRIs from a 35-year-old right-handed female who presented with a first-time seizure
demonstrating a supramarginal resection of a grade 3 IDH-mut astrocytoma. Yellow — preoperative tumor volume. Blue — postop-

erative resection cavity.



MRI to attempt a supramaximal resection of the lesion
to functional boundaries, which appeared anatomically
feasible based on preoperative functional imaging.
The resection was taken at least one gyrus beyond
the gross lesional boundaries in all directions (~1cm
posteriorly) (Figure 11). The hippocampus was left
intact to minimize the impact of surgery on verbal
memory, as the mesial temporal structures were not
radiographically involved. Intraoperatively, she began
having trouble naming during the inferior-posterior
portion of the resection while traversing the fusiform
gyrus and the inferior longitudinal fasciculus (ILF).
Where she began to have difficulty was deemed the
posterior margin of the resection.

10.1.3. Postoperative course

Immediately postoperatively, the patient had a mod-
erate-to-severe predominantly semantic aphasia that
was most pronounced on postoperative days 1 and
2. She began to significantly improve on postopera-
tive day 3, and she was able to be discharged home
with her family at that time. One month postopera-
tively, the patient showed significant improvement
in her language function, but she still had difficulty
with verbal memory (i.e., she was fluent in conversa-
tion and could name all presented visual objects but
had difficulty explaining, for example, the subject of
a podcast she had just listened to, per her family).
Five months postoperatively, she and her family
reported a full recovery of all language and cogni-
tive symptoms, and repeat detailed neuropsycho-
logical testing revealed only mild persistent deficits
in memory and semantic naming that could only be
elicited with rigorous testing. She was able to return
to her original work and caring for her children full-
time. The patient has since opted out of further
neuropsychological testing, as neither she nor her
family notices any persistent deficits in her daily life.
Her pathology revealed a WHO grade 3 astrocytoma
(IDH-mut, MGMT unmethylated). Consistent with
current guidelines for WHO grade 3 astrocytomas,
she underwent subsequent radiotherapy with con-
current TMZ, followed by 6 cycles of adjuvant TMZ,
and after which she declined further cycles. She is
currently two-years out from diagnosis without evi-
dence of progressive disease on her MRI.

10.1.4. Discussion & decision making

Data from Rossi et al. suggest that median progression
free survivals for patients with grade 3 IDH-mut astrocy-
tomas such as this who undergo subtotal resections is
24.5 months, gross total resections (i.e., lesionectomies)
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is 35months, and supratotal resections is >48 months
[25]. In this case, therefore, the fundamental questions
were, (1) are the temporary and/or permanent deficits
expected from each of the resection possibilities worth
the increase in survival to this individual, and (2) how
well can we manage the risks of worse-than-expected
deficits? As the tumor was located in the anterolateral
dominant temporal lobe and the patient described a
desire to be aggressive, our discussion, therefore,
revolved around preparing the patient and her family
for an awake craniotomy with temporary aphasia and
relatively minor long-term deficits in verbal memory
that would be unlikely to impact her life goals. Risks of
worse functional outcomes were minimized here by
performing the procedure awake, minimizing intraoper-
ative arterial sacrifice, and avoiding a dominant-sided
hippocampectomy.

10.2. Case 2: Initial subtotal resection of a left
frontal oligodendroglioma (WHO grade 3)

10.2.1. Case presentation

A 35-year-old right-handed female presented after a
first-time seizure and was found to have an expansile,
predominantly FLAIR lesion encompassing much of
the left anteromedial frontal lobe with subtle patchy
areas of intrinsic contrast enhancement (Figure 12).
The patient underwent a craniotomy for debulking of
the mass at an outside hospital, and the pathology
revealed an oligodendroglioma, IDH-mut, 1p/19q co-
deleted, with increased mitotic activity (WHO grade 3).
She was subsequently referred to neuro-oncology and
radiation oncology for adjuvant treatment, who then
referred her to our institution for consideration of fur-
ther upfront resection prior to chemoradiation. Her
neurological examination was grossly intact, and
detailed neuropsychological testing revealed only mild
deficits in executive functioning. Discussions with the
patient revealed a proactive mindset, as well as a
strong desire for longevity, especially to see her young
child grow, with her biggest fear being a permanent
change in her personality and forgetting how to inter-
act with her child. She did express a desire not to
undergo awake surgery if possible. Functional imaging
revealed left-dominant language with the expressive
speech centers remote from margins of the FLAIR
abnormality.

10.2.2. Surgery

The patient underwent a second craniotomy under
general anesthesia for supramarginal resection of the
residual tumor with intraoperative motor mapping and
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Figure 12. FLAIR MRIs from a 35-year-old right-handed female with a WHO grade 3 oligodendroglioma (IDH-mut, 1p/19q co-
deleted) who underwent an initial craniotomy for debulking of the mass at an outside hospital and was subsequently referred for
further surgical resection. According to data published by Rossi et al [25], extending her resection from subtotal (initial postop) to
supramarginal (second postop) increased her median progression-free survival from 23 to >48 months.

intraoperative MRI. The surgery incorporated the dorsal
portion of the frontal pole, amputated the anterior cor-
pus callosum just beyond the lesion, and extended just
beyond the visible FLAIR margin in all directions with
the closest margin being on the posterolateral edge
(toward the anteromedial curve of superior longitudinal
fasciculus [speech fibers]) (Figure 12).

10.2.3. Postoperative course

Immediately postoperatively, the patient was grossly
neurologically intact with a slightly more blunted
affect. At her two-week follow up, she and her mother
noted some increased social withdrawal that was con-
cerning to them both. By her 5-month follow up, they
both reported that this had fully resolved, and neither
noted any residual deficits. Repeat neuropsychological
testing at 5-months noted continued mild deficits in
executive function with a slight decrease in perform-
ance in this domain after the second surgery, with sta-
bility in all other domains. The patient was able to go
back to work full-time running her own crafting busi-
ness, and she was able to resume caring for and inter-
acting normally with her family. Consistent with
current guidelines for grade 3 oligodendrogliomas,
she subsequently underwent radiotherapy followed by
PCV for 6 cycles. She is currently 8-months out from
her second surgery without evidence of disease
progression.

10.2.4. Discussion & decision-making

Data from Rossi et al. suggest that progression-free
survivals in patients with grade 3 IDH-mut, 1p19q
codeleted oligodendrogliomas such as this who
undergo subtotal resections is 23 months, gross total
resections is 36 months, and supratotal resections is
>48 months [25]. Importantly, the radiation oncologist
who received the patient after the initial surgery rec-
ognized that a maximal safe resection had not yet
been achieved and referred the patient for a second
surgical opinion. Given the dominant frontal lobe
tumor location, the discussion with the patient
revolved around expected temporary deficits from
more extensive frontal lobe surgery, such as personal-
ity changes, abulia, and decrease executive function-
ing, and whether that merited the expected increase
in longevity. To mitigate the possibility of these side
effects becoming severe and permanent, the domin-
ant caudate head (associated with abulia), inferior
frontal gyri (associated with disinhibition), and lateral
superior longitudinal fasciculus projections (associated
with speech) were all protected. Notably, in this case, |
felt it was surgically important to amputate the corpus
callosum beyond the gross tumor margin to help pre-
vent potential spread to the contralateral hemisphere
(which would be functionally devastating), as anterior
callosotomies are well-known to have minimal add-
itional functional impacts. In a more ideal scenario,
the patient would have been referred for specialized



care upfront (i.e, prior to the index operation) to
avoid having to undergo two operations.

10.3. Case 3: Initial subtotal resection of a right
temporal glioblastoma (IDH-wt, WHO grade 4)
with early recurrence

10.3.1. Case presentation

A 60-year-old right-handed male presented with 3-
4 months of increased fatigue, nausea, headache, and
unintended weight loss. A brain MRI revealed a 4.2cm
ring-enhancing anterolateral right temporal lobe mass
with extensive surrounding vasogenic edema most
concerning for a high-grade glioma (Figure 13). He
underwent a craniotomy for debulking of the mass at
an outside hospital where he received a RANO Class
3A resection [26]. Pathology revealed an IDH-wt,
MGMT-unmethylated glioblastoma (WHO grade 4).
This was followed by radiation with concurrent TMZ,
and he elected not to use TTFields. On his 5-month
surveillance MRI, substantial recurrence was noted, so
he was referred to our center for consideration of fur-
ther surgery. His neurological examination was grossly
normal other than a partial left superior quadrantano-
pia. A detailed neuropsychological evaluation revealed
a mild deficit in visual learning and memory with
otherwise normal cognition. Discussions with the
patient revealed a desire to be aggressive and to
maximize longevity, and the patient confirmed that a
denser left visual field cut would not impair his quality
of life or work as a sales consultant.
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10.3.2. Surgery

The patient underwent a second craniotomy for exten-
sion of the previous resection to include a full right
temporal lobectomy (Figure 13). Pathology from the
second operation confirmed tumor recurrence.

10.3.3. Postoperative course

Postoperatively, the patient was at his neurological
baseline other than a denser left superior quadranta-
nopia. The patient was discharged from the hospital
on postoperative day 1 and resumed work within
1 week of surgery. Due to a long travel burden and no
noticeable neuropsychological deficits to the patient
or his wife, he declined a five-month postoperative
neuropsychological evaluation. He is now 5-months
status post his second resection without evidence of a
second recurrence despite electing to pursue only
alternative treatment methods.

10.3.4. Discussion & decision-making

Data from Karschnia et al. suggest that the median
overall survival in patients with grade 4 IDH-mut glio-
blastomas such as this who undergo RANO class 3
(subtotal) resections is 15months, class 2 (gross or
near total) resections is 19 months, and class 1 (supra-
marginal) resections is 24 months [26]. Fortunately, in
the non-dominant temporal lobe, functional deficits
are known to be relatively minor and can include vis-
ual field deficits and occasional temporarily increased
depressive symptoms. Like Case 2, ideally this case
should have been referred to a glioma center upfront,
as evidence suggests that the delay in obtaining the
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Figure 13. T1-post contrast and FLAIR MRIs from a 60-year-old male with a right temporal glioblastoma (IDH-wt, WHO grade 4)
who underwent an initial RANO Class 3 A resection at an outside hospital and experienced early perilesional recurrence, then sub-
sequently underwent a temporal lobectomy. According to data published by Karschnia et al [26], extending his resection from a
Class 3 (subtotal) to Class 1 (supramarginal) at his index operation would have extended his median overall survival by 9 months
(15 to 24 months) when combined with standard radiation and TMZ.
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most aggressive, anatomically feasible resection likely
affected his subsequent radiation plans and unneces-
sarily decreased his life expectancy [58].

10.4. Case 4: Newly diagnosed right frontoparietal
FLAIR lesion in a 71-year-old

10.4.1. Case presentation

A 71-year-old right-handed female presented with
2 weeks of left hemibody and facial numbness, as well
as left face and hand weakness. She was found to
have an expansile predominantly FLAIR mass with
patchy intrinsic contrast enhancement centered in the
frontoparietal white matter and infiltrating the lateral
pre- and postcentral gyri. Connectomic imaging
revealed primary motor corticospinal/bulbar tracts run-
ning through the superior and medial margins of the
tumor (Figure 14). Additionally, ventral attention net-
work hubs were straddling the lesion anteriorly and
posteriorly, and they were connected via white matter
along the medial margin of the lesion. Neurological
examination revealed decreased sensation in the left
hemibody and face, as well as 4/5 left hand intrinsic
muscle strength and a mild left facial droop.
Preoperative neuropsychological evaluation revealed
moderate deficits in visuospatial reasoning and hand
orientation tasks. Preoperative conversations with the
patient revealed that she would prefer to avoid any
worsening of both temporary and permanent deficits
as much as possible, but that she wanted treatment
to prolong her life. She was retired and independent
in her activities of daily living prior to developing
these symptoms, and she hoped to return to inde-
pendence for as long as possible.
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10.4.2. Surgery

At the patient’s request, she first underwent a stereo-
tactic biopsy of the mass, which confirmed it to be a
high-grade glioma. The patient then underwent an
awake craniotomy with motor, sensory, and hemine-
glect monitoring, as well as intraoperative MRI. The
resection was taken until the corticospinal tracts
could be stimulated with bipolar stimulation at 2 mA
(60Hz, 1ms) at the medial and superior resection
cavity margins, suggesting immediate proximity [97].
Although the intraoperative MRI demonstrated
residual FLAIR signal in these areas, further resection
was not pursued (Figure 14).

10.4.3. Postoperative course

Pathology confirmed this to be a diffuse pediatric-type
high-grade glioma, H3-wildtype and IDH-wildtype,
MGMT-met, WHO grade 4. Functionally, the patient
was stable postoperatively. She was discharged to
inpatient rehabilitation for 10days prior to returning
home. She underwent radiation with concurrent TMZ,
followed by adjuvant TMZ. Despite multiple medical
comorbidities including morbid obesity, she survived
for 18-months after her surgery.

10.4.4. Discussion & decision-making

While detailed survival data does not exist for this spe-
cific tumor type related to different extents of resec-
tion to my knowledge, the same principles of maximal
safe resection apply. In this case, because the mass
infiltrated the corticospinal tracts, the tumor was not
anatomically amenable to a supramarginal, or even a
gross total, resection. To minimize the chance of wor-
sening neurological deficits from surgery, which would
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Figure 14. FLAIR MRIs from a 70-year-old female with a right frontoparietal diffuse pediatric-type high-grade glioma, H3-wildtype
and IDH-wildtype, MGMT-met, WHO grade 4, who underwent a maximal safe resection of her lesion. The infiltration of the tumor
into the corticospinal tracts (colorful lines) prevented a gross total resection in this case.



both negate any oncological benefits of cytoreduction
and diminish her remaining quality of life, the surgery
was performed awake to monitor for early signs of
deficits known to be associated with the right inferior
parietal lobe, such as hemineglect. Fortunately, this
was not encountered, and about 80% of the tumor
mass was able to be removed before reaching critical
margins.

11. Remaining questions and future directions

Despite all we know about outcomes in supramarginal
glioma surgery, there are many clinically important
questions that remain unanswered. For example: (1) if
one margin of the tumor abuts functional tissue, is
there any benefit to supramarginal resections of the
other margins?, and (2) how large does a supramarginal
resection need to extend beyond the lesional borders
to obtain maximum benefit, especially in low-grade gli-
oma surgery? Toward answering these questions, sev-
eral groups are currently examining advanced imaging
techniques to predict areas of recurrence and differenti-
ate edema from infiltrative tumor with promising but
preliminary results [105-110]. In the functional and
cognitive realms, while we know that many patients
undergoing aggressive surgeries experience cognitive
declines that significantly recover with time, predicting
such outcomes on an individual basis is still a chal-
lenge. What remains undefined is a precise threshold of
injury (i.e., percent of network resected) for which defi-
cits in these domains might be permanent (short of
bilateral involvement). The translation of newer insights
from network neuroscience into clinical practice is pro-
viding hope for more precise surgical planning and pre-
operative counseling [93]. Along with these insights
may also come the development of novel neuromodu-
lation techniques that can (1) preoperatively induce
neuroplasticity to remap critical functions away from
invasive tumors to improve extent of resection while
protecting function, and (2) enhance postoperative
functional recovery for those who do not naturally
recover on their own [111-113]. My lab is particularly
interested in this area, as we are looking into whether
long-term neuropsychological deficits may be associ-
ated with persistent abnormal functional connectivity
of the remaining normal brain.

12. Limitations

The intent of this manuscript is to provide a useful
distillation of the vast amount of recent surgical gli-
oma evidence into guidance for treating physicians to
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use during the critical stage of preoperative surgical
planning and patient counseling for patients with
newly discovered diffuse gliomas. It is important to
recognize that this is a perspective piece written by a
single neurosurgeon who has trained and worked at
only at academic tertiary care centers within the US,
and, therefore, it does not encompass all perspectives.
However, this analysis does incorporate data from
around the world and a multitude of clinical care set-
tings. These recommendations represent a good-faith
assessment of currently available data, all of which
can change in any moment with a single discovery.
Additionally, this narrative review focuses on surgical
factors for newly diagnosed tumors and does not
delve deeply into non-surgical treatment modalities,
management at the time of tumor recurrence, non-
modifiable risk factors of disease, or advanced imaging
techniques [114,115].

One of the challenges in making evidence-based rec-
ommendations for clinical applications in glioma surgery
is that clinical problems present prospectively and indi-
vidually, whereas most data guiding these decisions are
retrospective and population-based. For example, in
most of the studies reviewed above, differences in a pri-
ori surgical approaches are not assessed, as the sur-
geon(s) set out for a goal of maximal safe resection in
each case. Therefore, caution needs to be exercised in
extrapolating from their results to different a priori
approaches (as | do in Figure 10). However, the validity
of this extrapolation is supported by several high-quality
studies that did analyze different a priori surgical
approaches in similar patient populations across different
hospital settings and produced consistent results [3,55].
Additionally, the uniformity of the results across the
many large, retrospective case series that span multiple
settings, countries, and treatment teams with a notable
paucity of contradictory evidence further supports the
appropriate extrapolation of these findings.

The lack of prospective studies in glioma surgery is
a topic that is widely discussed and is due to many
factors that are difficult to overcome, including: (1)
heterogeneity of tumor characteristics, presentations,
and demographics; (2) relative rarity of gliomas com-
pared to other diseases; (3) difficulty in recruiting
patients and treating physicians willing to randomize
their surgical approaches; and (4) lack of equipoise in
data supporting alternative approaches to upfront
maximal safe resections. While an argument might be
made that a lack of prospective data means there is
not enough evidence to recommend one approach
over another, the perspective outlined in this piece
reflects the counterargument: that we do not have
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prospective data because the data we do have is so
strong and consistent with the experiences of high-
volume centers that any prospective study randomiz-
ing an alternative approach would require an incred-
ibly high bar to ethically justify. However, despite
these limitations, there is one such study underway in
glioblastomas that is designed to randomly and pro-
spectively evaluate the effect of a priori attempts at
supratotal versus gross total resections in anatomically
feasible cases, which is a laudable undertaking [116].

13. Conclusions

While the mantra of “maximal safe resection” remains
the standard surgical refrain in glioma surgery, in prac-
tice, this phrase is translated into one of three main
conceptual approaches: (1) the most conservative
approach of “debulking” the tumor, where the sur-
geon operates mainly within the grossly abnormal
tumor margins to reduce its mass effect and the
amount of viable tumor cells (i.e., cytoreduction) while
minimizing the potential for injury to normal brain; (2)
the very common approach of performing a
“lesionectomy,” or resecting the tumor to its radio-
graphically and/or grossly abnormal margins, in an
attempt to achieve a gross total resection while mini-
mizing injury to potentially functional surrounding
brain; and (3) the functional, or “supramarginal,”
approach, where brain is resected to functional bor-
ders irrespective of gross or radiographical tumor
boundaries, which can lead to any extent of resection
(up to lobectomies) based on functional anatomy.
While all three approaches attempt to prioritize long-
term functional preservation over aggressive resection,
a plethora of recent data now strongly supports the
functional approach as superior, moving the field
toward a consensus that this should be the first-line
approach when feasible. The counterintuitive finding
that resecting more brain upfront can result in equiva-
lent-or-better long-term oncological and functional
outcomes in many cases underscores the ominous
natural history of gliomas, and it suggests that the
intent to “do no harm” with more conservate
approaches may not always match the outcome. In
fact, the most recent data suggests that extent of
resection is the most impactful modifiable survival
risk-factor in many diffuse glioma cases. As the field
moves away from considering simple debulking of dif-
fuse gliomas to be within standard of care, it follows
that there are no longer “simple” surgical glioma
cases. In this light, current data strongly support
upfront referrals to specialized glioma centers for all

diffuse gliomas to maximize patient outcomes.
Choosing the appropriate surgical approach for any
individual case should be informed through the patient-
physician interaction and can be individualized for each
patient based on their approach to their own health-
care, goals, hopes, and fears. Future directions for the
field will be to develop techniques to more reliably pre-
dict long-term neuropsychological sequelae for different
surgical boundaries on an individual basis, as well as to
develop neuromodulation techniques to improve neuro-
logical recovery in cognitive and behavioral domains for
those who may not recover on their own.

14. Article highlights

e Over the past 5-10 years, evidence has consistently
and convincingly bolstered the case that supramar-
ginal resections offer a substantial survival benefit
for patients with both higher and lower grade dif-
fuse gliomas, moving the field toward a consensus
that supramarginal resections should be the first-
line surgical approach when possible

e As the field moves away from considering simple
debulking of diffuse gliomas to be within standard
of care, it follows that there are no longer “simple”
surgical glioma cases, and current data strongly
support upfront referrals to specialized glioma cen-
ters for all diffuse gliomas prior to their index sur-
gery to maximize patient outcomes

e Extent of resection is now recognized as the most
impactful modifiable risk factor for survival (when
combined with standard adjuvant treatment) in
many diffuse glioma cases

e Choosing the appropriate surgical approach for each
case should be informed through the patient-
physician interaction. In ideal scenarios, surgeries
can be individually tailored by applying relevant
functional-anatomical principles to the patient’s pre-
ferred healthcare approach, goals, hopes, and fears.

e Future directions for the field will be to develop
techniques to more reliably predict long-term neuro-
psychological sequelae for different surgical bounda-
ries on an individual basis, as well as to develop
neuromodulation techniques to improve neuro-
logical recovery in cognitive and behavioral domains
for those who do not recover on their own.
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