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Abstract

The blood-brain barrier (BBB) is a dynamic, multicellular interface
that preserves central nervous system (CNS) homeostasis by
restricting entry of pathogens and circulating cells. Cytotoxic T
lymphocytes (CTLs), comprising both CD8+ and CD4+* subsets, are
central to adaptive immunity through targeted elimination of
infected or transformed cells. However, in immune-mediated
neurological disorders, including viral encephalitis, multiple
sclerosis, Parkinson’s disease, and glioma, CTLs effector functions
can inadvertently compromise BBB integrity. Here, we integrate
findings from primary research to delineate three principal
mechanisms by which CTLs modulate the BBB: (1) direct cytotoxicity,
in which perforin/granzyme release and FasL-Fas interactions
induce endothelial cell apoptosis; (2) proinflammatory cytokine
signaling, notably IFN-y and TNF-a activation of JAK/STAT and
NF-kB pathways in brain microvascular endothelial cells; and (3)
chemokine-driven leukocyte trafficking, wherein CXCL10 and CCL5
gradients promote. CTLs and bystander immune cell migration
across the barrier. We further review evidence from in vitro and in
vivo models that illustrate both protective and deleterious roles of
CTLs at the neurovascular interface. By clearly specifying these
mechanisms and their disease-specific contexts, this review
establishes a unified framework for future investigations aimed at
preserving BBB function while maintaining effective CTL-mediated
immunity.
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1. Introduction

The blood-brain barrier (BBB) is a protective membrane that shields
the central nervous system (CNS) from blood-borne toxins and
pathogens, thereby preserving CNS homeostasis [1]. BBB
dysfunction is a common pathological feature in many neurological
diseases. Compromised BBB integrity or impaired function can
significantly contribute to the progression of these conditions. In
numerous neurological disorders, BBB disruption is frequently
accompanied by an immune response within the nervous system.
This response includes innate immunity, primarily
neuroinflammation [2, 3], and adaptive immunity involving T and B
cells [4-6]. Current research focuses primarily on T cell immunity in
adaptive responses, as both innate and adaptive responses are
essential for maintaining BBB function.

The innate immune system rapidly and nonspecifically responds to
foreign pathogens or damaged cells by recognizing pathogen-
associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs) [7]. In contrast, the adaptive immune
system is activated over a longer period, involving the precise
activation of T lymphocytes and B lymphocytes that are highly
specific for their targets [8]. In general, B lymphocyte immune
function is primarily mediated by antibodies secreted by their
differentiated plasma cells following interaction with soluble
antigens binding to the B cell receptor (BCR) [9]. T cell immunity
operates through cell-to-cell interactions when the T cell antigen
receptor (TCR) complex encounters peptide antigens presented by
antigen-presenting cells (APCs). APCs present antigens via major
histocompatibility complex class I or II (MHC I and MHC II),
interacting respectively with the main subsets of T cells, CD8-

positive (CD8*) and CD4-positive (CD4%) T cells [10].
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This review examines cytotoxic T lymphocytes (CTLs) as an example
of how T lymphocyte-mediated acquired immunity regulates to BBB
dysfunction and its mechanisms. Unlike other reviews that
predominantly focus on the role of innate immunity, such as
neuroinflammation, in BBB function, this study concentrates on
CTLs, explaining their targeting mechanisms, actions, and
involvement in BBB dysfunction in neurological disorders. Therefore,
the findings of this paper enhance the foundational knowledge of T
lymphocyte immunity and BBB-related research, and suggest future
research directions.

2. BBB structure and basic function

The BBB serves as a regulated interface between the peripheral
circulation and the central nervous system (CNS) [11]. Although its
existence was first noted in 1885, the precise nature of the BBB
remained a topic of debate well into the 20th century [12]. The
detailed process of discovering and naming the BBB is summarized
in Supplementary Table 1 and briefly described as follows: in 1885,
Paul Ehrlich reported that the brain is isolated from the bloodstream
[13]. Subsequently, Edwin Goldman, Ehrlich’s student,
demonstrated that when Evans blue dye was injected into the
ventricles, only the brain and spinal cord were stained, while
peripheral organs remained unstained [14]. In 1922, Lina Stern
introduced the term “barriéere hémato-encéphalique” in French,
which was later translated to “blood-brain barrier” [15]. The BBB is
a multicellular vascular structure composed of brain microvessel
endothelial cells, pericytes, astrocytes, neurons, and microglial cells.
Junctional complexes, including tight and adherens junctions, are
present at intercellular junctions within the BBB and are crucial for
maintaining its low permeability [16]. A brief summary of the main

functions of these components is given in Supplementary Table 2.
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The BBB forms a physical and metabolic barrier that separates the
CNS from peripheral tissues, protecting the brain by maintaining a
stable environment [17, 18]. However, it also restricts drug entry
into the CNS, complicating the treatment of brain diseases such as
neurodegenerative disorders and brain cancer [19, 20]. Numerous
studies have elucidated the BBB’s physiological functions, including
brain protection. In addition to serving as a physical and metabolic
barrier against harmful substances, the BBB maintains CNS
homeostasis, facilitates the selective transport of nutrients, ions, and
signaling  molecules, and  modulates neuroinflammatory
response.[21-23]. Wu et al. (2023) have detailed the functions of the
BBB and the role of each component in their comprehensive review
[11].

3. CD8* CTLs

T lymphocytes are divided into two distinct functional subgroups:
CD4* T lymphocytes and CD8* T lymphocytes. CD4* T cells are
known as T helper cells (Th), whereas CD8* T cells are referred to
as CTLs [24]. Generally, CTLs act as powerful defenders against viral
infections or intracellular pathogens by regulating the secretion of
perforin and proteases in target cells, which induce apoptosis [25].
CD4+ T cells indirectly contribute to infection clearance by
modulating the activity of other immune cells, such as macrophages,
neutrophils, B cells, and CD8" T cells [24]. However, pre-clinical and
clinical studies have demonstrated that CD4* T cells possess
cytotoxic programs and can directly kill cancer cells. Additionally,
the cytotoxic function of CD4* T cells has been observed in other
diseases, such as infections and autoimmune disorders [26-28]. In
this section, we primarily discuss the production and activation of
CTLs, as well as the mechanisms by which CTLs kill target cells.

Although CD8* and CD4* T lymphocytes represent the principal
5
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effector subsets highlighted in this review, emerging evidence
underscores the essential contribution of additional T cell subsets,
notably regulatory T cells (Tregs) characterized by the
CD4*CD25*FOXP3* phenotype [29, 30]. These cells are
instrumental in preserving immune homeostasis and curbing
excessive neuroinflammation [29]. By suppressing autoreactive T
cell activity, Tregs facilitate peripheral immune tolerance [31, 32]
and may secondarily modulate the structural and functional integrity
of the BBB.

3.1 The differentiation of T cells

CTLs differentiation occurs in three distinct stages based on their
sites of action. The first stage takes place in the red bone marrow,
where common lymphoid progenitor cells differentiate into
immature precursor T cells. Due to their high migratory capacity,
these precursor T cells enter the circulatory system. Chemotactic
agents or thymic factors from the thymus (such as thymotaxin,
thymosin, and thymopoietin) direct their migration to the thymus,
marking the second stage (circulatory system) and the third stage
(thymus) of differentiation. In the thymus, the essential
differentiation process involves thymic cells presenting CD- and
TCR-positive T cells to MHC I and MHC II molecules to evaluate T-
cell reactivity and direct their maturation pathways. T cells with TCR
affinity for MHC I become CD8" T cells, whereas those with TCR
affinity for MHC II become CD4* T cells [24]. Depending on cytokine
and stromal cell signaling, they may further differentiate into T-
helper and T-regulatory cells, both of which are subsets of CD4+ T
cells [33, 34]. The aforementioned process is illustrated in Fig. 1.
Tregs, characterized by high expression of CD25 and the
transcription factor FOXP3 on CD4+ T cells, are indispensable for

maintaining peripheral immune tolerance and suppressing
6
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autoimmunity [29, 30]. They exert immunosuppressive effects
through both direct cell-cell interactions and the secretion of anti-
inflammatory cytokines, including interleukin-10 (IL-10) and
transforming growth factor-beta (TGF-B) [35]. In addition to Tregs,
other T cell subsets, such as T helper 17 (Th17) cells and y6 T cells,
also participate in the regulation of neuroinflammation via distinct
cytokine signatures and differential tissue-homing capacities [36,
37]. Increasing evidence indicates that Tregs contribute to the
preservation of BBB integrity by attenuating proinflammatory
cytokine production and promoting the stabilization of endothelial
tight junctions in CNS autoimmune disease models [38, 39].

3.2 The activation of CD8* CTLs

The activation of CD8* CTLs is initiated through their initial
interactions with target cells. Three critical components in this
process are APCs, as well as the TCR and CD28 on CTLs.

APCs are essential in mediating interactions between T cells and
their targets. Initially, APCs bind to target substances such as cancer
cells, pathogens, viruses and others. Through phagocytosis and the
action of proteases, these targets are degraded into antigenic
peptide fragments, forming the MHC I -APC-target complex. CD8* T
cells recognize the MHC I antigen peptide complex on this structure.
Upon contact, T cells adhere to the complex and scan its surface. By
homing towards chemokine and integrin gradients on APCs or target
cells, CD8* T cells form immunological synapses between their
supramolecular activation complex and adhesion molecules, such as
intercellular adhesion molecules, on the target cell surface [40, 41].
During immunological synapse formation, TCR and CD28 on CD8* T
cells play critical roles. The TCR is a complex structure composed of
the antigen-binding subunit (TCRoaf) non-covalently linked with

three CD3 co-receptor signaling subunits (((, CD36g, and CD3ye)
7
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[42]. The intracellular CD3 contains immunoreceptor tyrosine-based
activation motifs (ITAMs), which are essential for linking
intracellular tyrosine kinase functions [42]. Hence, the CD3-ITAM
pathway in TCR is crucial for assembling and transmitting
intracellular signals following surface recognition by TCR. After TCR
is activated by the MHC I -APC-target complex, a separate co-
stimulatory signal is required; otherwise, T cells will not fully
activate, leading to inactivity or apoptosis. This additional signal
comes from the CD28 receptor on CD8* T cells, which binds to
CD80/B7.1 or CD86/B7.2 on APCs, promoting T cell proliferation and
cytokine production, such as IL-2 [43]. The aforementioned process
is illustrated in Fig. 2. During this process, CD28 induces multiple
signaling pathways in T cells, such as the PI3K-AKT and NF-xB
pathways, leading to increased Bcl-xL expression and enhanced T
cell survival [44]. Additionally, CD28 signaling protects CD8" T cells
from reacting to self-antigens, thereby reducing the risk of tissue
damage and autoimmunity. A more detailed description of CD8* T
cell activation can be found in the review published by Hans Raskov
in 2021 [45].

3.3 The CD8" CTLs-mediated mechanism of target-cell death
Once activated, CD8* CTLs demonstrate their potent cytotoxic
abilities. As reported in various studies, CD8* CTLs bind to the Fas
receptor on the target cell via the Fas ligand (FASL) on their surface,
activating the death domain within the target cell. This activation
subsequently triggers caspases and nucleases, leading to the
fragmentation of the target cell’s DNA [46]. More importantly, the
cytotoxic activity of CD8* CTLs primarily depends on the release of
granules containing granzymes, perforin, cathepsin C, granulysin,
and other effector molecules. These granules fuse with the target

cell membrane, allowing the effector molecules to enter the target
8
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cell and create pores in the endosomal membrane, resulting in cell
destruction [47, 48]. These processes occur within the
immunological synapse (IS) formed between the CD8* CTLs and the
target cell [41]. In brief, CD8* T cells exhibit persistent motility
when interacting with target cells, which facilitates pore formation
in the target cell membrane [47]. This allows the release of cytotoxic
granules containing granzymes, perforin, cathepsin C, and
granulysin, which fuse with the target cell membrane to initiate cell
death [47]. Alternatively, the target cell may internalize a complex
of granulysin, perforin, and granzymes through endocytosis of the
cytotoxic T-cell membrane [48]. Once internalized, perforin and
granulysin create pores in the endosomal membrane, allowing
granzymes to escape into the cytoplasm, where they trigger
apoptosis [48].

The IS is the interface where CD8* CTLs engage with target cells,
facilitating TCR-mediated signaling and secretory events. Similar to
natural killer cells, the initiation of IS formation in CTLs involves two
signals[49]: the absence of MHC I recognition (disinhibition) and a
positive signal from germline-encoded activation receptors that bind
to specific ligands on target cells, such as lectins or hemagglutinins.
Once antigenic peptides are recognized by the TCR on CTLs, the IS
is formed, triggering complex signaling cascades involving the TCR,
CD28, and associated pathways. These cascades lead to the
realignment of the Golgi complex and microtubule network, with the
microtubule-organizing center repositioning towards the IS and
microtubules extending towards the distal pole. Along these
microtubule tracks, effector granules are transported to the IS for
secretion [50]. The mechanism by which granules enter target cells
is complex and involves multiple modifications to the target cell's

plasma membrane. A critical factor in this process is the
9
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accumulation of Orai Ca2* channels and the involvement of t-SNARE
syntaxinll. The activation of Orai Ca2* channels occurs in
conjunction with IP3/Ca2*-dependent activation and the
translocation of STIM proteins to the endoplasmic reticulum near
the IS. These activated STIM proteins interact with Orai channels,
forming the store-operated Ca2* release-activated Ca2* complex,
which drives store-operated Ca2* entry [51-53]. The increase in
cytosolic Ca2* concentration is further enhanced by adjacent
mitochondria [54, 55], ensuring optimal synaptic activation [56, 57].
Concurrently, t-SNARE syntaxinl1, essential for lysosomal granule
fusion, relocates to the IS and integrates into the plasma membrane
through a VAMP8-dependent mechanism [58, 59]. This coordination
ensures the precise positioning of release machinery components.
Additionally, further modifications to the target cell membrane
involve interactions between proteins on the granules and the target
membrane, such as Rab27/Muncl3 and VAMP/Munc18. Although
the specific details of these molecular mechanisms are extensively
covered in various reviews [60], they are not elaborated on here.
These interactions highlight the intricate regulation of granule
fusion and release, which is crucial for the effective cytotoxic
response of CTLs.

An overactivated CD8* CTLs response can be detrimental, leading
to autoimmune disorders, rejection of transplanted cells, and graft-
versus-host disease. This is because the lytic machinery of CTLs can
mistakenly target self-tissues or host tissues [61]. To prevent such
uncontrolled activation, immune checkpoint molecules, which are
transiently expressed inhibitory receptors on the cell surface, are
essential. They regulate CD8* CTLs activation, ensuring the immune
response is properly modulated even in the presence of strong

activation signals [62]. This checkpoint molecule is also present in
10
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other immune cells, including natural killer cells and activated
macrophages, where they perform similar regulatory functions. Key
checkpoint molecules include programmed cell death receptor 1
(PD-1 or CD279), CTLA-4, lymphocyte-activation gene 3 (LAG-3), T-
cell immunoglobulin and mucin domain-3 (TIM-3), T-cell
immunoreceptor with Ig and ITIM domains (TIGIT), and inducible T-
cell co-stimulatory receptor (ICOS). The mechanisms by which these
immune checkpoints function have been extensively reviewed [63,
64], and in this paper, their main modes of action are displayed in
Supplementary Table 3. However, malignant tumor cells can exploit
these inhibitory signals to evade the immune response and enhance
their own survival [65].

The development of monoclonal antibodies targeting immune-
inhibitory receptors, known as checkpoint inhibitors, represents a
major breakthrough in immuno-oncology, significantly improving the
clinical outcomes of various cancers [66]. This therapeutic approach
enhances antitumor immune responses while also revitalizing
exhausted CD8* T cells, thereby increasing tumor cell eradication.
Among these therapies, anti-PD-1 agents have been particularly
transformative in the treatment of metastatic melanoma,
demonstrating remarkable clinical efficacy [67, 68]. Several
checkpoint inhibitors targeting the PD-1 pathway have received
approval in the United States, including three PD-1 inhibitors
(pembrolizumab, nivolumab, and cemiplimab), and three PD-L1
inhibitors (atezolizumab, avelumab, and durvalumab). Current
research focuses on improving the efficacy and reducing the toxicity
of these agents by combining them with other therapeutic modalities,
such as immunotherapies or cytotoxic chemotherapies. Notably, the
combination of PD-1/PD-L1 inhibitors with CTLA-4 inhibitors has

yielded promising clinical outcomes, as demonstrated by the
11
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approval of nivolumab in combination with ipilimumab for the
treatment of metastatic melanoma, advanced renal cell carcinoma,
and mismatch repair-deficient colorectal cancer [69, 70].

4. CD4* CTLs

4.1 Ontogeny and Differentiation of CD4* CTLs

CD4+ CTLs differentiate from naive CD4* T cells under conditions of
persistent antigen stimulation and pro-inflammatory cytokines such
as IL-2, IL-15 and IL-22 [71-73]. Transcription factors T-bet and
Eomesodermin coordinate the acquisition of cytotoxic programs by
upregulating perforin and granzyme B expression [73, 74].
Co-stimulatory signals via CD28 and 4-1BB further enhance CD4+
CTL expansion and survival [75]. In chronic infections, such as
tuberculosis, CD4+ CTLs increase in frequency-and partially restore
pathogen clearance when CD8* CTLs ‘exhibit an exhausted
phenotype marked by PD-1 and. TIM-3 upregulation [76, 77].
Similarly, in autoimmunity” models, CD4+* CTLs compensate for
impaired CD8* responses by targeting MHC Il-expressing
antigen-presenting cells and sustaining local cytotoxicity [78].

4.2 Effector Mechanisms of CD4* CTLs

Conventional CD4* T cells, including thymus-derived FOXP3
regulatory T cells, are part of the Th cell lineage, characterized by a
TCR that recognizes MHC II [79]. The functional diversity of Th
subsets is further expanded by the presence of CD4* T cells with
cytotoxic capabilities, known as CD4* CTLs. Initially, these CD4"
CTLs were dismissed as artifacts from exhausted, long-term cultured
T cell lines or miscategorized within the Thl subset [80, 81].
However, research over the past decades has demonstrated that
CD4* CTLs are a distinct Th subset with antigen-specific cytotoxic

activity, observable in both humans and mice [82, 83].
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CD4+* CTLs, similar to CD8* T cells, utilize two primary effector
mechanisms to eliminate target cells [84, 85]. The first involves the
release of cytotoxic granules containing perforin and granzyme B,
which induce perforin oligomerization and pore formation in the
target cell membrane [86]. The second mechanism involves
Fas/FasL-mediated apoptosis, where FasL on CD4* CTLs binds to
Fas receptors on target cells, activating Caspase 8 and subsequently
Caspase 3, leading to apoptosis. Detailed descriptions of these
mechanisms are provided in the “CD8* CTLs” section of this paper.
In contrast to CD8" T cells, which recognize antigens presented by
MHC I molecules, CD4* CTLs recognize peptides presented by MHC
IT molecules on APCs. Therefore, it is unlikely that CD4* CTLs simply
substitute the function of CD8* CTLs.

4.3 Compensatory Roles in _Chronic Infection and
Autoimmunity

The distinctive characteristic of CD4* CTLs is their capacity to kill
target cells, mirroring and complementing the cytotoxic function of
CD8* T cells. Although CD4* CTLs are found in low numbers under
normal conditions [86], their population increases significantly
during chronic viral infections such as those caused by
cytomegalovirus, dengue virus, ectromelia virus, lymphocytic
choriomeningitis virus, and other pathogens [87-90]. Growing
evidence suggests that the cytotoxic activities of CD4+ T cells
against infected or transformed cells likely compensate for the
reduced Kkilling efficacy of exhausted CD8* CTLs, which can be
inhibited by virus-induced checkpoint molecules [91]. For instance,
during chronic Mycobacterium tuberculosis (Mtb) infection, T-cell
immunity is suboptimal due to the expression of inhibitory receptors
like PD-1 and TIM-3, resulting in reduced cytokine production [76,

77]. Consequently, CD8" T cells exhibit an exhausted phenotype, and
13
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CD4+* T cells adopt a cytotoxic profile marked by the expression of
Tbx21, potentially compensating for the impaired function of CD8*
T cells during active tuberculosis [92].

5. The role of CTLs in the regulation of BBB function

The association between the BBB and CTLs was first reported by
Wyde et al. in 1983 [93], as recorded in the PubMed database. Wyde
and colleagues compared the dissemination of a neurovirulent strain
of influenza A/WSN (HON1) virus from infected lungs to brains of
thymus-deficient nude and immunocompetent furred mice, both
inoculated intranasally. Their results revealed that, in
immunocompetent mice, the virus was typically cleared from the
lungs of survivors, with minimal cases of viral spread to the brain. In
contrast, nude mice exhibited frequent and early deaths, with
significant viral titers in the brain and histological evidence of
encephalitis. Notably, adoptive immunization of nude mice with
CTLs, which had been stimulated in viiro 24 hours after intranasal
challenge, led to a reduction in both brain virus titers and mortality
[93]. These findings underscored the crucial role of T lymphocytes
in inhibiting the dissemination of neurotropic viruses from the lungs
to the brain.

Wyde’s pioneering study suggested for the first time that T
lymphocytes are integral to the BBB’s defense against viral invasion.
In the 1980s, Hafler and colleagues further examined and reviewed
the role of T cells in multiple sclerosis and other inflammatory
central nervous system diseases [94]. For instance, Hafler et al.
initiated clinical trials wusing anti-T-cell murine monoclonal
antibodies (MAbs) to treat multiple sclerosis, aiming to develop a
targeted and non-toxic immunotherapy [95]. During infusions with
anti-T11, a pan-T-cell monoclonal antibody targeting the CD2

receptor, they observed that the antibody bound to peripheral blood
14
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T cells without inducing significant cell lysis, and did not
immediately modulate the CD2 surface structure. Additionally, they
found that the BBB remained relatively impermeable to the antibody.
This unique scenario allowed researchers to study the migration of
peripheral T cells into the CNS in patients with progressive multiple
sclerosis.

Following these groundbreaking studies, researchers began
investigating how CTLs contribute to neurological dysfunction,
particularly by crossing or disrupting the BBB. In this context, we
focus on the role of CTLs in maintaining the integrity of the BBB and
their associated functions in neurological conditions, particularly
brain tumors, non-tumor neurological diseases such as multiple
sclerosis and Parkinson’s disease, as well as virus-induced or
pathogen-induced neurological disorders.

5.1 Brain-related tumors

Brain metastases of tumors

The association between CTLs and BBB in brain tumor models was
initially reported by Gordon et al. using a P511 mastocytoma cell
tumor model [96]. Their research demonstrated that, on the seventh
day following cannula implantation in the cerebral cortex, brain
tumors developed while the BBB remained intact. Importantly, the
population of P511-specific non-cytolytic CTL precursors (pCTLs)
were identified at the brain tumor site, suggesting that these pCTLs,
generated in the periphery, migrated to the brain tumor area. The
incomplete activation of these cells, likely due to the inhibitory
microenvironment of the central nervous system, indicated that the
unique structure of the BBB prevents their full activation, thus
reducing their cytotoxic potential. Furthermore, when the tumor
cells were injected at a flank site, similar phenomena were observed

in the brain metastasis model of P511 mastocytoma cells [96].
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Glioma

Glioblastoma multiforme (GBM) is the most common and aggressive
malignant primary brain tumor in adults. Focused ultrasound (FUS)
can temporally and locally open the BBB. In a GBM mouse model,
Chen et al. utilized FUS to disrupt the BBB, leading to significant
changes in tumor-infiltrating lymphocyte (TIL) populations within
the brain, particularly increasing the number of CD3*CD8* CTLs in
the tumor region. This resulted in notable inhibition of tumor
progression and improved survival rates in the animals [97].
Oncolytic virotherapy is another promising approach to improve the
poor prognosis of malignant brain tumors. The rat H-1 parvovirus
(H-1PV) has shown tumor suppression in preclinical glioma models
through direct oncolysis and stimulation of anti-cancer immune
responses [98, 99]. Because the virus can penetrate the blood-
brain/tumor barrier and spread extensively within the tumor,
significant changes were observed in the tumor microenvironment
upon viral infection. These changes included microglia/macrophage
activation and CTLs infiltration, indicating that H-1PV may trigger
an immunogenic response [98, 99]. Numerous similar studies have
reported other methods and vectors capable of altering the brain’s
immune microenvironment, such as the RNA-modification of T Cells,
modified nanoparticles, and others [100-104]. These approaches
must successfully penetrate the BBB—a major challenge in brain
cancer treatment—and increase CTLs infiltration at the tumor site.
Notably, the increased CTLs are predominantly CD8 positive [100-
104]. Thus, current research on brain tumors, CTLs, and the BBB
primarily seeks methods to cross the BBB and enhance the cytotoxic
function of immune cells, such as CD8* CTLs, at the tumor site.
However, there is no research on the direct effects of CTLs on the

BBB in brain tumors.
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5.2 Non-neoplastic neurological diseases or dysfunctions
Multiple sclerosis (MS)

MS is a central nervous system disease characterized by
inflammation and autoimmunity. In 1993, researchers discovered
that peripheral T cells from patients with acute MS exhibit a
cytotoxic effect on brain endothelial cells [105]. This observation
indicates that T cell-induced cytotoxicity towards brain endothelial
cells might play a role in increasing BBB permeability and triggering
immune responses in acute MS [105].

The Theiler’s murine encephalomyelitis virus (TMEV) model is a key
tool for studying MS. Researchers have used this model to explore
the role of CTLs in MS, with significant contributions from Georgette
L. Suidan’s team between 2008 and 2012 [106-108]. They found that
CD8* CTLs might disrupt the BBB through mechanisms involving
perforin and vascular endothelial growth factor (VEGF). Their
research suggested that, unlike their typical cytotoxic role against
harmful cells, CD8* CTLs use a non-apoptotic perforin-dependent
mechanism to break down BBB tight junctions. This mechanism
involves the activation of astrocytes, alteration of BBB tight junction
proteins, and increased CNS vascular permeability [106]. Another
pathway includes VEGF, where CD8* CTLs interact with neurons,
either directly or indirectly through other immune cells, leading to
VEGF upregulation, which disrupts tight junctions and increases
vascular permeability [107, 108].

Researchers have also studied the relationship between CTLs and
the BBB in MS, particularly focusing on the ability of CTLs to
penetrate the BBB. Studies have shown that in MS, B cell-derived
interleukin-15 (IL-15) increases the proportion of CD8* CTLs in the
brain and enhances their ability to cross the BBB. However, the

molecular mechanisms by which IL-15 facilitates CD8* CTLs
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migration across the BBB remain unclear [109]. Other researchers
hypothesize that this process may involve microRNAs of CTLs or P-
glycoprotein in brain endothelial cells [110]. Aya A. Elkhodiry found
a significant correlation between the downregulation of microRNA-
155 in CD8* CTLs isolated from MS patients’ blood samples and the
upregulation of intracellular adhesion molecule 1 (ICAM1) and
integrin subunit beta 2 (ITGB2), both of which are critical for
migration through the BBB [110]. Similarly, Gijs Kooij’s 2014 study
demonstrated that endothelial P-glycoprotein mediates the
migration of CD8* CTLs across the BBB [111]. Their research
showed that reducing P-glycoprotein expression in endothelial cells
using shRNA significantly decreased the transendothelial migration
and adhesion capabilities of CD8* and CD4* CTLs in an iz viiro BBB
model. This finding was further corroborated iz vivo using cell-
specific CCL2 knockout mice, revealing that P-glycoprotein
regulates CD8* T cell migration via CCL2 secretion [111].
Additionally, CD4+ CTLs have been reported to play a crucial role in
MS. These CD4* T cells co-express NKG2D, an activating receptor
predominantly expressed on NK cells, CD8* T cells, and yb6 T cells in
humans and mice [112]. Tobias Ruck et al. reported that these CD4+
NKG2D* T cells exhibit high levels of migration, activation, and
cytolytic activity. In an in viiro BBB model, NKG2D facilitated the
migration of CD4+* NKG2D* cells through endothelial cells [113].
Parkinson’s disease

In Parkinson’s disease (PD), a progressive neurodegenerative
disorder affecting 2-3% of the population over 65 years old [114],
peripheral CD4+* CTLs have been also reported to regulate BBB
dysfunction. In 2023, Shi et al. used single-cell RNA sequencing to
elucidate the potential mechanisms by which CD4+ T cells contribute

to BBB disruption [115]. Their study revealed a significant increase
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in the proportion of PD-related CD4* CTLs in the peripheral blood
mononuclear cells of PD patients. Moreover, these CD4*+ CTLs
exhibited significantly elevated expression of the //ng gene, which is
particularly sensitive to endothelial cells compared to other
midbrain cell types. Further cell-cell communication analysis
identified that during the process of CD4+ CTLs weakening
endothelial cell tight junctions, IFNG/IFNGR1 and SPP1/ITGB1 were
the primary signaling pathways between CTLs and endothelial cells
[115].

Epilepsy

In epilepsy research, direct evidence of CTLs regulating BBB
function is currently lacking, but several studies have explored
related functional aspects. Nicola Marchi and colleagues conducted
a study using splenectomy to immunosuppress rats, which reduced
various immune cells, including CTLs, and subsequently decreased
mortality in a pilocarpine-induced rat epilepsy model [116].
Furthermore, they induced epilepsy in perforin-deficient mice with
pilocarpine and observed reduced BBB damage compared to
controls [116]. Since perforin is a key effector molecule for CTL-
mediated cytotoxicity, this study indirectly supports the idea that
CTL-perforin pathways contribute to BBB damage [116], similar to
findings by Suidan’s team in the TMEV model [117]. Another study
examined the effects of rapamycin (RAP) on CTLs and BBB in
epilepsy [118]. This research reported that RAP increased the levels
of total T cells (CD3*/CD45%) and T helper cells (CD3%/CD4%) in
epileptic rats while reducing the levels of CTLs (CD3*/CD8%).
Simultaneously, harmful BBB factors such as MMP-9, MMP-2, and
inflammatory cytokines were decreased [118]. This study

highlighted an inverse relationship between BBB function and CTLs
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in an epilepsy model but did not further analyze the underlying
mechanisms or provide detailed correlations.

Hemorrhagic stroke

In hemorrhagic stroke, CCL5 in astrocytes has been shown to play a
critical role in the interaction between peripheral CTLs and
astrocytes, leading to BBB disruption. Zhou et al. identified CCL5 as
one of the top upregulated genes in RNA sequencing results from
astrocytes activated by IL-1a, TNF-a, and complement component
1g treatment [119]. Functional validation demonstrated that
knocking out CCL5 in astrocytes reduced CD8" T cell infiltration into
the brain, but did not affect the infiltration of CD4* T cells and
myeloid cells. Moreover, reduced CCL5 expression decreased BBB
disruption following hemorrhagic stroke, although this protective
effect was nullified by the supplementation of CD8* CTLs [119].
Susac syndrome

Susac syndrome (SuS) is a rare neuroinflammatory disease
characterized by endothelial dysfunction in the central nervous
system, manifesting as focal microangiopathy that affects the small-
to-medium-sized vessels of the brain, retina, and inner ear [120, 121].
The pathogenesis of SuS remains highly controversial, with the most
widely accepted theory suggesting an autoimmune process [122]. In
a 2019 publication, Catharina C. Gross and colleagues proposed that
SuS is an endothelial injury disease driven by CTLs targeting an
unknown antigen [123]. Specifically, an unidentified antigen
activates CD8* CTLs, enabling them to secrete granzyme B and
perforin. These activated CTLs then accumulate in the
microvasculature of the brain, retina, and inner ear, adhere to
endothelial cells, and induce apoptosis via granzyme B and perforin,
thereby disrupting the BBB and causing localized microhemorrhages.

This initiates a cascade of neuroinflammation, leading to the loss of
20
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astrocytes, oligodendrocytes, neurons, and axons. Eventually,
ischemic lesions infiltrate surrounding astrocytes, transforming into
gliosis [123]. Throughout the disease progression, the granzyme B
and perforin-dependent damage by CD8* CTLs to endothelial cells
and the BBB is a critical process. Understanding the activation
mechanisms of CD8* CTLs is crucial for advancing the treatment and
prevention of Susac syndrome.

In 2023, Carmen Gonzalez-Fierro further validated Gross’s
hypothesis using an in viiro co-culture model of primary brain
microvascular endothelial cells and CD8* CTLs [124]. This study
confirmed that perforin-dependent cytotoxicity is a key mediator of
endothelial cell death, suggesting this mechanism as a foundational
aspect of SuS pathogenesis [124].

Schizophrenia

N. Muller examined the expression of adhesion molecule receptors,
specifically VLA-4 and LFA-1, on Th (CD4*) and T
suppressor/cytotoxic (CD8") Ilymphocytes in patients with
schizophrenia, both before and during antipsychotic treatment [125].
The investigation revealed that the proportion of VLA-4+/CD4+* and
VLA-4%/CD8* cells increased significantly during antipsychotic
therapy. Furthermore, VLA-47/CD4* and LFA-1*t/CD4* cells were
strongly linked to disturbances in the BBB [125]. Since this study
was conducted in the late 20th century, the researchers did not
validate these correlations or delve into the underlying mechanisms
comprehensively.

5.3 Virus-induced or pathogen-induced neurological
disorders

Cerebral malaria

Cerebral malaria, a severe complication of Plasmodium falciparum

infection, involves associations between CTLs and BBB similar to
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those seen in neurological diseases like SuS and MS [106, 123]. In
cerebral malaria, CD8* T Ilymphocytes induce endothelial cell
apoptosis through a perforin-dependent mechanism, contributing to
the observed lethality in murine models [126, 127]. Researchers
have explored strategies to mitigate CTLs toxicity to the BBB in
experimental malaria, such as modulating the functions of antigen-
presenting cells and controlling the migration of activated T cells
[128-131]. Johanna F. Scheunemann has comprehensively reviewed
these findings [132]; thus, further elaboration is unnecessary here.
Human T-cell leukaemia virus 1

Human T-cell leukemia virus type 1 (HTLV-1) infection can lead to T-
cell leukemia and inflammatory diseases, most notably HTLV-1-
associated myelopathy/tropical spastic paraparesis (HAM/TSP)
[133]. In TSP/HAM, HTLV-1-infected T cells, anti-HTLV-1 cytotoxic
T cells, and macrophages infiltrate the cerebrospinal fluid,
indicating that the disease involves disruption of the blood-brain
barrier (BBB) [134]. Nirit Mor-Vaknin, in 1998, demonstrated that
HTLV-1-infected T cells can fuse with and damage astrocytes in vitro,
proposing that the destruction of astrocytes by HTLV-1-infected T
cells leads to BBB disruption [134]. Furthermore, research by
Guangyong Ma has shown that peripheral HTLV-1-infected T cells
can transfer HTLV-1 to brain endothelial cells, causing BBB damage
[135]. Thus, peripheral T-cell-mediated viral transmission may be a
key mechanism in HTLV-1-induced BBB disruption.

Dengue virus

In acute viral encephalitis induced by Dengue virus (DENV) infection,
CD8* CTLs likely play a major role. Tsung-Ting Tsai and colleagues
found that in DENV-infected mice [136], CD8* CTLs infiltration into
the central nervous system resulted in CNS inflammation and BBB

disruption. During this process, microglial cells exhibited significant
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antigen-presenting cell functions, stimulating CTLs proliferation and
activation. Conversely, depleting microglial cells eliminated DENV-
induced antiviral cytokine expression and CD8* CTLs infiltration,
restoring BBB integrity and neurological function [136].
Lymphocytic choroid plexus meningitis virus

Lymphocytic choriomeningitis virus (LCMV) infection in mice causes
fatal immunopathology and convulsive seizures through BBB
disruption [137, 138]. LCMV-specific CTLs are crucial in this process.
Jiyun V. Kim and colleagues reported that during acute viral
meningitis, activated CD8* CTLs not only damage the BBB through
downstream effector molecules (e.g., IFN-y receptor, TNF-a, Fas,
granzyme, perforin) but also express various chemokines that recruit
bone marrow mononuclear cells responsible for vascular injury [139].
Adeno-associated virus (AAV)

AAV, a member of the Parvoviridae family, is widely used in scientific
research. Although intracranial microinjection of AAV is generally
regarded as a safe and effective method for inducing transgene
expression in the central nervous system, high doses of AAV can
exhibit neurotoxicity and damage the BBB. This damage may be
mediated by the infiltration of peripheral CTLs into the CNS. This
hypothesis is supported by findings that neuronal loss induced by
high-dose AAV injection can be alleviated by depleting infiltrating T
immune cells [140].

5.4 Advanced Experimental Models to Elucidate CTL-BBB
Dynamics

Recent technological innovations have significantly enhanced our
ability to dissect CTLs interactions with the BBB under near-
physiological conditions. These models span high-resolution

single-cell omics, intravital microscopy, and biomimetic
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“BBB-on-a-chip” platforms, each offering unique insights into CTLs
trafficking, signaling, and barrier disruption.

Single-cell Omics

Yan etal. applied droplet-based single-cell RNA sequencing to
isolate and profile over 33,000 CD4+ CTLs from both peripheral
blood and CNS infiltrates of Parkinson’s disease patients [115]. They
discovered pronounced upregulation of IFNG and SPP1 in CTLs,
accompanied by elevated IFNGR1 and ITGB1 expression in brain
microvascular endothelial cells—identifying a pathogenic signaling
axis that undermines tight junction integrity. Complementarily, Patil
etal. performed single-cell transcriptomics on peripheral blood
mononuclear cells (PBMCs) from healthy donors, delineating CD4+
CTL differentiation trajectories marked by.sequential induction of
cytolytic effectors GZMB and PRF1 [88].

Intravital Imaging

Kim et al. and Phillip et al. utilized two-photon intravital microscopy
in lymphocytic choriomeningitis virus (LCMV)-infected mice to
visualize CTL behavior within intact brain microvasculature [139,
141]. Their studies reveal CTL crawling, arrest, and transendothelial
migration guided by chemokine gradients (e.g., CXCL10),
correlating precisely with localized BBB permeability increases.
Human BBB-on-a-Chip Models

Nair etal. engineered a microfluidic BBB model comprising human
brain microvascular endothelial cells cultured against an
extracellular matrix gel within 40 parallel channels [142]. Upon
exposure to TNF-a and IL-1pB, transendothelial electrical resistance
(TEER) declined by ~30%, and adhesion molecule expression
(ICAM-1, VCAM-1) increased. When primary human T cells were
perfused under flow along a CXCL12 gradient, they faithfully

recapitulated inflammation-driven extravasation observed in vivo.
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By bridging reductionist and in vivo approaches, these advanced
models afford unprecedented mechanistic resolution of CTL-BBB
dynamics. Single-cell omics elucidate the molecular programs within
individual CTLs and endothelial cells; intravital imaging captures
real-time cellular behavior within the native microenvironment; and
BBB-on-a-chip platforms provide scalable, human-relevant systems
for high-throughput interrogation of immune cell transmigration.
Collectively, these methodologies pave the way for targeted
interventions that preserve barrier integrity while modulating
neuroimmune crosstalk.

5.5 Translational Caveats and Data Gaps

While murine models have elucidated key mechanisms of CTL-BBB
modulation, their direct extrapolation to.-human disease is
constrained by several factors:

Species and model differences

Rodent and human brain -micrevascular endothelial cells differ
markedly in tight junction composition (e.g., claudin-5 levels [143])
and transporter expression (P-glycoprotein, BCRP [144]), altering
permeability and leukocyte trafficking.

Temporal dynamics

Experimental antigen challenges in mice typically unfold over hours
to days, whereas human neurodegenerative and autoimmune
disorders feature chronic, low-grade inflammation persisting for
months to years. Such divergence may obscure the progressive BBB
remodeling observed clinically.

Genetic homogeneity vs. diversity

Inbred mouse strains lack the genetic polymorphisms present in
human populations (e.g., cytokine and chemokine receptor variants)
[145] that critically shape CTL responses and barrier interactions.

Clinical data scarcity
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Few studies have quantified CTL infiltration or BBB integrity in
human CNS tissues. MRI and PET assessments of barrier leakage
remain limited to small cohorts in multiple sclerosis [146] and
post-COVID syndromes [147], whereas, post-mortem
immunohistochemical analyses of CTLs are rare.

Underutilized Human In Vitro Models

Although induced pluripotent stem cell (iPSC)-derived BBB
organoids and microfluidic “BBB-on-a-chip” platforms can
recapitulate shear stress and multicellular architecture [142, 148],
they are not yet widely adopted for investigating CTL transmigration.
Addressing these gaps will demand integration of humanized animal
models, longitudinal patient sampling, advanced in vivo imaging
tools, and broader deployment of human BBB-platforms to ensure
that preclinical insights align with human pathophysiology.

6. Therapeutic Implications and Future Strategies

Translating mechanistic insights- into effective therapies requires
approaches that precisely. modulate CTL activity at the BBB while
preserving barrier integrity:

Immune Checkpoint Blockade

Agents such as anti-PD-1/PD-L1 antibodies (e.g., nivolumab) can
rejuvenate exhausted CTLs [149, 150] but may aggravate BBB
permeability through enhanced cytokine release.

Chemokine-axis Blockade

Targeting chemokine receptors (e.g., CXCR3 antagonists) reduces
CTL recruitment and BBB disruption in experimental autoimmune
encephalomyelitis [151, 152], while the CCL5-CCR5 axis has
demonstrated efficacy in hemorrhagic stroke models [153].
Localized BBB Modulation

Focused ultrasound-mediated BBB opening permits site-specific

delivery of immunomodulators, as shown in glioma with enhanced
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CTL infiltration [154, 155]. Receptor-targeted nanoparticles (e.g.,
Angiopep-2-decorated carriers co-delivering granzyme B and CpG)
further concentrate CTL-directed agents at the neurovascular
interface [156].

CTLs Cytotoxicity Attenuation

Small-molecule inhibitors of perforin and granzyme (e.g.,
compounds described by GonzalezFierroetal., 2023 [124])
selectively dampen CTL-mediated endothelial apoptosis, offering
potential adjunctive therapy in Susac’s syndrome and multiple
sclerosis.

Integrating these therapeutic avenues within humanized platforms
will be essential to achieve durable neuroprotection alongside robust
pathogen or tumor clearance.

7. Conclusion and further challenges

CTLs exert profound effects on BBB integrity in immune-mediated
neurological disorders, including autoimmune diseases and
pathogen-induced conditions. Three principal mechanisms have
been identified (Fig. 3): a. Direct cytotoxicity, wherein CTLs deploy
perforin and granzyme to induce endothelial apoptosis [157]; b.
Neuron-mediated disruption, via CTL-altered neuronal VEGF
production that compromises tight junctions [107]; and c.
Immune-cell facilitation, whereby other leukocytes or resident glia
amplify CTL-triggered BBB damage [108, 139]. Additional
context-specific pathways, such as HTLV-1 vesicular transmission by
CTLs, underscore the complexity of CTL-BBB interactions [134].

To integrate the diverse molecular mechanisms detailed above, we
propose a unified model comprising three interlinked axes by which
CTLs disrupt BBB integrity: a. Perforin/Granzyme Cytotoxicity: CTLs
release perforin and granzyme B, forming pores in endothelial

membranes and activating caspase cascades to induce apoptosis. b.
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IFN-y/TNF-a Signaling: CTL-derived IFN-y and TNF-a activate
JAK/STAT and NF-kB pathways in brain microvascular endothelial
cells, downregulating tight junction proteins. C.
Chemokine-Mediated Trafficking: CTLs secrete CXCL10 and CCLS5,
establishing chemotactic gradients that recruit additional immune
cells via CXCR3 and CCRS5, promoting diapedesis. These axes
converge synergistically to amplify BBB permeability, suggesting
that combinatorial therapeutic strategies targeting multiple
pathways may enhance barrier preservation.

Despite the beneficial role of activated CTLs, particularly CD8* cells,
in targeting pathogens and infected cells in the brain, their potent
cytotoxicity often results in collateral damage to healthy cells.
Perforin, a major toxic factor, can inadvertently harm normal cells,
disrupting the BBB structure, which is primarily composed of brain
endothelial cells. Peripheral CTLs must traverse this natural barrier
to exert their pathogen-killing function within the brain. Thus, CTL
toxicity towards endothelial cells is partly aimed at facilitating brain
entry, but this breach can lead to neurological dysfunction. In
autoimmune diseases, activated peripheral CTLs also congregate
around brain endothelial cells, causing BBB damage and
neurological disorders. This is partly due to increased MHC I
expression on endothelial cells, which may attract CD8* CTLs [157].
Granzyme B and perforin are primary toxic mediators for CTLs.
Research shows that reducing or knocking out perforin expression
in mouse disease models protects BBB integrity, improves disease
symptoms, and increases survival rates. Therefore, CTLs might be
more harmful than beneficial in certain disease stages, and reduced
perforin expression could protect the BBB and enhance survival.
However, determining when to inhibit or enhance CTLs function

requires further investigation.
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CD4* CTLs, although less studied, similarly perturb BBB function.
We hypothesize that these cells predominantly assist immune
responses under homeostatic conditions and may employ non
perforin pathways, such as IFN y/IFNGR1 and SPP1/ITGB1 signaling,
to exert cytotoxicity during chronic inflammation. Rigorous
validation of these mechanisms is warranted.

The ongoing global COVID-19 pandemic, caused by SARS-CoV-2,
persists despite advancements in vaccination and increased natural
immunity. Prolonged infection has been linked to brain fog and
cognitive impairment, with disruption of the BBB playing a critical
role [158, 159]. Research has shown that SARS-CoV-2 infection
triggers CD3" T cell infiltration in the hippocampus and brainstem
of infected mice [160]. Transcriptomic sequencing of peripheral
blood mononuclear cells from COVID-19 patients with cognitive
dysfunction also revealed significant enrichment of pathways related
to T cell differentiation and activation, as identified through Gene
Ontology (GO) analysis [161]. These findings suggest a potential role
for T cells, including CTLs, in regulating BBB function during SARS-
CoV-2 infection. However, the direct involvement of CTLs and the
underlying mechanisms require further investigation.

Collectively, CTLs are pivotal regulators of neurovascular integrity.
Future research must integrate high-resolution in vivo imaging,
humanized BBB platforms, and single-cell omics to map CTL
dynamics and identify targets for selective modulation, thereby

preserving barrier function without compromising host defense.
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Supplementary Table 1 The discovery process of the BBB

Name Year Contribution Reference
Ridley The low permeability of small
1695 [162]
Humphrey cerebral vessels
The isolating between brain and
Ehrlich Paul 1885 [13]
bloodstream
Lewandowsky Terming this new concept as a
1909 [163]
Max German name bluthirnschranke
Only the brain and the spinal cord
Goldmann
1909 can be stained by Evans blue [14]
Edwin Ellen
injected in ventricles
Stern Lina & Naming it as “barriere hémato-
Raymond 1921 encéphalique” in French, and then [15]
Gautier. translated into BBB
the BBB was not mature during
Stern Lina 1929 [164]

embryogenesis
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Supplementary Table 2 The main functions of components of BBB

Components

Functions

Reference

Endothelial

cells

Endothelial cells are tightly
interconnected, forming distinct lumenal

and abluminal membrane compartments

Pericytes are embedded in the basement
membrane and lie abluminal to the
endothelial cells, and in close

communicate with endothelial cells

[166, 167]

Astrocytes surround blood vessels in the
brain, serving as the interface between

neurons and endothelial cells

Tight junctions

Tight junctions reside between
endothelial cells, serving as the main
functional components in sustaining the
permeability - barrier and controlling

tissue homeostasis

[169]

Adherent

junctions

Adherent junctions are fundamental for
the integrity of BBB, any change of
adherens junctions may disrupt inter-

endothelial cell connections

[170]
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Supplementary Table 3 The main functions of immune

checkpoints

Checkpoints Functions

Reference

Binding with its ligand PD-L1/PD-L2 of
target cells, counteracting CD80-CD28

signaling transduction of CTLs.

CTLA-4

Interferes with CD8 T-cell movements and
the ability to form stable conjugates with
APCs, thus reducing the contact time

between cells

[172]

LAG-3

Binding with CD3 in the TCR complex and
inhibiting its signal transduction, leading to
reduced T cell proliferation and cytokine

production

[173]

The switching of the binding TIM-3 and
Bat3 or Fyn, further inhibiting upstream

TCR signaling

Inhibiting TCR signaling by binding with
CD155 of APCs

Weaking the function of CD28 signaling by
binding with CD275 of APCs
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Fig. 1 Schematic representation of the differentiation of T cells from
common lymphoid progenitors.

Schematic representation of the differentiation of T cells from common
lymphoid progenitors. Common lymphoid progenitor (CLP) cells, which
originate in the red bone marrow, give rise to immature precursor T cells.
These precursor cells are initially double-negative for both TCR and CD
proteins. Thymic chemotactic factors, such as thymotaxin, thymosin, and
thymopoietin, guide these double-negative precursor T cells from the
bloodstream into the thymus. Within the thymus, thymic cells present MHC
I and II molecules to the developing T cells, prompting the expression of

TCR and CD proteins. This interaction ensures positive selection, which
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leads to the survival of T cells that can bind MHC molecules with at least
weak affinity. T cells that recognize MHC I differentiate into CD8* T cells,
while those recognizing MHC II develop into CD4* T cells. Furthermore,
CD4+* T cells may differentiate into specialized subsets such as Th cells or
Treg cells, depending on the presence of specific cytokines and stromal
signals. Abbreviations: CLP, common lymphoid progenitor; TCR, T-cell
receptor; MHC, major histocompatibility complex; CD, -cluster of

differentiation; Th, T-helper; Treg, T-regulatory.
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Fig. 2 Schematic representation of T cell activation upon recognition
of antigenic peptides.

The variable (V) regions of the a and B chains of the TCR specifically
recognize and bind to antigenic peptides presented by MHC I molecules
on target cells. This interaction is enhanced by the co-receptor CD8, which
binds to both the TCR and MHC I, stabilizing the TCR-CD3 complex at the
MHC-peptide interface. This stable interaction leads to the
phosphorylation of ITAMs within the CD3 subunit of the TCR complex. The
phosphorylation «of ITAMs activates downstream signaling cascades that
result in the activation of transcription factors such as NF-kB, NFAT, and
AP-1, ultimately driving the proliferation and effector function of the CD8*
T cell. These effector functions include cytokine secretion and the
generation of cytotoxic molecules such as perforin and Granzyme B.
Abbreviations: TCR, T-cell receptor; MHCI, major histocompatibility
complex class I; CD, cluster of differentiation; ITAM, immunoreceptor
tyrosine-based activation motif; NF-kB, nuclear factor kappa-light-chain-
enhancer of activated B cells; NFAT, nuclear factor of activated T-cells; AP-

1, activator protein 1.
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Fig. 3 Mechanisms by which CTLs mediate BBB damage.

(A) Perforin/Granzyme Cytotoxicity: CTLs release perforin and
granzyme B, inducing apoptosis of brain microvascular endothelial cells.
(B) Cytokine Signaling: IFN-y and TNF-a from CTLs activate JAK/STAT
and NF-kB in endothelial cells, downregulating tight junction proteins. (C)
Chemokine-Mediated Trafficking: CTL-derived CXCL10 and CCL5
establish chemotactic gradients, recruiting CTLs and bystander leukocytes
via CXCR3 and CCRS5. Abbreviations: CTL, cytotoxic T lymphocyte; BMEC,
brain microvascular endothelial cell; IFN-y, interferon-gamma; TNF-q,
tumor necrosis factor-alpha; JAK, Janus kinase; STAT, signal transducer
and activator of transcription; NF-kB, nuclear factor kappa-light-chain-

enhancer of activated B cells; ICAM-1, intercellular adhesion molecule-1;
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metalloproteinase; CXCL10, C-X-C motif chemokine ligand 10; CCL5, C-C

motif chemokine ligand 5; CXCR3, C-X-C motif chemokine receptor 3;

CCRS5, C-C motif chemokine receptor 5.
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Abstract

The blood-brain barrier (BBB) is a dynamic, multicellular interface
that preserves central nervous system (CNS) homeostasis by
restricting entry of pathogens and circulating cells. Cytotoxic T
lymphocytes (CTLs), comprising both CD8+ and CD4+* subsets, are
central to adaptive immunity through targeted elimination of
infected or transformed cells. However, in immune-mediated
neurological disorders, including viral encephalitis, multiple
sclerosis, Parkinson’s disease, and glioma, CTLs effector functions
can inadvertently compromise BBB integrity. Here, we integrate
findings from primary research to delineate three principal
mechanisms by which CTLs modulate the BBB: (1) direct cytotoxicity,
in which perforin/granzyme release and FasL-Fas interactions
induce endothelial cell apoptosis; (2) proinflammatory cytokine
signaling, notably IFN-y and TNF-a activation of JAK/STAT and
NF-kB pathways in brain microvascular endothelial cells; and (3)
chemokine-driven leukocyte trafficking, wherein CXCL10 and CCL5
gradients promote CTLs and bystander immune cell migration
across the barrier. We further review evidence from in vitro and in
vivo models that illustrate both protective and deleterious roles of
CTLs at the neurovascular interface. By clearly specifying these
mechanisms and their disease-specific contexts, this review
establishes a unified framework for future investigations aimed at
preserving BBB function while maintaining effective CTL-mediated
immunity.

Key words

CD8* CTLs, CD4* CTLs, BBB, Neurodegenerative disease, Glioma,

Infectious neurological disorder
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1. Introduction

The blood-brain barrier (BBB) is a protective membrane that shields
the central nervous system (CNS) from blood-borne toxins and
pathogens, thereby preserving CNS homeostasis [1]. BBB
dysfunction is a common pathological feature in many neurological
diseases. Compromised BBB integrity or impaired function can
significantly contribute to the progression of these conditions. In
numerous neurological disorders, BBB disruption is frequently
accompanied by an immune response within the nervous system.
This response includes innate immunity, primarily
neuroinflammation [2, 3], and adaptive immunity involving T and B
cells [4-6]. Current research focuses primarily on T cell immunity in
adaptive responses, as both innate and adaptive responses are
essential for maintaining BBB function.

The innate immune system rapidly and nonspecifically responds to
foreign pathogens or damaged cells by recognizing pathogen-
associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs) [7]. In contrast, the adaptive immune
system is activated over a longer period, involving the precise
activation of T lymphocytes and B lymphocytes that are highly
specific for their targets [8]. In general, B lymphocyte immune
function is primarily mediated by antibodies secreted by their
differentiated plasma cells following interaction with soluble
antigens binding to the B cell receptor (BCR) [9]. T cell immunity
operates through cell-to-cell interactions when the T cell antigen
receptor (TCR) complex encounters peptide antigens presented by
antigen-presenting cells (APCs). APCs present antigens via major
histocompatibility complex class I or II (MHC I and MHC II),
interacting respectively with the main subsets of T cells, CD8-

positive (CD8*) and CD4-positive (CD4%) T cells [10].
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This review examines cytotoxic T lymphocytes (CTLs) as an example
of how T lymphocyte-mediated acquired immunity regulates to BBB
dysfunction and its mechanisms. Unlike other reviews that
predominantly focus on the role of innate immunity, such as
neuroinflammation, in BBB function, this study concentrates on
CTLs, explaining their targeting mechanisms, actions, and
involvement in BBB dysfunction in neurological disorders. Therefore,
the findings of this paper enhance the foundational knowledge of T
lymphocyte immunity and BBB-related research, and suggest future
research directions.

2. BBB structure and basic function

The BBB serves as a regulated interface between the peripheral
circulation and the central nervous system (CNS) [11]. Although its
existence was first noted in 1885, the precise nature of the BBB
remained a topic of debate well into the 20th century [12]. The
detailed process of discovering and naming the BBB is summarized
in Supplementary Table 1 and briefly described as follows: in 1885,
Paul Ehrlich reported that the brain is isolated from the bloodstream
[13]. Subsequently, Edwin Goldman, Ehrlich’s student,
demonstrated that when Evans blue dye was injected into the
ventricles, only the brain and spinal cord were stained, while
peripheral organs remained unstained [14]. In 1922, Lina Stern
introduced the term “barriéere hémato-encéphalique” in French,
which was later translated to “blood-brain barrier” [15]. The BBB is
a multicellular vascular structure composed of brain microvessel
endothelial cells, pericytes, astrocytes, neurons, and microglial cells.
Junctional complexes, including tight and adherens junctions, are
present at intercellular junctions within the BBB and are crucial for
maintaining its low permeability [16]. A brief summary of the main

functions of these components is given in Supplementary Table 2.
4



106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

The BBB forms a physical and metabolic barrier that separates the
CNS from peripheral tissues, protecting the brain by maintaining a
stable environment [17, 18]. However, it also restricts drug entry
into the CNS, complicating the treatment of brain diseases such as
neurodegenerative disorders and brain cancer [19, 20]. Numerous
studies have elucidated the BBB’s physiological functions, including
brain protection. In addition to serving as a physical and metabolic
barrier against harmful substances, the BBB maintains CNS
homeostasis, facilitates the selective transport of nutrients, ions, and
signaling molecules, and modulates neuroinflammatory
response.[21-23]. Wu et al. (2023) have detailed the functions of the
BBB and the role of each component in their comprehensive review
[11].

3. CD8* CTLs

T lymphocytes are divided into two distinct functional subgroups:
CD4* T lymphocytes and CD8* T lymphocytes. CD4* T cells are
known as T helper cells (Th), whereas CD8* T cells are referred to
as CTLs [24]. Generally, CTLs act as powerful defenders against viral
infections or intracellular pathogens by regulating the secretion of
perforin and proteases in target cells, which induce apoptosis [25].
CD4+ T cells indirectly contribute to infection clearance by
modulating the activity of other immune cells, such as macrophages,
neutrophils, B cells, and CD8* T cells [24]. However, pre-clinical and
clinical studies have demonstrated that CD4* T cells possess
cytotoxic programs and can directly kill cancer cells. Additionally,
the cytotoxic function of CD4* T cells has been observed in other
diseases, such as infections and autoimmune disorders [26-28]. In
this section, we primarily discuss the production and activation of
CTLs, as well as the mechanisms by which CTLs kill target cells.

Although CD8* and CD4* T lymphocytes represent the principal
5



136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

effector subsets highlighted in this review, emerging evidence
underscores the essential contribution of additional T cell subsets,
notably regulatory T cells (Tregs) characterized by the
CD4*CD25*FOXP3* phenotype [29, 30]. These cells are
instrumental in preserving immune homeostasis and curbing
excessive neuroinflammation [29]. By suppressing autoreactive T
cell activity, Tregs facilitate peripheral immune tolerance [31, 32]
and may secondarily modulate the structural and functional integrity
of the BBB.

3.1 The differentiation of T cells

CTLs differentiation occurs in three distinct stages based on their
sites of action. The first stage takes place in the red bone marrow,
where common lymphoid progenitor cells differentiate into
immature precursor T cells. Due to their high migratory capacity,
these precursor T cells enter the circulatory system. Chemotactic
agents or thymic factors from the thymus (such as thymotaxin,
thymosin, and thymopoietin) direct their migration to the thymus,
marking the second stage (circulatory system) and the third stage
(thymus) of differentiation. In the thymus, the essential
differentiation process involves thymic cells presenting CD- and
TCR-positive T cells to MHC I and MHC II molecules to evaluate T-
cell reactivity and direct their maturation pathways. T cells with TCR
affinity for MHC I become CD8* T cells, whereas those with TCR
affinity for MHC II become CD4* T cells [24]. Depending on cytokine
and stromal cell signaling, they may further differentiate into T-
helper and T-regulatory cells, both of which are subsets of CD4+ T
cells [33, 34]. The aforementioned process is illustrated in Fig. 1.
Tregs, characterized by high expression of CD25 and the
transcription factor FOXP3 on CD4* T cells, are indispensable for

maintaining peripheral immune tolerance and suppressing
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autoimmunity [29, 30]. They exert immunosuppressive effects
through both direct cell-cell interactions and the secretion of anti-
inflammatory cytokines, including interleukin-10 (IL-10) and
transforming growth factor-beta (TGF-B) [35]. In addition to Tregs,
other T cell subsets, such as T helper 17 (Th17) cells and y6 T cells,
also participate in the regulation of neuroinflammation via distinct
cytokine signatures and differential tissue-homing capacities [36,
37]. Increasing evidence indicates that Tregs contribute to the
preservation of BBB integrity by attenuating proinflammatory
cytokine production and promoting the stabilization of endothelial
tight junctions in CNS autoimmune disease models [38, 39].

3.2 The activation of CD8* CTLs

The activation of CD8* CTLs is initiated through their initial
interactions with target cells. Three critical components in this
process are APCs, as well as the TCR and CD28 on CTLs.

APCs are essential in mediating interactions between T cells and
their targets. Initially, APCs bind to target substances such as cancer
cells, pathogens, viruses and others. Through phagocytosis and the
action of proteases, these targets are degraded into antigenic
peptide fragments, forming the MHC I -APC-target complex. CD8* T
cells recognize the MHC I antigen peptide complex on this structure.
Upon contact, T cells adhere to the complex and scan its surface. By
homing towards chemokine and integrin gradients on APCs or target
cells, CD8* T cells form immunological synapses between their
supramolecular activation complex and adhesion molecules, such as
intercellular adhesion molecules, on the target cell surface [40, 41].
During immunological synapse formation, TCR and CD28 on CD8+ T
cells play critical roles. The TCR is a complex structure composed of
the antigen-binding subunit (TCRoaf) non-covalently linked with

three CD3 co-receptor signaling subunits (((, CD36g, and CD3ye)
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[42]. The intracellular CD3 contains immunoreceptor tyrosine-based
activation motifs (ITAMs), which are essential for linking
intracellular tyrosine kinase functions [42]. Hence, the CD3-ITAM
pathway in TCR is crucial for assembling and transmitting
intracellular signals following surface recognition by TCR. After TCR
is activated by the MHC I -APC-target complex, a separate co-
stimulatory signal is required; otherwise, T cells will not fully
activate, leading to inactivity or apoptosis. This additional signal
comes from the CD28 receptor on CD8* T cells, which binds to
CD80/B7.1 or CD86/B7.2 on APCs, promoting T cell proliferation and
cytokine production, such as IL-2 [43]. The aforementioned process
is illustrated in Fig. 2. During this process, CD28 induces multiple
signaling pathways in T cells, such as the PI3K-AKT and NF-xB
pathways, leading to increased Bcl-xL expression and enhanced T
cell survival [44]. Additionally, CD28 signaling protects CD8* T cells
from reacting to self-antigens, thereby reducing the risk of tissue
damage and autoimmunity. A more detailed description of CD8*+ T
cell activation can be found in the review published by Hans Raskov
in 2021 [45].

3.3 The CD8* CTLs-mediated mechanism of target-cell death
Once activated, CD8* CTLs demonstrate their potent cytotoxic
abilities. As reported in various studies, CD8* CTLs bind to the Fas
receptor on the target cell via the Fas ligand (FASL) on their surface,
activating the death domain within the target cell. This activation
subsequently triggers caspases and nucleases, leading to the
fragmentation of the target cell’s DNA [46]. More importantly, the
cytotoxic activity of CD8* CTLs primarily depends on the release of
granules containing granzymes, perforin, cathepsin C, granulysin,
and other effector molecules. These granules fuse with the target

cell membrane, allowing the effector molecules to enter the target
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cell and create pores in the endosomal membrane, resulting in cell
destruction [47, 48]. These processes occur within the
immunological synapse (IS) formed between the CD8* CTLs and the
target cell [41]. In brief, CD8* T cells exhibit persistent motility
when interacting with target cells, which facilitates pore formation
in the target cell membrane [47]. This allows the release of cytotoxic
granules containing granzymes, perforin, cathepsin C, and
granulysin, which fuse with the target cell membrane to initiate cell
death [47]. Alternatively, the target cell may internalize a complex
of granulysin, perforin, and granzymes through endocytosis of the
cytotoxic T-cell membrane [48]. Once internalized, perforin and
granulysin create pores in the endosomal membrane, allowing
granzymes to escape into the cytoplasm, where they trigger
apoptosis [48].

The IS is the interface where CD8* CTLs engage with target cells,
facilitating TCR-mediated signaling and secretory events. Similar to
natural killer cells, the initiation of IS formation in CTLs involves two
signals[49]: the absence of MHC I recognition (disinhibition) and a
positive signal from germline-encoded activation receptors that bind
to specific ligands on target cells, such as lectins or hemagglutinins.
Once antigenic peptides are recognized by the TCR on CTLs, the IS
is formed, triggering complex signaling cascades involving the TCR,
CD28, and associated pathways. These cascades lead to the
realignment of the Golgi complex and microtubule network, with the
microtubule-organizing center repositioning towards the IS and
microtubules extending towards the distal pole. Along these
microtubule tracks, effector granules are transported to the IS for
secretion [50]. The mechanism by which granules enter target cells
is complex and involves multiple modifications to the target cell's

plasma membrane. A critical factor in this process is the
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accumulation of Orai Ca2* channels and the involvement of t-SNARE
syntaxinll. The activation of Orai Ca2* channels occurs in
conjunction with IP3/Ca2*-dependent activation and the
translocation of STIM proteins to the endoplasmic reticulum near
the IS. These activated STIM proteins interact with Orai channels,
forming the store-operated Ca2* release-activated Ca2* complex,
which drives store-operated Ca2* entry [51-53]. The increase in
cytosolic Ca2* concentration is further enhanced by adjacent
mitochondria [54, 55], ensuring optimal synaptic activation [56, 57].
Concurrently, t-SNARE syntaxinl1, essential for lysosomal granule
fusion, relocates to the IS and integrates into the plasma membrane
through a VAMP8-dependent mechanism [58, 59]. This coordination
ensures the precise positioning of release machinery components.
Additionally, further modifications to the target cell membrane
involve interactions between proteins on the granules and the target
membrane, such as Rab27/Muncl3 and VAMP/Munc18. Although
the specific details of these molecular mechanisms are extensively
covered in various reviews [60], they are not elaborated on here.
These interactions highlight the intricate regulation of granule
fusion and release, which is crucial for the effective cytotoxic
response of CTLs.

An overactivated CD8* CTLs response can be detrimental, leading
to autoimmune disorders, rejection of transplanted cells, and graft-
versus-host disease. This is because the lytic machinery of CTLs can
mistakenly target self-tissues or host tissues [61]. To prevent such
uncontrolled activation, immune checkpoint molecules, which are
transiently expressed inhibitory receptors on the cell surface, are
essential. They regulate CD8* CTLs activation, ensuring the immune
response is properly modulated even in the presence of strong

activation signals [62]. This checkpoint molecule is also present in
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other immune cells, including natural killer cells and activated
macrophages, where they perform similar regulatory functions. Key
checkpoint molecules include programmed cell death receptor 1
(PD-1 or CD279), CTLA-4, lymphocyte-activation gene 3 (LAG-3), T-
cell immunoglobulin and mucin domain-3 (TIM-3), T-cell
immunoreceptor with Ig and ITIM domains (TIGIT), and inducible T-
cell co-stimulatory receptor (ICOS). The mechanisms by which these
immune checkpoints function have been extensively reviewed [63,
64], and in this paper, their main modes of action are displayed in
Supplementary Table 3. However, malignant tumor cells can exploit
these inhibitory signals to evade the immune response and enhance
their own survival [65].

The development of monoclonal antibodies targeting immune-
inhibitory receptors, known as checkpoint inhibitors, represents a
major breakthrough in immuno-oncology, significantly improving the
clinical outcomes of various cancers [66]. This therapeutic approach
enhances antitumor immune responses while also revitalizing
exhausted CD8* T cells, thereby increasing tumor cell eradication.
Among these therapies, anti-PD-1 agents have been particularly
transformative in the treatment of metastatic melanoma,
demonstrating remarkable clinical efficacy [67, 68]. Several
checkpoint inhibitors targeting the PD-1 pathway have received
approval in the United States, including three PD-1 inhibitors
(pembrolizumab, nivolumab, and cemiplimab), and three PD-L1
inhibitors (atezolizumab, avelumab, and durvalumab). Current
research focuses on improving the efficacy and reducing the toxicity
of these agents by combining them with other therapeutic modalities,
such as immunotherapies or cytotoxic chemotherapies. Notably, the
combination of PD-1/PD-L1 inhibitors with CTLA-4 inhibitors has

yielded promising clinical outcomes, as demonstrated by the
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approval of nivolumab in combination with ipilimumab for the
treatment of metastatic melanoma, advanced renal cell carcinoma,
and mismatch repair-deficient colorectal cancer [69, 70].

4. CD4+ CTLs

4.1 Ontogeny and Differentiation of CD4* CTLs

CD4* CTLs differentiate from naive CD4+* T cells under conditions of
persistent antigen stimulation and pro-inflammatory cytokines such
as IL-2, IL-15 and IL-22 [71-73]. Transcription factors T-bet and
Eomesodermin coordinate the acquisition of cytotoxic programs by
upregulating perforin and granzyme B expression [73, 74].
Co-stimulatory signals via CD28 and 4-1BB further enhance CD4+
CTL expansion and survival [75]. In chronic infections, such as
tuberculosis, CD4+ CTLs increase in frequency and partially restore
pathogen clearance when CD8* CTLs exhibit an exhausted
phenotype marked by PD-1 and TIM-3 upregulation [76, 77].
Similarly, in autoimmunity models, CD4+* CTLs compensate for
impaired CD8* responses by targeting MHC Il-expressing
antigen-presenting cells and sustaining local cytotoxicity [78].

4.2 Effector Mechanisms of CD4* CTLs

Conventional CD4t+ T cells, including thymus-derived FOXP3
regulatory T cells, are part of the Th cell lineage, characterized by a
TCR that recognizes MHC II [79]. The functional diversity of Th
subsets is further expanded by the presence of CD4* T cells with
cytotoxic capabilities, known as CD4* CTLs. Initially, these CD4*
CTLs were dismissed as artifacts from exhausted, long-term cultured
T cell lines or miscategorized within the Thl subset [80, 81].
However, research over the past decades has demonstrated that
CD4* CTLs are a distinct Th subset with antigen-specific cytotoxic

activity, observable in both humans and mice [82, 83].
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CD4+* CTLs, similar to CD8* T cells, utilize two primary effector
mechanisms to eliminate target cells [84, 85]. The first involves the
release of cytotoxic granules containing perforin and granzyme B,
which induce perforin oligomerization and pore formation in the
target cell membrane [86]. The second mechanism involves
Fas/FasL-mediated apoptosis, where FasL on CD4* CTLs binds to
Fas receptors on target cells, activating Caspase 8 and subsequently
Caspase 3, leading to apoptosis. Detailed descriptions of these
mechanisms are provided in the “CD8* CTLs” section of this paper.
In contrast to CD8* T cells, which recognize antigens presented by
MHC I molecules, CD4* CTLs recognize peptides presented by MHC
IT molecules on APCs. Therefore, it is unlikely that CD4* CTLs simply
substitute the function of CD8* CTLs.

4.3 Compensatory Roles in Chronic Infection and
Autoimmunity

The distinctive characteristic of CD4* CTLs is their capacity to kill
target cells, mirroring and complementing the cytotoxic function of
CD8+ T cells. Although CD4+ CTLs are found in low numbers under
normal conditions [86], their population increases significantly
during chronic viral infections such as those caused by
cytomegalovirus, dengue virus, ectromelia virus, lymphocytic
choriomeningitis virus, and other pathogens [87-90]. Growing
evidence suggests that the cytotoxic activities of CD4+ T cells
against infected or transformed cells likely compensate for the
reduced Kkilling efficacy of exhausted CD8* CTLs, which can be
inhibited by virus-induced checkpoint molecules [91]. For instance,
during chronic Mycobacterium tuberculosis (Mtb) infection, T-cell
immunity is suboptimal due to the expression of inhibitory receptors
like PD-1 and TIM-3, resulting in reduced cytokine production [76,

77]. Consequently, CD8* T cells exhibit an exhausted phenotype, and
13
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CD4+* T cells adopt a cytotoxic profile marked by the expression of
Tbx21, potentially compensating for the impaired function of CD8*
T cells during active tuberculosis [92].

5. The role of CTLs in the regulation of BBB function

The association between the BBB and CTLs was first reported by
Wyde et al. in 1983 [93], as recorded in the PubMed database. Wyde
and colleagues compared the dissemination of a neurovirulent strain
of influenza A/WSN (HON1) virus from infected lungs to brains of
thymus-deficient nude and immunocompetent furred mice, both
inoculated intranasally. Their results revealed that, in
immunocompetent mice, the virus was typically cleared from the
lungs of survivors, with minimal cases of viral spread to the brain. In
contrast, nude mice exhibited frequent and early deaths, with
significant viral titers in the brain and histological evidence of
encephalitis. Notably, adoptive immunization of nude mice with
CTLs, which had been stimulated in vitro 24 hours after intranasal
challenge, led to a reduction in both brain virus titers and mortality
[93]. These findings underscored the crucial role of T lymphocytes
in inhibiting the dissemination of neurotropic viruses from the lungs
to the brain.

Wyde’s pioneering study suggested for the first time that T
lymphocytes are integral to the BBB’s defense against viral invasion.
In the 1980s, Hafler and colleagues further examined and reviewed
the role of T cells in multiple sclerosis and other inflammatory
central nervous system diseases [94]. For instance, Hafler et al.
initiated clinical trials wusing anti-T-cell murine monoclonal
antibodies (MAbs) to treat multiple sclerosis, aiming to develop a
targeted and non-toxic immunotherapy [95]. During infusions with
anti-T11, a pan-T-cell monoclonal antibody targeting the CD2

receptor, they observed that the antibody bound to peripheral blood
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T cells without inducing significant cell lysis, and did not
immediately modulate the CD2 surface structure. Additionally, they
found that the BBB remained relatively impermeable to the antibody.
This unique scenario allowed researchers to study the migration of
peripheral T cells into the CNS in patients with progressive multiple
sclerosis.

Following these groundbreaking studies, researchers began
investigating how CTLs contribute to neurological dysfunction,
particularly by crossing or disrupting the BBB. In this context, we
focus on the role of CTLs in maintaining the integrity of the BBB and
their associated functions in neurological conditions, particularly
brain tumors, non-tumor neurological diseases such as multiple
sclerosis and Parkinson’s disease, as well as virus-induced or
pathogen-induced neurological disorders.

5.1 Brain-related tumors

Brain metastases of tumors

The association between CTLs and BBB in brain tumor models was
initially reported by Gordon et al. using a P511 mastocytoma cell
tumor model [96]. Their research demonstrated that, on the seventh
day following cannula implantation in the cerebral cortex, brain
tumors developed while the BBB remained intact. Importantly, the
population of P511-specific non-cytolytic CTL precursors (pCTLs)
were identified at the brain tumor site, suggesting that these pCTLs,
generated in the periphery, migrated to the brain tumor area. The
incomplete activation of these cells, likely due to the inhibitory
microenvironment of the central nervous system, indicated that the
unique structure of the BBB prevents their full activation, thus
reducing their cytotoxic potential. Furthermore, when the tumor
cells were injected at a flank site, similar phenomena were observed

in the brain metastasis model of P511 mastocytoma cells [96].
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Glioma

Glioblastoma multiforme (GBM) is the most common and aggressive
malignant primary brain tumor in adults. Focused ultrasound (FUS)
can temporally and locally open the BBB. In a GBM mouse model,
Chen et al. utilized FUS to disrupt the BBB, leading to significant
changes in tumor-infiltrating lymphocyte (TIL) populations within
the brain, particularly increasing the number of CD3+*CD8* CTLs in
the tumor region. This resulted in notable inhibition of tumor
progression and improved survival rates in the animals [97].
Oncolytic virotherapy is another promising approach to improve the
poor prognosis of malignant brain tumors. The rat H-1 parvovirus
(H-1PV) has shown tumor suppression in preclinical glioma models
through direct oncolysis and stimulation of anti-cancer immune
responses [98, 99]. Because the virus can penetrate the blood-
brain/tumor barrier and spread extensively within the tumor,
significant changes were observed in the tumor microenvironment
upon viral infection. These changes included microglia/macrophage
activation and CTLs infiltration, indicating that H-1PV may trigger
an immunogenic response [98, 99]. Numerous similar studies have
reported other methods and vectors capable of altering the brain’s
immune microenvironment, such as the RNA-modification of T Cells,
modified nanoparticles, and others [100-104]. These approaches
must successfully penetrate the BBB—a major challenge in brain
cancer treatment—and increase CTLs infiltration at the tumor site.
Notably, the increased CTLs are predominantly CD8 positive [100-
104]. Thus, current research on brain tumors, CTLs, and the BBB
primarily seeks methods to cross the BBB and enhance the cytotoxic
function of immune cells, such as CD8* CTLs, at the tumor site.
However, there is no research on the direct effects of CTLs on the

BBB in brain tumors.
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5.2 Non-neoplastic neurological diseases or dysfunctions
Multiple sclerosis (MS)

MS is a central nervous system disease characterized by
inflammation and autoimmunity. In 1993, researchers discovered
that peripheral T cells from patients with acute MS exhibit a
cytotoxic effect on brain endothelial cells [105]. This observation
indicates that T cell-induced cytotoxicity towards brain endothelial
cells might play a role in increasing BBB permeability and triggering
immune responses in acute MS [105].

The Theiler’s murine encephalomyelitis virus (TMEV) model is a key
tool for studying MS. Researchers have used this model to explore
the role of CTLs in MS, with significant contributions from Georgette
L. Suidan’s team between 2008 and 2012 [106-108]. They found that
CD8* CTLs might disrupt the BBB through mechanisms involving
perforin and vascular endothelial growth factor (VEGF). Their
research suggested that, unlike their typical cytotoxic role against
harmful cells, CD8* CTLs use a non-apoptotic perforin-dependent
mechanism to break down BBB tight junctions. This mechanism
involves the activation of astrocytes, alteration of BBB tight junction
proteins, and increased CNS vascular permeability [106]. Another
pathway includes VEGF, where CD8* CTLs interact with neurons,
either directly or indirectly through other immune cells, leading to
VEGF upregulation, which disrupts tight junctions and increases
vascular permeability [107, 108].

Researchers have also studied the relationship between CTLs and
the BBB in MS, particularly focusing on the ability of CTLs to
penetrate the BBB. Studies have shown that in MS, B cell-derived
interleukin-15 (IL-15) increases the proportion of CD8* CTLs in the
brain and enhances their ability to cross the BBB. However, the

molecular mechanisms by which IL-15 facilitates CD8* CTLs
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migration across the BBB remain unclear [109]. Other researchers
hypothesize that this process may involve microRNAs of CTLs or P-
glycoprotein in brain endothelial cells [110]. Aya A. Elkhodiry found
a significant correlation between the downregulation of microRNA-
155 in CD8* CTLs isolated from MS patients’ blood samples and the
upregulation of intracellular adhesion molecule 1 (ICAM1) and
integrin subunit beta 2 (ITGB2), both of which are critical for
migration through the BBB [110]. Similarly, Gijs Kooij’s 2014 study
demonstrated that endothelial P-glycoprotein mediates the
migration of CD8* CTLs across the BBB [111]. Their research
showed that reducing P-glycoprotein expression in endothelial cells
using shRNA significantly decreased the transendothelial migration
and adhesion capabilities of CD8* and CD4* CTLs in an in viiro BBB
model. This finding was further corroborated in vivo using cell-
specific CCL2 knockout mice, revealing that P-glycoprotein
regulates CD8* T cell migration via CCL2 secretion [111].
Additionally, CD4+ CTLs have been reported to play a crucial role in
MS. These CD4* T cells co-express NKG2D, an activating receptor
predominantly expressed on NK cells, CD8* T cells, and yb6 T cells in
humans and mice [112]. Tobias Ruck et al. reported that these CD4+
NKG2D* T cells exhibit high levels of migration, activation, and
cytolytic activity. In an in viiro BBB model, NKG2D facilitated the
migration of CD4+ NKG2D+* cells through endothelial cells [113].
Parkinson’s disease

In Parkinson’s disease (PD), a progressive neurodegenerative
disorder affecting 2-3% of the population over 65 years old [114],
peripheral CD4+ CTLs have been also reported to regulate BBB
dysfunction. In 2023, Shi et al. used single-cell RNA sequencing to
elucidate the potential mechanisms by which CD4+ T cells contribute

to BBB disruption [115]. Their study revealed a significant increase
18



525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

in the proportion of PD-related CD4* CTLs in the peripheral blood
mononuclear cells of PD patients. Moreover, these CD4+ CTLs
exhibited significantly elevated expression of the //ng gene, which is
particularly sensitive to endothelial cells compared to other
midbrain cell types. Further cell-cell communication analysis
identified that during the process of CD4+ CTLs weakening
endothelial cell tight junctions, IFNG/IFNGR1 and SPP1/ITGB1 were
the primary signaling pathways between CTLs and endothelial cells
[115].

Epilepsy

In epilepsy research, direct evidence of CTLs regulating BBB
function is currently lacking, but several studies have explored
related functional aspects. Nicola Marchi and colleagues conducted
a study using splenectomy to immunosuppress rats, which reduced
various immune cells, including CTLs, and subsequently decreased
mortality in a pilocarpine-induced rat epilepsy model [116].
Furthermore, they induced epilepsy in perforin-deficient mice with
pilocarpine and observed reduced BBB damage compared to
controls [116]. Since perforin is a key effector molecule for CTL-
mediated cytotoxicity, this study indirectly supports the idea that
CTL-perforin pathways contribute to BBB damage [116], similar to
findings by Suidan’s team in the TMEV model [117]. Another study
examined the effects of rapamycin (RAP) on CTLs and BBB in
epilepsy [118]. This research reported that RAP increased the levels
of total T cells (CD3*/CD45%*) and T helper cells (CD3%/CD4%) in
epileptic rats while reducing the levels of CTLs (CD3*/CD8%).
Simultaneously, harmful BBB factors such as MMP-9, MMP-2, and
inflammatory cytokines were decreased [118]. This study

highlighted an inverse relationship between BBB function and CTLs

19



554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

in an epilepsy model but did not further analyze the underlying
mechanisms or provide detailed correlations.

Hemorrhagic stroke

In hemorrhagic stroke, CCL5 in astrocytes has been shown to play a
critical role in the interaction between peripheral CTLs and
astrocytes, leading to BBB disruption. Zhou et al. identified CCL5 as
one of the top upregulated genes in RNA sequencing results from
astrocytes activated by IL-1a, TNF-a, and complement component
1g treatment [119]. Functional validation demonstrated that
knocking out CCL5 in astrocytes reduced CD8* T cell infiltration into
the brain, but did not affect the infiltration of CD4* T cells and
myeloid cells. Moreover, reduced CCL5 expression decreased BBB
disruption following hemorrhagic stroke, although this protective
effect was nullified by the supplementation of CD8* CTLs [119].
Susac syndrome

Susac syndrome (SuS) is a rare neuroinflammatory disease
characterized by endothelial dysfunction in the central nervous
system, manifesting as focal microangiopathy that affects the small-
to-medium-sized vessels of the brain, retina, and inner ear [120, 121].
The pathogenesis of SuS remains highly controversial, with the most
widely accepted theory suggesting an autoimmune process [122]. In
a 2019 publication, Catharina C. Gross and colleagues proposed that
SuS is an endothelial injury disease driven by CTLs targeting an
unknown antigen [123]. Specifically, an unidentified antigen
activates CD8* CTLs, enabling them to secrete granzyme B and
perforin. These activated CTLs then accumulate in the
microvasculature of the brain, retina, and inner ear, adhere to
endothelial cells, and induce apoptosis via granzyme B and perforin,
thereby disrupting the BBB and causing localized microhemorrhages.

This initiates a cascade of neuroinflammation, leading to the loss of
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astrocytes, oligodendrocytes, neurons, and axons. Eventually,
ischemic lesions infiltrate surrounding astrocytes, transforming into
gliosis [123]. Throughout the disease progression, the granzyme B
and perforin-dependent damage by CD8* CTLs to endothelial cells
and the BBB is a critical process. Understanding the activation
mechanisms of CD8* CTLs is crucial for advancing the treatment and
prevention of Susac syndrome.

In 2023, Carmen Gonzalez-Fierro further validated Gross’s
hypothesis using an in vitro co-culture model of primary brain
microvascular endothelial cells and CD8* CTLs [124]. This study
confirmed that perforin-dependent cytotoxicity is a key mediator of
endothelial cell death, suggesting this mechanism as a foundational
aspect of SuS pathogenesis [124].

Schizophrenia

N. Muller examined the expression of adhesion molecule receptors,
specifically VLA-4 and LFA-1, on Th (CD4*) and T
suppressor/cytotoxic (CD8%) Ilymphocytes in patients with
schizophrenia, both before and during antipsychotic treatment [125].
The investigation revealed that the proportion of VLA-4+/CD4+* and
VLA-4+/CD8* cells increased significantly during antipsychotic
therapy. Furthermore, VLA-4*/CD4* and LFA-1+/CD4* cells were
strongly linked to disturbances in the BBB [125]. Since this study
was conducted in the late 20th century, the researchers did not
validate these correlations or delve into the underlying mechanisms
comprehensively.

5.3 Virus-induced or pathogen-induced neurological
disorders

Cerebral malaria

Cerebral malaria, a severe complication of Plasmodium falciparum

infection, involves associations between CTLs and BBB similar to
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those seen in neurological diseases like SuS and MS [106, 123]. In
cerebral malaria, CD8* T Ilymphocytes induce endothelial cell
apoptosis through a perforin-dependent mechanism, contributing to
the observed lethality in murine models [126, 127]. Researchers
have explored strategies to mitigate CTLs toxicity to the BBB in
experimental malaria, such as modulating the functions of antigen-
presenting cells and controlling the migration of activated T cells
[128-131]. Johanna F. Scheunemann has comprehensively reviewed
these findings [132]; thus, further elaboration is unnecessary here.
Human T-cell leukaemia virus 1

Human T-cell leukemia virus type 1 (HTLV-1) infection can lead to T-
cell leukemia and inflammatory diseases, most notably HTLV-1-
associated myelopathy/tropical spastic paraparesis (HAM/TSP)
[133]. In TSP/HAM, HTLV-1-infected T cells, anti-HTLV-1 cytotoxic
T cells, and macrophages infiltrate the cerebrospinal fluid,
indicating that the disease involves disruption of the blood-brain
barrier (BBB) [134]. Nirit Mor-Vaknin, in 1998, demonstrated that
HTLV-1-infected T cells can fuse with and damage astrocytes in vitro,
proposing that the destruction of astrocytes by HTLV-1-infected T
cells leads to BBB disruption [134]. Furthermore, research by
Guangyong Ma has shown that peripheral HTLV-1-infected T cells
can transfer HTLV-1 to brain endothelial cells, causing BBB damage
[135]. Thus, peripheral T-cell-mediated viral transmission may be a
key mechanism in HTLV-1-induced BBB disruption.

Dengue virus

In acute viral encephalitis induced by Dengue virus (DENV) infection,
CD8+ CTLs likely play a major role. Tsung-Ting Tsai and colleagues
found that in DENV-infected mice [136], CD8* CTLs infiltration into
the central nervous system resulted in CNS inflammation and BBB

disruption. During this process, microglial cells exhibited significant
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antigen-presenting cell functions, stimulating CTLs proliferation and
activation. Conversely, depleting microglial cells eliminated DENV-
induced antiviral cytokine expression and CD8* CTLs infiltration,
restoring BBB integrity and neurological function [136].
Lymphocytic choroid plexus meningitis virus

Lymphocytic choriomeningitis virus (LCMV) infection in mice causes
fatal immunopathology and convulsive seizures through BBB
disruption [137, 138]. LCMV-specific CTLs are crucial in this process.
Jiyun V. Kim and colleagues reported that during acute viral
meningitis, activated CD8* CTLs not only damage the BBB through
downstream effector molecules (e.g., IFN-y receptor, TNF-a, Fas,
granzyme, perforin) but also express various chemokines that recruit
bone marrow mononuclear cells responsible for vascular injury [139].
Adeno-associated virus (AAV)

AAV, a member of the Parvoviridae family, is widely used in scientific
research. Although intracranial microinjection of AAV is generally
regarded as a safe and effective method for inducing transgene
expression in the central nervous system, high doses of AAV can
exhibit neurotoxicity and damage the BBB. This damage may be
mediated by the infiltration of peripheral CTLs into the CNS. This
hypothesis is supported by findings that neuronal loss induced by
high-dose AAV injection can be alleviated by depleting infiltrating T
immune cells [140].

5.4 Advanced Experimental Models to Elucidate CTL-BBB
Dynamics

Recent technological innovations have significantly enhanced our
ability to dissect CTLs interactions with the BBB under near-
physiological conditions. These models span high-resolution

single-cell ~omics, intravital microscopy, and biomimetic
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“BBB-on-a-chip” platforms, each offering unique insights into CTLs
trafficking, signaling, and barrier disruption.

Single-cell Omics

Yan etal. applied droplet-based single-cell RNA sequencing to
isolate and profile over 33,000 CD4+ CTLs from both peripheral
blood and CNS infiltrates of Parkinson’s disease patients [115]. They
discovered pronounced upregulation of IFNG and SPP1 in CTLs,
accompanied by elevated IFNGR1 and ITGB1 expression in brain
microvascular endothelial cells—identifying a pathogenic signaling
axis that undermines tight junction integrity. Complementarily, Patil
etal. performed single-cell transcriptomics on peripheral blood
mononuclear cells (PBMCs) from healthy donors, delineating CD4+
CTL differentiation trajectories marked by sequential induction of
cytolytic effectors GZMB and PRF1 [88].

Intravital Imaging

Kim et al. and Phillip et al. utilized two-photon intravital microscopy
in lymphocytic choriomeningitis virus (LCMV)-infected mice to
visualize CTL behavior within intact brain microvasculature [139,
141]. Their studies reveal CTL crawling, arrest, and transendothelial
migration guided by chemokine gradients (e.g., CXCL10),
correlating precisely with localized BBB permeability increases.
Human BBB-on-a-Chip Models

Nair etal. engineered a microfluidic BBB model comprising human
brain microvascular endothelial cells cultured against an
extracellular matrix gel within 40 parallel channels [142]. Upon
exposure to TNF-a and IL-1pB, transendothelial electrical resistance
(TEER) declined by ~30%, and adhesion molecule expression
(ICAM-1, VCAM-1) increased. When primary human T cells were
perfused under flow along a CXCL12 gradient, they faithfully

recapitulated inflammation-driven extravasation observed in vivo.
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By bridging reductionist and in vivo approaches, these advanced
models afford unprecedented mechanistic resolution of CTL-BBB
dynamics. Single-cell omics elucidate the molecular programs within
individual CTLs and endothelial cells; intravital imaging captures
real-time cellular behavior within the native microenvironment; and
BBB-on-a-chip platforms provide scalable, human-relevant systems
for high-throughput interrogation of immune cell transmigration.
Collectively, these methodologies pave the way for targeted
interventions that preserve barrier integrity while modulating
neuroimmune crosstalk.

5.5 Translational Caveats and Data Gaps

While murine models have elucidated key mechanisms of CTL-BBB
modulation, their direct extrapolation to human disease is
constrained by several factors:

Species and model differences

Rodent and human brain microvascular endothelial cells differ
markedly in tight junction composition (e.g., claudin-5 levels [143])
and transporter expression (P-glycoprotein, BCRP [144]), altering
permeability and leukocyte trafficking.

Temporal dynamics

Experimental antigen challenges in mice typically unfold over hours
to days, whereas human neurodegenerative and autoimmune
disorders feature chronic, low-grade inflammation persisting for
months to years. Such divergence may obscure the progressive BBB
remodeling observed clinically.

Genetic homogeneity vs. diversity

Inbred mouse strains lack the genetic polymorphisms present in
human populations (e.g., cytokine and chemokine receptor variants)
[145] that critically shape CTL responses and barrier interactions.

Clinical data scarcity
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Few studies have quantified CTL infiltration or BBB integrity in
human CNS tissues. MRI and PET assessments of barrier leakage
remain limited to small cohorts in multiple sclerosis [146] and
post-COVID syndromes [147], whereas, post-mortem
immunohistochemical analyses of CTLs are rare.

Underutilized Human In Vitro Models

Although induced pluripotent stem cell (iPSC)-derived BBB
organoids and microfluidic “BBB-on-a-chip” platforms can
recapitulate shear stress and multicellular architecture [142, 148],
they are not yet widely adopted for investigating CTL transmigration.
Addressing these gaps will demand integration of humanized animal
models, longitudinal patient sampling, advanced in vivo imaging
tools, and broader deployment of human BBB platforms to ensure
that preclinical insights align with human pathophysiology.

6. Therapeutic Implications and Future Strategies

Translating mechanistic insights into effective therapies requires
approaches that precisely modulate CTL activity at the BBB while
preserving barrier integrity:

Immune Checkpoint Blockade

Agents such as anti-PD-1/PD-L1 antibodies (e.g., nivolumab) can
rejuvenate exhausted CTLs [149, 150] but may aggravate BBB
permeability through enhanced cytokine release.

Chemokine-axis Blockade

Targeting chemokine receptors (e.g., CXCR3 antagonists) reduces
CTL recruitment and BBB disruption in experimental autoimmune
encephalomyelitis [151, 152], while the CCL5-CCR5 axis has
demonstrated efficacy in hemorrhagic stroke models [153].
Localized BBB Modulation

Focused ultrasound-mediated BBB opening permits site-specific

delivery of immunomodulators, as shown in glioma with enhanced
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CTL infiltration [154, 155]. Receptor-targeted nanoparticles (e.g.,
Angiopep-2-decorated carriers co-delivering granzyme B and CpG)
further concentrate CTL-directed agents at the neurovascular
interface [156].

CTLs Cytotoxicity Attenuation

Small-molecule inhibitors of perforin and granzyme (e.g.,
compounds described by GonzalezFierroetal., 2023 [124])
selectively dampen CTL-mediated endothelial apoptosis, offering
potential adjunctive therapy in Susac’s syndrome and multiple
sclerosis.

Integrating these therapeutic avenues within humanized platforms
will be essential to achieve durable neuroprotection alongside robust
pathogen or tumor clearance.

7. Conclusion and further challenges

CTLs exert profound effects on BBB integrity in immune-mediated
neurological disorders, including autoimmune diseases and
pathogen-induced conditions. Three principal mechanisms have
been identified (Fig. 3): a. Direct cytotoxicity, wherein CTLs deploy
perforin and granzyme to induce endothelial apoptosis [157]; b.
Neuron-mediated disruption, via CTL-altered neuronal VEGF
production that compromises tight junctions [107]; and c.
Immune-cell facilitation, whereby other leukocytes or resident glia
amplify CTL-triggered BBB damage [108, 139]. Additional
context-specific pathways, such as HTLV-1 vesicular transmission by
CTLs, underscore the complexity of CTL-BBB interactions [134].

To integrate the diverse molecular mechanisms detailed above, we
propose a unified model comprising three interlinked axes by which
CTLs disrupt BBB integrity: a. Perforin/Granzyme Cytotoxicity: CTLs
release perforin and granzyme B, forming pores in endothelial

membranes and activating caspase cascades to induce apoptosis. b.
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IFN-y/TNF-a Signaling: CTL-derived IFN-y and TNF-a activate
JAK/STAT and NF-kB pathways in brain microvascular endothelial
cells, downregulating tight junction proteins. C.
Chemokine-Mediated Trafficking: CTLs secrete CXCL10 and CCL5,
establishing chemotactic gradients that recruit additional immune
cells via CXCR3 and CCRS5, promoting diapedesis. These axes
converge synergistically to amplify BBB permeability, suggesting
that combinatorial therapeutic strategies targeting multiple
pathways may enhance barrier preservation.

Despite the beneficial role of activated CTLs, particularly CD8* cells,
in targeting pathogens and infected cells in the brain, their potent
cytotoxicity often results in collateral damage to healthy cells.
Perforin, a major toxic factor, can inadvertently harm normal cells,
disrupting the BBB structure, which is primarily composed of brain
endothelial cells. Peripheral CTLs must traverse this natural barrier
to exert their pathogen-killing function within the brain. Thus, CTL
toxicity towards endothelial cells is partly aimed at facilitating brain
entry, but this breach can lead to neurological dysfunction. In
autoimmune diseases, activated peripheral CTLs also congregate
around brain endothelial cells, causing BBB damage and
neurological disorders. This is partly due to increased MHC I
expression on endothelial cells, which may attract CD8* CTLs [157].
Granzyme B and perforin are primary toxic mediators for CTLs.
Research shows that reducing or knocking out perforin expression
in mouse disease models protects BBB integrity, improves disease
symptoms, and increases survival rates. Therefore, CTLs might be
more harmful than beneficial in certain disease stages, and reduced
perforin expression could protect the BBB and enhance survival.
However, determining when to inhibit or enhance CTLs function

requires further investigation.
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CD4+ CTLs, although less studied, similarly perturb BBB function.
We hypothesize that these cells predominantly assist immune
responses under homeostatic conditions and may employ non
perforin pathways, such as IFN y/IFNGR1 and SPP1/ITGB1 signaling,
to exert cytotoxicity during chronic inflammation. Rigorous
validation of these mechanisms is warranted.

The ongoing global COVID-19 pandemic, caused by SARS-CoV-2,
persists despite advancements in vaccination and increased natural
immunity. Prolonged infection has been linked to brain fog and
cognitive impairment, with disruption of the BBB playing a critical
role [158, 159]. Research has shown that SARS-CoV-2 infection
triggers CD3* T cell infiltration in the hippocampus and brainstem
of infected mice [160]. Transcriptomic sequencing of peripheral
blood mononuclear cells from COVID-19 patients with cognitive
dysfunction also revealed significant enrichment of pathways related
to T cell differentiation and activation, as identified through Gene
Ontology (GO) analysis [161]. These findings suggest a potential role
for T cells, including CTLs, in regulating BBB function during SARS-
CoV-2 infection. However, the direct involvement of CTLs and the
underlying mechanisms require further investigation.

Collectively, CTLs are pivotal regulators of neurovascular integrity.
Future research must integrate high-resolution in vivo imaging,
humanized BBB platforms, and single-cell omics to map CTL
dynamics and identify targets for selective modulation, thereby

preserving barrier function without compromising host defense.
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Supplementary Table 1 The discovery process of the BBB

Name Year Contribution Reference
Ridley The low permeability of small
1695 [162]
Humphrey cerebral vessels
The isolating between brain and
Ehrlich Paul 1885 [13]
bloodstream
Lewandowsky Terming this new concept as a
1909 [163]
Max German name bluthirnschranke
Only the brain and the spinal cord
Goldmann
1909 can be stained by Evans blue [14]
Edwin Ellen
injected in ventricles
Stern Lina & Naming it as “barriere hémato-
Raymond 1921 encéphalique” in French, and then [15]
Gautier. translated into BBB
the BBB was not mature during
Stern Lina 1929 [164]

embryogenesis
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Supplementary Table 2 The main functions of components of BBB

Components

Functions

Reference

Endothelial

cells

Endothelial cells are tightly
interconnected, forming distinct lumenal

and abluminal membrane compartments

Pericytes are embedded in the basement
membrane and lie abluminal to the
endothelial cells, and in close

communicate with endothelial cells

[166, 167]

Astrocytes surround blood vessels in the
brain, serving as the interface between

neurons and endothelial cells

Tight junctions

Tight junctions reside between
endothelial cells, serving as the main
functional components in sustaining the
permeability - barrier and controlling

tissue homeostasis

[169]

Adherent

junctions

Adherent junctions are fundamental for
the integrity of BBB, any change of
adherens junctions may disrupt inter-

endothelial cell connections

[170]
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Supplementary Table 3 The main functions of immune

checkpoints

Checkpoints Functions

Reference

Binding with its ligand PD-L1/PD-L2 of
target cells, counteracting CD80-CD28

signaling transduction of CTLs.

CTLA-4

Interferes with CD8 T-cell movements and
the ability to form stable conjugates with
APCs, thus reducing the contact time

between cells

[172]

LAG-3

Binding with CD3 in the TCR complex and
inhibiting its signal transduction, leading to
reduced T cell proliferation and cytokine

production

[173]

The switching of the binding TIM-3 and
Bat3 or Fyn, further inhibiting upstream

TCR signaling

Inhibiting TCR signaling by binding with
CD155 of APCs

Weaking the function of CD28 signaling by
binding with CD275 of APCs
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Fig. 1 Schematic representation of the differentiation of T cells from
common lymphoid progenitors.

Schematic representation of the differentiation of T cells from common
lymphoid progenitors. Common lymphoid progenitor (CLP) cells, which
originate in the red bone marrow, give rise to immature precursor T cells.
These precursor cells are initially double-negative for both TCR and CD
proteins. Thymic chemotactic factors, such as thymotaxin, thymosin, and
thymopoietin, guide these double-negative precursor T cells from the
bloodstream into the thymus. Within the thymus, thymic cells present MHC
I and II molecules to the developing T cells, prompting the expression of

TCR and CD proteins. This interaction ensures positive selection, which
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leads to the survival of T cells that can bind MHC molecules with at least
weak affinity. T cells that recognize MHC I differentiate into CD8* T cells,
while those recognizing MHC II develop into CD4* T cells. Furthermore,
CD4+* T cells may differentiate into specialized subsets such as Th cells or
Treg cells, depending on the presence of specific cytokines and stromal
signals. Abbreviations: CLP, common lymphoid progenitor; TCR, T-cell
receptor; MHC, major histocompatibility complex; CD, -cluster of

differentiation; Th, T-helper; Treg, T-regulatory.
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Fig. 2 Schematic representation of T cell activation upon recognition
of antigenic peptides.

The variable (V) regions of the a and B chains of the TCR specifically
recognize and bind to antigenic peptides presented by MHC I molecules
on target cells. This interaction is enhanced by the co-receptor CD8, which
binds to both the TCR and MHC I, stabilizing the TCR-CD3 complex at the
MHC-peptide interface. This stable interaction leads to the
phosphorylation of ITAMs within the CD3 subunit of the TCR complex. The
phosphorylation of ITAMs activates downstream signaling cascades that
result in the activation of transcription factors such as NF-kB, NFAT, and
AP-1, ultimately driving the proliferation and effector function of the CD8*
T cell. These effector functions include cytokine secretion and the
generation of cytotoxic molecules such as perforin and Granzyme B.
Abbreviations: TCR, T-cell receptor; MHCI, major histocompatibility
complex class I; CD, cluster of differentiation; ITAM, immunoreceptor
tyrosine-based activation motif; NF-kB, nuclear factor kappa-light-chain-
enhancer of activated B cells; NFAT, nuclear factor of activated T-cells; AP-

1, activator protein 1.
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Fig. 3 Mechanisms by which CTLs mediate BBB damage.

(A) Perforin/Granzyme Cytotoxicity: CTLs release perforin and
granzyme B, inducing apoptosis of brain microvascular endothelial cells.
(B) Cytokine Signaling: IFN-y and TNF-a from CTLs activate JAK/STAT
and NF-kB in endothelial cells, downregulating tight junction proteins. (C)
Chemokine-Mediated Trafficking: CTL-derived CXCL10 and CCL5
establish chemotactic gradients, recruiting CTLs and bystander leukocytes
via CXCR3 and CCRS5. Abbreviations: CTL, cytotoxic T lymphocyte; BMEC,
brain microvascular endothelial cell; IFN-y, interferon-gamma; TNF-q,
tumor necrosis factor-alpha; JAK, Janus kinase; STAT, signal transducer
and activator of transcription; NF-kB, nuclear factor kappa-light-chain-

enhancer of activated B cells; ICAM-1, intercellular adhesion molecule-1;
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VCAM-1, vascular cell adhesion

molecule-1;

MMP,

matrix

metalloproteinase; CXCL10, C-X-C motif chemokine ligand 10; CCL5, C-C

motif chemokine ligand 5; CXCR3, C-X-C motif chemokine receptor 3;

CCRS5, C-C motif chemokine receptor 5.
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Supplementary Table 1 The discovery process of the BBB

Name Year Contribution Reference
Ridley The low permeability of small
1695 [162]
Humphrey cerebral vessels
The isolating between brain and
Ehrlich Paul 1885 [13]
bloodstream
Lewandowsky Terming this new concept as a
1909 [163]
Max German name bluthirnschranke
Only the brain and the spinal cord
Goldmann
1909 can be stained by Evans blue [14]
Edwin Ellen
injected in ventricles
Stern Lina & Naming it as “barriere hémato-
Raymond 1921 encéphalique” in French, and then [15]
Gautier. translated into BBB
the BBB was not mature during
Stern Lina 1929 [164]

embryogenesis




Supplementary Table 2 The main functions of components of BBB

Components Functions Reference
Endothelial cells are tightly

Endothelial
interconnected, forming distinct lumenal [165]

cells

and abluminal membrane compartments

Pericytes are embedded in the basement
membrane and lie abluminal to the
Pericytes [166, 167]
endothelial cells, and in close
communicate with endothelial cells
~ Astrocytes surround blood vessels in the
Astrocytes brain, serving as the interface between [168]
neurons and endothelial cells
~ Tight Jjunctions reside between
endothelial cells, serving as the main
Tight junctions functional components in sustaining the [169]
permeability - barrier and controlling
tissue homeostasis
~_Adherent junctions are fundamental for
Adherent the integrity of BBB, any change of
junctions adherens junctions may disrupt inter- 170l

endothelial cell connections




Supplementary Table 3 The main functions of immune

checkpoints

Checkpoints Functions Reference
Binding with its ligand PD-L1/PD-L2 of

PD-1 target cells, counteracting CD80-CD28 [171]

signaling transduction of CTLs.

Interferes with CD8 T-cell movements and

the ability to form stable conjugates with
CTLA-4 [172]
APCs, thus reducing the contact time

between cells

Binding with CD3 in the TCR complex and

inhibiting its signal transduction, leading to
LAG-3 [173]
reduced T cell proliferation and cytokine

production

The switching of the binding TIM-3 and
TIM-3 Bat3 or Fyn, further inhibiting upstream [174]

TCR signaling

Inhibiting TCR signaling by binding with
CD155 of APCs

Weaking the function of CD28 signaling by
binding with CD275 of APCs
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