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Background
Glioma represent the most common primary malig-
nant brain tumors in adults, constituting more than 
80% of all central nervous system (CNS) malignancies. 
Among these, glioblastoma (GBM, isocitrate dehydro-
genase [IDH]-wildtype, CNS WHO grade 4) is the most 
aggressive, with an annual incidence of 3.2 per 100,000 
individuals [1]. Despite multimodal therapy involving 
maximal safe resection, radiotherapy (RT), and chemo-
therapy, GBM has a dismal prognosis: fewer than 12% of 
patients achieve 3-year survival (long-term survivors) [2, 
3]. While surgical intervention may cure circumscribed 
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Abstract
Temozolomide (TMZ) remains the cornerstone chemotherapy for glioma, yet intrinsic and acquired resistance 
mechanisms significantly limit its clinical effectiveness. This review summarizes the multifaceted molecular 
pathways contributing to TMZ resistance, including enhanced DNA repair mechanisms such as O6-methylguanine-
DNA methyltransferase (MGMT), mismatch repair (MMR), and base excision repair (BER). Additional resistance factors 
include genetic mutations that affect the drug response, dysregulated non-coding RNAs (miRNAs, lncRNAs, and 
circRNAs), glioma stem cells (GSCs), cytoprotective autophagy, an immunosuppressive tumor microenvironment 
(TME), altered signaling pathways, and active drug efflux transporters. Recent advancements to overcome these 
resistance mechanisms, including enhancing TMZ bioavailability through nanoparticle-based delivery systems 
and the inhibition of efflux transporters, have been explored. Novel therapeutic approaches that target DNA 
repair pathways and manipulate autophagy are highlighted. Immunotherapeutic interventions reversing immune 
suppression and metabolic strategies targeting tumor metabolism offer additional avenues. Emerging therapies 
such as CRISPR-based gene editing, phytochemical combinations, repurposed drugs, and novel TMZ analogs 
designed to bypass MGMT-mediated resistance are also discussed. This review highlights current developments 
and identifies emerging areas, with the goals of enhancing clinical outcomes and prolonging survival for glioma 
patients.
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glioma subtypes, such as pleomorphic xanthoastrocy-
toma, subependymal giant cell astrocytoma, pilocytic 
astrocytoma, chordoid glioma and so on, conventional 
therapies frequently fail in diffuse adult-type glioma 
because of intrinsic and acquired therapeutic resistance 
[4].

Temozolomide (TMZ), an orally administered imid-
azotetrazine prodrug, undergoes pH-dependent con-
version to its active metabolite 5-(3-methyltriazen-1-yl) 
imidazole-4-carboxamide (MTIC) under physiological 
conditions [5–7]. Subsequent degradation releases the 
methyldiazonium cation, which preferentially methyl-
ates DNA at the guanine N7/O6 and adenine N3 posi-
tions [8]. The cytotoxic effect primarily arises from 

O6-methylguanine mispairing during replication, trigger-
ing mismatch repair (MMR)-mediated futile cycles and 
G2/M arrest [9]. Owing to its partial blood-brain barrier 
(BBB) penetration capability and oral bioavailability [10], 
TMZ has synergistic efficacy when combined with RT, 
establishing it as a first-line chemotherapeutic for GBM 
[11–15] (Fig. 1).

Despite its frontline status, the clinical utility of TMZ 
remains constrained by rapid pharmacokinetic clearance, 
suboptimal tumor accumulation [16], and multifaceted 
resistance mechanisms rooted in the molecular hetero-
geneity of GBM [17]. GBM resistance arises mainly from 
DNA repair mechanisms, cellular survival strategies, 
and factors within the tumor microenvironment. Major 

Fig. 1 Mechanism of action of TMZ. TMZ is an orally administered imidazotetrazine prodrug that undergoes pH-dependent conversion under physi-
ological conditions into its active metabolite MTIC. MTIC subsequently reacts with water, generating 5-aminoimidazole-4-carboxamide (AIC) and a highly 
reactive methyldiazonium cation. This methyldiazonium cation preferentially methylates DNA at the N7 position of guanine (N7-MeG; approximately 70%), 
predominantly in guanine-rich regions but also at adenine residues (N3-MeA; approximately 9%) and guanine residues at the O6 position (O6-MeG; ap-
proximately 6%). The cytotoxic effect of TMZ primarily results from the formation of O6-MeG lesions, which are carcinogenic, mutagenic, and toxic. These 
lesions are repaired directly by the suicide enzyme MGMT, which removes the methyl group from O6-MeG, restoring the original guanine residue. If left 
unrepaired, O6-MeG mispairs specifically with thymine during DNA replication, activating DNA MMR. MMR recognizes and excises the mispaired thymine 
on the daughter strand; however, the persistent O6-MeG lesion in the template strand results in futile cycles of thymine reinsertion and excision. These 
continuous futile repair cycles generate persistent DNA strand breaks, leading to G2/M cell cycle arrest and eventually cell death. The more abundant DNA 
adducts, N7-MeG and N3-MeA, are rapidly repaired via DNA BER. Therefore, the most important DNA repair systems affecting the mechanism of action 
and cytotoxicity of TMZ are MGMT, MMR, and BER
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contributors include O6-methylguanine-DNA methyl-
transferase (MGMT) protein expression, MMR system 
dysfunction, and enhanced base-excision repair (BER). 
Additionally, glioma stem cells (GSCs), drug transporter 
proteins, autophagy, and non-coding RNA signaling 
further decrease TMZ effectiveness. Immunosuppres-
sion and abnormal signaling pathways within the tumor 
environment also contribute to resistance [18–21]. These 

mechanisms collectively enable tumor cells to repair or 
evade TMZ-induced DNA damage, emphasizing the 
need for improved treatment strategies (Fig. 2). The sub-
sequent sections systematically analyze these mecha-
nisms and evaluate emerging therapeutic approaches to 
restore TMZ sensitivity.

To ensure a comprehensive and systematic review of 
the current landscape of TMZ resistance mechanisms 

Fig. 2 Mechanisms of TMZ resistance in GBM. Resistance arises through enhanced DNA damage repair pathways, including the overexpression of the 
MGMT and BER proteins and the inactivation of MMR. Drug efflux transporters promote TMZ extrusion, reducing intracellular drug levels. Genetic muta-
tions and non-coding RNAs contribute to metabolic reprogramming, immune escape, and the activation of survival signaling pathways such as the 
PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways. GSCs play crucial roles in tumor formation, treatment resistance, and recurrence, largely due to their 
self-renewal ability and adaptability. Autophagy is regulated through the RAS/RAF/MEK/ERK, ATM/AMPK/ULK1, and PI3K/AKT/mTOR pathways, further 
supporting cell survival under TMZ treatment. GSCs play a central role in maintaining therapeutic resistance via pathways such as the PI3K/AKT, Wnt/β-
catenin, and JAK/STAT pathways, which sustain stemness, promote immune evasion, and modulate inflammation. Additionally, the tumor immune mi-
croenvironment, shaped by glioma-associated microglia and macrophages (GAMs), microglia, and secreted factors, inhibits cytotoxic T-cell activity and 
enhances regulatory T-cell function, facilitating tumor progression and metastasis
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and therapeutic advancements in glioma, we conducted a 
rigorous literature search adhering to the following meth-
odology: (1) Databases and Search Tools: The search was 
primarily performed using PubMed, supplemented by 
Web of Science and Scopus, to capture interdisciplinary 
insights. These platforms were chosen for their extensive 
coverage of biomedical literature and advanced filter-
ing capabilities. (2) Time Frame: We focused on peer-
reviewed articles published between 2019 and 2025 to 
emphasize recent breakthroughs while maintaining rele-
vance to contemporary clinical and research contexts. (3) 
Keyword Strategy: Core search terms included “Temo-
zolomide”, “glioma”, “chemoresistance”, “MGMT”, “DNA 
repair”, “autophagy”, “glioma stem cells”, and “immuno-
therapy”. Boolean operators (AND/OR) were employed 
to refine combinations, such as:“Temozolomide AND 
(glioma OR glioblastoma) AND (resistance mechanism 
OR DNA damage repair)”. Additional terms specific to 
subsections (e.g., “non-coding RNA”, “nanoparticles”, 
“CRISPR”) were integrated modularly. (4) Inclusion 
and Exclusion Criteria: Inclusion: Original research 
articles, meta-analyses, clinical trials, and authoritative 
reviews published in English. Priority was given to stud-
ies in JCR Zone 1/2 journals with high impact factors 
(> 5.0) and those validating mechanisms in in vivo mod-
els or patient-derived samples. Exclusion: Case reports, 
non-English publications, studies lacking mechanistic 
insights, and preclinical models without translational rel-
evance. (5) Data Synthesis: Extracted data were catego-
rized into thematic sections (e.g., DNA repair, autophagy, 
immunotherapy) to identify emerging trends and con-
sensus findings. Discrepancies or contradictory results 
were critically analyzed to highlight unresolved ques-
tions. This structured approach ensured a balanced rep-
resentation of foundational discoveries and cutting-edge 
innovations, enabling a cohesive narrative that bridges 
laboratory research and clinical translation. By focusing 
on high-impact studies with robust experimental designs, 
this review aims to serve as a reliable resource for both 
researchers and clinicians seeking to navigate the com-
plexities of TMZ resistance in glioma.

Mechanisms of TMZ resistance
DNA damage repair (DDR)
MGMT
MGMT is a DNA repair protein that safeguards genomic 
integrity by transferring methyl groups from O6-benzyl-
guanine (O6-BG) lesions to a cysteine residue (Cys145) 
at its active site, thereby reversing potentially carcino-
genic DNA damage implicated in tumor initiation [22]. 
While MGMT protects normal cells from tumorigenesis, 
its overexpression in cancer cells confers resistance to 
O6-alkylating chemotherapeutics such as TMZ [23, 24]. 
The regulation of MGMT expression is predominantly 

governed by epigenetic modifications, with promoter 
CpG island methylation identified as the primary driver 
of transcriptional silencing [25]. In GBM and other infil-
trating glioma, promoter methylation of MGMT cor-
related with reduced enzyme production, an enhanced 
TMZ response, and prolonged survival [26, 27]. Con-
versely, an unmethylated promoter status is associated 
with abundant MGMT protein, poor TMZ efficacy, and 
unfavorable clinical outcomes [28]. Notably, patients with 
methylated MGMT promoters exhibit 50–90% higher 
survival rates than those with unmethylated promoters 
[27], underscoring the therapeutic potential of epigenetic 
silencing to sensitize glioma to alkylating agents.

Interestingly, the impact of MGMT promoter meth-
ylation on prognosis varies depending on the molecular 
subtype of the tumor. For example, hypermethylation 
significantly benefits patients with certain subtypes, such 
as receptor tyrosine kinase II (RTK II) astrocytomas, but 
does not impact prognosis in other subtypes, such as RTK 
I or mesenchymal GBM [29]. Clinical studies suggest that 
methylated MGMT tumors may respond well to TMZ 
alone, allowing radiation therapy to be delayed. Addi-
tionally, recent research has shown that iron metabolism 
dysregulation, specifically increased ferritin expression, 
contributes significantly to TMZ resistance. High ferritin 
levels negate the survival benefit of MGMT methylation, 
highlighting the complexity of resistance mechanisms 
[30]. Clinically, testing for MGMT promoter methyla-
tion remains an important method to predict how GBM 
will respond to alkylating chemotherapy. However, the 
MGMT-STP27 method, which uses two specific CpG 
sites to determine methylation, has limitations. Although 
it works well for GBM without IDH mutations, it does 
not effectively predict outcomes in IDH-mutant astro-
cytomas. In the CATNON trial, researchers reported no 
difference in survival between patients with methylated 
and unmethylated IDH-mutant astrocytomas, even when 
the methylation cutoff levels were adjusted [31]. This 
indicates the need for better biomarkers that are specifi-
cally tailored to different tumor subtypes, and suggests 
the need to explore additional CpG sites or combine mul-
tiple biomarkers to improve predictions.

MGMT methylation status alone may not reliably pre-
dict the efficacy of TMZ treatment. Other factors, such 
as MGMT protein expression levels and the tumor’ s 
DNA repair capacity, significantly influence patient out-
comes and thus should be considered during clinical 
decision-making [32]. Patient age further complicates 
this relationship: MGMT promoter methylation strongly 
predicts prognosis in younger patients, whereas, in 
elderly patients, the extent of surgical resection may have 
a more decisive impact on survival [28]. Additionally, 
treatment approaches for frail or elderly patients require 
careful consideration to balance therapeutic efficacy 
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and potential toxicity. Although standard practice does 
not exclude elderly patients with unmethylated MGMT 
promoters from TMZ treatment, reanalysis of clinical 
trials indicates no survival advantage with TMZ in this 
subgroup, whereas RT demonstrates superior outcomes 
[33]. Therefore, comprehensive and precise assessment 
of MGMT status, alongside patient-specific factors such 
as age and general health, is essential for guiding optimal 
treatment decisions.

In addition to promoter methylation, several alternative 
mechanisms have been identified that regulate MGMT 
activity and contribute to TMZ resistance. Recent stud-
ies revealed that poly (ADP-ribose) polymerase (PARP) 
interacts directly with MGMT following TMZ treatment, 
enhancing MGMT’s DNA repair function through PARy-
lation. This post-translational modification improves 
MGMT’s ability to bind DNA and repair TMZ-induced 
damage, thus promoting resistance.

Transcriptional and epigenetic factors also regu-
late MGMT expression. For example, NFAT5 leads to 
the upregulation of MGMT, a transcriptional target 
of NFAT5, which is responsible for unfavorable TMZ 
response. Inhibiting NFAT5K668 methylation significantly 
improves TMZ efficacy, especially in tumors with acti-
vated EGFR signaling [34]. Another factor influencing 
TMZ resistance involves TGF-β1 signaling. In GBM cells 
without MGMT promoter methylation, TGF-β1 acti-
vates certain long non-coding RNAs (lncRNAs). These 
lncRNAs prevent the maturation of miR-198, a small 
RNA molecule that normally reduces MGMT expression. 
Without miR-198, MGMT expression increases, causing 
TMZ resistance. Clinical data support this finding, show-
ing that lower TGF-β1 and lncRNA levels correlate with 
better TMZ responses [35]. Decreasing the protein KSRP, 
which interacts with these lncRNAs, reversed resistance, 
highlighting another potential treatment approach.

Researchers have also identified genomic rearrange-
ments as another pathway controlling MGMT expres-
sion independent of methylation status. Engineered 
structural changes via CRISPR/Cas9 technology led to 
increased MGMT production, directly causing TMZ 
resistance both in vitro and in animal models. Impor-
tantly, these genetic changes can be detected in exosomes 
from tumors, suggesting their potential as biomarkers 
for the early detection of treatment resistance or tumor 
recurrence [36]. Furthermore, resistance to TMZ can 
develop through pathways that do not involve MGMT at 
all. One such pathway involves RAD18 (an E3 ubiquitin-
protein ligase)-mediated translesion synthesis, a mecha-
nism allowing cancer cells to tolerate TMZ-induced 
DNA damage [37]. This pathway is critical for maintain-
ing resistance in patient-derived GBM models that lack 
MGMT expression. This finding complements earlier 

observations showing TMZ resistance in certain glioma 
cell lines despite the absence of MGMT expression [38].

MMR
The DNA MMR system maintains genomic stability by 
correcting mismatched bases that occur during DNA 
replication [37]. When MGMT fails to repair DNA dam-
age caused by TMZ, persistent mismatches, especially 
O6-methylguanine paired with thymine, are recognized 
by the MMR machinery [39]. This recognition initi-
ates a futile repair cycle where repeated excision-repair 
attempts generate single- and double-strand DNA breaks 
[40, 41], ultimately triggering apoptotic cell death [32]. 
Dysfunction in the MMR pathway, such as the loss of 
key proteins such as MLH1, can lead to microsatellite 
instability, which contributes to cancer progression [42]. 
Importantly, alkylating agent-induced MMR protein 
inactivation has been identified as a resistance mecha-
nism in GBM, suggesting that MMR deficiency can con-
fer TMZ resistance even in MGMT-deficient tumors 
[21].

Analysis of tumor samples from The Cancer Genome 
Atlas (TCGA) has shown that recurrent GBM often 
develop mutations in MMR genes, especially in tumors 
with methylated MGMT promoters [43]. These findings 
suggest that tumors that are initially sensitive to TMZ 
may acquire resistance by developing secondary MMR 
defects. In support of this idea, recurrent GBM fre-
quently exhibit reduced expression of several MMR pro-
teins compared with initial GBM [44].

Emerging evidence indicates that epigenetic changes 
also influence MMR activity and TMZ resistance. For 
example, increased levels of histone lactylation (spe-
cifically H3K9 lactylation) observed in recurrent and 
TMZ-resistant GBM cells reduce MLH1 gene expres-
sion, weakening the MMR system. Interestingly, the 
anti-epileptic drug stiripentol reverses this resistance by 
inhibiting enzymes responsible for lactylation, restor-
ing sensitivity to TMZ in experimental models [45]. This 
highlights the potential to target such modifications 
therapeutically.

Further complexity arises from RNA-binding proteins. 
MEX3A is upregulated in GBM tissues and cell lines fol-
lowing TMZ exposure, where it binds MSH2 mRNA 
to promote degradation. MEX3A knockdown restores 
MSH2 levels and chemosensitivity, with clinical correla-
tions showing that high MEX3A expression predicts poor 
prognosis in MGMT-deficient patients [46]. These find-
ings reveal a novel post-transcriptional regulatory axis 
involved in TMZ resistance.

Recent studies have also revealed adaptive interactions 
between the MMR system and other DNA repair path-
ways. Specifically, when the MMR system attempts to 
repair TMZ-induced damage, it creates secondary DNA 
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damage that activates another repair mechanism called 
translesion synthesis (TLS). This TLS pathway, driven 
by RAD18 and DNA polymerase κ, allows cells to toler-
ate DNA damage caused by TMZ. In recurrent GBM, 
reduced RAD18 expression is linked to increased muta-
tion, suggesting that dynamic interactions between these 
pathways help tumors adapt and survive despite treat-
ment [37].

BER
While O6-MeG DNA damage is key to the therapeutic 
effects of TMZ, approximately 80–85% of TMZ-induced 
DNA modifications involve N7-MeG and N3-MeA [47]. 
These modifications result in the spontaneous loss of 
purine bases, creating toxic abasic (AP) sites. The enzyme 
APNG (also termed MPG) identifies and removes N3-
MeA and N7-MeG damage, leading to AP sites that acti-
vate the BER pathway through another enzyme called 
apurinic/apyrimidinic endonuclease 1/redox effector fac-
tor-1 (APE1/Ref-1) [48]. BER is the main mechanism for 
repairing AP sites, thus playing a significant role in resis-
tance to TMZ [49].

APNG expression in GBM is controlled by epigen-
etic mechanisms such as promoter methylation. Tumors 
with low APNG expression typically respond better to 
TMZ treatment, whereas tumors with high APNG lev-
els, even those with methylated MGMT promoters, often 
show resistance [50]. This regulatory similarity to that of 
MGMT suggests that targeting the BER pathway might 
increase the effectiveness of TMZ.

Several studies have demonstrated that inhibiting 
BER pathway enzymes such as APE1/Ref-1 or DNA 
polymerase β can increase the effectiveness of TMZ in 
laboratory models [51, 52]. However, inhibiting APE1/
Ref-1 presents challenges due to its involvement in criti-
cal cellular processes, such as DNA repair, regulation of 
transcription factors like NF-κB and p53, and its role in 
maintaining genomic stability [53]. These issues empha-
size the need for selective inhibitors with fewer side 
effects.

Recently, alternative strategies focused on exploit-
ing the BER pathway intermediates have emerged. TMZ 
treatment results in the accumulation of AP sites, which 
occur in both MMR-functional and MMR-deficient 
tumors [54]. A compound known as RA-1 selectively tar-
gets and cleaves these AP sites, increasing the effective-
ness of TMZ regardless of the MMR status [54]. Rather 
than suppressing BER directly, this strategy utilizes the 
damage generated by BER, offering a promising new 
approach for overcoming TMZ resistance.

Gene mutations
Understanding genetic mutations and their relationship 
with TMZ resistance in glioma is essential, especially 

considering the latest 2021 WHO classification. The 
classification emphasizes genetic features such as IDH 
mutations, 1p/19q codeletion, H3F3A mutations, altera-
tions of alpha thalassemia/mental retardation syndrome 
X-linked (ATRX) mutations, MGMT promoter methyla-
tion, CDKN2A loss, EGFR amplification, chromosomal 
imbalances (7+/10−), and mutations in PTEN, TP53, 
and the TERT promoter, as well as HFE polymorphisms 
[55–58].

IDH1 mutations, such as IDH1R132H, produce a mole-
cule called D-2HG, which contributes to TMZ resistance 
in lower-grade glioma. Blocking D-2HG production 
enhances TMZ sensitivity and survival in preclinical 
studies [59–61]. On the other hand, the overexpression of 
normal IDH1 leads to TMZ resistance, whereas mutant 
IDH1 generally increases tumor sensitivity to TMZ [59, 
60]. Additionally, targeting metabolic pathways such as 
NAD+ sequestration has been shown to effectively kill 
IDH-mutant cancer cells when combined with alkylat-
ing agents [62]. The TP53 tumor suppressor is frequently 
inactivated in GBM, promoting tumorigenesis and ther-
apy resistance. Reactivating p53 or ATM-dependent HR 
and MMEJ pathways may counteract resistance in TP53-
mutant tumors [63, 64]. ATRX mutations, which often 
co-occur with IDH1R132H and TP53 alterations, sup-
presses ATM dependent DNA damage repair by modu-
lating H3K9me3 to enhance TMZ sensitivity in glioma 
[65]. However, ATRX loss in IDH1R132H/TP53mut glio-
mas activates a BRD4-dependent immune evasion mech-
anism. TMZ further exacerbates this mechanism, leading 
to reduced treatment efficacy and increased resistance, 
underscoring the complex and context-dependent role of 
ATRX in glioma progression [66].

TERT promoter mutations, which are frequently found 
in GBM, reactivate telomerase activity, resulting in can-
cer cell immortality. Blocking TERT can increase sensi-
tivity to treatments that cause DNA damage [67–69]. 
EGFR amplification, particularly that of EGFRvIII, pro-
motes cancer stem cell (CSC)-like behavior, tumor recur-
rence, and drug resistance. Combined inhibition of the 
EGFR/AKT and mevalonate pathways improves TMZ 
responses by disrupting membrane cholesterol dynam-
ics and energy metabolism [70–72]. HFE polymorphisms 
(H63D/C282Y) correlate with TMZ resistance through 
p16INK4A upregulation [73, 74]. Additionally, selective 
pressure from TMZ therapy can lead to acquired MMR 
deficiencies in glioma, resulting in post-treatment hyper-
mutation. This hypermutated phenotype enables tumor 
cells to withstand TMZ-induced DNA damage, fostering 
chemoresistance. Despite their high tumor mutational 
burden (TMB), these tumors respond poorly to immu-
notherapy due to limited immune cell infiltration, lack of 
clonal neoantigens, and significant intratumoral genetic 
diversity [75–78].
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HRasV12 mutations drive epithelioid GBM (Ep-GBM)-
like transformation by upregulating U3 small nucleo-
lar RNAs (U3 snoRNAs) through activation of PHAX, 
which enhances ribosome biogenesis and malignant pro-
liferation. Activated-PHAX also recruits TRIM24 to U3 
snoRNAs and facilitates its phosphorylation via DNA-
PKcs, linking RNA processing to epigenetic reprogram-
ming [79]. Mutations in the H3F3A gene, particularly at 
positions K27 and G34, alter chromatin and DNA repair 
mechanisms, impacting TMZ sensitivity [80, 81]. The 
loss of CDKN2A enhances cell-cycle progression, helping 
tumor cells survive despite TMZ-induced DNA damage 
[82, 83]. PTEN mutations activate PI3K/AKT signaling, 
enhancing DNA repair and chemoresistance. Target-
ing PTEN C211 succination disrupts iron-sulfur cluster 
assembly, sensitizing GSCs to TMZ/radiation [84]. TMZ-
resistant GBM exhibit guanine mutations destabilizing 
G-quadruplex (G4) structures and splice sites, creating 
vulnerabilities to G4-stabilizing agents such as TMPyP4 
or splicing kinase inhibitors. Additionally, resistant GBM 
cells exhibit cytoplasmic aggregation of a protein EWSR1, 
which serves as a potential resistance biomarker [85].

Collectively, these genetic and adaptive mechanisms 
underscore the complexity of glioma resistance and 
highlight the necessity for innovative therapeutic strate-
gies that anticipate and effectively target evolving tumor 
vulnerabilities.

Non-coding RNA
Emerging evidence highlights the critical role of non-
coding RNAs (ncRNAs) in driving therapeutic resistance 
to TMZ through the modulation of key oncogenic path-
ways (Table  1). Dysregulated ncRNAs reinforce chemo-
resistance by aberrantly activating survival signaling 
cascades, including the RAS/RAF/MEK/ERK and PI3K/
AKT/mTOR axes [86]. Therapeutic approaches target-
ing ncRNAs, including antisense oligonucleotides (ASOs) 
to inhibit harmful ncRNAs or mimics to enhance ben-
eficial ones, offer potential for restoring TMZ sensitiv-
ity [87, 88]. Major classes of ncRNAs involved in glioma 
resistance include microRNAs (miRNAs), lncRNAs, and 
circular RNAs (circRNAs). The following Table  1 sum-
marizes the expression patterns, signaling networks, and 
mechanisms of action of specific microRNAs, lncRNAs, 
and circRNAs that contribute to TMZ resistance, high-
lighting their potential roles as therapeutic targets.

MiRNAs
MiRNAs are short ncRNAs, typically approximately 24 
nucleotides in length, that regulate gene expression by 
binding to mRNA. They influence both normal processes, 
such as development, and disease states, such as cancer 
[117–120]. In GBM, miRNAs function as either tumor 
suppressors or promoters, influencing chemotherapy 

resistance, CSC properties, and interactions within the 
tumor microenvironment [121, 122].

Specific miRNAs significantly impact TMZ resistance 
by controlling key signaling pathways [123, 124]. For 
example, miR-519a and miR-29b enhance TMZ sensitiv-
ity by suppressing STAT3 signaling to promote apoptosis 
[125, 126]. Conversely, miR-3129-5p and miR-199b-3p 
target the neural precursor cell expressed developmen-
tally down-regulated NEDD4-1/PTEN/PI3K/AKT axis, 
where NEDD4-1 upregulation activates AKT/NRF2/
HO-1 signaling to amplify reactive oxygen species (ROS) 
defense and TMZ resistance [127]. MiR-3116 sensitizes 
GBM to TMZ by downregulating FGFR1 and disrupt-
ing PI3K/AKT signaling, while the miR-223/PAX6 axis 
modulates PI3K/AKT to regulate stemness and che-
moresistance [128, 129]. Oncogenic miRNAs such as 
miR-125b and miR-423-5p drive resistance via NF-κB 
activation and ING-4 suppression, respectively, whereas 
miR-221 reduces EGFR expression to impair TMZ effi-
cacy [130–132]. Tumor-suppressive miRNAs, including 
miR-193a-5p and miR-23b-5p, increase TMZ sensitivity 
by inhibiting the mTOR and TLR4 pathways [133, 134].

MiRNAs also regulate cancer stemness, another key 
factor in TMZ resistance. GSC-derived extracellular 
vesicles (EVs) transfer miR-10b-5p to activate PI3K/
AKT via PTEN suppression, fostering glycometabolic 
reprogramming and chemoresistance [135]. Similarly, 
miR-3065-5p in GSC exosomes transforms astrocytes 
into tumor-associated phenotypes via DLG2 downregu-
lation, and hypoxic GSC-derived miR-30b-3p promotes 
resistance through intercellular transfer [136, 137]. The 
HIF1α/HIF2α-miR-210-3p axis sustains GSC prolifera-
tion and chemoresistance under hypoxia, while miR-146a 
suppresses stemness by targeting POU3F2/SMARCA5 
[137, 138]. BMP-induced miR-199a-3p overexpression 
sensitizes GSCs to TMZ, whereas BC200 enhances stem-
ness and resistance by inhibiting miR-218-5p [139, 140]. 
AP-2α/miR-26a interactions regulate the Nanog/Sox2/
CD133 and IL6/STAT3 pathways, with miR-26a inhibi-
tion restoring the tumor-suppressive effects of AP-2α 
[141]. miR-132 drives stemness via TUSC3 suppression, 
and the PVT1/miR-365/ELF4/SOX2 axis maintains GSC 
self-renewal [142, 143]. miR-7-5p suppresses stemness 
by targeting YY1, resensitizing resistant cells to TMZ 
[144]. Beyond their role in signaling and stemness, miR-
NAs regulate EMT and DNA repair, further influencing 
chemoresistance. Collectively, miRNAs serve as pivotal 
regulators of TMZ response by intersecting with diverse 
molecular networks.

LncRNAs
LncRNAs, similar to miRNAs, are increasingly recog-
nized as important regulators of chemoresistance in 
cancer. In glioma, lncRNAs significantly influence TMZ 
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ncRNA Expression Signaling network Remark
miR-128-3p Down miR-128-3p/c-Met/epithelial-mesenchymal transi-

tion (EMT)
Overexpression of miR-128-3p downregulated the expres-
sion levels of EMT-transformed proteins (c-Met, PDGFRα, 
Notch1, and Slug) to enhance the effect of TMZ [89].

miR-144 Down miR-144/CAV2 and FGF7 MiR-144 repressed glioma progression and elevated 
susceptibility to TMZ by targeting CAV2 and FGF7 [90].

miR-140 Down miR-140/CTSB/EMT Overexpression of miR-140 reduced CTSB levels, en-
hanced TMZ cytotoxicity, suppressed the mesenchymal 
transition, and influenced CTSB-regulated tumor sphere 
formation and stemness marker expression [91].

miR-517c Down miR-517c/KPNA2/P53/EMT, autophagy MiR-517c inhibited autophagy and the epithelial-to-
mesenchymal (-like) transition phenotype in human GBM 
through KPNA2-dependent disruption of TP53 nuclear 
translocation [92].

miR-214-5p Down miR-214-5p/β-catenin/MGMT Cyanidin-3-O-glucoside inhibited the β-catenin/MGMT 
pathway by upregulating miR-214-5p to reverse chemo-
therapy resistance in glioma cells [93].

lncRNA HOXA-AS3 up HOXA-AS3/miR-455-5p/USP3 LncRNA HOXA-AS3 promoted USP3 expression and EMT 
in vivo by negatively regulating miR-455-5p [94].

lncRNA LINC00511 Up LINC00511/miR-524-5p/YB1/ZEB1 LINC00511 indirectly promoted ZEB1 expression by 
sponging miR-524‐5p to target YB1, which promoted EMT 
and TMZ resistance of glioma cells [95].

lncRNA LINC-PINT Down LINC-PINT/Wnt/β-catenin/EMT LINC-PINT suppressed cell proliferation, invasion, and EMT 
by blocking Wnt/β-catenin signaling in GBM [96].

lncRNA MEG3 Down Notch, TGF-β, Cell Adhesion Signaling Pathways MEG3 acted as a tumor suppressor mainly regulating cell 
adhesion, EMT, and cell proliferation [97].

lncRNA 
XLOC013218

Up XLOC/Sp1/PIK3R2/PI3K/AKT XLOC recruited and promoted the binding of Sp1 to 
the promoters of PIK3R2 to elevate the expression of 
PIK3R2, then PIK3R2-mediated activation of the PI3K/
AKT signaling pathway promoted TMZ resistance and cell 
proliferation [98].

lncRNA HULC Up PI3K/AKT/mTOR HULC may promote EMT by enhancing PI3K/AKT/mTOR 
signaling and upregulating TGF-β/Snail [99].

lncRNA MSC-AS1 Up MSC-AS1/AKT/ miR-373-3p/CPEB4 MSC-AS1 knockdown suppressed chemoresistance by 
regulating the miR-373-3p/CPEB4 axis in vitro and in vivo 
through activating the PI3K/AKT pathway [100].

lncRNA RMRP Up RMRP/ZNRF3/Wnt/β-catenin RMRP knockdown inhibited β-catenin expression by up-
regulating ZNRF3. RMRP/ZNRF3 axis and Wnt/β-catenin 
signaling formed a positive feedback loop to regulate 
TMZ resistance in glioma [101].

lncRNA DLEU1 Up autophagy Silencing DLEU1 suppressed TMZ-activated autophagy by 
regulating the expression of P62 and LC3, and promoted 
sensitivity of glioma cells to TMZ by triggering apoptosis 
[102].

lncRNA SNHG12 Up SNHG12/miR-129-5p/MAPK1/E2F7 In the cytoplasm, SNHG12 served as a sponge for miR-
129-5p, leading to upregulation of MAPK1 and E2F7 and 
endowing the GBM cells with TMZ resistance [12].

lncRNA MIR210HG Up hypoxia/MIR210HG/OCT1 Hypoxia-induced MIR210HG interacted with OCT1 for 
modulating hypoxia‐promoted glioma stemness, TMZ 
resistance, and invasion [103].

lncRNA 
TMEM161B-AS1

Up TMEM161B-AS1-has-miR-27a-3p-FANCD2/CD44 Knockdown of TMEM161B-AS1 downregulated the ex-
pression of FANCD2 and CD44 by sponging hsa-miR-27a-
3p, which can inhibit the proliferation, migration, invasion, 
and TMZ resistance of glioma [104].

lnc-TALC Up p38/MAPK Lnc-TALC regulated microglial M2 polarization and pro-
moted TMZ resistance in GBM cells through C5a release 
induced by the p38 MAPK signaling pathway [105].

lncRNA JPX Up JPX/FTO/PDK1 JPX facilitated GBM progression and TMZ chemoresis-
tance by modulating PDK1 [106].

Table 1 Role of NcRNAs as regulators of the TMZ response in glioma
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resistance by controlling DDR mechanisms, particularly 
through MGMT promoter methylation and alterations in 
the MMR and BER pathways. Recent studies have iden-
tified several lncRNAs that regulate TMZ resistance by 
modulating these DDR pathways, identifying new poten-
tial therapeutic targets.

For example, TMZ treatment activates CHK1, promot-
ing structural changes in lnc01956. These changes allow 
lnc01956 to move from the nucleus to the cytoplasm, 
where it binds MGMT and induces chemoresistance. 
Blocking CHK1 with the inhibitor SRA737 reversed this 
effect, restoring TMZ sensitivity [145]. Another lncRNA, 
LIP, increases after TMZ treatment and enhances BER 
efficiency by directly interacting with PARP-1. Reducing 
LIP expression significantly improves glioma cell sensitiv-
ity to TMZ [146].

HOTAIR, an oncogenic lncRNA frequently overex-
pressed in GBM, also contributes significantly to TMZ 
resistance. HOTAIR interacts with PRC2/EZH2 to sup-
press tumor suppressor genes via H3K27 trimethylation, 
while also activating the miR-214/β-catenin/MGMT 
axis [147], the miR-125/Hexokinase 2 pathway [148], 
and the miR-526b-3p/EVA1 pathway [149]. The small 
molecule EPIC-0628 disrupts HOTAIR-EZH2 bind-
ing, enhancing TMZ efficacy by upregulating ATF3 and 

inhibiting the DDR [150]. CRISPR-mediated deletion of 
HOTAIR regulatory elements further highlights its tran-
scriptional influence on chemoresistance [151]. Simi-
larly, FoxD2-AS1 promotes TMZ resistance by reducing 
MGMT promoter methylation [152], recruiting EZH2 
to silence tumor suppressors, and acting as a ceRNA for 
miR-98-5p/CPEB4 [153]. LINC00473, another resistance 
driver, amplifies MGMT expression via CREB/CCAAT/
CEBPα signaling and transfers chemoresistance to neigh-
boring cells via exosomal packaging [110, 154].

Beyond DDR, lncRNAs critically regulate glioma 
stemness to sustain TMZ resistance. SOX2OT, which is 
upregulated in recurrent GBM, promotes stemness and 
chemoresistance by activating the Wnt5a/β-catenin path-
way via SOX2 [155]. GSCAR stabilizes SOX2 mRNA 
through DHX9-IGF2BP2 complex formation while act-
ing as a ceRNA for miR-6760-5p/SRSF1 [156]. PVT1 
enhances stemness via the miR-365/ELF4/SOX2 axis and 
JAK/STAT signaling [143, 157], whereas PDIA3P1 drives 
PMT through C/EBPβ stabilization [158]. Paradoxically, 
TUG1 downregulation in A172/TMZ cells enhances 
stemness and resistance by suppressing EZH2, while 
BC200 increases the expression of self-renewal markers 
(Oct4, SOX2) and ABC transporters (BCRP1, MDR1) 
via miR-218-5p inhibition [140]. The proto-oncogenic 

ncRNA Expression Signaling network Remark
lncRNA OIP5-AS1 Up OIP5-AS1/miR-129-5p/ IGF2BP2 OIP5-AS1 inhibition upregulated miR-129-5p to repress 

resistance to TMZ in GBM cells by downregulating 
IGF2BP2 [107].

hsa_circ_0110757 Up hsa_circ_0110757/hsa-miR-1298-5p/ITGA Hsa_circ_0110757 inhibited glioma cell apoptosis and 
promoted TMZ resistance by sponging hsa-miR-1298-5p 
to promote ITGA1 expression [108]

lncRNA LINC00470 Up LINC00470/miR-134/MYC/ABCC1 LINC00470 promoted the expression of MYC and ABCC1 
by suppressing miR-134, thus promoting glioma cell 
proliferation and invasion, and attenuating TMZ chemo-
sensitivity [109].

lncRNA LINC00473 Up CREB/LINC00473/CEBPα/MGMT LINC00473, elevated in TMZ-resistant cells upon CREB 
activation, regulated the MGMT expression by binding to 
CEBPα [110].

hsa_circ_0088732 Up hsa_circ_0088732/miR-661/RAB3D/EMT Lcn2-derived Circular RNA (hsa_circ_0088732) inhibited 
cell apoptosis and promoted EMT in glioma via the miR-
661/RAB3D Axis [111].

circ_0059914 Up circ_0059914/miR-1249/VEGFA/EMT EIF4A3induced circ_0059914 promoted angiogenesis and 
EMT of glioma via the miR-1249/VEGFA Pathway [112].

hsa_circ_0067934 Up hsa_circ_0067934/PI3K/AKT/EMT Upregulated circular RNA hsa_circ_0067934 contributed 
to GBM progression through activating PI3K/AKT pathway 
[113].

circ_0003137 Up circ_0003137/PTBP1/PLOD3/EMT Hypoxia-driven M2-polarized macrophages facilitated the 
epithelial-mesenchymal transition of GBM via extracellular 
vesicles [114].

circZNF652 Up circZNF652/miR-486-5p/SERPINE1 CircZNF652 regulated cancer aggressiveness through the 
miR-486-5p/SERPINE1 axis [115].

circWDR62 Up circWDR62/miR-370-3p/MGMT Exosomal circWDR62 promoted TMZ resistance and ma-
lignant progression through regulation of the miR-370-
3p/MGMT axis [116].

Table 1 (continued) 
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lncRNA NEAT1, which is elevated in recurrent glioma, 
promotes stemness through multiple mechanisms: down-
regulating connexin 43 via miR-454-3p [159], mediating 
HMGB1/TLR2/Wnt-driven GSC formation, and enhanc-
ing resistance via the let-7 g-5p/MAP3K1 axis [129].

LncRNAs further intersect with diverse signaling path-
ways to sustain TMZ resistance. The STAT pathway is 
activated by HOXD-AS2 [160], while PI3K/AKT sig-
naling is modulated by XLOC013218 [98], LINC01410 
[161], and MSC-AS1 [100]. Wnt/β-catenin signaling 
is reinforced by RMRP [101], LINC00511 [162], and 
MIR155HG [163], whereas autophagy-related chemore-
sistance is mediated by CRNDE and DLEU1 [102]. Nota-
bly, complex lncRNAs such as HOTAIR, FoxD2-AS1, and 
NEAT1 target multiple pathways simultaneously, empha-
sizing the need for comprehensive treatment strategies.

CircRNA
CircRNAs are a unique class of non-coding RNAs 
characterized by their closed-loop structure and play 
important roles in glioma biology, particularly in TMZ 
resistance. These molecules function by interacting with 
miRNAs, regulating cancer signaling pathways, and 
sometimes producing functional peptides, making them 
valuable targets for diagnosis and therapy [164].

Glioma actively secrete dysregulated circRNAs via exo-
somes to spread TMZ resistance. For example, exosomal 
circGLIS3 promotes resistance through interaction with 
miR-548 m and increased MED31 expression [165]. Simi-
larly, circWDR62 enhances MGMT expression by bind-
ing to miR-370-3p, promoting resistance and aggressive 
tumor behavior. High circWDR62 levels are associated 
with poor patient outcomes [116]. The Warburg effect 
promotes the secretion of exosomal circ_0072083, which 
increases NANOG expression to reinforce resistance 
[166], and heparanase-mediated alterations in exosomal 
circRNA composition further exacerbate this phenotype 
[167]. Additionally, circHIPK3 and circCABIN1 pro-
mote tumor progression and resistance, respectively, via 
the miR-421/ZIC5 axis [168] and sustain ErbB signal-
ing [169]. These findings underscore the critical role of 
exosomal circRNAs in the transmission of intercellular 
resistance.

In addition to their roles in exosomes, circRNAs 
directly activate cancer pathways to maintain resistance. 
CircTTLL13 activates Wnt/β-catenin signaling via OLR1 
[170], while hsa_circ_0043949 and hsa_circ_0110757 
amplify resistance through ITGA1-mediated PI3K/AKT 
pathway activation [108, 171]. CircASAP1, which is acti-
vated by EIF4A3, promotes tumor growth and resistance 
through NRAS/MEK/ERK signaling [172]. Conversely, 
reducing circHIPK3 levels improves sensitivity to TMZ 
by affecting the miR-524-5p/KIF2A/PI3K/AKT path-
way [173]. Notably, circSPECC1 encodes the functional 

peptide SPECC1-415aa, which disrupts the ANXA2-
EGFR interaction to inhibit EGFR/AKT phosphorylation, 
thereby restoring TMZ sensitivity in resistant cells [174, 
175]. On the other hand, circRNAs such as circ_0005198 
and circVPS18 increase chemoresistance and stem cell 
properties by sponging specific miRNAs and increas-
ing TRIM14 and RUNX1 expression [176]. While most 
circRNAs contribute to resistance, some, such as hsa_
circ_0072309, act as tumor suppressors by stabilizing the 
p53 protein, increasing TMZ sensitivity via autophagy. 
This protective effect is absent in tumors with mutated 
p53 [177].

CircRNAs exhibit complex functions that depend on 
the cellular context and their interactions with multiple 
targets. To fully understand their roles in resistance, 
detailed research into circRNA regulators (such as RNA-
binding proteins) and downstream targets is necessary. 
Clinically, circRNAs are promising biomarkers because 
of their differential expression in resistant versus sensi-
tive tumors and their ability to be detected in bodily flu-
ids such as plasma and exosomes.

GSCs
GSCs, a unique subgroup within GBM, play crucial roles 
in tumor formation, treatment resistance, and recur-
rence, largely because of their self-renewal ability and 
adaptability [178]. A major mechanism of chemoresis-
tance involves the transformation of endothelial cells 
(ECs) into mesenchymal-like cells within the TME. This 
process is mediated by c-Met-dependent activation of 
Wnt/β-catenin signaling, which upregulates multidrug 
resistance-associated protein-1 (MRP-1). Genetic abla-
tion of β-catenin in ECs reverses TMZ resistance, while 
combining Wnt pathway inhibitors with TMZ reduces 
the number of tumor-associated ECs, suppresses tumor 
growth, and prolongs survival in preclinical models [179].

GSCs are organized in a hierarchy similar to neu-
ral development, with progenitor-like cells generating 
diverse tumor cell populations. This structure contributes 
to tumor heterogeneity and chemoresistance across dif-
ferent GBM subtypes [180]. Tumor recurrence involves 
shifts in cellular states, including increased EMT, stem-
ness, and hypoxic signaling pathways. Single-cell studies 
have shown that recurrent tumors activate genes such 
as SOX4, SOX10, and HIF1A, shifting toward a therapy-
resistant mesenchymal phenotype [181]. Quiescent GSC 
populations expressing specific receptors, such as F3, fur-
ther increase resistance, becoming active and proliferat-
ing following chemotherapy [182].

Metabolic and epigenetic changes reinforce GSC che-
moresistance. For example, cystathionine γ-lyase (CTH), 
which is overexpressed in resistant GSCs, increases 
stem cell properties, while its inhibition suppresses GSC 
renewal [183]. The activation of signaling pathways such 
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as the Notch, Wnt/β-catenin, and PI3K-AKT pathways 
supports stemness, with markers such as CD133 indicat-
ing increased resistance and tumorigenic potential [184, 
185]. Additionally, PDCD10, a regulator of stemness, is 
downregulated in resistant GBM, promoting dedifferen-
tiation and TMZ resistance, mirroring its role in colon 
and breast cancers [186–188].

Ion channels and protein modifications also influence 
GSC behavior. Sodium channels (Nav) maintain GSC 
quiescence by regulating the resting membrane potential. 
Inhibiting these channels forces cells into active division, 
improving TMZ sensitivity [189]. FBXO7, which is sta-
bilized by TMZ, promotes mesenchymal transformation 
in GSCs via Rbfox2 splicing regulation, while its deple-
tion sensitizes tumors to chemotherapy [190]. Chaper-
one-mediated autophagy (CMA), which is mediated by 
LAMP2A, sustains GSC stemness and TMZ resistance. 
High LAMP2A levels correlated with poor survival [191]. 
Hypoxia-induced GLT8D1 stabilizes CD133 through gly-
cosylation, activating Wnt/β-catenin signaling to drive 
tumorigenesis [185]. Furthermore, ubiquitin-specific 
peptidase USP36 stabilizes ALKBH5 to sustain GSC self-
renewal and TMZ resistance, while MVP overexpression 
in resistant cells is correlated with multidrug resistance 
and poor prognosis [192, 193]. Interactions between pro-
teins such as TRAF4 and CAV1 activate survival signal-
ing pathways, which can be disrupted therapeutically to 
restore TMZ effectiveness [194].

Extracellular communication mediated by exosomes 
contributes to the dissemination of therapeutic resis-
tance. For instance, CircCABIN1 packaged within 
exosomes derived from TMZ-resistant cells sponges 
miR-637 to upregulate OLFML3, activating ErbB signal-
ing in recipient cells [169]. Glycosylation and RNA-bind-
ing proteins also regulate resistance: MAN1A1 deficiency 
in GSCs promotes CD133-DNMT1 interactions to 
maintain quiescence, whereas KHDRBS3 supports self-
renewal and TMZ resistance [195–197]. Therapeutic 
strategies targeting GSC-specific pathways, such as MID-
KINE/ALK blockade or HSP90 inhibition to impair HR, 
synergize with TMZ and prolong survival in models [198, 
199]. Additionally, HDAC6 inhibitors disrupt Sp1-medi-
ated stemness, inducing cell cycle arrest and senescence 
in resistant cells [200].

GSCs undergo metabolic reprogramming involv-
ing pathways such as oxidative phosphorylation and 
lipid synthesis, which are controlled by signaling path-
ways such as the PI3K/AKT and RAS/RAF/MEK/ERK 
pathways. Inhibiting enzymes critical for lipid synthe-
sis, such as stearoyl-CoA desaturase (SCD), triggers 
cell death and enhances TMZ efficacy [201]. Epigenetic 
mechanisms, including MGMT methylation and histone 
modifications by KDM1A, protect GSCs from DNA 
damage [71, 178, 202]. Single-cell studies have shown 

that proneural-to-mesenchymal transition (PMT) plays a 
central role in cancer recurrence. It is driven by lncRNAs 
such as PDIA3P1 and regulated through proteins such 
as C/EBPβ. Targeting PMT pathways with specific 
inhibitors enhances TMZ effectiveness [158, 203–205]. 
Hypoxic GSC-derived EVs transfer miR-30b-3p to sup-
press RHOB, exacerbating chemoresistance, whereas 
elesclomol-induced ROS overcomes resistance by target-
ing mitochondrial metabolism [206, 207].

Autophagy
Autophagy plays a dual role in glioma progression and 
TMZ resistance, primarily by acting as a protective 
mechanism that helps tumor cells survive chemother-
apy-induced stress. This protective form of autophagy 
enhances cell viability by alleviating cellular stress during 
TMZ-induced cell cycle arrest and removing damaged 
organelles and proteins, allowing glioma cells to resist 
TMZ treatment [208, 209].

TMZ-induced damage in glioma cells triggers vari-
ous stress responses, including DNA damage, oxida-
tive stress, endoplasmic reticulum stress, and metabolic 
disruption. These stresses activate autophagy through 
multiple signaling pathways, such as the ATM/AMPK/
ULK1 axis, the PI3K/AKT/mTOR pathway, and the RAS/
RAF/MEK/ERK cascade driven by ROS. Collectively, 
these pathways stimulate autophagosome formation 
and enhance lysosomal degradation activity [210–212]. 
Autophagy then helps glioma cells degrade and recycle 
damaged cellular components, maintaining internal bal-
ance and promoting survival, particularly in GSCs [213] 
(Fig. 3).

SH3GLB1 (Bax-Interacting Factor 1 or endophilin B1) 
plays an essential role in initiating autophagy by recruit-
ing Beclin-1 and activating PI3KC3, which is crucial for 
early autophagosome formation. Studies indicate that 
SH3GLB1 is regulated by the transcription factor Sp1 
and contributes significantly to TMZ resistance by pro-
moting autophagy and altering mitochondrial functions 
[214, 215]. In addition, DOC-2/DAB2IP suppresses 
TMZ-induced autophagy by downregulating ATG9B via 
inhibition of the Wnt/β-catenin pathway, thereby sen-
sitizing GBM cells to TMZ [216]. Moreover, increased 
ADAR1 expression under TMZ treatment strengthens 
autophagy and enhances drug resistance via selective 
autophagy mediated by p62 [217]. These findings indicate 
a link between protective autophagy and TMZ resistance 
in GBM.

However, under certain genetic or molecular condi-
tions, autophagy can also trigger cell death rather than 
survival. For example, p53 activation, increased Beclin-1 
expression, or mTOR inhibition can result in hyperac-
tive autophagy, inducing cell death and improving TMZ 
sensitivity [218, 219]. For example, hsa_circ_0072309 
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increases TMZ sensitivity in GBM with wild-type p53 
by enhancing autophagy via the p53 signaling pathway 
[177]. Additionally, blocking the MIDKINE (MDK)/
ALK pathway leads to the degradation of SOX9, a tran-
scription factor involved in autophagy, thereby reducing 
glioma-initiating cell (GIC) self-renewal and enhancing 
TMZ effectiveness against this resistant cell population 
[198].

Immune microenvironment
The immune microenvironment of GBM significantly 
contributes to TMZ resistance through complex inter-
actions involving multiple cell types and signaling mol-
ecules [220]. GAMs, which are primarily polarized to an 
immunosuppressive M2 phenotype, dominate this envi-
ronment. These cells produce cytokines such as IL-10 
and TGF-β, and chemokines such as CCL2, CCL5, and 
CXCL12, which attract regulatory T cells and reduce 

Fig. 3 Autophagy in TMZ-treated cells. Autophagy is a multistep process consisting of initiation, nucleation, elongation, maturation, and fusion. In glioma 
cells treated with TMZ, autophagy is activated through multiple signaling cascades. (1) TMZ induces DNA damage, which activates the ATM/AMPK/ULK1 
signaling axis, subsequently promoting the assembly of the class III PI3K (Vps34) complex, which initiates autophagosome formation. (2) TMZ-induced 
oxidative stress results in the accumulation of ROS, which stimulates receptor tyrosine kinases (RTKs). Activated RTKs trigger the RAS/RAF/MEK/ERK and 
PI3K/AKT pathways, leading to the activation of downstream transcription factors that modulate autophagy. Specifically, ERK1/2 activation facilitates au-
tophagy by enhancing the formation of the Vps34 complex, whereas AKT activation inhibits autophagy by promoting mTORC1 activity, which suppresses 
the ULK1 complex. Notably, elevated intracellular ROS levels also activate PTEN, a negative regulator of the PI3K/AKT pathway. This PTEN-mediated 
inhibition is more pronounced than the autophagy-promoting effect of RTKs, resulting in overall suppression of the PI3K/AKT pathway under TMZ treat-
ment. (3) The Vps34 complex is essential for the nucleation of autophagic vesicles, whereas vesicle elongation and maturation into autophagosomes 
require additional autophagy-related proteins (ATG) and LC3. Mature autophagosomes subsequently fuse with lysosomes to form autolysosomes, where 
autophagic substrates are degraded. Cytoprotective autophagy supports protein synthesis, energy production, and cell survival, thereby contributing to 
TMZ resistance in glioma cells
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the effectiveness of cytotoxic T lymphocytes [221–225]. 
M2-type GAMs further promote resistance by activat-
ing survival pathways and altering tumor metabolism. 
Agents such as ginsenoside RK3, which shifts GAMs 
away from the M2 phenotype by targeting specific sig-
naling axes (such as PPARG/CCL2), can enhance TMZ 
effectiveness [223, 226, 227].

Various molecular factors also support immune sup-
pression and TMZ resistance. BCL7A contributes to 
immune exclusion by promoting EMT, creating physi-
cal barriers to immune cell infiltration [228]. Similarly, 
sodium-hydrogen exchanger 1 (NHE1) regulates immu-
nosuppressive environments by altering glucose metabo-
lism within GAMs [229]. Knocking out MXRA8 disrupts 
the recruitment of M2 macrophages and helps tumors 
regain sensitivity to TMZ, emphasizing the role of extra-
cellular matrix-immune interactions in resistance [230].

Novel therapeutic strategies are being developed to 
reshape the immunosuppressive microenvironment. Tar-
geted delivery of resiquimod to tumor-associated macro-
phages (TAMs) encourages their repolarization from the 
M2 phenotype to the M1 phenotype, enhancing antitu-
mor immunity and overcoming TMZ resistance [231]. 
Additionally, modulating metabolism to increase nitric 
oxide production reactivates inflammatory pathways, 
improving chemotherapy responses [232]. Treatments 
such as piperlongumine, which increase CD8 + T-cell 
activity by increasing oxidative stress, also help reverse 
immune suppression [233]. Combination therapies, such 
as oxaliplatin/ferritin complexes, simultaneously trig-
ger tumor cell death and reprogram immunosuppressive 
networks [234]. These multimodal interventions high-
light the importance of simultaneously addressing intrin-
sic tumor resistance mechanisms and extrinsic immune 
barriers.

Drug efflux transporters
The overexpression of drug efflux transporters is a major 
cause of resistance to chemotherapeutic drugs such as 
TMZ in cancer cells. These transporters actively remove 
various anticancer drugs from tumor cells, reducing their 
accumulation and therapeutic effectiveness.

ATP-binding cassette (ABC) transporters are key play-
ers in TMZ resistance, actively removing TMZ and its 
active metabolites from cells via energy derived from 
ATP hydrolysis [235]. ABCB1(P-glycoprotein) spe-
cifically transports the methylated metabolite MTIC of 
TMZ, limiting its effects. High levels of ABCB1 in tumor 
cells and ECs of the blood-brain barrier reduce drug 
accumulation inside tumor cells and prevent TMZ from 
effectively penetrating brain tissue [73, 236]. Another 
important transporter, ABCC1 (MRP1), eliminates TMZ-
induced DNA damage products by recognizing gluta-
thione-bound methylated adducts, such as GS-MeG, 

formed by glutathione S-transferase. This action reduces 
oxidative stress signals and suppresses DNA damage 
response pathways, weakening the effectiveness of TMZ 
[237, 238]. ABCG2 (BCRP) also contributes to resis-
tance by supporting the survival of GSC, particularly 
under low oxygen conditions. Under hypoxia, HIF-1α 
increases ABCG2 expression, and elevated LDHA activ-
ity lowers the intracellular pH, further activating ABCG2. 
While ABCG2 is not the primary transporter for TMZ, 
it removes molecules crucial for DNA repair and stress 
responses, indirectly enhancing resistance [239].

In addition to classical ABC transporters, polymerase 
I and transcript release factor (PTRF/cavin-1) also play a 
role in TMZ resistance. The overexpression of PTRF pro-
motes the release of EVs by facilitating fusion between 
multivesicular bodies and the cell membrane [240]. PTRF 
overexpression in the glioma cell lines U87 and GL261 
not only enhances EV production, uptake, and homing 
ability but also promotes EV-mediated proliferation of 
nearby glioma cells and the recruitment and activation of 
microglia/macrophages [241]. Recent studies have indi-
cated that increased PTRF expression can induce intra-
cellular TMZ efflux mediated by small EVs and large EVs, 
suggesting that PTRF can serve as an alternative drug 
target for which new therapies could be developed [242].

Drug resistance pathways
The molecular pathogenesis of GBM is characterized by 
the dysregulation of core signaling networks [243, 244]. 
More than 80% of GBM have alterations in the RTK/
RAS/PI3K pathways, primarily through amplification 
of EGFR (including the oncogenic EGFRvIII variant) 
and loss of PTEN, leading to activation of survival sig-
nals such as AKT and MAPK pathways [245, 246]. The 
PI3K/AKT pathway promotes resistance through vari-
ous mechanisms, including metabolic reprogramming 
via mTOR and the regulation of FOXO/GSK-3β signal-
ing [247]. Similarly, excessive activation of RAS/RAF/
MEK/ERK signaling, such as circASAP1, which promotes 
NRAS/MEK/ERK signaling via miR-502-5p, further rein-
forces malignant progression and TMZ unresponsiveness 
[172].

Hypoxia further increases resistance through activa-
tion of the Wnt/β-catenin pathway. Under low oxygen 
conditions, proteins such as FTL drive chemoresistance 
and EMT by activating AKT/GSK3β signaling [30, 248]. 
The canonical Wnt pathway stabilizes β-catenin, promot-
ing stem cell characteristics and survival-related gene 
expression, whereas the non-canonical PCP-Wnt path-
way during recurrence promotes neuronal transition 
via BRAF-mediated phosphorylation events [249–253]. 
ECs within tumors also enhance resistance through 
c-Met activation, increasing β-catenin levels, drug efflux 
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proteins, and mesenchymal transformation. These effects 
can be reversed by EC-specific β-catenin ablation [179].

JAK/STAT signaling supports GBM resistance by acti-
vating the STAT3/STAT5 pathway, promoting survival 
signals and mesenchymal traits, and maintaining cancer 
stem cell populations [254, 255]. Chemoresistance is fur-
ther enhanced through interactions in the TME, includ-
ing activation of CCL5-CCR5 signaling in blood vessel 
regions [256], Notch-mediated stem cell maintenance 
[257, 258], and PTPN11 phosphorylation events identi-
fied through proteogenomic studies in recurrent tumors 
[181]. Metabolic changes, including altered lipid metab-
olism and responses to oxidative stress, add additional 
layers of resistance, highlighting the importance of com-
prehensive therapeutic approaches.

In conclusion, TMZ resistance in glioma arises from 
a complex interplay of molecular and cellular mecha-
nisms (Table  2). Central to resistance is the enhanced 
DDR machinery, including the overexpression of MGMT, 
MMR deficiencies, and BER activation, which collectively 
mitigate TMZ-induced DNA lesions. Genetic muta-
tions in IDH1/2, TP53, EGFR, and TERT further drive 
resistance by altering metabolic pathways, DNA repair 
fidelity, and stemness properties. Non-coding RNAs 
(miRNAs, lncRNAs, circRNAs) regulate chemoresistance 
by modulating survival signaling, EMT, and autophagy. 
GSCs contribute to therapeutic evasion through self-
renewal, metabolic reprogramming, and interactions 
with the TME. Additionally, cytoprotective autophagy, 
drug efflux transporters (e.g., ABCB1, ABCC1), and dys-
regulated pathways such as PI3K/AKT, Wnt/β-catenin, 
and JAK/STAT amplify resistance by promoting sur-
vival and reducing drug accumulation. These multifac-
eted mechanisms underscore the need for multi-targeted 
strategies to overcome TMZ resistance in glioma.

Strategies for overcoming TMZ resistance in GBM
In recent years, considerable research has explored novel 
strategies to overcome TMZ resistance in GBM. In this 
section, We innovatively compile and discuss recent 
advancements, emphasizing cutting-edge areas such as 
nanodelivery systems, immunotherapy, metabolic inter-
ventions, and drug repurposing. By highlighting and inte-
grating these emerging approaches, this work provides 
clear insights and directions for future clinical translation 
and personalized treatment strategies (Fig. 4).

Enhancing the bioavailability of TMZ
One significant challenge in TMZ treatment for GBM is 
its limited bioavailability. The BBB and active drug efflux 
mechanisms reduce drug accumulation within tumors, 
limiting therapeutic effectiveness [259]. Research has 
focused on two main strategies: enhancing drug delivery 
to bypass biological barriers and reducing drug efflux to 
maintain higher intracellular TMZ concentrations [260]. 
These approaches aim to increase TMZ levels in tumors 
while minimizing side effects.

Improving TMZ delivery
The effectiveness of TMZ is reduced by the rapid break-
down of its metabolite, MTIC, which poorly penetrates 
the BBB. This instability necessitates increased TMZ 
doses, increasing toxicity and promoting drug resistance 
[261–263]. Advances in drug delivery aim to address 
these issues by improving BBB permeability, tumor tar-
geting, and retention within tumor cells.

Cationic liposomes bind to the negatively charged 
BBB, facilitating drug uptake through endocytosis and 
improving tumor-targeted delivery [264, 265]. Polyhedral 
oligomeric silsesquioxane (POSS) nanoparticles directly 
deliver TMZ to the nucleus, increasing DNA damage and 

Table 2 Overview of major TMZ resistance mechanisms in glioma
Resistance Mechanism Key Factors/Pathways Impact on TMZ
DNA damage repair MGMT, MMR, BER Repair the damage caused by TMZ, such as repairing O6-methyl-

guanine lesions, N7-methylguanine/N3-methyladenine damage
Gene mutations IDH1, TP53, ATRX, EGFR, PTEN, TERT, MMR, H3F3A Reduce TMZ sensitivity by suppressing apoptosis, enhancing DNA 

repair, promoting CSC phenotypes, or inducing hypermutation
Non-coding RNA miRNAs, lncRNAs, circRNAs Reduce TMZ sensitivity by activating EMT, inhibiting apoptosis, 

enhancing DNA repair, driving resistance via exosomal transfer or 
regulating PI3K/AKT pathways

GSCs Self-renewal, metabolic reprogramming, drug ef-
flux, exosome signaling

Maintain tumor heterogeneity and resistance via stemness and 
signaling

Autophagy PI3K/AKT/mTOR, ATM/AMPK/ULK1, MAPK/ERK, 
Beclin-1

Promote survival under TMZ-induced stress. Hyperactive autopha-
gy triggers cell death and improves TMZ sensitivity

Immune 
microenvironment

M2-polarized GAMs, MXRA8, IL-10, TGF-β, immune 
suppression, checkpoint resistance

Suppress anti-tumor immunity, reduce TMZ effectiveness

Drug efflux transporters ABCB1 (P-gp), ABCC1 (MRP1), ABCG2 (BCRP), PTRF-
mediated exosome efflux

Reduce TMZ cytotoxicity and drive tumor recurrence via enhanced 
DNA repair, stem cell survival, drug efflux, and immune suppression

Drug resistance pathways PI3K/AKT RAS/RAF/MEK/ERK, JAK/STAT, 
Wnt/β-catenin

Promote stem cell characteristics and survival-related gene expres-
sion, leading to resistance

This table provides an overview of major TMZ resistance mechanisms in glioma, summarizing key molecular pathways and their roles in reducing drug efficacy
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suppressing tumor growth [266, 267]. Tetrahedral scaf-
fold nucleic acid (tFNA) nanoparticles carrying TMZ 
also enhance BBB penetration and activate tumoricidal 
autophagy/apoptosis pathways [268]. TMZ encapsulated 
in calcium p-sulfonate [4]arene (Calix) nanocapsules 
results in faster cellular uptake than unbound TMZ [269].

Combination strategies with other drugs further 
enhance delivery. Folate receptor-targeted exosomes con-
taining TMZ and quercetin improve drug delivery and 
block the PI3K/AKT/mTOR signaling pathway [270]. 
siRNA micelles targeting STAT3 effectively increase 
tumor sensitivity to TMZ, highlighting their strong drug 
loading capacity [271]. Modifying the metabolite MTIC 
of TMZ into a stable N-acylated prodrug combined with 
disulfide-linked copolymer micelles improved stability 

and targeted release [272]. TMZ@UiO-66-NH2 nano-
composites, delivered via ultrasound, increase the local 
TMZ concentration, effectively killing tumor cells while 
reducing toxicity to healthy tissues [273] (Fig. 5).

Reducing TMZ efflux
Reducing TMZ efflux from GBM cells is essential for 
enhancing its therapeutic effect. Efflux mechanisms, 
including cell membrane pumps and exosome-mediated 
drug release, significantly reduce the effectiveness of 
TMZ concentration in tumor cells [259].

P-glycoprotein (P-gp), a member of the ABC trans-
porter family, actively removes chemotherapy drugs 
such as TMZ from cells, resulting in resistance. Inhibi-
tors such as Reversan block P-gp, significantly increasing 

Fig. 4 Strategies for overcoming drug resistance in GBM. Strategies include improving the bioavailability of TMZ by enhancing its delivery across the 
blood-brain barrier and reducing efflux via P-glycoprotein inhibition. Targeting DNA damage repair pathways, such as the MGMT, PARP, and BER pathways, 
can increase TMZ-induced cytotoxicity. Modulation of key signaling pathways (JAK2/STAT3, MAPK, and Wnt/β-catenin) through targeted inhibitors offers 
another route to sensitize tumor cells. Autophagy manipulation, through the inhibition of cytoprotective autophagy or activation of cytotoxic autophagy, 
synergistically enhances the TMZ response. Metabolic interventions aim to disrupt glycolysis, lipid metabolism, and amino acid utilization by targeting 
enzymes such as LDH, FASN, and BCAT1. Immunotherapeutic strategies, including immune checkpoint inhibitors, tumor vaccines, and oncolytic viruses 
(OVs), are employed to boost anti-tumor immune responses. Additional treatments, such as tumor-treating fields, gene editing, nano-red light therapy, 
and plant-derived compounds, represent emerging modalities with the potential to overcome resistance and improve therapeutic outcomes in GBM
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TMZ accumulation inside tumor cells and enhancing its 
efficacy [274]. Additionally, nanoparticle-based drug car-
riers avoid recognition by efflux pumps, reducing TMZ 
efflux. For example, USLPs, modified with PEG, reduce 
TMZ efflux at the BBB, increasing its toxicity toward 
GBM cells [275]. In addition to pump-driven resistance, 

the exosome-mediated efflux regulated by PTRF/Cavin-1 
exacerbates chemoresistance. Targeting this axis with 
EPIC-1042 disrupts PTRF/Cavin-1-caveolin-1 inter-
actions, suppresses exosome biogenesis, and induces 
PARP1 degradation via autophagy, thereby impairing 

Fig. 5 Strategies to improve TMZ delivery and reduce drug efflux in GBM. Research has focused on two main strategies: enhancing drug delivery to 
bypass biological barriers and reducing drug efflux to maintain higher intracellular TMZ concentrations. (1) Cationic liposomes and transferrin-modi-
fied nanoparticles facilitate BBB crossing via adsorption-mediated endocytosis and receptor targeting, respectively. POSS-based nanocarriers and tFNA 
nanoparticles enhance nuclear localization and tumor cell apoptosis. Encapsulation of TMZ in Calix nanocapsules increases early uptake and cytotoxicity. 
Additional strategies, including folate receptor-targeted exosomes co-loaded with quercetin, siRNA micelles targeting STAT3, MTIC prodrug micelles, 
and UiO-66-NH₂ nanocomposites activated by ultrasound, further improve BBB penetration and therapeutic efficiency while minimizing toxicity. (2) To 
counteract TMZ efflux, inhibitors such as Reversan block P-gp-mediated drug expulsion, and EPIC-1042 reduces the release of sEVs by disrupting PTRF/
Cavin1-caveolin-1 interactions. Ultra-small, large-pore silica nanoparticles (USLPs) help evade efflux pump recognition and enhance cytotoxicity. Ad-
ditional strategies include quadruple therapy using targeted exosome systems to downregulate TMZ-resistance genes such as RASGRP1 and VPS28, and 
approaches that reduce cerebrospinal fluid (CSF) clearance by modulating ependymal cilia activity, increasing TMZ accumulation at tumor sites
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DNA repair pathways and amplifying the antitumor 
effects of TMZ [242, 276].

Genetic factors can also affect TMZ efflux. RASGRP1 
and VPS28 were identified as TMZ resistance genes that 
enhance the conversion of RAS-GDP to RAS-GTP and 
TMZ efflux. On this basis, a quadruple therapy based on 
a targeted Exos delivery system was constructed, which 
significantly reduced the tumor burden in vivo [277]. 
Additionally, fluid dynamics between the brain paren-
chyma and CSF play a role in drug distribution. By inhib-
iting ependymal cilia motility, CSF clearance is reduced, 
leading to increased TMZ concentrations at the glioblas-
toma site [278] (Fig. 5).

Targeting the DDR
Inhibiting MGMT
TMZ exerts its cytotoxic effects through DNA methyla-
tion at O6-MeG, N7-guanine, and N3-adenine, with O6-
MeG being the most lethal lesion in glioma cells [279]. 
However, the DNA repair enzyme MGMT effectively 
removes these methyl groups from O6-MeG, significantly 
contributing to TMZ resistance in GBM. This resistance 
often increases in recurrent tumors due to genetic rear-
rangements and MGMT overexpression [36, 280].

Several approaches aim to overcome MGMT-driven 
resistance. Small molecules such as EPIC-0412 reduce 
MGMT levels through epigenetic mechanisms, involv-
ing UBXN1/ATF3-mediated recruitment of HDAC1 
and subsequent removal of H3K27 acetylation, thereby 
decreasing MGMT expression [281]. EPIC-0628 prevents 
MGMT production by disrupting interactions between 
the RNA molecule HOTAIR and the EZH2 protein, 
whereas EPIC-0307 directly targets DNA repair proteins 
to increase TMZ effectiveness [150, 282]. These inno-
vative methods help improve the ability of TMZ to kill 
resistant GBM cells.

Nanoparticle-based treatments further help over-
come MGMT resistance. Examples include nucleic acid 
nanoparticles that deliver MGMT-targeting siRNA and 
LDL receptor-targeted nanoparticles that block Wnt/β-
catenin signaling pathways involved in DNA repair [283, 
284]. Natural compounds have also shown potential in 
combination with TMZ. Quercetin suppresses signaling 
pathways such as the Wnt3a/β-catenin and AKT/NF-κB 
pathways, effectively reducing MGMT expression [285]. 
Tubeimoside-I inhibits the EGFR-PI3K/AKT/mTOR 
pathway, further decreasing MGMT [286].

Additional therapeutic strategies include inhibition 
of bromodomain and extra-terminal (BET) proteins to 
suppress oncogenic transcriptional activity, the use of 
2-deoxy-D-glucose-modified nanoparticles to enhance 
drug uptake and metabolic disruption, and the develop-
ment of dual-target agents such as Compound 28a, which 
downregulates both Cyclin D1 and MGMT expression to 

restore chemosensitivity [287–289]. Furthermore, emerg-
ing molecular insights such as activation of the RIP2/
NF-κB/MGMT axis have been shown to sustain MGMT 
expression, further reinforcing resistance to TMZ [34, 
290]. These findings expand our understanding of resis-
tance mechanisms and provide promising new targets for 
therapeutic intervention.

Inhibiting PARP
Targeting PARP, a key enzyme in DNA repair, has 
become a promising strategy to overcome TMZ resis-
tance in GBM. PARP inhibitors (PARPis) increase tumor 
sensitivity to TMZ by blocking PARylation, which is 
essential for repairing TMZ-induced DNA damage [39, 
291–293]. The dual inhibition of the PARP-1/2 catalytic 
domains with agents such as niraparib amplifies TMZ 
cytotoxicity, particularly in MGMT-deficient glioma, by 
suppressing telomerase activity and exacerbating DNA 
damage [265, 294]. Preclinical studies highlight syner-
gistic efficacy: veliparib combined with TMZ suppresses 
MSH6-deficient xenograft growth, exploiting MMR 
deficiencies to re-sensitize resistant tumors [295]. Novel 
approaches include the use of KL-50, an MMR-indepen-
dent DNA-damaging agent that is effective in MGMT-
deficient models, with fractionated RT further increasing 
its anti-tumor activity [296].

BBB-penetrant PARPis, such as AZD9574, improve 
survival in GBM models when combined with TMZ 
[297]. Similarly, olaparib, combined with inhibitors of 
mitochondrial metabolism, effectively bypasses resis-
tance mechanisms involving MGMT or PTEN [298, 299]. 
Recent research has identified resistance mechanisms 
involving proteins such as ATRX, which stabilizes PARP1 
and enhances DNA repair [300]. Strategies that exploit 
synthetic lethality, such as combining Polθ inhibitors 
with PARP or RAD52 blockade, specifically target GBM 
cells, sparing normal cells and providing safer treatment 
options [301].

Inhibiting BER
APE1/Ref-1 is a pivotal enzyme in the BER pathway that 
is primarily responsible for cleaving AP sites in DNA to 
initiate the repair of alkylation-induced damage [302, 
303]. Downregulation or pharmacological inhibition of 
APE1/Ref-1 markedly impairs the BER pathway’s capac-
ity to resolve TMZ-induced DNA lesions, resulting in 
persistent DNA strand breaks, heightened cellular sen-
sitivity to TMZ, and subsequent apoptosis. Preclinical 
research has demonstrated that silencing APE1/Ref-1 
expression through RNA interference substantially 
reduces the survival of TMZ-resistant GBM cells. This 
is accompanied by increased levels of γ-H2AX, a marker 
of unresolved DNA damage, confirming that disrupting 
APE1/Ref-1 both prevents DNA repair and promotes 
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apoptotic pathways [304]. Thus, APE1/Ref-1 inhibition 
represents a promising therapeutic strategy for enhanc-
ing TMZ sensitivity by disrupting essential DNA repair 
functions and overcoming chemoresistance.

Clinical investigations have further explored the ability 
of BER pathway inhibition to increase TMZ activity. For 
example, a phase I clinical trial involving methoxyamine 
(TRC102), a small-molecule inhibitor of the BER path-
way, in combination with TMZ in patients with recurrent 
GBM (rGBM) showed promising safety and tolerabil-
ity [305]. In addition to direct BER targeting, alternative 
approaches include EPIC-1042, which augments TMZ 
cytotoxicity by blocking drug efflux, degrading PARP1 
via autolysosomal pathways, and inhibiting late-stage 
autophagy [306]. PARP1 itself is a crucial component 
of BER, as it coordinates DNA damage responses by 
facilitating the recruitment of other repair proteins via 
poly (ADP-ribose) (PAR) polymerization. Inhibition of 
PARP1 interrupts these processes, resulting in increased 
genomic instability and cell death [307]. Additionally, 
specific metabolic alterations such as the IDH1R132H 
mutation in GBM lead to excessive production of the 
metabolite 2-hydroxyglutarate, which disrupts BER activ-
ity by downregulating DNA polymerase β (Polβ). Tumors 
harboring such mutations are more vulnerable to alkyl-
ating agents and inhibitors that target poly (ADP-ribose) 
glycohydrolase (PARG) [308].

A novel therapeutic concept, known as the “repair 
accident model,” suggests that deliberately causing par-
tial impairment in the repair synthesis or ligation steps 
shared between the BER and MMR pathways can gener-
ate lethal DNA double-strand breaks. This targeted dis-
ruption significantly amplifies TMZ-induced cell death 
and offers a potential route to overcoming chemoresis-
tance [309].

Immunotherapy
Tumor immunotherapy represents a therapeutic 
approach designed to control and eliminate malignan-
cies by reactivating and sustaining the tumor-immune 
cycle, thereby restoring the body’s intrinsic antitumor 
immune response [310]. This paradigm encompasses 
diverse strategies, including immune checkpoint block-
ade, tumor vaccines, and oncolytic virus therapy, which 
have demonstrated survival benefits in multiple can-
cer types and have emerged as transformative frontiers 
in oncology [311]. However, glioma exhibit diminished 
responsiveness to immunotherapy compared with other 
solid tumors, which is attributed to the BBB, brain tumor 
barrier (BTB), immunosuppressive TME, and low TMB 
[312]. Despite these challenges, immunotherapy offers 
advantages over conventional RT and chemotherapy, 
such as reduced off-target toxicity and durable thera-
peutic effects, positioning it as a compelling option for 

treatment-resistant glioma [313]. To increase immuno-
therapy efficacy in glioma, emerging strategies aim to 
optimize immune engagement through immune check-
point inhibition, adoptive T-cell therapy, tumor antigen-
targeted vaccination, and engineered OVs [314–316]. 
These approaches leverage the immune system’s preci-
sion to recognize and eliminate tumor cells while mini-
mizing collateral damage to healthy tissues.

Immune checkpoint Inhibition
Immune checkpoint inhibitors (ICIs) significantly change 
the landscape of GBM treatment by blocking interac-
tions between immune checkpoint receptors (such as 
CTLA-4, PD-1, TIM-3, and LAG-3) and their corre-
sponding tumor ligands. This blockade restores the abil-
ity of CD8 + T-cells to recognize and eliminate tumor 
cells effectively [317]. Early clinical trials indicate vari-
able outcomes for ICIs. For example, a randomized phase 
II clinical trial involving 35 patients demonstrated that, 
compared with postoperative pembrolizumab monother-
apy, preoperative treatment with pembrolizumab com-
bined with standard adjuvant therapy notably improved 
overall survival (OS) [318]. This finding underscores the 
potential advantages of early intervention with ICIs.

Further research has identified critical immunosup-
pressive mechanisms within GBM, particularly the solu-
ble PD-L1 (sPD-L1) pathway. A phase II study involving 
69 patients revealed that combining apatinib with TMZ 
therapy successfully reduced the levels of circulating 
sPD-1 and sPD-L1, potentially overcoming immune sup-
pression and enhancing therapeutic efficacy in recurrent 
GBM [319]. Cytotoxic T-lymphocyte protein 4 (CTLA-4) 
is another checkpoint receptor associated with poorer 
outcomes in high-grade glioma (HGGs), as increased 
CTLA-4 expression is correlated with a worse prognosis. 
Early clinical trials combining CTLA-4 inhibitors such as 
ipilimumab with other ICIs such as nivolumab have dem-
onstrated manageable side effects, although their clinical 
trial outcomes remain mixed [320, 321]. Nivolumab failed 
to outperform bevacizumab in rGBM or replace TMZ in 
unmethylated MGMT tumors, although subgroup analy-
ses suggest a potential benefit in methylated MGMT 
patients without corticosteroid use [322, 323]. The lack of 
survival improvement with nivolumab-RT combinations 
in patients with unmethylated MGMT tumors under-
scores the need for biomarker-driven patient stratifica-
tion [324]. Promisingly, the ipilimumab-nivolumab-TMZ 
regimens exhibit tolerable toxicity profiles that warrant 
phase II/III evaluation [325].

Emerging engineering strategies, including magnetic-
driven photothermal nanorobots (BMPNs) that syner-
gize with PD-L1 blockade [326]and RT-induced PD-L1/
PD-L2 upregulation to potentiate ICIs, aim to overcome 
therapeutic barriers [327]. Additionally, biomimetic 
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nanovesicles have been designed to improve BBB pen-
etration, facilitating the targeted delivery of ICIs and 
chemotherapeutics [328]. Biopolymer-based implants 
allowing the controlled release of TMZ combined with 
immunomodulatory agents such as R848 and IOX1 also 
demonstrated potent anti-recurrence effects in preclini-
cal models [329].

Mechanistic studies revealed that combination 
approaches involving D-2HG inhibition, RT, and anti-
PD-L1 therapy achieve complete tumor regression in 
60% of mIDH1 glioma by reducing T-cell exhaustion and 
promoting memory CD8 + T-cell formation [61]. Addi-
tionally, DDR score has emerged as an immunogenic-
ity biomarker, with high DDR glioma showing elevated 
mutation burden and immune checkpoint expression 
[330]. Another promising biomarker, the gasdermin-
related prognostic index (GPI), effectively predicts sensi-
tivity to TMZ and ICIs, providing valuable guidance for 
patient selection [331].

Although combination therapies such as TMZ with 
ICIs have shown promise in preclinical models, clinical 
trial outcomes in glioma patients have been largely dis-
appointing. This limited efficacy is attributed to multiple 
challenges, including the inherently immunosuppressive 
TME, poor T-cell infiltration, and the low tumor muta-
tional burden typical of glioma. Moreover, the BBB con-
tinues to pose a substantial barrier to drug penetration. 
These limitations highlight the need for more refined 
combination strategies that incorporate immune modu-
lation, enhanced delivery mechanisms, and biomarker-
driven patient selection to improve clinical response 
rates.

Tumor vaccines
Tumor vaccines have emerged as a transformative strat-
egy in GBM immunotherapy, leveraging tumor-specific 
antigens to activate antitumor immune responses [332]. 
These vaccines include various platforms such as pep-
tide-based, dendritic cell (DC)-based, nucleic acid-based, 
and viral vector-based methods, enabling personalized 
treatments tailored to individual tumor characteristics 
[333].

Survivin is an anti-apoptotic protein that is highly 
expressed in GBM. It is an important target for vaccine 
development and is closely associated with treatment 
resistance and poor clinical outcomes [334, 335]. Sur-
VaxM is a peptide vaccine conjugate that has been shown 
to activate the immune system against its target mol-
ecule, survivin. In a phase IIa open-label multicenter trial 
involving 64 newly diagnosed GBM (nGBM) patients 
treated with a combination of TMZ and SurVaxM, 95.2% 
of patients remained progression-free at 6 months after 
diagnosis. An apparent clinical benefit of SurVaxM was 
observed in both methylated and unmethylated patients 

[336, 337]. Similarly, the DCVax-L vaccine, which utilizes 
dendritic cells loaded with autologous tumor lysates, sig-
nificantly extends survival when combined with standard 
treatments [338]. Additionally, vaccines targeting cyto-
megalovirus (CMV) antigens have shown beneficial out-
comes in clinical studies with glioma patients [339].

mRNA vaccines are also gaining attention because of 
their rapid development, adaptability, and potential for 
personalized application [333, 340, 341]. However, one 
critical challenge is the expansion of immunosuppres-
sive regulatory T cells (Tregs) induced by TMZ, poten-
tially reducing vaccine efficacy [333]. Combining TMZ 
treatment with CMV pp65 RNA-loaded dendritic cells 
and lymphocyte transfer successfully reduced Treg num-
bers, amplified antigen-specific T-cell responses, and 
improved patient outcomes in terms of progression-free 
survival (PFS) [342]. Similarly, pp65 DC vaccines com-
bined with dose-intensified TMZ (DI-TMZ) and GM-
CSF enhanced survival in newly diagnosed GBM patients 
[343].

Novel delivery technologies have further optimized 
vaccine effectiveness. For example, synthetic high-den-
sity lipoprotein (sHDL) nanovaccines carrying CpG 
agonists and neoantigens, when combined with anti-
PD-L1 therapy, successfully induced tumor regression 
in preclinical studies [344]. Autologous formalin-fixed 
GBM antigen vaccines have achieved impressive survival 
results, with an 80% three-year OS rate following tumor 
resection [345]. Additionally, allogeneic stem cell lysate-
loaded dendritic cell vaccines have demonstrated safety 
in early-phase clinical trials [346].

Combination strategies are further reshaping GBM 
vaccine therapies. Peptide vaccines targeting VEGFRs 
potentially increase the efficacy of TMZ [347]. Tumor 
fusion DC (TFDC) vaccines are effective in treating 
chemotherapy-resistant GBM patients with unmeth-
ylated MGMT promoters [348]. Preclinical models in 
which Pmel-1 peptide vaccines are combined with Tc1/
Tc17-1 T-cell therapy significantly prolong survival [348]. 
Personalized vaccines such as AV-GBM-1, consisting of 
dendritic cells loaded with irradiated tumor-initiating cell 
lysates, exhibit excellent tolerability and promising pre-
liminary efficacy [349].

Despite these advancements, several challenges remain. 
While RT and chemotherapy enhance immunotherapeu-
tic responses through antigen release and immunogenic 
cell death, they can also exhibit immunosuppressive 
effects that may limit vaccine efficacy, underscoring the 
need for optimized treatment sequencing and combina-
torial strategies [350].

Oncolytic virus therapy
Oncolytic viruses (OVs) represent a promising thera-
peutic approach in cancer treatment, building upon the 
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unique ability of certain viruses to selectively infect, rep-
licate within, and destroy tumor cells [351]. First recog-
nized in the mid-20th century, OVs utilize the host cell 
machinery to replicate, causing infected cancer cells to 
lyse (break open) and release viral progeny, which then 
infect neighboring tumor cells [352]. This self-amplifying 
cycle makes OVs particularly effective against invasive 
tumors such as GBM.

Herpes simplex virus (HSV) derivatives are among the 
most extensively developed and clinically tested OVs. 
One prominent example, G47Δ, is a third-generation 
HSV-1 variant engineered with multiple genetic modifi-
cations to increase safety and tumor specificity. Clinical 
trials have demonstrated significant survival benefits for 
GBM patients treated with G47Δ, leading to its approval 
in Japan as the first clinically available OV therapy for 
GBM [353]. Other modified HSV strains have been devel-
oped to further improve specificity and effectiveness. 
For example, the HSV variant rQNestin34.5 exploits the 
nestin promoter, which is highly active in glioma, result-
ing in significantly increased survival times in preclinical 
studies [354]. Another engineered virus, HSV-1 G207, 
which is enhanced with NKG2D ligands and bispecific 
T-cell engagers (BiTEs), shows promising synergy with 
RT and TMZ, effectively activating cytotoxic T cells and 
increasing immune-driven tumor cell death [355].

Adenovirus-based OVs also demonstrate significant 
potential for GBM therapy. The engineered adenovirus 
CRAd-S-pk7, which incorporates fiber modifications for 
enhanced targeting, has shown synergistic effects with 
TMZ in preclinical studies. In clinical trials, this combi-
nation led to improved PFS and OS, particularly benefit-
ing patients with TMZ-resistant GBM characterized by 
unmethylated MGMT promoters, a challenging subset 
representing approximately 75% of the patient popula-
tion [356]. Innovative delivery methods also increase 
the effectiveness of OV therapies. For example, combin-
ing Newcastle disease virus (NDV) with TMZ-loaded 
PLGA nanoparticles has been shown to increase tumor 
cell killing in GBM models, highlighting the valuable role 
of nanotechnology in optimizing OV-TMZ therapeutic 
combinations [357].

However, the interaction between TMZ and OVs 
is complex. Although laboratory studies initially sug-
gested synergy between TMZ and OVs, further preclini-
cal investigations revealed that TMZ administration can 
unintentionally impair the efficacy of HSV-based OVs. 
This discovery underscores the importance of carefully 
designing and sequencing treatment schedules in clini-
cal settings to avoid negative interactions and maximize 
therapeutic benefits [358].

Targeting relevant signaling pathways
Resistance to TMZ in GBM is closely linked to disrup-
tions in several critical cellular signaling pathways. 
Among these pathways, the JAK2/STAT3 pathway plays 
a central role. Persistent activation of STAT3 significantly 
increases MGMT expression and strengthens DNA 
damage response mechanisms, which in turn reduces 
TMZ effectiveness [359]. Notably, compared with initial 
tumors, rGBM tumors present elevated levels of MGMT 
and phosphorylated STAT3 (p-STAT3). Studies indicate 
that blocking STAT3 activity restores TMZ sensitivity 
in resistant GBM cell lines and decreases tumor growth 
in animal models [360]. GSC specifically utilize STAT3 
to increase CYP3A5 expression, maintaining the NAD⁺/
NADH balance to support mitochondrial function and 
chemotherapy resistance [361]. Thus, targeting CYP3A5 
represents a potential therapeutic approach. Advanced 
delivery methods, such as bone marrow stem cell 
(BMSC)-derived exosomes decorated with HMOX1 pep-
tides (HSSP-BMSCExos) and carrying TMZ alongside 
STAT3-targeting siRNA, have shown enhanced effective-
ness in preclinical studies [362]. Similarly, biomimetic 
nanoparticles and cation-free siRNA micelles efficiently 
deliver STAT3 siRNA, successfully reversing drug resis-
tance [271, 363].

The MAPK signaling pathway is another crucial media-
tor of GBM survival and TMZ resistance. The long non-
coding RNA PDIA3P1 stabilizes the transcription factor 
C/EBP-β via p38α-MAPK signaling, promoting PMT and 
TMZ resistance [158, 364]. Targeting downstream MAPK 
effectors, such as MNK1/2 with osimertinib, suppresses 
eIF4E phosphorylation and tumor growth in xenografts 
[365]. Additionally, BRAF inhibitors such as vemurafenib 
reduce MAPK1/3 phosphorylation and synergize with 
TMZ to prolong survival in patient-derived models [253]. 
Targeting PDGF-Rα/β with CP-673,451 improved TMZ 
effectiveness by increasing DUSP1 expression and sup-
pressing p38MAPK signaling [366]. Recent work identi-
fied ARNT as a p38α-MAPK activator, where disrupting 
the ARNT/p38α interaction restored TMZ sensitivity 
[367].

Inhibiting the Wnt/β-catenin pathway represents 
another effective approach. Natural compounds such 
as resveratrol have been demonstrated to downregulate 
Wnt signaling and MGMT expression, increasing TMZ-
induced cell death [368]. Mannose also inhibits tumor 
cell proliferation by suppressing Wnt/β-catenin signal-
ing [369]. Additionally, ApoE-functionalized liposomes 
delivering both artesunate and TMZ successfully dis-
rupted Wnt/β-catenin activity, reversed MGMT-driven 
resistance, and improved survival in preclinical studies 
[284]. In tumors with MGMT deficiency but elevated 
PI3Kβ activity, inhibiting PI3Kβ synergizes effectively 
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with TMZ, emphasizing the importance of the PI3K sig-
naling axis [370].

Combining therapies that simultaneously target mul-
tiple pathways holds particular promise. Dual inhibition 
of p38MAPK and MEK/ERK (such as SB202190 and 
binimetinib) or PI3K and MAPK (such as dactolisib and 
trametinib) enhances TMZ sensitivity and overcomes 
kinome adaptation in preclinical models [371, 372]. 
While signaling pathway inhibitors demonstrate compel-
ling preclinical potential to counteract TMZ resistance, 
translational success hinges on overcoming BBB penetra-
tion and bioavailability challenges.

Autophagy manipulation
Autophagy plays a dual and complex role in GBM resis-
tance to TMZ therapy and represents a valuable thera-
peutic target for enhancing treatment effectiveness. 
Modulating autophagy can either sensitize tumors to 
TMZ or enhance chemoresistance, depending on the 
specific cellular context and signaling pathways involved.

Chloroquine (CQ), an inhibitor of late-stage autophagy, 
suppresses the fusion of autophagosomes and lysosomes, 
thus enhancing TMZ-induced apoptosis. In wild-type 
p53 GBM cells, CQ enhances TMZ efficacy by promot-
ing the phosphorylation of p53. However, in cells with 
mutated p53, higher CQ concentrations or prolonged 
exposure are needed to effectively inhibit cell prolifera-
tion and induce G2-M cell-cycle arrest [373, 374]. Simi-
larly, microRNA-93 (MIR93) can regulate autophagy 
by directly targeting critical autophagic genes such as 
BECN1, ATG5, ATG4B, and SQSTM1, thereby reducing 
cytoprotective autophagy and sensitizing GSC to both 
TMZ and RT [375]. Deubiquitinating enzymes (DUBs) 
increase TMZ resistance by promoting cytoprotective 
autophagy. Small-molecule inhibitors, such as compound 
G5, effectively inhibit DUB activity, thereby reversing 
this resistance mechanism [376]. Another promising 
approach involves NEO214, a conjugate of rolipram and 
perillyl alcohol, which blocks autophagosome-lysosome 
fusion. When combined with CQ and TMZ, NEO214 
significantly overcomes TMZ resistance [377]. Genetic 
approaches, such as SH3GLB1 knockdown, suppress 
cytoprotective autophagy, disrupt mitochondrial metab-
olism, and restore TMZ sensitivity [215]. Additionally, 
Forkhead Box M1(FOXM1)-driven expression of NUF2 
promotes resistance via activation of PI3K/AKT/mTOR-
dependent autophagy. Inhibition of either FOXM1 or 
NUF2 reverses TMZ resistance, highlighting potential 
therapeutic targets [378]. Natural compounds such as 
daurisoline (DAS), a plant-derived alkaloid, similarly 
inhibit cytoprotective autophagy through PI3K/AKT/
mTOR signaling, increasing TMZ sensitivity [379].

Interestingly, the activation of cytotoxic autophagy 
can also enhance the efficacy of chemotherapy. The 

antibody-drug conjugate AGCM-22, derived from 
cetuximab, enhances TMZ-induced cell death by simul-
taneously promoting apoptosis and autophagy-related 
processes [380]. In addition, the Skp2 inhibitor AAA237 
induces cytotoxic autophagy through BNIP3-mediated 
mTOR inhibition, suppressing tumor cell proliferation 
and invasion [381]. Borneol stimulates the autophagic 
degradation of HIF-1α, thereby sensitizing glioma cells 
to radiation therapy by modulating the mTORC1/eIF4E 
axis [382, 383]. Cannabidiol (CBD) triggers ER stress and 
mitophagy via the TRPV4-ATF4-DDIT3-TRIB3-AKT-
MTOR pathway, synergizing with TMZ in preclinical 
models [384].

Furthermore, targeting CMA by inhibiting LAMP2A 
disrupts GSC maintenance, reducing TMZ resistance. 
Clinically, higher levels of LAMP2 correlate with poorer 
patient outcomes, highlighting its potential as a prognos-
tic biomarker [191]. Other emerging pathways illustrate 
the complex role of autophagy in GBM chemoresistance. 
TRIM7 silencing inhibits nuclear receptor coactivator 
4 (NCOA4)-mediated ferritinophagy, inducing iron-
dependent ferroptosis and sensitizing tumors to TMZ 
[385]. EPIC-1042, a novel PARP1 degrader, enhances 
TMZ efficacy by leveraging early-stage autophagy pro-
cesses [306]. Dopamine D2 receptor (DRD2) antagonism, 
such as that caused by haloperidol, promotes autophagy 
and ferroptosis, countering adaptive resistance to TMZ 
[386]. Additionally, secretory autophagy induced by TMZ 
treatment releases HMGB1, driving macrophages toward 
a pro-inflammatory M1-like phenotype and improving 
chemotherapy responses, suggesting that HMGB1 is a 
potential therapeutic target [387].

Autophagy modulation in GBM is a double-edged 
sword in which both inhibition and strategic activation 
can enhance TMZ efficacy, depending on the molecular 
context. Although preclinical studies highlight promising 
strategies, clinical translation requires addressing chal-
lenges such as BBB penetration, tumor heterogeneity, 
and context-dependent roles of autophagy.

Metabolic intervention
GBM cells exhibit unique metabolic adaptations, nota-
bly increased reliance on aerobic glycolysis, known 
as the Warburg effect. This metabolic shift provides 
rapid energy production and supports aggressive tumor 
growth. Key enzymes involved in this process, such as 
hexokinase and phosphofructokinase, facilitate increased 
glucose uptake and glycolytic flux [388]. Targeting gly-
colysis with compounds such as 2-deoxyglucose (2-DG) 
effectively disrupts energy metabolism, suppressing 
tumor survival and proliferation [389]. Additionally, 
inhibiting the glucose transporter GLUT-3 further limits 
glycolysis, significantly reducing GBM cell proliferation 
[390]. Lactate dehydrogenase (LDH) also plays a critical 
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role in converting pyruvate into lactate, acidifying the 
TME. LDH inhibition diminishes lactate accumulation, 
improving the therapeutic efficacy of TMZ by weakening 
tumor cell resilience [391, 392]. Furthermore, the circular 
RNA circKIF4A drives glycolysis by upregulating aldolase 
A (ALDOA), contributing to TMZ resistance. Targeting 
circKIF4A effectively reverses this glycolysis-mediated 
resistance [393].

Lipid metabolism is another key metabolic pathway 
exploited by GBM cells to support tumor growth and 
survival. Tumors heavily depend on fatty acids for essen-
tial membrane synthesis and energy storage. Inhibiting 
fatty acid synthase (FASN) and stearoyl-CoA desaturase 
(SCD) with agents such as orlistat induces lipotoxicity, 
disrupts DNA repair, and enhances TMZ efficacy [394]. 
Additionally, EGFR-driven lipid remodeling and choles-
terol synthesis contribute significantly to chemoresis-
tance. Preclinical studies highlight that lipid-lowering 
agents, such as atorvastatin, also demonstrate robust 
potential as additive therapies alongside TMZ [395].

Purine metabolism represents another therapeutic 
axis. Inhibition of inosine 5’-monophosphate dehydro-
genase (IMPDH), a critical enzyme controlling de novo 
purine synthesis, significantly suppresses TERT activity, 
enhancing the impact of chemotherapy [396]. Gliocidin, 
an inhibitor that targets IMPDH2, induces nucleotide 
imbalance and effectively promotes tumor cell death 
[397]. Disruption of the interaction between ARL13B and 
IMPDH2 (for example, through mycophenolate mofetil) 
forces tumor cells to depend on nucleotide salvage path-
ways, thereby exacerbating TMZ-induced DNA damage 
[398]. Adenylosuccinate lyase (ADSL) inhibition further 
destabilizes GSC by affecting PTEN succinylation, under-
scoring its potential as a therapeutic target [84].

Tryptophan metabolism also contributes significantly 
to tumor immune evasion. Enzymes such as IDO1 
and TDO2 produce immunosuppressive kynurenine, 
impairing effective immune surveillance [399–401]. 
Dual inhibitors such as AT-0174, which targets both 
IDO1 and TDO2, demonstrate significant synergy with 
TMZ treatment, restoring robust antitumor immu-
nity by enhancing CD8 + T-cell responses and reducing 
immunosuppressive regulatory T-cell infiltration [402]. 
Additionally, branched-chain amino acid (BCAA) metab-
olism also supports tumor survival. Targeting the CHIP/
BCAT1 axis leads to BCAT1 degradation, disrupts gluta-
thione synthesis, increases oxidative stress, and signifi-
cantly improves TMZ sensitivity [403].

However, metabolic intervention strategies face sev-
eral critical limitations. Targeting essential metabolic 
pathways may inadvertently harm normal tissues, lead-
ing to significant toxicity and systemic side effects. Fur-
thermore, the metabolic plasticity and heterogeneity of 
GBM cells allow tumors to adapt rapidly by activating 

alternative pathways, reducing the effectiveness of single-
agent interventions.

Additional treatment strategies
Tumor treating field
TTFields therapy, a modality employing alternating 
electric fields to disrupt cancer cell division, received 
FDA approval in 2015 for nGBM on the basis of the piv-
otal EF-14 trial, marking a transformative milestone in 
neuro-oncology [404]. The arrays generate localized, 
low-intensity electric fields, selectively disrupting cancer 
cell division by interfering with critical processes such as 
microtubule assembly and organelle distribution during 
mitosis [405, 406].

Currently, the TTFields device is approved by the FDA 
for the treatment of recurrent and newly diagnosed GBM 
in adults aged 22 years and older. When TTFields therapy 
is combined with standard TMZ chemotherapy, it has 
demonstrated substantial improvements in patient out-
comes, significantly extending PFS and OS [407–409]. 
Preclinical studies have revealed that TTFields disrupts 
tumor microtubule networks, inducing a “crooked micro-
tubule” phenotype in 5–6% of treated GBM cells. This 
abnormality disrupts calcium signaling, impairs intercel-
lular communication, and restricts tumor proliferation 
[410]. Clinically, TTFields therapy has a favorable safety 
profile, with mild-to-moderate skin irritation being the 
most common side effect, and importantly, it lacks sig-
nificant systemic toxicity [411].

Emerging evidence supports the synergy between 
TTFields and other therapeutic modalities. Combining 
TTFields with chemoradiotherapy has enhanced local 
tumor control in nGBM patients [412, 413]. Addition-
ally, preclinical studies combining TTFields with drug 
repurposing strategies, such as the CUSP9v3 regimen, 
have demonstrated increased anti-tumor efficacy [414]. 
Recent innovations in electrode array technology have 
further improved thermal management, patient com-
fort, and compliance, without compromising therapeutic 
effectiveness [415].

TTFields therapy represents a transformative advance-
ment in GBM treatment, offering an effective, non-inva-
sive modality capable of significantly improving patient 
survival outcomes [404, 405, 407, 408]. Its favorable 
safety profile, synergistic potential with existing thera-
pies, and ongoing technological refinements highlight its 
growing role as a critical component of multimodal GBM 
treatment regimens [409, 412–415]. However, limitations 
such as high cost, patient compliance challenges, and 
restricted accessibility may hinder widespread adoption 
and long-term adherence.
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Nanotherapy
Recent advances in nanomedicine, particularly nanodrug 
delivery systems (NDDSs), have shown substantial prom-
ise for enhancing therapeutic delivery to GBM tumors. 
However, only a few NDDSs have successfully overcome 
the BBB and the blood-brain tumor barrier (BBTB) [416–
419]. Mesoporous silica nanoparticles (MSNs), known for 
their high surface area and pore volume, have attracted 
attention for their capacity for high drug loading and 
controlled drug release [420]. Surface-modified MSNs, 
particularly PEGylated MSNs with octyl groups, signifi-
cantly enhance BBB penetration and tumor specificity. 
For example, PEGylated MSNs loaded with docetaxel 
(DTX) have shown superior penetration through the 
BBTB in animal models, resulting in reduced systemic 
toxicity and improved survival rates compared with free 
drug administration [421–424]. Additionally, advanced 
approaches such as Gint4. T-siHDGF chimera-capped 
MSN (TMSN@siHDGF-Gint4.T) enables the precise 
co-delivery of therapeutic agents, facilitating synergistic 
GBM suppression through the sequential release of siH-
DGF and TMZ [425]. Similar to MSNs, the development 
of USLPs loaded with TMZ and surface PEGylation has 
shown potential in enhancing BBB permeability, reduc-
ing TMZ efflux, and promoting GBM apoptosis [275].

Targeted nanocarrier systems have further improved 
treatment accuracy. Gold nanoparticles (Anti-EphA3-
TMZ@GNPs) functionalized with EphA3 antibodies for 
intranasal administration bypass the BBB and directly 
target glioma cells, significantly enhancing TMZ effi-
cacy while reducing systemic side effects. Moreover, gold 
nanoparticles modified with anti-EphA3 for chemical 
and auxiliary plasma photothermal treatment have dem-
onstrated increased cellular uptake and induced apopto-
sis in glioma cells, overcoming drug resistance [426, 427]. 
Dual-targeting glutathione-responsive nanoparticles 
(T + A@Glu-NPs), which simultaneously deliver ARV-
825 and TMZ, increase BBB penetration and tumor-spe-
cific uptake, markedly inhibiting tumor cell proliferation 
and promoting apoptosis [257]. Similarly, dual-func-
tional nanoparticles (BIP-MPC-NP) concurrently inhibit 
EGFR/MET signaling pathways and DNA repair mecha-
nisms, effectively resensitizing GBM to TMZ [428]. Fur-
thermore, lipid-polymer nanoparticles modified with 
2-deoxy-D-glucose (TMZ/siPD-L1@GLPN/dsb) simul-
taneously deliver TMZ and siPD-L1 to reverse chemore-
sistance and modulate immunosuppressive mechanisms 
[288].

Innovative nanotechnology-enabled physical and 
chemical therapies also enhance TMZ treatment. For 
example, magnetic carbon nanotubes (mCNTs) com-
bined with precise magnetic field control have been 
utilized for mechanical disruption therapy against TMZ-
resistant GBM. GBM cells can internalize mCNTs, and 

under the influence of a rotating magnetic field, cell death 
is induced, thereby inhibiting tumor growth in vivo. 
Additionally, functionalizing mCNTs with anti-CD44 
antibodies, which recognize the CD44 antigen enriched 
on the surface of GBM cells, enhances the recognition of 
cancer cells, prolongs nanoparticle retention in tumors, 
and subsequently improves therapeutic efficacy [429]. 
Photodynamic therapy (PDT) using nanoparticle-based 
photosensitizers generates cytotoxic ROS, circumventing 
resistance mechanisms [430].

Multifunctional nanoplatforms that combine gene 
therapy and drug delivery have shown significant clini-
cal promise. Cation-free siRNA micelles (siRNA-SS-
PNIPAM) silence STAT3 in TMZ-resistant pathways, 
achieving synergistic effects [271]. ApoE-functionalized 
nanocapsules (ApoE-MT/siPKM2 NC) effectively co-
deliver siPKM2 and TMZ, suppressing glycolysis and 
increasing cytotoxicity [431]. Iron oxide nanoparticles 
and framework nucleic acid nanoparticles (FNNs) effec-
tively deliver siMGMT to inhibit DNA repair enzymes, 
significantly enhancing TMZ sensitivity [283, 432].

Gene editing
Recent advancements in CRISPR-Cas9 gene editing tech-
nology have shown significant potential for addressing 
TMZ resistance and enhancing therapeutic outcomes 
in GBM. CRISPR-Cas9, renowned for its precision and 
adaptability, employs guide RNA to facilitate targeted 
genetic modifications, allowing gene knockout, inser-
tion, or regulation [433]. A notable application involves 
CRISPR-mediated targeting of the TIM3 gene, which has 
been shown to enhance natural killer (NK) cell-medi-
ated glioma suppression, thereby amplifying antitumor 
immune responses [434]. Additionally, the silencing of 
microRNA-10b, a critical oncogenic driver in GBM, 
through CRISPR-Cas9 effectively inhibits tumor growth 
and progression [435]. Another prominent therapeutic 
target is the EGFR gene, which is frequently amplified or 
mutated in GBM. CRISPR-based disruption of the EGFR 
CE5B + 6B enhancer region effectively suppressed GBM 
cell proliferation and migration through apoptosis induc-
tion and metabolic reprogramming, highlighting the crit-
ical role of EGFR modulation in enhancing TMZ efficacy 
[436, 437].

CRISPR-Cas9 has also been effectively utilized to over-
come resistance mechanisms associated with therapeutic 
stress. For example, knockout of GDNF or its receptor 
GFRA1 disrupts the GDNF/GFRA1 signaling pathway, 
sensitizing GBM cells to TMZ, lomustine, and RT [438]. 
Similarly, CRISPR-mediated ablation of the ABCB1 
transporter significantly reduces tumor proliferation 
and restores sensitivity to TMZ [236]. Innovative strate-
gies such as “cancer shredding,” which target non-coding 
sequences mutated during TMZ therapy, have enabled 
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the precise removal of resistant GBM clones, effectively 
mitigating drug resistance [439].

To improve delivery efficiency, brain-targeted CRISPR-
Cas9 nanomedicine systems have been developed. 
Polymer-locked fusosomes (plofsomes) designed by 
researchers facilitate crossing the BBB and effectively 
deliver CRISPR-Cas9 ribonucleoproteins into GBM 
cells, significantly suppressing MDK expression, reduc-
ing TMZ resistance, and inhibiting tumor growth [440]. 
Another promising approach employs glutathione-
responsive nanocapsules encapsulating Cas9/sgRNA 
complexes, enabling precise BBB traversal, tumor-spe-
cific release, and efficient editing of the PLK1 gene while 
maintaining minimal off-target effects [441]. Despite 
these advances, challenges such as unintended off-target 
mutations and incomplete delivery specificity remain 
critical considerations for clinical translation [442].

Phytocompounds
Dietary nutrients and plant-derived compounds have 
become promising alternatives to standard glioma treat-
ments because of their safety, affordability, and ability 
to target multiple resistance pathways (Table  3). Flavo-
noids, including quercetin, rutin, chrysin, apigenin, nar-
ingenin, silibinin, epigallocatechin gallate (EGCG), 
genistein, biochanin A, and cyanidin-3-glucoside (C3G), 
are commonly found in everyday diets and demonstrate 
therapeutic potential against HGGs. These compounds 
regulate autophagy-related proteins such as Beclin-1 and 
LC3B, reducing cytoprotective autophagy that can cause 
resistance to TMZ. Flavonoids also suppress key DNA 
repair enzymes such as MGMT and PARP in resistant 
glioma cells. Unlike small molecule inhibitors, flavonoids 
can simultaneously affect multiple resistance-related 

molecules, including caspase-3, thus minimizing side 
effects. Combining flavonoids with TMZ has shown 
stronger anticancer effects in preclinical studies, high-
lighting their promise in treating glioma [443–446].

Curcumin, a polyphenolic compound from the curcum-
inoid family, is highly permeable across the blood-brain 
barrier and accumulates effectively in the hippocampus. 
Its ability to dissolve in lipids helps its distribution and 
uptake in brain cells [447]. Studies have demonstrated 
that curcumin reduces glioma cell growth by triggering 
apoptosis, cell cycle arrest, and mitochondrial damage, 
ultimately suppressing tumor growth. Additionally, cur-
cumin significantly inhibits angiogenesis and inflamma-
tion associated with tumor progression [448]. Clinical 
studies have confirmed the presence of curcumin in GBM 
tumor tissues following oral administration, increasing 
tumor sensitivity to RT and chemotherapy [449, 450]. 
Curcumin works by lowering the levels of protective pro-
teins such as Bcl-2, blocking survival pathways such as 
the JNK/AKT signaling pathway, and reducing the activi-
ties of DNA repair enzymes, including MGMT, ERCC1, 
DNA-PK, and Ku70/80, suggesting potential synergy 
with standard treatments [451–453].

In addition to flavonoids and curcumin, other phyto-
chemicals also have the potential to slow brain tumor 
progression and reduce treatment-related neurotoxicity 
[454]. A recent comprehensive review identified several 
medicinal plants, including Abutilon indicum, Anemone 
taipaiensis, Anisomeles indica, and Ardisia pusilla, whose 
bioactive compounds promote glioma cell death through 
DNA damage, mitochondrial disruption, and apoptosis 
by modulating critical signaling pathways [455]. How-
ever, challenges remain regarding the standardization of 
herbal treatments, including difficulties in purification, 

Table 3 Phytocompounds modulating GBM
Substance Primary Source Mechanism of action
Alkaloids Barberry Induce DNA damage, cell cycle arrest, ER stress, apoptosis, and autophagy, inhibit angiogenesis and 

proliferation in tumor cells [457].
Carboxylic Acid 
Derivatives

Cinnamon, Giant fennel Regulate intracellular second messengers, inhibit DNA synthesis, transcriptional activity, and tumor cell 
proliferation [458].

Carotenoids Derivative of astaxanthin Upregulate both extrinsic and intrinsic apoptosis pathways, impair migration and invasion of tumor 
cells [459].

Coumarins Celery, Carrot, Parsley 
family

Upregulate pro-apoptotic pathways, induce terminal differentiation, and reduce multi-drug resistance 
in cancer cells [460].

Terpenes Sunflower, White birch Induce apoptosis through the ROS-JNK pathway, block cell cycle at G1/S phase, inhibit VEGF-mediated 
angiogenesis [450].

Lignans Greater burdock Inhibit topoisomerase in tumor cells, disrupting DNA synthesis and proliferation [461].
Steroids Fenugreek, 

Ashwa-gandha
Induce apoptosis and cell cycle arrest in tumor cells [462]

Stilbenoids Vitis vinifera Activate apoptosis pathways, inhibit tumor cell proliferation, and reduce oxidative stress [463].
Tannins Oak Inhibit angiogenesis via HIF-1α/VEGF signaling and induce protective autophagy through Beclin-1 [464].
Triterpene Tripterygium wilfordii Modulate the PI3K/AKT/mTOR pathway to inhibit the formation of vasculogenic mimicry (VM) and 

angiogenesis [465].
This table summarizes natural substances, their primary sources, and the key molecular mechanisms by which they modulate glioblastoma progression, highlighting 
their potential therapeutic roles
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variable bioavailability, and unpredictable interactions 
with other medications. Improving phytochemical deliv-
ery across the BBB and developing combination therapies 
with conventional chemotherapeutics may increase treat-
ment efficacy while limiting unwanted side effects [456].

Repurposing existing drugs
Drug repurposing involves the use of approved medi-
cations for new therapeutic purposes, providing faster 
development, lower costs, and established safety profiles 

than the development of new drugs from scratch [466, 
467] (Table 4).

Siramesine, initially created as an anxiety medication 
targeting the sigma-2 receptor, has shown promising 
effects against TMZ-resistant glioma by causing ferropto-
sis, a type of cell death involving lipid damage [468–470]. 
In TMZ-resistant glioma cells, siramesine decreases the 
activity of protective enzymes such as glutathione peroxi-
dase 4 (GPX4) and HO-1, enhancing the effectiveness of 
TMZ in eliminating resistant cancer cells [471, 472].

Table 4 Repurposed drugs for glioma treatment
Drug Original Indication Mechanism of action
Disulfiram Alcohol dependence treatment Downregulates Polo-like kinase 1 (PLK1) expression, inhibits MGMT activity, and 

activates NF-κB and proteasome [478].
Chlorpromazine Acute and chronic mental 

disorders treatment
Induces cytotoxic autophagy via endoplasmic reticulum stress and unfolded protein 
response, reduces Cx43, and inhibits DNA repair [479, 480].

Gemcitabine Lung cancer and breast cancer 
treatment

Inhibits DNA synthesis, induces cell cycle arrest and apoptosis [481, 482].

Sildenafil Erectile dysfunction Modulates pro-apoptotic and anti-apoptotic signals via the cGMP/PKG pathway [483].
BMS345541 IKK-1/IKK-2 inhibition Maintenance of the FOXG1 structure [484].
Fluoxetine Antidepressant Reduces MGMT levels in GBM cells by disrupting NF-kB/p65 signaling [485].
Iloperidone atypical anti-psychotic Shows synergistic effects with TMZ, potentially due to its inhibition of DRD2 and β-

catenin expression [486].
TmHg Sensitizer Inhibits the Trx system, leading to increased cancer cell death and reduced prolifera-

tion and angiogenesis [487].
Acetazolamide Altitude sickness treatment Enhances GBM sensitivity to TMZ by inhibiting BCL-3-dependent carbonic anhydrase 

upregulation [488].
Sunitinib Gastrointestinal stromal tumors 

and metastatic renal cell carci-
noma treatment

Inhibits alkyladenine DNA glycosylase (AAG), suppresses cell proliferation and stem-
like characteristics, and induces cell cycle arrest [47].

Sitagliptin Type 2 diabetes treatment Enhances TMZ cytotoxicity in glioma cells by inhibiting TMZ-induced protective 
autophagy [489].

Hydroquinidine Anti-arrhythmic agent Modulates the gene expression profile in GBM cells, reducing viability, growth, and 
migration of TMZ-resistant GBM cells [220].

Stiripentol Antiepileptic agent Augments TMZ cytotoxic activity in GBM cells by influencing the cell cycle, mirroring 
the effects of TMZ [490].

Meclofenamate Non-steroidal anti-inflammatory 
drug

Inhibits gap junction-mediated cytoplasmic transport and disrupts tumor microtu-
bule network morphology [491].

PCI-24,781/Abexinostat Histone deacetylase inhibitor Inhibits DDR and induces DNA damage [492].
pimavanserin tartrate Parkinson’s disease treatment Suppresses the NFAT signaling pathway and inhibits the ATR/CDK2/E2F axis as well as 

MYC and Aurora A/B signaling pathways [493].
Captopril Hypertension and heart failure 

treatment
Modulates the MMP-2 pathway [494].

Nicardipine Hypertension and coronary 
artery disease treatment

Enhances TMZ cytotoxicity in GSCs by promoting apoptosis and sensitizing GSCs to 
TMZ via mTOR activation, inhibiting autophagy [495].

Lovastatin Prevention of atherosclerosis 
and coronary artery disease

Induces cell senescence by suppressing Skp2 expression, enhancing GBM sensitivity 
to TMZ both in vitro and in vivo [496].

Roscovitine Selective CDK inhibitor Induces autophagy and caspase-3-dependent apoptosis [497].
Ibudilast MIF inhibitor Increases GBM sensitivity to TMZ by downregulating macrophage migration inhibi-

tory factor (MIF) expression [498].
Pimozide Antipsychotic drug Inhibits EGFRvIII-Stat5-Fn14 signaling in GBM cells [499].
Thioridazine Antipsychotic drug Sensitizes GBM to TMZ by impairing late-stage autophagy in GBM cells [500].
Hydroxyurea Myeloproliferative disorders and 

cancer treatment
Enhances TMZ sensitivity in GBM by inhibiting ribonucleotide reductase M2 [501].

Dapagliflozin Diabetes treatment Inhibits cell cycle progression by interacting with CDK1/PBK/CHEK1 [502].
This table summarizes drugs originally developed for other medical conditions, highlighting their key mechanisms of action that confer potential therapeutic 
efficacy against glioma
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Afatinib, an FDA-approved drug for non-small cell 
lung cancer (NSCLC) that targets EGFR/HER2/HER4, 
has shown limited results as a single treatment for recur-
rent GBM [473, 474]. However, combining afatinib with 
TMZ in laboratory studies significantly reduced the 
growth, survival, and invasion of glioma cells, including 
those expressing the aggressive EGFRvIII variant, high-
lighting its potential when used alongside standard treat-
ments [72].

Metformin, which is commonly prescribed for dia-
betes, improves glioma cell sensitivity to TMZ [475]. 
It promotes cell death in TMZ-sensitive glioma cells 
by adjusting the Bax/Bcl-2 protein balance and reduc-
ing ROS. In TMZ-resistant glioma cells, metformin 
decreases resistance and suppresses markers of glioma 
stemness such as CD90. Animal studies have confirmed 
that combining metformin with TMZ specifically inhib-
its resistant tumor growth without negatively affecting 
TMZ-sensitive tumors [476].

Bortezomib, a proteasome inhibitor approved for mul-
tiple myeloma treatment, also acts as a sensitizer for 
glioma therapy. At non-toxic levels, bortezomib reduces 
glioma cell growth, spheroid formation, and stem-like 
characteristics, primarily by inducing apoptosis and cell 
cycle arrest. When combined with TMZ, bortezomib 
effectively targets the FOXM1-Survivin pathway, which 
is linked to poor glioma outcomes, resulting in improved 
treatment responses in both cell culture and animal mod-
els [477].

TMZ analogs
TMZ, an imidazotetrazine prodrug, faces significant 
clinical limitations because resistance is driven mainly 
by MGMT [36]. To overcome this resistance, novel TMZ 
analogs have been developed. For example, modified 
imidazotetrazine derivatives at the 3-methyl and 8-car-
boxamide positions, such as thiazole 13, show improved 
growth inhibition in glioma cells resistant to MGMT 
expression. These analogs cause cell cycle arrest, DNA 
damage, and cell death independently of the MGMT or 
MMR status, addressing key resistance pathways [503]. 
Other compounds, such as C8-imidazolyl (377) and 
C8-methylimidazole (465) tetrazines, also exhibit potent 
anticancer effects against resistant glioma and colorectal 
carcinoma cells. These analogs create DNA lesions sim-
ilar to TMZ but avoid resistance linked to MGMT and 
MMR [6].

Imidazotetrazine 4a (KL-50), another novel analog, 
specifically targets drug-resistant glioma. KL-50 induces 
MMR-independent cell death by forming dynamic DNA 
lesions that evolve into interstrand cross-links in MGMT-
silenced tumors, demonstrating efficacy in preclinical 
models with minimal toxicity [21]. Another novel boron-
10 (10B)-boronated TMZ derivative, TMZB, combines 

the DNA-damaging effects of TMZ with those of boron 
neutron capture therapy (BNCT). TMZB efficiently 
delivers 10B across the BBB, enhancing tumor-specific 
radiation damage and outperforming conventional boron 
carriers such as boronophenylalanine (BPA) [504–506].

Lipophilic prodrug strategies further improve TMZ 
delivery. The hexadecyl ester TMZ16e, which is formu-
lated into nanoparticles (TMZ16e-NPs) for intranasal 
administration, bypasses the BBB and prolongs survival 
in orthotopic glioma models by inducing G2/M arrest 
and downregulating Cyclin B1/CDK1 [263, 507]. DP68, 
another TMZ analog, inhibits GBM regrowth via inter-
strand DNA crosslinking and unique S-phase arrest, with 
enhanced efficacy upon FANCD2 or ATR suppression 
[508]. Additionally, the multifunctional analog NEO212 
overcomes resistance driven by MGMT and MMR, 
enhances sensitivity to radiation, and exerts anti-angio-
genic effects, significantly improving survival without 
severe side effects [509, 510].

Translational barriers and practical clinical guidance
Although recent advances in glioma treatment represent 
significant progress, translating these strategies into con-
sistent clinical benefit remains a major challenge. Tumor 
heterogeneity and dynamic adaptation remain critical 
obstacles, limiting the effectiveness of single-agent thera-
pies and highlighting the need for accurate biomarkers 
to stratify patients effectively [511, 512]. The inconsis-
tent relationship between the MGMT promoter meth-
ylation status and actual protein expression complicates 
clinical decision-making, often resulting in unpredictable 
therapeutic outcomes [32]. Immunotherapy approaches 
encounter considerable hurdles, including restricted 
penetration across the BBB, inherently low tumor muta-
tion burdens, and the profoundly immunosuppressive 
TME characteristic of gliomas [513]. Nanotherapy and 
gene-editing technologies face challenges related to pre-
cise delivery efficiency, specificity, potential off-target 
genetic effects, and issues with consistent scale-up for 
clinical application [514]. Additionally, strategies target-
ing autophagy require careful context-dependent opti-
mization because of the dual role of autophagy in tumor 
cell survival and cell death mechanisms [515]. GSC plas-
ticity and extensive metabolic adaptability further com-
plicate sustained therapeutic efficacy, as these cells can 
quickly alter their phenotype to evade treatment pres-
sures [516]. Translational efforts are frequently impeded 
by discrepancies between preclinical models, which often 
fail to recapitulate the complexity of human disease, and 
the clinical realities encountered in patient populations 
[517]. Furthermore, the potential for compounded tox-
icities with combination therapies poses significant risks, 
necessitating careful evaluation of dose, timing, and 
treatment sequence [518].
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Addressing these limitations will require the inte-
gration of advanced multi-omics profiling techniques, 
including genomics, transcriptomics, proteomics, and 
metabolomics, to comprehensively decipher resistance 
mechanisms and reliably identify predictive biomark-
ers. Enhancing drug delivery systems through responsive 
nanoparticles, multifunctional nanocarriers, or sophisti-
cated gene-editing platforms may significantly improve 
therapeutic specificity and effectiveness and overcome 
challenges associated with BBB penetration [519]. Per-
sonalized therapeutic regimens that simultaneously 
target DNA repair pathways, immune checkpoints, meta-
bolic vulnerabilities, and stemness characteristics offer 
considerable promise for achieving durable and clinically 
meaningful responses [520, 521]. Further optimization 
and clinical validation of treatments such as TTFields and 
nanotechnology-based platforms are critical for broader 
clinical implementation, ensuring that these promising 
modalities are effectively integrated into treatment pro-
tocols. Future clinical trials should emphasize patient 
stratification based on molecular subtypes and resistance 
mechanisms to ensure more tailored interventions. Fur-
thermore, leveraging artificial intelligence for drug repur-
posing, biomarker prediction, and regimen design may 
streamline decision-making and accelerate therapeutic 
breakthroughs [522].

While these forward-looking strategies evolve, TMZ 
remains a cornerstone of current glioma therapy [523]. Its 
widespread use, especially in combination with emerging 
agents, highlights the need for practical, evidence-based 
clinical guidance to maximize safety and therapeutic 
impact. Several critical considerations must be observed 
in daily practice. Older anti-epileptic drugs, such as phe-
nobarbital, carbamazepine or phenytoin, stimulate the 
synthesis of hepatic cytochrome P450 enzymes and can 
affect the metabolism of TMZ. Non-enzyme inducing 
antiepileptic agents, such as levetiracetam, lacosamide, 
or clobazam, are preferred due to fewer drug-drug inter-
actions and improved side effect profiles [524]. Due to 
the presence of compounded hematologic toxicities, 
patients receiving TMZ may experience myelosuppres-
sion, including persistent pancytopenias, which may lead 
to aplastic anemia [525]. Therefore, when combined with 
other myelotoxic agents (e.g., valproic acid), the poten-
tial for therapeutic synergy must be weighed against the 
increased risk of myelosuppression [526, 527]. Although 
glucocorticoids such as dexamethasone are commonly 
used to treat brain edema in patients with glioma, they 
may antagonize the effects of TMZ by inducing anti-
apoptotic signals and altering tumor cell sensitivity. 
The use of dexamethasone during TMZ use may lead to 
adverse clinical outcomes [528]. Notably, recent evidence 
suggests that glucocorticoid receptor (GR) signaling in 
GBM follows a circadian rhythm, and fluctuations in 

daily glucocorticoid levels can regulate tumor growth in a 
time-dependent manner, further complicating its clinical 
impact [529]. Diet and supportive care likewise influence 
treatment success. TMZ should be taken on an empty 
stomach (≥ 2  h before or after meals), as high-fat meals 
can delay absorption and alter pharmacokinetics. Pro-
phylactic antiemetics such as ondansetron are useful in 
managing nausea and vomiting [530]. Furthermore, pro-
ton pump inhibitors (e.g., omeprazole), which affect gas-
tric acidity, may also impair TMZ absorption and should 
be timed carefully around dosing.

Ongoing monitoring and individualized assessment 
are essential throughout TMZ treatment [531]. Hemato-
logic and hepatic function should be routinely evaluated, 
especially in patients with underlying liver dysfunction 
[532]. Clinicians should be vigilant in assessing new 
neurological symptoms, such as headaches or seizures, 
to distinguish between drug-related toxicity and tumor 
progression [533]. Patients should be encouraged to 
report infections, unexplained bleeding, severe fatigue, 
or the use of herbal/traditional supplements (e.g., cur-
cumin, quercetin), which may interfere with the oxidative 
stress mechanisms central to TMZ’s action. Ultimately, 
integrating biomarker-informed decision-making (e.g., 
MGMT methylation status), personalized supportive 
care, and open patient communication is key to ensuring 
safe, effective, and context-sensitive use of TMZ in the 
clinic [534].

Conclusions
TMZ remains a cornerstone of glioma chemotherapy, 
but its long-term effectiveness is challenged by diverse 
resistance mechanisms, including MGMT-mediated 
repair, MMR deficiencies, enhanced BER activity, efflux 
transporter upregulation, and tumor mutations such 
as IDH1/2, TP53, EGFR, and ATRX. GSCs, non-coding 
RNAs, autophagy, and the TME further complicate resis-
tance through metabolic plasticity, immune evasion, and 
therapeutic adaptation. Emerging treatment strategies 
targeting these mechanisms—such as PARP inhibition, 
advanced nanoparticle delivery systems, immunothera-
pies, autophagy modulators, TTFields, gene-editing 
technologies, and novel TMZ analogs—have shown sig-
nificant promise. However, clinical translation remains 
constrained by tumor heterogeneity, biomarker inconsis-
tency, drug delivery barriers, GSC plasticity, and discrep-
ancies between preclinical and clinical outcomes.

Future progress will require comprehensive multi-
omics approaches to identify reliable predictive biomark-
ers, precision-enhancing nanoparticle and gene-editing 
delivery systems, and personalized treatments addressing 
DNA repair, immune checkpoints, metabolic vulnerabili-
ties, and stemness features. Advanced patient stratifica-
tion in clinical trials, informed by detailed molecular 
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profiling, alongside leveraging artificial intelligence for 
drug discovery and regimen optimization, will be essen-
tial to overcome these translational hurdles.

Ultimately, effective clinical care demands meticulous 
attention to practical aspects of TMZ administration. 
Careful management of drug interactions, dietary consid-
erations, prophylactic and supportive care measures, vig-
ilant monitoring for hematologic and neurologic toxicity, 
and individualized patient counseling remain crucial for 
maximizing treatment safety and efficacy. Through con-
tinued translational innovation and vigilant clinical prac-
tice, the therapeutic outcomes for glioma patients can be 
progressively improved.
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