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being explored for solid tumors such as GBM. Given the expanding research landscape,
a systematic understanding of global trends and hotspots in this domain is urgently
needed.

Methods \We conducted a comprehensive bibliometric and visualized analysis

of publications related to CAR-T cell therapy in GBM from inception to December
31,2024, using the Web of Science Core Collection. CiteSpace was used to analyze
publication trends, country and institutional collaboration, author impact, journal
co-citation, reference networks, and keyword co-occurrence, clustering, and bursts.
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Results A total of 303 relevant publications were included. Annual outputs
showed rapid growth beginning in 2015, with the United States and China leading
in productivity and collaboration. Influential authors such as Christine E. Brown

Shanghai 200433, China , K . .
g and Donald M. O'Rourke were identified as core contributors. Neuro-Oncology

and Clinical Cancer Research emerged as key publishing and co-cited journals.
Co-citation and keyword analysis revealed a shift from early focus on single-antigen
CAR designs (e.g., IL13Ra2, EGFRVIII) toward dual-target constructs, “‘armored” CAR-T
cells, and combinatorial immunotherapies. Recent research hotspots included
immunomodulation, precision medicine, and novel delivery platforms such as
nanoparticles and oncolytic viruses.

Conclusions This study maps the evolving scientific landscape of CAR-T cell therapy
in GBM, highlighting key contributors, institutional collaboration, and emerging
research frontiers. The transition from basic antigen targeting to multifunctional,
immune-enhancing strategies reflects a maturing field with increasing translational
focus. Our findings offer valuable insights that can inform strategic funding allocation
by identifying high-impact institutions and authors, optimize clinical trial design by
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highlighting emerging combinatorial and delivery strategies, and guide novel target
discovery through analysis of co-cited references and keyword bursts. By revealing
global collaboration networks and thematic shifts, this study also supports the
development of interdisciplinary research frameworks in CAR-T therapy for GBM.

Keywords Glioblastoma, CAR-T cell therapy, Bibliometric analysis, Immunotherapy,
Research trends
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1 Introduction

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in
adults, classified as grade IV astrocytoma by the World Health Organization [1]. Despite
aggressive treatment involving maximal safe surgical resection followed by radiother-
apy and concurrent temozolomide chemotherapy, the prognosis remains dismal, with
a median survival of approximately 12 to 15 months and a five-year survival rate of less
than 10% [2]. This poor outcome is largely attributed to the highly infiltrative nature of
GBM, its pronounced inter- and intra-tumoral heterogeneity, and the profound immu-
nosuppressive tumor microenvironment, which together enable tumor recurrence and
resistance to conventional therapies.

The emergence of chimeric antigen receptor (CAR)-T cell therapy has revolution-
ized cancer treatment, particularly in hematologic malignancies such as B-cell leukemia
and lymphoma, where it has demonstrated durable responses and led to multiple FDA-
approved products [3—5]. CAR-T cells are genetically engineered T lymphocytes capable
of recognizing tumor-associated antigens independently of MHC restriction, providing
potent cytotoxicity even in immunologically “cold” tumors [6, 7]. Inspired by this suc-
cess, researchers have increasingly focused on extending CAR-T therapy to solid tumors,
including GBM. Several GBM-specific targets have been identified, such as IL13Ra2,
EGFRVIII, HER?2, and B7-H3 [8-16]. Early-phase clinical trials have confirmed the feasi-
bility and relative safety of intracavitary or intraventricular CAR-T cell infusion, though
therapeutic efficacy remains variable and often transient [11, 17]. However, unlike hema-
tologic malignancies, CAR-T cells face substantial challenges in treating solid tumors
such as GBM. One major limitation is the poor penetrability of CAR-T cells into the
tumor mass, largely due to the physical barriers posed by the dense extracellular matrix,
abnormal vasculature, and blood—brain barrier (BBB) [18]. In addition, the immunosup-
pressive tumor microenvironment, enriched with regulatory T cells, myeloid-derived
suppressor cells, and inhibitory cytokines, further impedes T cell infiltration and per-
sistence. As a result, conventional intravenous administration often leads to inadequate
intratumoral accumulation of CAR-T cells. To overcome these barriers, researchers have
explored locoregional delivery methods, such as intracavitary or intraventricular infu-
sion, which allow direct delivery of CAR-T cells into the resected tumor cavity or cere-
brospinal fluid, thereby bypassing systemic barriers and enhancing local exposure.

Multiple factors hinder the clinical translation of CAR-T therapy in GBM, including
limited trafficking and persistence of T cells in the brain, antigen escape mechanisms,
heterogeneous expression of target antigens, and robust immunosuppressive mecha-
nisms involving regulatory T cells, myeloid-derived suppressor cells, and inhibitory
cytokines such as TGF-B [19-21]. In particular, the BBB poses a significant obstacle
for intravenously infused CAR-T cells, limiting their penetration into the central ner-
vous system and reducing therapeutic efficacy. This has prompted the development
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of alternative delivery strategies, such as intracavitary or intraventricular infusions, to
bypass the BBB and achieve more effective local exposure of CAR-T cells within the
tumor environment [19]. To address these challenges, ongoing studies have explored
novel CAR designs (e.g., bispecific or “armored” CARs), combinatorial immunother-
apy strategies, local delivery approaches, and modulation of the tumor microenviron-
ment [22, 23]. The field is rapidly evolving, with increasing academic and industrial
investment.

Given the expanding volume of literature and growing complexity of research direc-
tions, there is a critical need to systematically map the global landscape of CAR-T cell
therapy research in GBM. Bibliometric analysis, a method combining quantitative evalu-
ation with visualization techniques, offers a powerful tool to uncover publication trends,
research hotspots, influential contributors, and collaboration networks. It enables
researchers, clinicians, and policy-makers to identify emerging frontiers, guide funding
priorities, and support evidence-based decision-making.

Therefore, this study aimed to perform a comprehensive bibliometric and visualized
analysis of global publications related to CAR-T cell therapy in glioblastoma. Using
CiteSpace, we systematically examined annual publication output, country and insti-
tutional collaboration patterns, author productivity and co-citation relationships, core
journals and references, and the evolution of key research themes over time. By pro-
viding an in-depth overview of the knowledge structure and development trajectory of
this field, our findings are expected to inform future research directions, foster cross-
institutional collaboration, and support the design of more effective immunotherapeutic
strategies for this devastating disease.

2 Materials and methods

2.1 Data source and search strategy

All bibliometric data were retrieved from the Web of Science Core Collection (WoSCC)
on March 11, 2025. The search was conducted using the following topic terms:
TS = (“glioblastoma” OR “GBM” OR “glioblastoma multiforme”) AND (“CAR-T cell”
OR “chimeric antigen receptor T cell” OR “CAR T-cell therapy” OR “CAR-T immu-
notherapy” OR “CAR T-cell immunotherapy” OR “chimeric antigen receptor T-cell
immunotherapy”)*.

The timespan was set from database inception to December 31, 2024, with results lim-
ited to articles and review articles in English. After removing duplicates, two review-
ers independently screened the titles and abstracts to exclude irrelevant records, such
as those not related to glioblastoma or not focused on CAR-T cell therapy. Discrepan-
cies were resolved through discussion. In cases where relevance was uncertain based on
title and abstract, full-text review was conducted. Only articles specifically addressing
CAR-T cell therapy in the context of glioblastoma were retained for analysis. A total of
303 publications were included for analysis. The literature screening process is detailed
in Fig. 1.

2.2 Bibliometric analysis and visualization

Bibliometric analysis and visualization were conducted using CiteSpace (version 6.2.R6)
[24]. This software was employed to construct networks of co-authorship, institu-
tional collaboration, keyword co-occurrence, reference co-citation, and journal citation
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Identification of Studies through Databases and Registries

Web of Science Core Collection Refine:
(WoSCC) database TS=("glioblastoma" OR "GBM" OR
"glioblastoma multiforme™)

AND TS=("CAR-T cell" OR "chimeric
antigen receptor T cell*" OR "CAR T-cell
therapy" OR "CAR-T immunotherapy" OR
"CAR T-cell immunotherapy" OR "chimeric
antigen receptor T-cell immunotherapy")
Publication data:

From WoSCC inception to 2025-03-11

Identification

473 publications identified

Refine:
Publication Date: 2005-01-01 to 2024-12-25
Exclude:
397 publications identified Other publication date (n=0)
Duplicate publication (n=76)

Screening

Refine:

Document Types: Article, Review Article
L. ) . Exclude:

| 306 publications identified | Other document types of publications (n=91)

Refine:

Language types: English
Exclude:

| 303 publications identified | Other language types of publications (n=3)

Included

Fig. 1 Flowchart of the literature screening and selection process. A total of 473 publications were initially re-
trieved from the WoSCC database. After removing duplicates, filtering by publication date, document type, and
language, 303 publications were finally included in the bibliometric analysis
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Fig. 2 Annual publication trends of research on CAR-T cell therapy for glioblastoma from 2014 to early 2025. The
number of publications shows a continuous increase, peaking in 2024
relationships. Clustering, burst detection, timeline, and timezone views were used to
identify research hotspots and evolving trends.

3 Results

3.1 Annual publication trends

The annual number of publications related to CAR T cell therapy in GBM showed a sig-
nificant upward trend from 2014 to 2024 (Fig. 2). While there were minimal publications
prior to 2016, a marked increase occurred starting in 2018, with annual output rising
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from fewer than 10 papers to over 25 in that year. Although a slight decline was observed
in 2019, the number of studies grew steadily from 2020 to 2022. Notably, publication
activity peaked in 2024 with 63 articles, followed by 58 in 2023.

3.2 Global distribution and collaboration of countries/regions and institutions
Publications on CAR-T cell therapy in GBM originated from a wide range of countries/
regions, with the United States and China leading in both productivity and interna-
tional collaboration (Fig. 3A). The United States maintained long-standing partnerships
with Germany, Australia, the United Kingdom, and Canada, while China's international
collaboration network expanded significantly after 2018. Among the top 10 contribut-
ing countries/regions, the United States consistently ranked first throughout the study
period. China showed the most notable growth in recent years, followed by steady con-
tributions from Italy, Australia, and Germany (Fig. 3B). Collaboration network analy-
sis confirmed that the United States and China occupied the most central positions in
global collaboration networks, reflecting their pivotal influence on the research land-
scape (Fig. 3C). Institutional collaboration analysis further identified key research hubs,
including the University of California System, Harvard University, the University of
Pennsylvania, and Beckman Research Institute of City of Hope. A detailed list of the top
10 countries/regions and institutions based on publication volume is provided in Table
S1.

3.3 Author collaboration and influence

The author co-authorship network (Fig. 4A) revealed several prominent clusters of col-
laboration in CAR-T cell therapy research for glioblastoma. Christine E. Brown emerged
as the most central and productive author, forming strong collaborative links with Darya
Alizadeh, Brenda Aguilar, Julie R. Ostberg, and Hideho Okada. Other notable con-
tributors included Zev A. Binder, Behnam Badie, and Donald M. O’Rourke, who were
involved in dense networks of inter-institutional cooperation. The author co-citation
network (Fig. 4B) further identified highly influential researchers based on citation fre-
quency. Christine E. Brown, Donald M. O’Rourke, Nabil Ahmed, and John H. Sampson
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Fig. 4 Author collaboration and co-citation networks. A Co-authorship network of active authors. B Co-citation
network of influential authors in the field

appeared as major knowledge contributors, evidenced by large node sizes and strong
citation links. Stephen ]. Bagley, Bryan D. Choi, and Marcela V. Maus were also fre-
quently cited and contributed to shaping the field’s foundational knowledge base. Table
S2 listed the top 10 authors based on publication count and co-citation frequency.

3.4 Journal co-citation and citation pathways

The journal co-citation network (Fig. 5A) revealed that Neuro-Oncology, Clinical Can-
cer Research, and Science Translational Medicine were among the most frequently
co-cited journals in the field of CAR-T cell therapy for glioblastoma. Other highly influ-
ential journals included Cancer Cell, Nature, Science, and The New England Journal
of Medicine, reflecting the interdisciplinary nature of this research spanning oncology,
immunology, and translational medicine. The dual-map overlay (Fig. 5B) demonstrated
the disciplinary citation trajectories between citing and cited journals. The primary cita-
tion path flowed from molecular biology, immunology, and clinical medicine (on the
left side) to genetics, health, and nursing-related journals (on the right). This indicated
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Fig. 5 Journal analysis. A Co-citation network of journals. B Dual-map overlay showing the disciplinary distribu-
tion of citing and cited journals

that researchers working on CAR-T cell therapy for glioblastoma primarily published
in medical and immunological journals, while drawing foundational knowledge from
broader biomedical and genetic research domains. Additional details on the top 10 pub-
lishing and co-cited journals are provided in Table S3.

3.5 Co-cited references and emerging research fronts

The co-citation network (Fig. 6A) revealed several highly influential references that
formed the foundational knowledge base for CAR-T cell therapy in glioblastoma. Land-
mark publications by Christine E. Brown (2015, 2016, 2018), Donald M. O’Rourke
(2017), and Nabil Ahmed (2017) were positioned at the center of the network, indicat-
ing their pivotal roles in advancing early clinical applications. Other frequently co-cited
studies included works by Maude et al. (2014) and Johnson et al. (2015), which con-
tributed to the conceptual transfer of CAR-T therapy from hematologic malignancies
to solid tumors. Reference clustering (Fig. 6B) identified several thematic areas, nota-

” o«

bly including clusters related to “chimeric antigen receptor,” “tumor microenvironment,’
“clinical trial and “T lymphocytes” Recent clusters such as “central nervous system
tumors” and “primary malignant brain tumors” reflected a growing focus on glioma-
specific immunotherapeutic strategies. The modular structure and low silhouette values
suggested interdisciplinary integration across immunotherapy, neuro-oncology, and cell
engineering.

The top 25 references with the strongest citation bursts (Fig. 6C) highlighted key arti-
cles that gained rapid attention within short timeframes. The most prominent citation
bursts were observed for Brown et al. (2015, Clin Cancer Res), Johnson et al. (2015, Sci

Transl Med), and Maude et al. (2014, N Engl ] Med), indicating their impact in shaping
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Fig. 6 Reference analysis. A Reference co-citation network. B Reference clustering by thematic topics. C Top 25
references with the strongest citation bursts between 2014 and 2025

the early research direction. In recent years, studies by Vitanza (2023), Bagley (2023),
and Choi (2024) have shown strong bursts, underscoring emerging attention toward
updated clinical trials, dual-target CARs, and intraventricular delivery strategies. Table
S4 summarized the 10 most frequently co-cited references in this field.

3.6 Research hotspots and emerging trends

The keyword co-occurrence network (Fig. 7A) revealed that the most frequently occur-
ring terms included glioblastoma, chimeric antigen receptor, expression, immuno-
therapy, and tumor microenvironment, reflecting the core research topics in this field.
Terms such as IL13Ra2, B cells, adoptive immunotherapy, and blood—brain barrier also
appeared frequently, suggesting a sustained focus on tumor-targeting strategies and
delivery mechanisms. Keyword clustering analysis (Fig. 7B) identified ten major clusters.

» o«

Among them, the most prominent included “#0 vaccines,” “#1 chimeric antigen recep-

” o«

tor,; “#2 cancer stem cells,” and “#3 CD19” These clusters corresponded to different
research modules, ranging from early CAR constructs to advanced strategies involving
dual-targeting and personalized neoantigen vaccines. Cluster #4 “IL13R alpha 2” and #5
“adoptive immunotherapy” emphasized GBM-specific target antigens and T cell-based
therapy modalities. Citation burst analysis (Fig. 7C) highlighted keywords that gained
sudden attention during specific periods. Earlier bursts focused on antitumor activity,
therapy, and glioblastoma multiforme, while recent bursts included adaptive immuno-
therapy, radiotherapy, dendritic cells, classification, and identification, suggesting a shift
toward combinatorial immunotherapy, precision medicine, and computational bio-
marker discovery.
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Fig. 7 Keyword analysis. A Keyword co-occurrence network highlighting core themes. B Keyword clustering map
showing major research directions. C Top 25 keywords with the strongest citation bursts and their active periods

The timeline view of keyword clusters (Fig. 8A) further demonstrated the chronologi-
cal emergence of research themes. For instance, chimeric antigen receptor and glioblas-
toma remained core topics throughout the period, while newer terms such as clinical
trials, nanoparticles, and oncolytic virus appeared more frequently after 2020. The time-
zone view (Fig. 8B) confirmed a progressive shift from foundational topics (e.g., expres-
sion, tumor microenvironment) toward translational research directions, including cell
engineering, recombinant antigens, and vaccine delivery systems.

4 Discussion

4.1 Accelerated growth and global contributions in CAR-T research for GBM

Over the past decades, CAR-T cell therapy research for GBM has undergone a remark-
able expansion. Our bibliometric analysis identified a distinct surge in publication
volume beginning in 2015, coinciding with the initiation of first-in-human clinical tri-
als targeting IL13Ra2 and EGFRVIII [16, 25]. This growth reflects a paradigm shift in
neuro-oncology, moving from conventional therapies to immunotherapeutic approaches
inspired by the success of CAR-T cell treatments in hematologic malignancies.

The United States and China were the most prolific contributors, not only in terms of
publication output but also in establishing extensive international collaborations. Insti-
tutions such as the University of Pennsylvania, City of Hope National Medical Center,
and Fudan University emerged as global hubs driving innovation. Notably, the collab-
orative network revealed that United States researchers occupied central nodes, indi-
cating leadership in trial design, antigen discovery, and translational application. This
global momentum mirrors the increasing clinical relevance of CAR-T therapy in GBM,
international research synergy has become indispensable for advancing CAR-T therapy,
enabling cross-validation of findings and multicenter trial enrollment.

Page 9 of 16
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Fig. 8 Temporal evolution of research topics. A Timeline view of major keyword clusters. B Time-zone view show-
ing the chronological emergence and development of major topics in the field

4.2 Influential authors and journals reflecting the evolution of scientific leadership

The author co-authorship and co-citation networks provide valuable insights into the
scholarly backbone of this field. Christine E. Brown, Donald M. O’Rourke, and Zev A.
Binder were identified as leading contributors, with high citation frequency and central-
ity scores. These individuals not only spearheaded landmark clinical trials but also con-
tributed to preclinical innovations such as dual-target CARs, armored constructs, and
regional delivery strategies.

Prominent journals such as Neuro-Oncology, Clinical Cancer Research, and Science
Translational Medicine ranked among the most frequently co-cited, reflecting the mul-
tidisciplinary nature of this field at the intersection of immunology, oncology, and neu-
robiology. The dual-map overlay of journal citation pathways revealed that publications
primarily stem from molecular and clinical medicine disciplines, while drawing foun-
dational knowledge from broader domains such as genetics and cellular biology. This
underscores the translational bridge between basic research and clinical implementa-
tion. The dominance of these authors and journals not only establishes credibility but
also shapes funding priorities, clinical trial frameworks, and future review standards in
the field.
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4.3 Shifting research hotspots: from antigen discovery to immunomodulatory strategies

Keyword co-occurrence, clustering, and burst analyses clearly illustrate a dynamic shift
in research priorities over time in the field of CAR-T cell therapy for glioblastoma. Ear-
lier studies were heavily concentrated on fundamental themes such as “chimeric anti-

” «

gen receptor; “expression,” and “tumor microenvironment.” These keywords dominated
between 2015 and 2018, reflecting an initial phase where research focused primarily
on the design of CAR constructs, identification of glioblastoma-specific antigens (e.g.,
IL13Ra2, EGFRVIIL, HER2), and early-phase clinical trials testing their safety and fea-
sibility. Notably, this period saw pioneering efforts by Brown et al. (2015, 2016) and
O'Rourke et al. (2017), which introduced single-target CAR-T cells administered via
intracavitary or intravenous routes. While these studies demonstrated acceptable safety
profiles, they were limited by short-lived responses due to antigen loss, insufficient traf-
ficking across the blood—brain barrier BBB, and rapid functional exhaustion of infused
T cells. In addition to conventional single-antigen CARs, several innovative CAR archi-
tectures have been developed to enhance efficacy and overcome antigen escape. Among
them, dual-CAR systems express two separate CAR constructs targeting different anti-
gens, providing flexibility in tumor recognition and reducing the likelihood of immune
escape [26, 27]. Alternatively, tandem-CARs (TanCARs) combine two antigen-binding
domains in a single CAR molecule, allowing simultaneous recognition of multiple tar-
gets [28]. These approaches are particularly valuable in GBM, where antigen heterogene-
ity remains a major challenge. For instance, intrathecal delivery of bivalent CAR-T cells
targeting EGFR and IL13Ra2 has shown encouraging activity in recurrent GBM patients
[10]. Moreover, armored CARs are engineered to secrete immunostimulatory cytokines
(e.g., IL-12, IL-18) or express dominant-negative receptors to resist immunosuppres-
sive signals in the tumor microenvironment [29]. Such multifunctional designs aim to
improve T cell persistence and functionality in hostile CNS conditions.

As visualized in the cluster timeline and citation burst detection, the field has since
evolved rapidly toward immunomodulatory strategies that address the intrinsic limi-
tations of the GBM microenvironment. Starting around 2019, there was a noticeable
emergence of keywords such as “adaptive immunotherapy,” “dendritic cells,” “checkpoint
blockade,” “TGF-p,” and “vaccines”” This evolution highlights an increasing awareness of
the need to remodel the hostile tumor immune contexture characterized by dense infil-
tration of regulatory T cells, myeloid-derived suppressor cells (MDSCs), and pro-tumor
cytokines into an environment that supports T cell survival and cytotoxicity. These find-
ings are consistent with ongoing trials incorporating combinatorial regimens such as
CAR-T cells plus PD-1/PD-L1 inhibitors or the use of engineered “armored CARs” that
secrete immunostimulatory cytokines like IL-12 or IL-18 to counteract immunosuppres-
sion [30-32].

Moreover, newer clusters like “nanoparticles,” “oncolytic virus,” and “biomarker discov-
ery” that emerged in 2021-2024 point to an interdisciplinary convergence of synthetic
biology, biomaterials science, and systems immunology in the development of CAR-T
therapies. For example, CAR-T cells loaded into biodegradable hydrogels or co-delivered
with viral vectors are being investigated to enhance local retention, mitigate systemic
toxicity, and achieve sustained release [33—35]. These novel approaches reflect a strate-
gic shift in therapeutic design from simply delivering tumor-killing cells to orchestrating
an immunological transformation within the tumor microenvironment. Furthermore,
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logic-gated CAR-T strategies have recently emerged as a promising direction to enhance
tumor specificity while minimizing off-target toxicity. Choe et al. introduced SynNotch-
CAR T cells that respond to tumor antigen combinations, thereby overcoming chal-
lenges related to antigen heterogeneity and CAR-T persistence in GBM [36]. Similarly,
Simic et al. engineered tissue-sensing T cells capable of recognizing the brain microen-
vironment and delivering therapeutic payloads with high spatial precision [37]. These
innovations exemplify the shift toward next-generation CAR designs that integrate con-
textual sensing and programmable logic for safer and more effective immunotherapy in
GBM.

Importantly, our analysis also revealed emerging focus on personalized and preci-
sion strategies, with burst keywords like “classification,” “identification,” and “transcrip-
tomics” suggesting the integration of omics-based profiling to stratify patients based on
antigen expression or immune infiltration patterns. This opens the door for the devel-
opment of patient-specific CAR-T therapies tailored to tumor molecular signatures,
potentially overcoming the challenge of intratumoral heterogeneity that has plagued
single-antigen approaches [38, 39].

In summary, the evolution of research hotspots in CAR-T therapy for GBM, as
revealed by bibliometric visualization, mirrors the clinical realization that success in
solid tumors requires more than target recognition. It demands a multifaceted strategy
to penetrate, persist, and function within a suppressive and genetically unstable micro-
environment. Our study not only quantifies this transformation but also positions it
within a broader translational framework, highlighting the expanding interface between

immunoengineering, neuro-oncology, and computational biology.

4.4 Limitations of current literature and challenges in CAR-T implementation

Despite promising advances, several limitations persist in both research methodology
and clinical application. First, bibliometric studies are inherently limited by their reli-
ance on indexed publications, which may overlook unpublished or negative trial results.
Additionally, our analysis focused on metadata rather than full-text content, making it
difficult to differentiate between studies addressing primary versus recurrent GBM, or
those using autologous versus allogeneic T cells. Additionally, our analysis was limited
to publications indexed in the WoSCC and restricted to English-language articles, which
may introduce database and language bias. As a result, relevant studies published in
non-English journals or indexed exclusively in Scopus, PubMed, or other regional data-
bases may have been omitted. While WoS remains one of the most widely used sources
for bibliometric analysis due to its structured metadata and citation tracking capabilities,
future studies could benefit from cross-validation across multiple databases to ensure a
more comprehensive and balanced perspective.

Clinically, CAR-T therapy for GBM continues to face biological and logistical hurdles.
As noted in Begley et al., antigen heterogeneity remains a formidable barrier, with tar-
get loss often occurring after treatment. Furthermore, the immunosuppressive tumor
microenvironment, characterized by regulatory T cells, TAMs, and inhibitory cyto-
kines such as TGF-p, limits T cell infiltration and function. Locoregional delivery (e.g.,
intraventricular infusion) has improved CNS access, but neurotoxicity and pseudo-
progression complicate treatment evaluation [40, 41]. The scalability of personalized
CAR-T manufacturing is another unresolved issue. While autologous approaches reduce
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rejection risk, they prolong production time, whereas off-the-shelf allogeneic products
risk immune incompatibility and reduced persistence.

4.5 Future research directions and opportunities for innovation

The future of CAR-T cell therapy for glioblastoma lies in overcoming its current bio-
logical and technical constraints through integrated, multi-pronged innovations. One
major direction is the refinement of CAR design to address antigen heterogeneity, such
as through bispecific or multispecific CARs capable of targeting multiple tumor antigens
simultaneously. This strategy may reduce the likelihood of antigen escape and improve
tumor coverage. Simultaneously, modulating the tumor microenvironment remains crit-
ical. Efforts to engineer CAR-T cells with intrinsic immunomodulatory properties such
as armored CARs that secrete cytokines (e.g., IL-18) or express dominant-negative TGF-
[ receptors have shown promise in preclinical models and are now entering clinical eval-
uation [42—44]. These approaches aim to improve CAR-T cell persistence and activity in
the immunosuppressive central nervous system niche of GBM.

In addition, research is increasingly exploring novel delivery platforms, such as bioma-
terial-based scaffolds or intracavitary depot systems, to localize and sustain CAR-T cell
activity post-surgery. Precision medicine technologies like single-cell transcriptomics
and spatial proteomics may facilitate the development of predictive biomarkers for
patient stratification and target selection, enhancing therapeutic specificity. Moreover,
while most published trials have been limited to early-phase safety assessments, future
studies should focus on randomized controlled trials that compare CAR-T cell therapy
with existing standard-of-care treatments. These directions, reflected in emerging bib-
liometric trends such as bursts in keywords related to "nanoparticles,” "biomarkers," and
"clinical translation," underscore the evolving complexity and translational potential of
CAR-T therapy in GBM.

Another important dimension in the evolution of CAR-T cell therapy for GBM is
the distinction between autologous and allogeneic approaches. Autologous CAR-T
cells, derived from the patient's own T cells, have the advantage of low immunogenic-
ity but are associated with longer production times and variability in T cell quality, an
especially critical issue in heavily pretreated GBM patients. In contrast, allogeneic “off-
the-shelf” CAR-T cells are generated from healthy donors and engineered to reduce
graft-versus-host disease (GvHD) risk, offering scalability and reduced manufacturing
time [45]. However, they may face rejection by the host immune system and have limited
persistence.

Furthermore, the field has witnessed the emergence of in vivo CAR-T technologies,
where CAR constructs are delivered directly into the patient via viral or non-viral vec-
tors, allowing in situ T cell reprogramming [46]. This strategy bypasses ex vivo manip-
ulation and may accelerate therapy accessibility, but safety and transduction efficiency
remain key concerns. As such, the distinction between ex vivo and in vivo CAR-T plat-
forms is gaining attention, with several preclinical studies and early-phase trials under-
way to evaluate their feasibility in solid tumors including GBM.
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5 Conclusions

In summary, our bibliometric and visualized analysis delineates the dynamic evolution of
CAR-T cell therapy research in glioblastoma. From early-phase clinical feasibility studies
to advanced engineering of multifunctional CAR constructs, the field has demonstrated
both intellectual vitality and translational ambition. Our findings corroborate clinical
observations, identify key contributors and collaborations, and anticipate the next wave
of innovation in GBM immunotherapy. By mapping the landscape of this emerging field,
we hope to support more informed and strategic decision-making for researchers, clini-
cians, and funding agencies working to transform CAR-T therapy from a promising con-
cept into a clinically transformative treatment for GBM.
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