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Introduction

The 5th edition of the WHO Classification of Tumours 
defines diffuse midline glioma (DMG), H3 K27-altered, as 
an infiltrative midline tumor showing loss of H3 p.K28me3 
(K27me3). DMGs must also exhibit an H3 p.K28M (K27M) 
mutation, a p.K28I (K27I) mutation, EZHIP overexpres-
sion, EGFR mutation, or a methylation profile consistent 
with one of these alterations. These tumors most commonly 
arise in the brainstem and are termed diffuse intrinsic pontine 
gliomas (DIPGs) when located in the pons. They may also 
occur in the thalamus or spinal cord, and less frequently in 
the pineal gland, hypothalamus, or cerebellum [1]. Despite 
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decades of research, these DMG remains among the most 
lethal of pediatric brain tumors, with a median survival of 
less than one year despite decades of research[]. Despite 
decades of research, these DMG remains among the most 
lethal of pediatric brain tumors, with a median survival of less 
than one year despite decades of research [2]. The clinical 
course of DMGs are uniformly aggressive: symptoms often 
develop rapidly, and patients typically decline within months 
of diagnosis. The rapid neurological deterioration, absence of 
effective therapeutic interventions, and predictably fatal tra-
jectory of the disease has seen little-to-no progress over the 
past several decades. The unique biology of DMG includes 
its location, infiltrative nature, and molecular profile, which 
has historically limited therapeutic advances. Surgical resec-
tion is not feasible due to anatomical constraints, and conven-
tional chemotherapies have offered no benefit due largely in 
part to the intact blood brain barrier [3].

To-date, radiation therapy remains the only standard-of-
care treatment, providing transient symptom relief and exten-
sion of overall survival by about 3 months [4]. As such, there 
is an urgent need to develop novel therapeutic strategies for 
DMG. Immunotherapy, such as anti-PD-1/PD-L1 and anti-
CTLA4 checkpoint blockade, has revolutionized the treat-
ment landscape for hematological malignancies and several 
adult solid cancers, including melanoma and non-small cell 
lung cancer, and is being increasingly explored in central ner-
vous system (CNS) tumors. Pediatric brain tumors, however, 
present unique challenges due to their low mutational burden, 
the suppressive immune microenvironment found within the 
tumor milieu, and developmental context [5].

This review focuses on emerging immunotherapeutic 
strategies for DMG, including immune checkpoint inhibi-
tors, tumor vaccines, cellular therapies, and strategies to 
modulate the tumor microenvironment. Particular attention 
is given to both preclinical and early-phase clinical efforts 
that aim to overcome the resistance of DMG to immuno-
therapies and unlock durable antitumor responses. We con-
centrate on the disease background and subtypes of DMG, 
the landscape of tumor mutational burden and neoantige-
nicity, neuron–glioma Interactions, epigenetic reprogram-
ming, and the immunologic barriers intrinsic to this disease, 
culminating in a critical appraisal of contemporary immu-
notherapeutic strategies, including immune checkpoint 
blockade and cellular therapies.

DMG disease background & subtypes

The 2016 and 2021 WHO classifications of CNS tumors 
define diffuse midline glioma as a high-grade glioma charac-
terized by diffuse growth and the presence of a K27M muta-
tion in histone H3 genes, namely H3F3A or HIST1H3B/C 

[2, 6]. The mutation induces a global loss of H3K27 trimeth-
ylation (H3K27me3) through inhibition of the polycomb 
repressive complex 2 (PRC2), reprogramming the epigenetic 
landscape of affected cells [7, 8]. Although the term “DIPG” 
historically referred to tumors centered in the pons, DMG 
now encompasses histologically similar tumors arising in 
other midline structures, including the thalamus, cerebellum, 
and spinal cord [9]. This broader classification reflects shared 
molecular drivers and biological behavior, regardless of exact 
anatomical site, and reinforces the importance of molecular 
diagnostics in guiding classification and treatment.

DMG is predominantly a pediatric disease, typically affect-
ing children between 5 and 10 years of age but can occur at 
any age, including adulthood. The clinical course is aggres-
sive, with symptoms arising from brainstem involvement, 
such as cranial nerve deficits and long tract signs. Without 
treatment, median survival is approximately 3–6 months; with 
radiation, median overall survival extends to 9–12 months 
[4, 10]. Recent real-world data from an international, aca-
demia-driven compassionate-use cohort of ONC201 (dor-
daviprone)–containing regimens report improved overall 
survival of roughly 15 months for brainstem DMG and lon-
ger for thalamic DMG, though adult over-representation war-
rants caution in extrapolating to purely pediatric populations 
[11]. While the majority of DMGs harbor the H3.3 K27M 
mutation, alternative variants include H3.1 K27M and, more 
rarely, H3-wildtype tumors with epigenetic or genomic fea-
tures that mimic DMG biology [12].

Comparative studies have shown that H3-wildtype mid-
line gliomas are often biologically distinct, with more het-
erogeneous driver mutations (e.g., TP53, ACVR1, PPM1D) 
and variable clinical outcomes [13, 14]. Furthermore, H3.1 
K27M tumors, commonly arising in younger patients, may 
portend slightly improved prognosis compared to their H3.3-
mutant counterparts [15]. Notably, H3.1-mutant tumors 
tend to localize more frequently in the pons, while thalamic 
DMGs are more often H3.3-mutant, adding another layer of 
complexity to subtype classification [13–17]. Thus, strati-
fication by H3 status and anatomical location is crucial in 
immunotherapy development, given differential expression 
of tumor-associated antigens and immune infiltration pro-
files across subtypes [18].

Materials and methods

A systematic search of the ClinicalTrials.gov database was 
performed to identify clinical trials investigating DMG 
cell-based or immunotherapy strategies, as summarized in 
Table 1. The search focused on studies registered between 
January 1, 2020, and June 2025. A total of 163 trials related 
to DMG were initially identified. To focus on recent and 
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Tumor mutational burden & neoantigens

One of the key hurdles in advancing immunotherapy for 
DMG is the low tumor mutational burden (TMB). Similar 
to GBM, DMG are low-TMB, immune cold tumors that are 
poorly responsive to checkpoint blockade. Although GBM 
shows modestly enhanced immune infiltration, exhausted 
T cells, and chemokine-rich, PD-L1+ myeloid that pro-
motes immunosuppression, DMG has profound lymphocyte 
deficiency and a resting myeloid microenvironment with 
extremely minimal inflammatory signaling. It’s often intact 
BBB also handicaps leukocyte and pharmacological access 
[33–35].

Furthermore, The median TMB in DMG is typically < 1 
mutation/Mb, limiting the number of potential neoantigens 
available for immune recognition [17, 34–36]. This low 
TMB correlates with poor immunogenicity and may con-
tribute to the observed resistance to immune checkpoint 
blockade and other T cell-based therapies. Nonetheless, 
some mutations in DMG, such as the H3K27M alteration 
itself, offer attractive immunotherapeutic targets. Several 

emerging treatment approaches, 88 studies with start dates 
prior to January 1, 2020, were excluded. Of the remain-
ing 75 trials, those marked as completed, terminated, sus-
pended, withdrawn, or listed with unknown status (n = 16) 
were removed, narrowing the pool to 59 actively ongoing 
studies. These were further screened based on interven-
tion type, retaining only those involving biological agents, 
genetic therapies, pharmaceutical drugs, combination prod-
ucts, or other relevant treatment strategies (n = 52). Studies 
involving behavioral approaches, devices, diagnostic tools, 
dietary supplements, procedural methods, or radiation were 
excluded (n = 7). An additional 25 trials that did not involve 
cell-based or immunotherapy strategies were also removed. 
Ultimately, 26 clinical trials investigating novel immuno-
therapies for DMG were selected for in-depth review. Data 
from these studies were systematically organized and ana-
lyzed, focusing on trial phase, therapeutic type, specific 
interventions, patient demographics, endpoints, and pro-
jected timelines, offering a comprehensive overview of the 
current landscape in immunotherapy treatment development 
for DMG (Fig. 1, Table 2).

Fig. 1  Systematic filtering and 
selection of DMG trials
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studies have confirmed the scarcity of tumor-infiltrating 
CD8+ T cells in DMG compared to adult glioblastoma, as 
well as the relative dominance of microglia- and mono-
cyte-derived macrophages with tolerogenic phenotypes 
[42, 43].

The anatomical location of DMG within the brainstem 
imposes additional immunological constraints, particularly 
via the blood-brain barrier (BBB), which impedes the sys-
temic delivery of therapeutic agents to the site of the tumor, 
and imposes a physical filter for peripheral immune inva-
sion to the CNS [44].

Moreover, Zhu and colleagues demonstrate that the 
majority of patient-derived DMG tumor samples exhibit 
downregulation of MHC class I and class II molecules, fur-
ther impairing T cell recognition and priming [45]. Epigen-
etic silencing of antigen presentation machinery and defects 
in interferon signaling contribute to this immune invisibility 
[46].

Tumor cell–expressed immunosuppressive ligands fur-
ther reinforce local immune evasion. B7–H3 (CD276), a 
checkpoint molecule overexpressed in DMG, is associated 
with poor prognosis and reduced T cell activity [47]. Given 
these immune barriers, combinatorial strategies intended 
to target and alter the immunosuppressive microenviron-
ment of DMG may be employed to sensitize the tumor to 
immune-based interventions.These include myeloid modu-
latory techniques which may shift tumor associated myeloid 
populations away from immunosuppressive phenotypes, or 
potentiate local inflammation and antigen release [48].

preclinical and early-phase clinical studies have demon-
strated the immunogenicity of H3K27M peptides, capable of 
eliciting both CD4+ and CD8+ T cell responses in vitro and 
in vivo [34, 35]. Neoantigens derived from recurrent driver 
mutations in ACVR1 and PPM1D may also be exploitable 
in select subsets [36]. Fig. 2 recapitulates mechanisms of 
therapeutic resistance in DMG.

Efforts are ongoing to leverage next-generation sequenc-
ing and mass spectrometry to identify low-abundance 
neoepitopes, post-translationally modified peptides, and 
tumor-specific splice variants in DMG [37, 38]. In addition, 
antigen presentation of the H3.3K27M mutation generates 
an immunogenic, HLA-A*02:01-restricted neoepitope that 
can be specifically targeted by engineered TCR-transduced 
CD8+ T cells, thus serving as an alternative immunogenic 
target even in the setting of low TMB [39]. These findings 
support the pursuit of cell-based and immunotherapy strat-
egies such as personalized neoantigen vaccines and engi-
neered T cell therapies tailored to the unique mutational and 
epigenetic signature of individual tumors (Table 2).

Immune microenvironment & evasion

The immune microenvironment of DMG is considered 
“cold,” characterized by low levels of infiltrating lympho-
cytes, a paucity of antigen-presenting cells, and the pres-
ence of immunosuppressive myeloid populations [40, 41]. 
Single-cell RNA sequencing and spatial transcriptomics 

Table 2  An updated list of targeted antigens for the treatment of DMGs and their respective therapeutic approaches
Antigen Antigen Type Therapeutic Approach Stage of Development Study
H3.3K27M26–35 Histone antigen Peptide vaccine Clinical (Phase I/II) Mueller et al., 2020 [19]

TCR transduced T cells Pre-clinical (murine model) Chheda et al., 2018 [20]
B7–H3 Cell surface antigen Monoclonal antibody Clinical (Phase I) Souweidane et al., 2018 [21]

CAR T cell Clinical (Phase I) Vitanza at al, 2025 [22]
Radioactive isotope and 
monoclonal antibody 
conjugate

Clinical (Phase I) Souweidane et al., 2025 [23]

CD47 Cell surface antigen Monoclonal antibody Pre-clinical (murine model) Gholamin et al., 2017 [24]
TIM-3 Cell surface antigen Monoclonal antibody Pre-clinical (murine model) Ausejo-Mauleon et al., 2023 [25]
PD-1 Cell surface antigen Monoclonal antibody Clinical (Phase I/II) Dunkel et al., 2023 [26]
CLTA-4 Cell surface antigen Monoclonal antibody
IDO Intracellular enzyme Small molecule Clinical (Phase I) Johnson et al., 2024 [5]
Multiple Multiple Oncolytic viral therapy Clinical (Phase I) Gállego Pérez‑Larraya et al., 

2022 [27]
Multiple Multiple Autologous dendritic cells Clinical (Phase I) Benitez-Ribas et al., 2018 [28]
H3K27M14–40 Histone antigen Peptide vaccine Pre-clinical (murine model) Ochs et al., 2017 [29]

Clinical (Phase I) Grassl et al., 2023 [30]
GD2 Cell surface antigen CAR T cell Clinical (Phase I) Majzner et al., 2022 [31]
BCAN, EphA2, 
IL13Ra2

Cell surface antigens CAR T cell Pre-clinical (murine model) Lakshmanachetty et al., 2024 
[32]
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signaling in glioma cells [49, 50]. Follow-up work found 
that patient-derived gliomas (including DIPG) fail to grow 
or exhibit delayed growth in NLGN3-knockout mice, high-
lighting their dependency on neuron-derived NLGN3 [50]. 
Importantly, inhibition of the metalloproteinase ADAM10, 
which cleaves and releases NLGN3, in these models inhib-
ited tumor growth in-vivo.

The unexpected dependency of DMG and other high-
grade gliomas on NLGN3 in the tumor microenvironment 
prompted a deeper exploration into the effects of NLGN3 on 
glioma cell states. This line of inquiry revealed that NLGN3 
regulates the expression of numerous genes involved in 
synapses [50], sparking the hypothesis that the effects of 

Cancer neuroscience

In recent years, the emerging field of cancer neuroscience 
has uncovered a surprising axis between neurons and gli-
oma. One seminal study by Venkatesh et al. (2015) found 
that increasing excitatory neuronal activity via optogenetic 
stimulation promoted greatly accelerated growth of pediat-
ric glioma xenografts in mice [49]. This effect was medi-
ated in part by paracrine growth factor signaling, including 
brain-derived neurotrophic factor (BDNF) and a shed form 
of the synaptic adhesion molecule neuroligin-3 (NLGN3) 
[49, 50] NLGN3 was found to be secreted in an activity-
regulated manner and to stimulate oncogenic PI3K-mTOR 

Fig. 2  Integrated mechanisms of therapeutic resistance in diffuse 
midline glioma. This figure integrates the epigenetic, neuro-immune, 
and microenvironmental networks that sustain therapeutic resistance 
in diffuse midline glioma (DMG). DMG, most commonly caused by 
H3K27M histone mutations, is defined by pan-epigenetic dysregu-
lation because of suppression of PRC2 complex and global loss of 
H3K27me3, redirecting transcriptional networks towards a malig-
nancy. Midline structures develop tumors most predominantly at the 
pons but also thalamus, and spinal cord, in which the tumors expand 
diffusely and are integrated into neuronal networks. Neuron–glioma 
synaptic interactions, mediated through AMPA and GABA-A recep-
tor–mediated transmission and regulated by activity-regulated mol-

ecules such as neuroligin-3 (NLGN3) and brain-derived neurotrophic 
factor (BDNF), underlie tumor expansion. The tumor immune micro-
environment is characterised by a predominance of myeloid-lineage 
cells (microglia and monocyte-derived macrophages), largely devoid 
of cytotoxic lymphocytes, and rich in TGF-β1 secreted by the tumor. 
This environment, induced by low MHC-I expression and Treg func-
tion, generates an immunologically “cold” tumor milieu that limits 
efficacious anti-tumor immunity. Such immune, synaptic, and epi-
genetic components act in concert to enhance therapy resistance and 
disease progression in DMG. Figure created using biorender, accessed 
July 25th, 2025
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The limited efficacy of ICIs in DMG may be attributed 
to multiple factors: low TMB, sparse T cell infiltration, lack 
of preexisting immune priming, and an immunosuppressive 
tumor microenvironment. Furthermore, analysis of pre- and 
post-irradiated DIPG autopsy samples lacks upregulated 
neoantigen expression and T cell infiltration, indicating that 
radiation, which canonically activates the immune response 
in cancer therapy, may not demonstrate the same effect 
in DIPG [40]. In contrast to adult glioblastomas, PD-L1 
expression in DMG is relatively low and heterogeneous, 
further challenging the rationale for single-agent check-
point blockade [42]. To overcome these limitations, current 
approaches focus on combination therapies. Trials such as 
PNOC022 (NCT05009992) and NCT04049669are investi-
gating the efficacy of ICIs or small inhibitory molecules in 
combination with radiation or epigenetic agents in newly 
diagnosed DMG [60, 61].

Other strategies aim to prime the immune response via 
oncolytic viruses, vaccines, or dendritic cell activation 
prior to ICI administration [40, 48, 62]. Targeted inhibi-
tion of immunosuppressive pathways such as CSF1R or 
IDO may further enhance checkpoint sensitivity [63, 64]. 
Collectively, these insights underscore the need for contin-
ued development of combinatorial strategies that not only 
enhance checkpoint sensitivity but also effectively circum-
vent the intact blood–brain barrier of DMG to enable ade-
quate drug delivery.

Vaccine-based immunotherapies

Vaccination strategies in DMG focus on the clonal H3K27M 
mutation as a tumor-specific neoantigen. Short peptide vac-
cines (~10 amino acids) encompassing the H3K27M epi-
tope have been shown to induce mutant-specific CD8+ T 
cells in HLA-A*02:01+ patients [19]. In one pilot study, an 
H3.3K27M26–35 short peptide vaccine elicited circulating 
CD8+ T cells in HLA-A2+ patients aged 3–21 with DMG 
[19]. However, because short peptides directly load onto 
MHC class I molecules, their efficacy is limited by HLA 
subtype restriction, most notably HLA-A*02:01, and recent 
evidence suggests that these epitopes may not be endog-
enously presented by DMG tumor cells, raising concerns 
about whether the induced T cells can effectively recognize 
and kill tumor cells [65]. In contrast, long peptides (~20–30 
amino acids) must be taken up and processed by antigen-
presenting cells, leading to broad MHC class II presentation 
and robust CD4+ T-helper responses. A 27-mer H3K27M 
peptide vaccine spanning amino acids 14–40 demon-
strated strong CD4+ T cell immunogenicity across multiple 
HLA types in humanized models [29]. This vaccine, when 
given repeatedly to adult DMG patients (often with PD-1 

neuronal activity on DIPG/DMG growth and progression 
may be mediated not only by paracrine factor signaling, but 
also by synaptic communication [49–51]. Electron micros-
copy studies identified clear synaptic structures forming 
between neurons and DIPG/DMG cells, and whole cell 
patch clamp electrophysiology revealed bona fide, electro-
physiology functional synapses between neurons and DIPG/
DMG cells, mediated by both AMPA receptors [51] and by 
GABAA receptors [52]. These neuron-to-DMG synapses 
are growth-promoting [51–53], and exhibit hijacked mecha-
nisms of synaptic plasticity [53].

Notably, recent evidence links glioma-neuron interactions 
to local immunosuppression. In glioblastoma, a high-grade 
glioma, regions with dense neuron-glioma synapses and that 
were demonstrated to be more functionally connected to the 
rest of the brain by intraoperative electrophysiology stud-
ies [54] were found to be enriched with immunosuppres-
sive TAMs and lacked antigen-presenting function [55]. A 
causal relationship between the high functional connectivity 
between brain and tumor and the immune-suppressed envi-
ronment remains to be demonstrated, but this association 
adds to important questions about how neuron-immune cell-
cancer cross-talk may contribute to an immune-suppressed 
tumor microenvironment [56].

Immune Checkpoint Inhibitors (ICIs)

Immune checkpoint inhibitors (ICIs), targeting CTLA-4, 
PD-1, and PD-L1, have revolutionized the treatment of 
several adult malignancies but have shown limited efficacy 
in DMG, due in part to their low levels of expression in 
the tumor-immune microenvironment [40, 45, 57]. Inter-
estingly, one preclinical study reported that systemically 
administered anti-TIM-3 antibodies penetrated the tumor 
site in murine models of DIPG/DMG, attributed to exten-
sive neovascularization that increased vascular permeability 
[58]. However, it is important to note that the models used 
HSJ-DIPG-007 xenografts, which require immunodeficient 
hosts and PDGF-B-driven syngeneic models, either lack 
an intact immune system or exhibit a disrupted BBB. This 
contrasts with DMG, which often retains an intact BBB as 
demonstrated by contrast-enhanced MRI using gadolinium-
based contrast agents [34]. The more pronounced efficacy 
of anti-TIM-3 therapy in these models, therefore, likely may 
reflect their leaky vasculature rather than true antibody pen-
etrance across an intact BBB. As such, early clinical trials 
of ICIs in DMG have been largely disappointing, with no 
significant survival benefit observed in monotherapy set-
tings. For instance, a phase I trial of nivolumab in children 
with recurrent CNS tumors, including DIPG, demonstrated 
acceptable safety but minimal clinical activity [59].
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Other CAR T targets are being explored in parallel. B7–
H3 (CD276) CAR T cells have shown particular promise for 
pediatric CNS tumors, including DMGs which uniformly 
express B7–H3 at high levels. In the BrainChild-03 phase 
1 clinical trial, 21 children with DIPG, a subset of DMG, 
received over 250 intracerebroventricular (ICV) repetitive 
B7–H3 CAR T cell infusions via intraventricular catheter 
[22]. The median overall survival from CAR T initiation 
was 10.7 months. Although several patients in this cohort 
remain alive beyond 3–4 years on maintenance dosing, only 
one of these long-term survivors had a confirmed DMG/
DIPG diagnosis, while others had either unbiopsied tumors 
or IDH1-mutant high-grade gliomas, which carry a more 
favorable prognosis. Therefore, conclusions regarding the 
long-term survival benefit of B7–H3 CAR T cell therapy in 
confirmed DMG/DIPG patients should be interpreted with 
caution. To address tumor heterogeneity and antigen escape, 
novel CAR T designs are moving beyond single targets, 
such as a “Quad-CAR” T cell product co-targeting B7–H3, 
EGFR806, HER2, and IL13Rα2 which is in development 
(NCT05768880). Dual CAR approaches and logic-gated 
CAR T cells are also being engineered to require two tumor 
antigens for activation, increasing specificity and reducing 
the risk of antigen-negative relapse. For example, one syn-
Notch CAR T construct, which utilizes a “priming” antigen 
followed by a “killing” antigen to prevent off-target toxic-
ity, named α-BCAN synNotch α-EphA2/IL-13 Rα2 CAR 
(B-SYNC) T cells efficiently targeted DMG/DIPG cells in 
vitro [32].

However, these constructs are still in the early stages of 
development and have not been clinically validated in DMG 
and DIPG patients.

Other adoptive cellular approaches (NK 
cells, TILs, viral therapies)

In conjunction with CAR T-cell therapy, adoptive treat-
ments involving natural killer (NK) cells and tumor-infil-
trating lymphocytes (TILs) are investigated in DMG and 
other high-grade pediatric gliomas. NK cell strategies 
utilize MHC-independent killing and are susceptible to 
TGF-β–mediated inhibition, a feature of the DMG microen-
vironment [70]. Two current trials are paradigmatic of this 
trend: a Phase I trial of locoregional TGFβ-inhibited NK 
cells infused intraventricularly or intratumorally through 
Ommaya or VP shunt (NCT04254419) and a Phase II trial 
of intrathecal infusion of allogeneic NK cells in high-grade 
gliomas, including DMG (NCT06687681). Combined, 
they evaluate the safety, dosing, and immune-phenotypic 
persistence of NK products in the CNS compartment [71, 
72]. Conversely, TIL-based treatments have significant 

checkpoint blockade), was safe and induced mutation-spe-
cific T cell responses in 5/8 patients, including one case of 
sustained complete remission beyond 31 months [30].

Dendritic cell (DC) vaccines, which work by priming T 
cells against loaded tumor antigens or patient-specific neo-
antigen peptides, have also been of interest. In one ongo-
ing phase I/II trial (NCT04911621), Wilms Tumor 1 (WT1) 
oncoprotein mRNA-loaded autologous monocyte-derived 
DC vaccines are being evaluated for the treatment of HGG 
and DIPG. However, DIPG is “immunologically cold” 
tumors with low baseline T cell infiltration and cytokine 
signaling, potentially limiting vaccine efficacy [40]. Despite 
these limitations, vaccine-based immunotherapies are a 
potentially valuable avenue of exploration, and several cur-
rent clinical trials, as mentioned earlier, are evaluating new 
mechanisms to combat these shortcomings.

Car T-cell therapies

Chimeric antigen receptor (CAR) T cells, a form of adop-
tive cellular therapy, have been at the forefront of emergent 
therapeutics for CNS maligancnies over the recent years 
[66]. There are currently numerous DMG immunotherapy 
research with multiple CAR T targets under active inves-
tigation. GD2-specific CAR T cells were the first tested in 
patients, given the high GD2 expression on H3K27M+ DMG 
cells and complete tumor responses observed in preclinical 
models [67]. In a landmark phase I study (NCT04196413), 
eleven patients with diffuse midline gliomas received 
GD2-CAR T cells intravenously, with subsequent intra-
cerebroventricular administration for those patients who 
demonstrated benefit. Of these eleven patients, nine dem-
onstrated clinical benefit, including marked improvement 
in neurological deficits, and 4 of the eleven patients dem-
onstrated a greater than 50% reduction in tumor volume. 
One patient exhibited a complete and durable response 
[68]. At the time of data cutoff, median overall survival was 
17.9 months for pontine DMG patients and 20.9 months for 
all DMG patients [68], but please note that it is difficult to 
compare overall survival data in a patient cohort with strict 
eligibility criteria to unselected historical cohorts. Inducing 
therapeutic inflammation in critical structures such as the 
brainstem, or spinal cord is not without risk, and all patients 
exhibited variable degrees of transient, localized neuro-
logical symptoms attributable to inflammation at the site of 
the tumor termed “tumor inflammation-associated neuro-
toxicity (TIAN)” [31, 68, 69]. Patients developed concur-
rent cytokine release syndrome following IV, but not ICV, 
administration of GD2-CAR T cells, and CRS represented 
the dose-limiting toxicity for IV administration of GD2-
CAR T cells for DIPG/DMG.

1 3

  144   Page 12 of 18



Journal of Neuro-Oncology         (2026) 176:144 

CNS neuroblastoma (NB) leptomeningeal disease had a sig-
nificantly prolonged median PFS of ~7.5 years, significantly 
longer than historical controls of ~13.1 months [26].

For DMG/DIPG, one alternative strategy has been direct 
injection of RIT into the tumor via convection-enhanced 
delivery (CED). Souweidane et al. reported a phase I dose-
escalation study of 124I-omburtamab, delivered via MR-
guided CED into the pons of 50 pediatric DIPG patients 
shortly after radiotherapy [28]. The approach was gener-
ally safe with no grade 4/5 CNS toxicities, although sev-
eral dose-limiting events, namely grade 3 edema, occurred. 
Importantly, patients in this group had a median overall 
survival of 15.3 months from diagnosis, surpassing the typi-
cal survival of around 11 months and pointing to a possible 
therapeutic advantage. The ratio of radiation concentrated in 
the tumor compared to the rest of the body was exception-
ally high, demonstrating that convection-enhanced delivery 
enabled highly focused treatment. These early investiga-
tions show that targeting B7–H3 with radioimmunotherapy 
is feasible in DMG. Ongoing research aims to optimize 
treatment schedules and dosages, as well as to assess combi-
nation strategies, such as adding radiosensitizers or immu-
notherapies, for improved outcomes. While other molecular 
targets like GD2 and HER2 are under evaluation in labo-
ratory models, B7–H3 continues to be the most promising 
candidate for RIT in DMG.

Towards a systems-level paradigm: 
integrative immunoepigenetic and 
neuroimmune targeting

The trend of DMG research has more and more empha-
sized that a reductionist, monotherapy-oriented approach 
is not enough to address the multi-level pathobiology of 
such tumors. As our overall understanding of DMG biology 
develops, an improved conceptual model, one that positions 
the tumor within its dynamic epigenetic, immunologic, 
and neurophysiologic context, is needed. The intersection 
of H3K27M-induced dysregulation of chromatin, growth-
promoting neuron-glioma interactions, and immune exclu-
sion defines a uniquely recalcitrant tumor in which each of 
these axes of therapeutic resistance reenforces the others. 
Single-agent treatment against any one dimension, epigen-
etic, immune, or neuronal, has predictably delivered only 
minor and transitory gains, as demonstrated in many early-
phase trials [5, 19, 22, 28–32, 39, 58, 59, 73–75]. The future 
involves the implementation of rational, combinatorial strat-
egies for disrupting the mutually reinforcing dependencies 
between these axes. In particular, their co-administration 
with epigenetic modulators (such as HDAC or EZH2 inhibi-
tors) to restore circumstantially partial antigen presentation 

translational challenges in DMG, the inferior tumor muta-
tional burden, low levels of endogenous T-cell infiltration, 
and unfavorable resectability for cell collection, parameters 
reduce feasibility compared to extracranial solid tumors. 
New strategies, including epigenetic or oncolytic precondi-
tioning and local delivery, could potentially augment lym-
phocyte homing and antigenicity. According to our initially 
established research criteria and paper scope, modalities 
themselves are now placed briefly in context here, and cor-
responding trials are cited in Table 1.

Furthermore, New viral platforms are gaining trac-
tion in diffuse midline glioma (DMG) as direct tumor 
lysis and immunostimulatory vehicles. Oncolytic adeno-
virus DNX-2401 proved to be viable and reprogrammed 
the immune-microenvironment in a phase 1 DIPG trial in 
The New England Journal of Medicine (NCT03178032). 
Coadjutant strategies involve IL-12-expressing adenoviral 
vectors (Ad-TD-nsIL12) in pediatric DIPG early-phase tri-
als (NCT05717712, NCT05717699), and an IL-12–encod-
ing, engineered HSV-1 (M032) under investigation for de 
novo DMG (NCT07076498). These gene-transduced viral 
modalities have the capacity to combine direct oncolysis 
with local cytokine delivery, possibly reconstituting DMGs 
immunologically “cold” microenvironment into a more 
inflamed, therapeutically targeted condition [20, 21, 23]. 
While viral therapeutics is a fast-moving area, a compre-
hensive review of every trial in viro- and immunotherapy is 
beyond the scope of this manuscript; each modality, CAR T, 
NK, TIL, and viral, would deserve a separate review on its 
own. Here, we instead give a brief synthesis that integrates 
representative strategies across modalities to bring attention 
to convergent mechanisms of immune activation in DMG.

Radioimmunotherapy

Radiation therapy, the use of external beams of radiation to 
target cancer cells, is a significant cornerstone in the treat-
ment of malignancies and has been an integral component 
of the Stupp protocol since 2005 [24]. Radioimmunother-
apy (RIT), instead, utilizes radioactive isotopes conjugated 
to monoclonal antibodies as a method to deliver radiation 
directly to cancer cells, minimizing off-target toxicity [25]. 
For the treatment of DMG, B7–H3 (CD276) has been a 
promising target for reasons stated above in the adoptive 
cellular therapies section. In a phase I trial of RIT, children 
with leptomeningeal or metastatic CNS tumors received 
multiple infusions of 131I-omburtamab, a murine anti–B7–
H3 monoclonal antibody. The treatment was well tolerated, 
as acute toxicities were mostly mild (headache, nausea, 
fever) and grade 3/4 thrombocytopenia was the most com-
mon hematologic effect. Importantly, patients treated for 
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status in situ [45] points toward a future where therapy is 
dynamically adjusted to real-time biological signals instead 
of fixed upfront planning. One can envision a clinical trial 
architecture in which induction with cancer neuroscience or 
epigenetic agents, those which target tumor–neuron inter-
actions, such as glutamatergic signaling inhibitors or neu-
ronal activity-modifying drugs, “prepare” tumor and TME, 
as evidenced by enhanced MHC presentation and immune 
cell infiltration, followed by optimally delivered cellular 
immunotherapies (Table 4) [78, 86]. These adaptive regi-
mens would require the identification and field validation 
of strong surrogate biomarkers of response and resistance, 
and greater insight into how systemic and local immune 
dynamics evolve under treatment pressure. More broadly, 
these findings necessitate a conceptual transition beyond the 
think of DMGs as simple chemoresistant, surgically occult 
tumors, to one of systems-level disease state that is epige-
netically plastic, neuroimmune-embroiled, and susceptible 
to potentially integrated multimodal disturbance. Future 
progress will be more likely to depend on less any one new 
agent than our ability to devise a biologically logical, tem-
porally and spatially optimal therapeutic program, a transi-
tion as much intellectual as technical.

and immunogenicity [76–79], with immunotherapies that 
span checkpoint blockade to regionally delivered CAR T 
cells, is an attractive method to bypass the immune iner-
tia of the DMG microenvironment [80]. Similarly, the 
rising knowledge that crosstalk between neurons and glio-
mas actively drives DMG growth and invasion, with pos-
sible further influences on the suppressive tumor immune 
microenvironemnt leads to the prediction that therapeutic 
interventions designed to interfere with neuron-glioma and 
neuron-glioma-immune interactions would be of double 
utility: incapacitating tumor growth while rendering the 
microenvironment less hospitable for immune evasion 
(Table 3). The development of these regimens, though, will 
require not only intense preclinical modeling but also exact 
manipulation of the timing, sequence, and regional delivery 
of agents to prevent toxicity and capitalize on windows of 
weakness in the TME [81].

Equally important is the development of adaptive thera-
peutic strategies predicated on longitudinal, noninvasive 
monitoring. The promising performance of plasma- and 
cerebrospinal fluid-based liquid biopsies in the identification 
of H3K27M mutant DNA [82–85] and new radiogenomic 
methods of monitoring immune infiltration and epigenetic 

Table 3  Proposed multimodal therapeutic strategies targeting key axes of resistance in DMGs
Axis of Resistance Mechanism Therapeutic Target(s) Examples of Agents/Strategies Rationale for Combination 

Therapy
Epigenetic 
Dysregulation

H3K27M-mediated loss 
of H3K27me3, immune 
evasion, stemness

EZH2, HDAC, PRC2, 
BET proteins

Tazemetostat (EZH2i), Panobi-
nostat (HDACi), BET inhibitors

Epigenetic reprogramming can 
restore MHC expression and 
tumor immunogenicity

Immune Exclusion Immune desert or 
suppressive myeloid 
microenvironment

Immune checkpoints, 
myeloid regulators, 
CAR T cells

Anti-PD-1/PD-L1, Anti-GD2 
CAR T, IDO inhibitors, CSF1R 
inhibitors

Epigenetic priming + immu-
notherapy can synergize to 
overcome immune inertia

Neuron–Glioma 
Interactions

Activity-dependent 
growth, synaptogenesis, 
AMPA signaling

NLGN3, TSP1, 
AMPAR pathways

NLGN3 inhibitors, AMPAR 
antagonists

Disrupts glioma proliferation 
and reverses immune suppres-
sion linked to neuronal signaling

Tumor Micro-
environment & 
Delivery Barriers

Dense stroma, BBB, 
hypoxia

Direct delivery, BBB 
disruption

Convection-enhanced delivery, 
focused ultrasound, intrathecal 
CAR T

Improves local drug concen-
tration and reduces systemic 
toxicity

Tool/Approach Application in DMG 
Management

Advantages Current Limitations/
Considerations

Liquid Biopsies (cfDNA, 
CSF-tDNA)

Real-time monitoring of 
H3K27M mutations, clonal 
evolution, response to therapy

Minimally invasive, 
longitudinal, dynamic

Sensitivity still 
variable, needs 
standardization

Radiogenomics & 
Advanced MRI

Correlate imaging with immune 
infiltration, epigenetic states

Non-invasive, spa-
tially resolved

Needs validation of 
predictive value

Epigenetic Prim-
ing Followed by 
Immunotherapy

Sequential induction of immu-
nogenicity, then immune attack

Rational synergy, tar-
gets tumor plasticity

Optimal timing/
sequencing yet to 
be defined

Theranostic Delivery 
Platforms

Trackable targeted therapies 
with concurrent imaging

Confirms delivery, 
enables adaptive 
adjustments

Infrastructure-inten-
sive, early-phase 
evidence

Integrated Multimodal 
Trial Designs

Adaptive protocols based on 
biomarkers & longitudinal 
monitoring

Personalized, efficient Requires regula-
tory and logistical 
innovation

Table 4  Key emerging tools for 
adaptive, systems-level manage-
ment of DMGs
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indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
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and neurocognitive sequelae [87]. To discover clinically 
significant immunotherapies for the treatment of DMGs, 
robust experimental models and long-term monitoring must 
become standard components of therapeutic development.
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