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Abstract

Background Diffuse midline gliomas, including diffuse intrinsic pontine gliomas, represent one of the most aggressive
pediatric malignancies in the central nervous system with a uniformly poor prognosis. They can be consistently identified
by mutations in histone H3 K27M, which are associated with aggressive tumor biology, marked resistance to therapies, and
abysmal survival. The current review critically assesses the existing application of immunotherapeutic modalities in DMGs,
emphasizing biological hurdles in efficacy, translation methodologies, and prospects in attaining sustained responses.
Methods We examined preclinical and early clinical studies in DMGs for immune therapies such as peptide vaccines against
H3K27M antigens, chimeric antigen receptor T-cell therapies, immune checkpoint modulation, and radioimmunotherapy.
Current developments in the interface of cancer neuroscience and tumor interaction with neurons were incorporated in a
manner relevant to immune suppression in the microenvironment of DMG. Although these tumors have traditionally shown
poor immune reactivity because of low tumor mutational burden, immune-privileged sites, and a strongly suppressive tumor
microenvironment, a variety of different immune therapeutic approaches have shown promising early efficacy. Of particular
interest are neoantigen-targeted vaccines and CAR T-cell therapy using surface antigens. Preliminary findings suggest an
important role for neuron—glioma synaptic and paracrine signaling in mediating tumor progression and immune evasion.
Conclusions Immunotherapy for DMGs is moving from a conceptual state to a translational reality. A better understanding
of the realm of tumor immune—neural crosstalk, combination therapies, and immune biology in pediatric patients will be
critical in addressing resistance and providing durable control for these aggressive malignancies.
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Introduction

The 5th edition of the WHO Classification of Tumours
defines diffuse midline glioma (DMG), H3 K27-altered, as
an infiltrative midline tumor showing loss of H3 p.K28me3
(K27me3). DMGs must also exhibit an H3 p.K28M (K27M)
Justin Liu and Joseph H. Ha contributed equally to this work. mutation, a p.K28I (K271) mutation, EZHIP overexpres-
sion, EGFR mutation, or a methylation profile consistent

= xggteé;ggfor dedu with one of these alterations. These tumors most commonly
arise in the brainstem and are termed diffuse intrinsic pontine
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decades of research, these DMG remains among the most
lethal of pediatric brain tumors, with a median survival of
less than one year despite decades of research[]. Despite
decades of research, these DMG remains among the most
lethal of pediatric brain tumors, with a median survival of less
than one year despite decades of research [2]. The clinical
course of DMGs are uniformly aggressive: symptoms often
develop rapidly, and patients typically decline within months
of diagnosis. The rapid neurological deterioration, absence of
effective therapeutic interventions, and predictably fatal tra-
jectory of the disease has seen little-to-no progress over the
past several decades. The unique biology of DMG includes
its location, infiltrative nature, and molecular profile, which
has historically limited therapeutic advances. Surgical resec-
tion is not feasible due to anatomical constraints, and conven-
tional chemotherapies have offered no benefit due largely in
part to the intact blood brain barrier [3].

To-date, radiation therapy remains the only standard-of-
care treatment, providing transient symptom relief and exten-
sion of overall survival by about 3 months [4]. As such, there
is an urgent need to develop novel therapeutic strategies for
DMG. Immunotherapy, such as anti-PD-1/PD-L1 and anti-
CTLA4 checkpoint blockade, has revolutionized the treat-
ment landscape for hematological malignancies and several
adult solid cancers, including melanoma and non-small cell
lung cancer, and is being increasingly explored in central ner-
vous system (CNS) tumors. Pediatric brain tumors, however,
present unique challenges due to their low mutational burden,
the suppressive immune microenvironment found within the
tumor milieu, and developmental context [5].

This review focuses on emerging immunotherapeutic
strategies for DM@, including immune checkpoint inhibi-
tors, tumor vaccines, cellular therapies, and strategies to
modulate the tumor microenvironment. Particular attention
is given to both preclinical and early-phase clinical efforts
that aim to overcome the resistance of DMG to immuno-
therapies and unlock durable antitumor responses. We con-
centrate on the disease background and subtypes of DMG,
the landscape of tumor mutational burden and neoantige-
nicity, neuron—glioma Interactions, epigenetic reprogram-
ming, and the immunologic barriers intrinsic to this disease,
culminating in a critical appraisal of contemporary immu-
notherapeutic strategies, including immune checkpoint
blockade and cellular therapies.

DMG disease background & subtypes
The 2016 and 2021 WHO classifications of CNS tumors
define diffuse midline glioma as a high-grade glioma charac-

terized by diffuse growth and the presence of a K27M muta-
tion in histone H3 genes, namely H3F3A or HIST1H3B/C
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[2, 6]. The mutation induces a global loss of H3K27 trimeth-
ylation (H3K27me3) through inhibition of the polycomb
repressive complex 2 (PRC2), reprogramming the epigenetic
landscape of affected cells [7, 8]. Although the term “DIPG”
historically referred to tumors centered in the pons, DMG
now encompasses histologically similar tumors arising in
other midline structures, including the thalamus, cerebellum,
and spinal cord [9]. This broader classification reflects shared
molecular drivers and biological behavior, regardless of exact
anatomical site, and reinforces the importance of molecular
diagnostics in guiding classification and treatment.

DMG is predominantly a pediatric disease, typically affect-
ing children between 5 and 10years of age but can occur at
any age, including adulthood. The clinical course is aggres-
sive, with symptoms arising from brainstem involvement,
such as cranial nerve deficits and long tract signs. Without
treatment, median survival is approximately 3—6 months; with
radiation, median overall survival extends to 9—12months
[4, 10]. Recent real-world data from an international, aca-
demia-driven compassionate-use cohort of ONC201 (dor-
daviprone)—containing regimens report improved overall
survival of roughly 15months for brainstem DMG and lon-
ger for thalamic DMG, though adult over-representation war-
rants caution in extrapolating to purely pediatric populations
[11]. While the majority of DMGs harbor the H3.3 K27M
mutation, alternative variants include H3.1 K27M and, more
rarely, H3-wildtype tumors with epigenetic or genomic fea-
tures that mimic DMG biology [12].

Comparative studies have shown that H3-wildtype mid-
line gliomas are often biologically distinct, with more het-
erogencous driver mutations (e.g., TP53, ACVR1, PPM1D)
and variable clinical outcomes [13, 14]. Furthermore, H3.1
K27M tumors, commonly arising in younger patients, may
portend slightly improved prognosis compared to their H3.3-
mutant counterparts [15]. Notably, H3.1-mutant tumors
tend to localize more frequently in the pons, while thalamic
DMGs are more often H3.3-mutant, adding another layer of
complexity to subtype classification [13—17]. Thus, strati-
fication by H3 status and anatomical location is crucial in
immunotherapy development, given differential expression
of tumor-associated antigens and immune infiltration pro-
files across subtypes [18].

Materials and methods

A systematic search of the ClinicalTrials.gov database was
performed to identify clinical trials investigating DMG
cell-based or immunotherapy strategies, as summarized in
Table 1. The search focused on studies registered between
January 1, 2020, and June 2025. A total of 163 trials related
to DMG were initially identified. To focus on recent and
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emerging treatment approaches, 88 studies with start dates
prior to January 1, 2020, were excluded. Of the remain-
ing 75 trials, those marked as completed, terminated, sus-
pended, withdrawn, or listed with unknown status (n=16)
were removed, narrowing the pool to 59 actively ongoing
studies. These were further screened based on interven-
tion type, retaining only those involving biological agents,
genetic therapies, pharmaceutical drugs, combination prod-
ucts, or other relevant treatment strategies (n=52). Studies
involving behavioral approaches, devices, diagnostic tools,
dietary supplements, procedural methods, or radiation were
excluded (n=7). An additional 25 trials that did not involve
cell-based or immunotherapy strategies were also removed.
Ultimately, 26 clinical trials investigating novel immuno-
therapies for DMG were selected for in-depth review. Data
from these studies were systematically organized and ana-
lyzed, focusing on trial phase, therapeutic type, specific
interventions, patient demographics, endpoints, and pro-
jected timelines, offering a comprehensive overview of the
current landscape in immunotherapy treatment development
for DMG (Fig. 1, Table 2).

Fig. 1 Systematic filtering and
selection of DMG trials

Tumor mutational burden & neoantigens

One of the key hurdles in advancing immunotherapy for
DMG is the low tumor mutational burden (TMB). Similar
to GBM, DMG are low-TMB, immune cold tumors that are
poorly responsive to checkpoint blockade. Although GBM
shows modestly enhanced immune infiltration, exhausted
T cells, and chemokine-rich, PD-L1+ myeloid that pro-
motes immunosuppression, DMG has profound lymphocyte
deficiency and a resting myeloid microenvironment with
extremely minimal inflammatory signaling. It’s often intact
BBB also handicaps leukocyte and pharmacological access
[33-35].

Furthermore, The median TMB in DMG is typically <1
mutation/Mb, limiting the number of potential neoantigens
available for immune recognition [17, 34-36]. This low
TMB correlates with poor immunogenicity and may con-
tribute to the observed resistance to immune checkpoint
blockade and other T cell-based therapies. Nonetheless,
some mutations in DMG, such as the H3K27M alteration
itself, offer attractive immunotherapeutic targets. Several

88 excluded
Start date prior to 01/2020

16 excluded
Completed
Terminated

Suspended
Withdrawn
Unknown

7 excluded
Behavioral
Device
Diagnostic Tool

Dietary Supplement
Procedure
Radiation

25 excluded
Non - Cell/Immunotherapies

Trials
N=26

Cell Therapy and Inmunotherapy
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Table 2 An updated list of targeted antigens for the treatment of DMGs and their respective therapeutic approaches

Stage of Development

Study

Clinical (Phase I/IT)
Pre-clinical (murine model)
Clinical (Phase I)

Clinical (Phase I)

Clinical (Phase I)

Pre-clinical (murine model)
Pre-clinical (murine model)
Clinical (Phase I/II)

Clinical (Phase I)

Mueller et al., 2020 [19]
Chheda et al., 2018 [20]
Souweidane et al., 2018 [21]
Vitanza at al, 2025 [22]
Souweidane et al., 2025 [23]

Gholamin et al., 2017 [24]
Ausejo-Mauleon et al., 2023 [25]
Dunkel et al., 2023 [26]

Johnson et al., 2024 [5]

Antigen Antigen Type Therapeutic Approach
H3.3K27M,4 35  Histone antigen Peptide vaccine
TCR transduced T cells
B7-H3 Cell surface antigen Monoclonal antibody
CAR T cell
Radioactive isotope and
monoclonal antibody
conjugate
CD47 Cell surface antigen Monoclonal antibody
TIM-3 Cell surface antigen Monoclonal antibody
PD-1 Cell surface antigen Monoclonal antibody
CLTA-4 Cell surface antigen Monoclonal antibody
IDO Intracellular enzyme  Small molecule
Multiple Multiple Oncolytic viral therapy
Multiple Multiple Autologous dendritic cells
H3K27M,, 49 Histone antigen Peptide vaccine
GD2 Cell surface antigen CAR T cell
BCAN, EphA2, Cell surface antigens  CAR T cell
IL13Ra2

Clinical (Phase I) Gallego Pérez-Larraya et al.,
2022 [27]

Clinical (Phase I) Benitez-Ribas et al., 2018 [28]

Pre-clinical (murine model) Ochs et al., 2017 [29]

Clinical (Phase I) Grassl et al., 2023 [30]

Clinical (Phase I) Majzner et al., 2022 [31]

Pre-clinical (murine model) Lakshmanachetty et al., 2024

[32]

preclinical and early-phase clinical studies have demon-
strated the immunogenicity of H3K27M peptides, capable of
eliciting both CD4+ and CD8+ T cell responses in vitro and
in vivo [34, 35]. Neoantigens derived from recurrent driver
mutations in ACVRI and PPM1D may also be exploitable
in select subsets [36]. Fig. 2 recapitulates mechanisms of
therapeutic resistance in DMG.

Efforts are ongoing to leverage next-generation sequenc-
ing and mass spectrometry to identify low-abundance
neoepitopes, post-translationally modified peptides, and
tumor-specific splice variants in DMG [37, 38]. In addition,
antigen presentation of the H3.3K27M mutation generates
an immunogenic, HLA-A*02:01-restricted neoepitope that
can be specifically targeted by engineered TCR-transduced
CD8" T cells, thus serving as an alternative immunogenic
target even in the setting of low TMB [39]. These findings
support the pursuit of cell-based and immunotherapy strat-
egies such as personalized neoantigen vaccines and engi-
neered T cell therapies tailored to the unique mutational and
epigenetic signature of individual tumors (Table 2).

Immune microenvironment & evasion

The immune microenvironment of DMG is considered
“cold,” characterized by low levels of infiltrating lympho-
cytes, a paucity of antigen-presenting cells, and the pres-
ence of immunosuppressive myeloid populations [40, 41].
Single-cell RNA sequencing and spatial transcriptomics

studies have confirmed the scarcity of tumor-infiltrating
CD8+ T cells in DMG compared to adult glioblastoma, as
well as the relative dominance of microglia- and mono-
cyte-derived macrophages with tolerogenic phenotypes
[42, 43].

The anatomical location of DMG within the brainstem
imposes additional immunological constraints, particularly
via the blood-brain barrier (BBB), which impedes the sys-
temic delivery of therapeutic agents to the site of the tumor,
and imposes a physical filter for peripheral immune inva-
sion to the CNS [44].

Moreover, Zhu and colleagues demonstrate that the
majority of patient-derived DMG tumor samples exhibit
downregulation of MHC class I and class II molecules, fur-
ther impairing T cell recognition and priming [45]. Epigen-
etic silencing of antigen presentation machinery and defects
in interferon signaling contribute to this immune invisibility
[46].

Tumor cell-expressed immunosuppressive ligands fur-
ther reinforce local immune evasion. B7-H3 (CD276), a
checkpoint molecule overexpressed in DMG, is associated
with poor prognosis and reduced T cell activity [47]. Given
these immune barriers, combinatorial strategies intended
to target and alter the immunosuppressive microenviron-
ment of DMG may be employed to sensitize the tumor to
immune-based interventions.These include myeloid modu-
latory techniques which may shift tumor associated myeloid
populations away from immunosuppressive phenotypes, or
potentiate local inflammation and antigen release [48].

@ Springer
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Fig. 2 Integrated mechanisms of therapeutic resistance in diffuse
midline glioma. This figure integrates the epigenetic, neuro-immune,
and microenvironmental networks that sustain therapeutic resistance
in diffuse midline glioma (DMG). DMG, most commonly caused by
H3K27M histone mutations, is defined by pan-epigenetic dysregu-
lation because of suppression of PRC2 complex and global loss of
H3K27me3, redirecting transcriptional networks towards a malig-
nancy. Midline structures develop tumors most predominantly at the
pons but also thalamus, and spinal cord, in which the tumors expand
diffusely and are integrated into neuronal networks. Neuron—glioma
synaptic interactions, mediated through AMPA and GABA-A recep-
tor—mediated transmission and regulated by activity-regulated mol-

Cancer neuroscience

In recent years, the emerging field of cancer neuroscience
has uncovered a surprising axis between neurons and gli-
oma. One seminal study by Venkatesh et al. (2015) found
that increasing excitatory neuronal activity via optogenetic
stimulation promoted greatly accelerated growth of pediat-
ric glioma xenografts in mice [49]. This effect was medi-
ated in part by paracrine growth factor signaling, including
brain-derived neurotrophic factor (BDNF) and a shed form
of the synaptic adhesion molecule neuroligin-3 (NLGN3)
[49, 50] NLGN3 was found to be secreted in an activity-
regulated manner and to stimulate oncogenic PI3K-mTOR

@ Springer
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ecules such as neuroligin-3 (NLGN3) and brain-derived neurotrophic
factor (BDNF), underlie tumor expansion. The tumor immune micro-
environment is characterised by a predominance of myeloid-lineage
cells (microglia and monocyte-derived macrophages), largely devoid
of cytotoxic lymphocytes, and rich in TGF-B1 secreted by the tumor.
This environment, induced by low MHC-I expression and Treg func-
tion, generates an immunologically “cold” tumor milieu that limits
efficacious anti-tumor immunity. Such immune, synaptic, and epi-
genetic components act in concert to enhance therapy resistance and
disease progression in DMG. Figure created using biorender, accessed
July 25th, 2025

signaling in glioma cells [49, 50]. Follow-up work found
that patient-derived gliomas (including DIPG) fail to grow
or exhibit delayed growth in NLGN3-knockout mice, high-
lighting their dependency on neuron-derived NLGN3 [50].
Importantly, inhibition of the metalloproteinase ADAMI10,
which cleaves and releases NLGN3, in these models inhib-
ited tumor growth in-vivo.

The unexpected dependency of DMG and other high-
grade gliomas on NLGN3 in the tumor microenvironment
prompted a deeper exploration into the effects of NLGN3 on
glioma cell states. This line of inquiry revealed that NLGN3
regulates the expression of numerous genes involved in
synapses [50], sparking the hypothesis that the effects of
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neuronal activity on DIPG/DMG growth and progression
may be mediated not only by paracrine factor signaling, but
also by synaptic communication [49-51]. Electron micros-
copy studies identified clear synaptic structures forming
between neurons and DIPG/DMG cells, and whole cell
patch clamp electrophysiology revealed bona fide, electro-
physiology functional synapses between neurons and DIPG/
DMG cells, mediated by both AMPA receptors [51] and by
GABA, receptors [52]. These neuron-to-DMG synapses
are growth-promoting [51-53], and exhibit hijacked mecha-
nisms of synaptic plasticity [53].

Notably, recent evidence links glioma-neuron interactions
to local immunosuppression. In glioblastoma, a high-grade
glioma, regions with dense neuron-glioma synapses and that
were demonstrated to be more functionally connected to the
rest of the brain by intraoperative electrophysiology stud-
ies [54] were found to be enriched with immunosuppres-
sive TAMs and lacked antigen-presenting function [55]. A
causal relationship between the high functional connectivity
between brain and tumor and the immune-suppressed envi-
ronment remains to be demonstrated, but this association
adds to important questions about how neuron-immune cell-
cancer cross-talk may contribute to an immune-suppressed
tumor microenvironment [56].

Immune Checkpoint Inhibitors (ICls)

Immune checkpoint inhibitors (ICIs), targeting CTLA-4,
PD-1, and PD-L1, have revolutionized the treatment of
several adult malignancies but have shown limited efficacy
in DMG, due in part to their low levels of expression in
the tumor-immune microenvironment [40, 45, 57]. Inter-
estingly, one preclinical study reported that systemically
administered anti-TIM-3 antibodies penetrated the tumor
site in murine models of DIPG/DMG, attributed to exten-
sive neovascularization that increased vascular permeability
[58]. However, it is important to note that the models used
HSJ-DIPG-007 xenografts, which require immunodeficient
hosts and PDGF-B-driven syngeneic models, either lack
an intact immune system or exhibit a disrupted BBB. This
contrasts with DMG, which often retains an intact BBB as
demonstrated by contrast-enhanced MRI using gadolinium-
based contrast agents [34]. The more pronounced efficacy
of anti-TIM-3 therapy in these models, therefore, likely may
reflect their leaky vasculature rather than true antibody pen-
etrance across an intact BBB. As such, early clinical trials
of ICIs in DMG have been largely disappointing, with no
significant survival benefit observed in monotherapy set-
tings. For instance, a phase I trial of nivolumab in children
with recurrent CNS tumors, including DIPG, demonstrated
acceptable safety but minimal clinical activity [59].

The limited efficacy of ICIs in DMG may be attributed
to multiple factors: low TMB, sparse T cell infiltration, lack
of preexisting immune priming, and an immunosuppressive
tumor microenvironment. Furthermore, analysis of pre- and
post-irradiated DIPG autopsy samples lacks upregulated
neoantigen expression and T cell infiltration, indicating that
radiation, which canonically activates the immune response
in cancer therapy, may not demonstrate the same effect
in DIPG [40]. In contrast to adult glioblastomas, PD-L1
expression in DMG is relatively low and heterogeneous,
further challenging the rationale for single-agent check-
point blockade [42]. To overcome these limitations, current
approaches focus on combination therapies. Trials such as
PNOC022 (NCT05009992) and NCT04049669are investi-
gating the efficacy of ICIs or small inhibitory molecules in
combination with radiation or epigenetic agents in newly
diagnosed DMG [60, 61].

Other strategies aim to prime the immune response via
oncolytic viruses, vaccines, or dendritic cell activation
prior to ICI administration [40, 48, 62]. Targeted inhibi-
tion of immunosuppressive pathways such as CSFIR or
IDO may further enhance checkpoint sensitivity [63, 64].
Collectively, these insights underscore the need for contin-
ued development of combinatorial strategies that not only
enhance checkpoint sensitivity but also effectively circum-
vent the intact blood—brain barrier of DMG to enable ade-
quate drug delivery.

Vaccine-based immunotherapies

Vaccination strategies in DMG focus on the clonal H3K27M
mutation as a tumor-specific neoantigen. Short peptide vac-
cines (~10 amino acids) encompassing the H3K27M epi-
tope have been shown to induce mutant-specific CD8" T
cells in HLA-A*02:01" patients [19]. In one pilot study, an
H3.3K27M,¢_35 short peptide vaccine elicited circulating
CDS8" T cells in HLA-A2" patients aged 3-21 with DMG
[19]. However, because short peptides directly load onto
MHC class I molecules, their efficacy is limited by HLA
subtype restriction, most notably HLA-A*02:01, and recent
evidence suggests that these epitopes may not be endog-
enously presented by DMG tumor cells, raising concerns
about whether the induced T cells can effectively recognize
and kill tumor cells [65]. In contrast, long peptides (~20-30
amino acids) must be taken up and processed by antigen-
presenting cells, leading to broad MHC class II presentation
and robust CD4" T-helper responses. A 27-mer H3K27M
peptide vaccine spanning amino acids 14-40 demon-
strated strong CD4" T cell immunogenicity across multiple
HLA types in humanized models [29]. This vaccine, when
given repeatedly to adult DMG patients (often with PD-1
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checkpoint blockade), was safe and induced mutation-spe-
cific T cell responses in 5/8 patients, including one case of
sustained complete remission beyond 31 months [30].

Dendritic cell (DC) vaccines, which work by priming T
cells against loaded tumor antigens or patient-specific neo-
antigen peptides, have also been of interest. In one ongo-
ing phase I/II trial (NCT04911621), Wilms Tumor 1 (WT1)
oncoprotein mRNA-loaded autologous monocyte-derived
DC vaccines are being evaluated for the treatment of HGG
and DIPG. However, DIPG is “immunologically cold”
tumors with low baseline T cell infiltration and cytokine
signaling, potentially limiting vaccine efficacy [40]. Despite
these limitations, vaccine-based immunotherapies are a
potentially valuable avenue of exploration, and several cur-
rent clinical trials, as mentioned earlier, are evaluating new
mechanisms to combat these shortcomings.

Car T-cell therapies

Chimeric antigen receptor (CAR) T cells, a form of adop-
tive cellular therapy, have been at the forefront of emergent
therapeutics for CNS maligancnies over the recent years
[66]. There are currently numerous DMG immunotherapy
research with multiple CAR T targets under active inves-
tigation. GD2-specific CAR T cells were the first tested in
patients, given the high GD2 expression on H3K27M" DMG
cells and complete tumor responses observed in preclinical
models [67]. In a landmark phase I study (NCT04196413),
eleven patients with diffuse midline gliomas received
GD2-CAR T cells intravenously, with subsequent intra-
cerebroventricular administration for those patients who
demonstrated benefit. Of these eleven patients, nine dem-
onstrated clinical benefit, including marked improvement
in neurological deficits, and 4 of the eleven patients dem-
onstrated a greater than 50% reduction in tumor volume.
One patient exhibited a complete and durable response
[68]. At the time of data cutoff, median overall survival was
17.9 months for pontine DMG patients and 20.9 months for
all DMG patients [68], but please note that it is difficult to
compare overall survival data in a patient cohort with strict
eligibility criteria to unselected historical cohorts. Inducing
therapeutic inflammation in critical structures such as the
brainstem, or spinal cord is not without risk, and all patients
exhibited variable degrees of transient, localized neuro-
logical symptoms attributable to inflammation at the site of
the tumor termed “tumor inflammation-associated neuro-
toxicity (TTAN)” [31, 68, 69]. Patients developed concur-
rent cytokine release syndrome following IV, but not ICV,
administration of GD2-CAR T cells, and CRS represented
the dose-limiting toxicity for IV administration of GD2-
CAR T cells for DIPG/DMG.

@ Springer

Other CAR T targets are being explored in parallel. B7—
H3 (CD276) CAR T cells have shown particular promise for
pediatric CNS tumors, including DMGs which uniformly
express B7-H3 at high levels. In the BrainChild-03 phase
1 clinical trial, 21 children with DIPG, a subset of DMG,
received over 250 intracerebroventricular (ICV) repetitive
B7-H3 CAR T cell infusions via intraventricular catheter
[22]. The median overall survival from CAR T initiation
was 10.7months. Although several patients in this cohort
remain alive beyond 3—4 years on maintenance dosing, only
one of these long-term survivors had a confirmed DMG/
DIPG diagnosis, while others had either unbiopsied tumors
or IDHI-mutant high-grade gliomas, which carry a more
favorable prognosis. Therefore, conclusions regarding the
long-term survival benefit of B7-H3 CAR T cell therapy in
confirmed DMG/DIPG patients should be interpreted with
caution. To address tumor heterogeneity and antigen escape,
novel CAR T designs are moving beyond single targets,
such as a “Quad-CAR” T cell product co-targeting B7—H3,
EGFR806, HER2, and IL13Ra2 which is in development
(NCT05768880). Dual CAR approaches and logic-gated
CAR T cells are also being engineered to require two tumor
antigens for activation, increasing specificity and reducing
the risk of antigen-negative relapse. For example, one syn-
Notch CAR T construct, which utilizes a “priming” antigen
followed by a “killing” antigen to prevent off-target toxic-
ity, named o-BCAN synNotch a-EphA2/IL-13Ra2 CAR
(B-SYNC) T cells efficiently targeted DMG/DIPG cells in
vitro [32].

However, these constructs are still in the early stages of
development and have not been clinically validated in DMG
and DIPG patients.

Other adoptive cellular approaches (NK
cells, TILs, viral therapies)

In conjunction with CAR T-cell therapy, adoptive treat-
ments involving natural killer (NK) cells and tumor-infil-
trating lymphocytes (TILs) are investigated in DMG and
other high-grade pediatric gliomas. NK cell strategies
utilize MHC-independent killing and are susceptible to
TGF-B—mediated inhibition, a feature of the DMG microen-
vironment [70]. Two current trials are paradigmatic of this
trend: a Phase I trial of locoregional TGFp-inhibited NK
cells infused intraventricularly or intratumorally through
Ommaya or VP shunt (NCT04254419) and a Phase II trial
of intrathecal infusion of allogeneic NK cells in high-grade
gliomas, including DMG (NCT06687681). Combined,
they evaluate the safety, dosing, and immune-phenotypic
persistence of NK products in the CNS compartment [71,
72]. Conversely, TIL-based treatments have significant
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translational challenges in DMG, the inferior tumor muta-
tional burden, low levels of endogenous T-cell infiltration,
and unfavorable resectability for cell collection, parameters
reduce feasibility compared to extracranial solid tumors.
New strategies, including epigenetic or oncolytic precondi-
tioning and local delivery, could potentially augment lym-
phocyte homing and antigenicity. According to our initially
established research criteria and paper scope, modalities
themselves are now placed briefly in context here, and cor-
responding trials are cited in Table 1.

Furthermore, New viral platforms are gaining trac-
tion in diffuse midline glioma (DMG) as direct tumor
lysis and immunostimulatory vehicles. Oncolytic adeno-
virus DNX-2401 proved to be viable and reprogrammed
the immune-microenvironment in a phase 1 DIPG trial in
The New England Journal of Medicine (NCT03178032).
Coadjutant strategies involve IL-12-expressing adenoviral
vectors (Ad-TD-nsIL12) in pediatric DIPG early-phase tri-
als (NCT05717712, NCT05717699), and an IL-12—encod-
ing, engineered HSV-1 (M032) under investigation for de
novo DMG (NCT07076498). These gene-transduced viral
modalities have the capacity to combine direct oncolysis
with local cytokine delivery, possibly reconstituting DMGs
immunologically “cold” microenvironment into a more
inflamed, therapeutically targeted condition [20, 21, 23].
While viral therapeutics is a fast-moving area, a compre-
hensive review of every trial in viro- and immunotherapy is
beyond the scope of this manuscript; each modality, CAR T,
NK, TIL, and viral, would deserve a separate review on its
own. Here, we instead give a brief synthesis that integrates
representative strategies across modalities to bring attention
to convergent mechanisms of immune activation in DMG.

Radioimmunotherapy

Radiation therapy, the use of external beams of radiation to
target cancer cells, is a significant cornerstone in the treat-
ment of malignancies and has been an integral component
of the Stupp protocol since 2005 [24]. Radioimmunother-
apy (RIT), instead, utilizes radioactive isotopes conjugated
to monoclonal antibodies as a method to deliver radiation
directly to cancer cells, minimizing off-target toxicity [25].
For the treatment of DMG, B7-H3 (CD276) has been a
promising target for reasons stated above in the adoptive
cellular therapies section. In a phase I trial of RIT, children
with leptomeningeal or metastatic CNS tumors received
multiple infusions of '*'T-omburtamab, a murine anti-B7—
H3 monoclonal antibody. The treatment was well tolerated,
as acute toxicities were mostly mild (headache, nausea,
fever) and grade 3/4 thrombocytopenia was the most com-
mon hematologic effect. Importantly, patients treated for

CNS neuroblastoma (NB) leptomeningeal disease had a sig-
nificantly prolonged median PFS of ~7.5 years, significantly
longer than historical controls of ~13.1 months [26].

For DMG/DIPG, one alternative strategy has been direct
injection of RIT into the tumor via convection-enhanced
delivery (CED). Souweidane et al. reported a phase I dose-
escalation study of '**I-omburtamab, delivered via MR-
guided CED into the pons of 50 pediatric DIPG patients
shortly after radiotherapy [28]. The approach was gener-
ally safe with no grade 4/5 CNS toxicities, although sev-
eral dose-limiting events, namely grade 3 edema, occurred.
Importantly, patients in this group had a median overall
survival of 15.3 months from diagnosis, surpassing the typi-
cal survival of around 11 months and pointing to a possible
therapeutic advantage. The ratio of radiation concentrated in
the tumor compared to the rest of the body was exception-
ally high, demonstrating that convection-enhanced delivery
enabled highly focused treatment. These early investiga-
tions show that targeting B7—H3 with radioimmunotherapy
is feasible in DMG. Ongoing research aims to optimize
treatment schedules and dosages, as well as to assess combi-
nation strategies, such as adding radiosensitizers or immu-
notherapies, for improved outcomes. While other molecular
targets like GD2 and HER2 are under evaluation in labo-
ratory models, B7-H3 continues to be the most promising
candidate for RIT in DMG.

Towards a systems-level paradigm:
integrative immunoepigenetic and
neuroimmune targeting

The trend of DMG research has more and more empha-
sized that a reductionist, monotherapy-oriented approach
is not enough to address the multi-level pathobiology of
such tumors. As our overall understanding of DMG biology
develops, an improved conceptual model, one that positions
the tumor within its dynamic epigenetic, immunologic,
and neurophysiologic context, is needed. The intersection
of H3K27M-induced dysregulation of chromatin, growth-
promoting neuron-glioma interactions, and immune exclu-
sion defines a uniquely recalcitrant tumor in which each of
these axes of therapeutic resistance reenforces the others.
Single-agent treatment against any one dimension, epigen-
etic, immune, or neuronal, has predictably delivered only
minor and transitory gains, as demonstrated in many early-
phase trials [5, 19, 22, 28-32, 39, 58, 59, 73—75]. The future
involves the implementation of rational, combinatorial strat-
egies for disrupting the mutually reinforcing dependencies
between these axes. In particular, their co-administration
with epigenetic modulators (such as HDAC or EZH2 inhibi-
tors) to restore circumstantially partial antigen presentation
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Table 3 Proposed multimodal therapeutic strategies targeting key axes of resistance in DMGs

Axis of Resistance  Mechanism

Therapeutic Target(s)

Rationale for Combination
Therapy

Examples of Agents/Strategies

H3K27M-mediated loss
of H3K27me3, immune
evasion, stemness

Epigenetic
Dysregulation BET proteins
Immune desert or
suppressive myeloid

Immune Exclusion
myeloid regulators,

microenvironment CART cells
Neuron—Glioma Activity-dependent NLGN3, TSP1,
Interactions growth, synaptogenesis, AMPAR pathways
AMPA signaling
Tumor Micro- Dense stroma, BBB, Direct delivery, BBB
environment & hypoxia disruption

Delivery Barriers

EZH2, HDAC, PRC2,

Immune checkpoints,

Tazemetostat (EZH21i), Panobi-
nostat (HDACi), BET inhibitors

Epigenetic reprogramming can
restore MHC expression and
tumor immunogenicity
Epigenetic priming +immu-
notherapy can synergize to

Anti-PD-1/PD-L1, Anti-GD2
CAR T, IDO inhibitors, CSFIR

inhibitors overcome immune inertia
NLGN3 inhibitors, AMPAR Disrupts glioma proliferation
antagonists and reverses immune suppres-

sion linked to neuronal signaling
Improves local drug concen-
tration and reduces systemic
toxicity

Convection-enhanced delivery,
focused ultrasound, intrathecal
CART

and immunogenicity [76—79], with immunotherapies that
span checkpoint blockade to regionally delivered CAR T
cells, is an attractive method to bypass the immune iner-
tia of the DMG microenvironment [80]. Similarly, the
rising knowledge that crosstalk between neurons and glio-
mas actively drives DMG growth and invasion, with pos-
sible further influences on the suppressive tumor immune
microenvironemnt leads to the prediction that therapeutic
interventions designed to interfere with neuron-glioma and
neuron-glioma-immune interactions would be of double
utility: incapacitating tumor growth while rendering the
microenvironment less hospitable for immune evasion
(Table 3). The development of these regimens, though, will
require not only intense preclinical modeling but also exact
manipulation of the timing, sequence, and regional delivery
of agents to prevent toxicity and capitalize on windows of
weakness in the TME [81].

Equally important is the development of adaptive thera-
peutic strategies predicated on longitudinal, noninvasive
monitoring. The promising performance of plasma- and
cerebrospinal fluid-based liquid biopsies in the identification
of H3K27M mutant DNA [82-85] and new radiogenomic
methods of monitoring immune infiltration and epigenetic

status in situ [45] points toward a future where therapy is
dynamically adjusted to real-time biological signals instead
of fixed upfront planning. One can envision a clinical trial
architecture in which induction with cancer neuroscience or
epigenetic agents, those which target tumor—neuron inter-
actions, such as glutamatergic signaling inhibitors or neu-
ronal activity-modifying drugs, “prepare” tumor and TME,
as evidenced by enhanced MHC presentation and immune
cell infiltration, followed by optimally delivered cellular
immunotherapies (Table 4) [78, 86]. These adaptive regi-
mens would require the identification and field validation
of strong surrogate biomarkers of response and resistance,
and greater insight into how systemic and local immune
dynamics evolve under treatment pressure. More broadly,
these findings necessitate a conceptual transition beyond the
think of DMGs as simple chemoresistant, surgically occult
tumors, to one of systems-level disease state that is epige-
netically plastic, neuroimmune-embroiled, and susceptible
to potentially integrated multimodal disturbance. Future
progress will be more likely to depend on less any one new
agent than our ability to devise a biologically logical, tem-
porally and spatially optimal therapeutic program, a transi-
tion as much intellectual as technical.

Table 4 Key emerging tools for

Tool/Approach
adaptive, systems-level manage-

Application in DMG
Management

Current Limitations/
Considerations

Advantages

ment of DMGs
CSF-tDNA)

Radiogenomics &

Liquid Biopsies (cfDNA, Real-time monitoring of
H3K27M mutations, clonal
evolution, response to therapy

Correlate imaging with immune Non-invasive, spa-

Minimally invasive,
longitudinal, dynamic

Sensitivity still
variable, needs
standardization

Needs validation of

Advanced MRI infiltration, epigenetic states tially resolved predictive value

Epigenetic Prim- Sequential induction of immu-  Rational synergy, tar-  Optimal timing/

ing Followed by nogenicity, then immune attack gets tumor plasticity ~ sequencing yet to

Immunotherapy be defined

Theranostic Delivery Trackable targeted therapies Confirms delivery, Infrastructure-inten-

Platforms with concurrent imaging enables adaptive sive, early-phase

adjustments evidence

Integrated Multimodal ~ Adaptive protocols based on Personalized, efficient Requires regula-

Trial Designs biomarkers & longitudinal tory and logistical
monitoring innovation
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Conclusion

DMGs remain among the most therapeutically intractable
pediatric malignancies due to their infiltrative growth pat-
terns, “cold” tumor microenvironments, and anatomical
restraints preventing surgical resection. Nonetheless, recent
advancements in immunotherapeutic platforms, ranging
from neoantigen-targeted peptide vaccines and intraventric-
ular CAR T cell regimens to B7-H3 directed radioimmu-
noconjugates, have demonstrated early signs of biological
and, in select cases, clinical activity. Furthermore, multi-
disciplinary insights from cancer neuroscience have further
implicated neuron-glioma synaptogenesis as a contributor to
local immunosuppression, highlighting novel axes for clini-
cal therapies in the future. Recent advancements in immu-
nological therapies, as summarized in this review, highlight
several promising avenues through which immunotherapies
can be applied to DMGs. Ongoing translational efforts that
incorporate these principles into rationally designed clinical
trials will be critical to advancing durable and meaningful
responses in this otherwise uniformly fatal disease. As more
patients begin receiving CNS-delivered immunotherapies,
long-term follow-up becomes critical, not only to assess
survival, but also to monitor for late immune, endocrine,
and neurocognitive sequelae [87]. To discover clinically
significant immunotherapies for the treatment of DMGs,
robust experimental models and long-term monitoring must
become standard components of therapeutic development.
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