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Abstract
Since the 2016 update of the WHO Classification of Tumors of the Central
Nervous System, omics data have been officially integrated into the diagnostic
process for glioblastoma, the most prevalent and aggressive primary malignant
brain tumor in adults. This review will examine the current and future integra-
tion of omics data in both the diagnosis and therapy of glioblastomas. The
current clinical use of omics data primarily focuses on genomics for determin-
ing the IDH- and H3-wildtype status of the tumor, and on epigenomics, such
as assessing MGMT promoter methylation status as a prognostic and predic-
tive biomarker. However, it can be anticipated that the usage and importance
of omics data will likely increase in the future. This work highlights how omics
technologies have significantly enhanced our understanding of glioblastoma,
particularly of its extensive heterogeneity. This enhanced understanding has
not only improved diagnostic accuracy but has also facilitated the identifica-
tion of new predictive and/or prognostic biomarkers. It is likely that the ongo-
ing integration of omics data will transform many aspects of the diagnostic
process, including sample acquisition. Additionally, omics data will be inte-
grated into future glioblastoma treatment procedures, with possible applica-
tions ranging from identifying potential therapeutic targets to selecting
individual treatment plans. The implications of the ongoing integration of
omics data for clinical routine, future classification systems, and trial design
are also discussed in this review, outlining the pivotal role omics data play in
shaping future glioblastoma diagnosis and treatment.
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1 | INTRODUCTION

Glioblastoma is the most common primary malignant
brain tumor in adults, with an age-adjusted incidence rate
of 3–6/100.000 people [1, 2]. Adult IDH-wildtype glio-
blastomas are mostly found in patients 55–85 years of
age [1, 2]. Glioblastoma diagnosis requires histopatholog-
ical confirmation, which is typically achieved using tissue
obtained during biopsy or surgical resection. The stan-
dard of care follows a treatment regime that encompasses

surgery, radiotherapy, and chemotherapy using temozo-
lomide (TMZ) [1, 3], a regime mostly unchanged since
the beginning of the 21st century [4]. Glioblastomas
remain lethal for almost all patients [5], with an average
overall survival between 15 and 20 months under maxi-
mal treatment [1, 3, 6, 7]. Besides being the most com-
mon, glioblastoma is arguably the most aggressive
primary brain tumor, with a pronounced ability to
infiltrate and disseminate within the brain. This leads to
high progression or recurrence rates after a mean
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progression-free survival of 6 months [4, 7]. These recur-
rences are often local, inaccessible to surgery, more
aggressive, and less responsive to treatment compared to
the initial tumor [8]. In addition to their infiltrative prop-
erties, glioblastomas exhibit significant heterogeneity,
exacerbating their aggressiveness and poor patient sur-
vival. This heterogeneity presents a significant challenge
in glioblastoma diagnostics and treatment, contributing
to the failure of many potential therapies. However, inte-
grating our understanding of this heterogeneity, informed
by omics data, into diagnostic and treatment strategies
could enhance these approaches and potentially improve
outcomes. Therefore, this review focuses on grasping the
heterogeneity of glioblastomas, as it is crucial for under-
standing the various potential advancements in diagnosis
and treatment discussed herein.

Since the early 2000s, when the current standard of
care was established, the diagnostic landscape has signifi-
cantly evolved. Genetic and molecular characteristics have
become essential components of the diagnostic process,
with DNA sequencing and other molecular analyses
recommended for diagnosis [2]. The diagnostic process,
once solely based on histology, is quickly evolving into a
multifaceted approach that incorporates omics disciplines.

Disciplines, whose name consists of a molecular term
followed by the addition of “omics,” typically study all
biological molecules of one type, analyzing their func-
tions and interactions resulting in a comprehensive and
global overview of the studied “ome,” the object of
study [9]. The field of omics, though relatively young, is
rapidly advancing and has significantly enhanced our
understanding of various cancers, including glioblasto-
mas. These advances have enabled the integration of
omics into the diagnostic routine of glioblastomas, partic-
ularly through genomics. This discipline is concerned
with the comprehensive examination of an organism’s
genes and the interactions of these genes with each other
and with environmental factors [10]. In glioblastoma
diagnostics, genomics is already used to verify whether
the tumor is IDH- and H3-wildtype or exhibits other
genetic features such as TERT promoter mutation,
EGFR gene amplification, or +7/�10 chromosome copy-
number changes [2].

Epigenomics, focusing on the reversible modifications
of DNA and DNA-associated proteins, such as DNA or
histone methylation and acetylation, has gained importance
in cancer research, with epigenetic modifications being iden-
tified as playing important roles in the pathogenesis of glio-
blastoma [11]. Due to the predictive significance of MGMT
promoter methylation and the establishment of global
DNA-methylation based classification of CNS tumors [12],
DNA methylation arrays are now often recommended as a
standard diagnostic tool for glioblastoma.

Other omics disciplines, especially transcriptomics
and proteomics, have led to profound insights into glio-
blastoma biology, including tumor cell population het-
erogeneity, functional states, evolutionary patterns, and

various other characteristics [13, 14]. However, these
technologies have yet to be integrated into routine diag-
nostic processes.

This review will first delve into glioblastoma hetero-
geneity, exploring our current understanding of this
major diagnostic and therapeutic challenge while main-
taining a focus on insights gained through omics data. It
will then examine how omics technologies are currently
being utilized and how they may be further integrated
into the diagnosis and treatment of glioblastomas in the
future. Ultimately, the discussion will highlight the grow-
ing importance of omics data and explore its implications
for clinical practice, future classification systems, and
trial design.

2 | GLIOBLASTOMA HETEROGENEITY

2.1 | Omics uncover inter-patient
heterogeneity and identify tumor subtypes

Glioblastomas have long been known to be heteroge-
neous tumors [15]. The first aspect of glioblastoma het-
erogeneity known and explored using omics data was
inter-patient heterogeneity, a term used herein to refer to
the differences in glioblastomas from different patients,
something also known as intertumoral heterogeneity. For
a long time, this inter-patient heterogeneity was described
from histology alone. This changed with the emergence
of omics technologies, which allowed researchers to study
the underlying molecular differences between glioblasto-
mas from different patients. Back in 2006, Phillips et al.
used DNA microarrays to identify gene expression pat-
terns and delineated 3 molecular subclasses of high-grade
gliomas, which were shown to exhibit prognostic signifi-
cance highlighting the clinical relevance of studying inter-
patient heterogeneity (Figure 1) [16]. While Phillips et al.
build their classification scheme using only transcrip-
tomics, Verhaak and colleagues from The Cancer
Genome Atlas (TCGA) project integrated genomic data
and expanded the classification scheme to identify four
subtypes: Proneural, Neural, Mesenchymal, and Classi-
cal. These functional subtypes were characterized mostly
by gene alterations, especially EGFR amplification in the
classical subtype, NF1 deletion in the mesenchymal sub-
type, and PDGFRA alterations in the proneural subtype.
Only the neural subtype was not characterized by a single
gene alteration, but rather by the expression of neural
markers [17]. Subsequent investigations have cast doubt
on the initially identified neural subtype of the TCGA
classification, suggesting that the neural subtype may not
represent a distinct subtype of malignant glioblastomas,
but rather reflects a contamination by a normal neuronal
lineage [18–22]. Despite the latter findings, the TCGA
classification has profoundly influenced subsequent
research, serving as a cornerstone for numerous studies
and classification efforts (Figure 1). Additionally, the
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TCGA subtypes have been important due to their associa-
tion with survival outcomes [17], which will be more thor-
oughly addressed in the section of this work focusing on
diagnosis. Although, these first studies mainly described
the overall molecular profile of the whole tumor sample of
a patient, Phillips et al. also highlighted the presence of
multiple subtypes within individual tumors, suggesting a
complex landscape of intratumoral heterogeneity [16]
(Figure 2).

2.2 | Intratumoral heterogeneity and the
identification of transcriptional cell states

Building on the foundation laid by bulk omics analyses,
single-cell omics technologies have significantly advanced
our understanding of intratumoral heterogeneity,
enabling a detailed exploration of cellular diversity within
single glioblastoma specimens. A landmark study by
Patel et al. utilized scRNA-seq to study the single-cell
transcriptomics of glioblastoma cells. This research
revealed four distinct transcriptional signatures in glio-
blastoma cells, which were found to be enriched for genes
associated with the cell cycle, hypoxia, complement/
immune response, and oligodendrocyte function. Fur-
thermore, they explored whether the individual cells
fitted into the TCGA subtypes established using bulk
analysis as described earlier (Figure 1). Each tumor com-
prised of a mosaic of cells spanning multiple subtypes.
This finding highlighted the intratumoral heterogeneity
of glioblastomas and furthermore demonstrated its prog-
nostic significance, revealing that the degree of intratu-
moral heterogeneity negatively correlates with survival.
The study also described single tumor cells that exhibited
two subtypes at once, hinting at cellular plasticity within
glioblastomas [23], a concept previously suggested by
Bhat et al. who showed that cells can transition from a
proneural to a mesenchymal transcriptional subtype fol-
lowing NF-κB activation [24].

Subsequent investigations using scRNA-seq revealed
that malignant glioblastoma cells adopt four main cellu-
lar states reminiscent of neural development stages:

astrocyte-like (AC-like), mesenchymal-like (MES-like),
oligodendrocyte progenitor-like (OPC-like), and neural
progenitor-like (NPC-like) cells. Although the naming
might suggest otherwise, the malignant glioblastoma cells
existing in these cell states do not actually resemble their
namesakes phenotypically, but they rather activate small
gene programs that are normally characteristically acti-
vated in the respective normal brain cell they are named
after. Notably, individual tumors contain a blend of cells
existing in different cellular states, again underscoring the
significant intratumoral heterogeneity of glioblasto-
mas [25]. The frequency of these cell states is influenced
by defined genetic drivers, and, intriguingly, they pro-
vided evidence of hybrid cellular states—instances where
individual cells concurrently exhibit characteristics of two
distinct cellular states. This discovery, alongside observa-
tions of plasticity, where cells are able to switch between
cell states, highlighted the dynamic nature of glioblas-
toma cells [25]. The similarities between cellular states
identified in glioblastomas and those observed during
neural development were elaborated upon through com-
parative sequencing of tumor tissues and normal fetal
brain cells. Such efforts uncovered that glioblastoma cells
seem to develop along neurodevelopmental gene pro-
grams [26]. Additionally, an exploration of the heteroge-
neity of glioblastoma stem cells (GSC), found that GSCs
mapped along a transcriptional gradient made up of two
cellular states, one consisting of genes involved in normal
neural development and the other reminiscent of inflam-
matory wound response [27]. Moreover, the reactivated
developmental cell type of outer radial glia cells was
uncovered and found to contribute to intratumoral
heterogeneity [28]. Additional studies utilized pathway-
based classification approaches to explore the intratu-
moral heterogeneity of glioblastomas further, for exam-
ple, establishing a new and possibly therapeutically
targetable mitochondrial subtype [29, 30]. Following
research explored the factors influencing the prevalence
of specific cellular states, revealing that the MES-like cell
state is not only influenced by genetic factors, but also by
interactions of glioblastoma cells with the tumor-
microenvironment, especially immune cells [31].

F I GURE 1 Relationships of
glioblastoma subtypes of different
classification systems as presented in the
respective publications. §The G34, K27,
and IDH subgroups were excluded, as they
are characterized by alterations that
preclude classification as glioblastoma,
IDH-wt. *The reactive immune subtype
identified by Ravi et al. is correlated with a
unique hybrid cell population that spans
the AC- and MES-like states reported by
Neftel et al. **The MTC subtype identified
by Garofano et al. does not clearly
correlate with previously described
subtypes and was therefore excluded.
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2.3 | Spatial and temporal heterogeneity
uncovered using omics

Recent research has also begun to explore spatial and
temporal heterogeneity within glioblastomas. Molecular
and cellular differences between the tumor margins and
the tumor core were uncovered by leveraging transcrip-
tomics data from scRNA-seq [20]. Staying at this broader
spatial resolution, the origins and the interplay of this

spatial heterogeneity were further explored, and it was
discovered that cells at the tumor edge receive paracrine
signals promoting malignancy from cells in the tumor
core [32]. Characterization of glioblastoma tumor cells
infiltrating the peritumoral tissue revealed that these cells,
despite the overall heterogeneity, still shared a common
gene signature, suggesting a common mechanism of infil-
tration [33]. With the existence of spatial heterogeneity
confirmed, further analysis of the spatiotemporal

F I GURE 2 Flow chart illustrating the standard diagnostic and therapeutic process for newly diagnosed glioblastoma. Current standard elements
are represented in a light green color, while omics-related elements that may be integrated in the future are depicted in light purple.
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architecture of glioblastomas using single cell as well as
bulk omics data revealed that multifocal tumors have
higher genetic heterogeneity as compared to locally adja-
cent tumors [34]. This led to the proposal of a “multiverse
model” which suggests that at an early phase of tumor
evolution, tumor clones are spatially separated and there-
after the clones gain distinct mutations, resulting in the
formation of multiple “universes” [30, 34]. Exploration of
spatial heterogeneity at finer resolution found that even
cells within different histological structures differ in their
transcriptional programs [35], as well as in regard to
their genetic alterations [36]. Moreover, spatially resolved
proteomics and metabolomics integrated with transcrip-
tomics were utilized to uncover and characterize five cell-
cycle state independent transcriptional programs named
radial glia, reactive immune, neural development, spatial
OPC, and reactive hypoxia, which overlapped with
already existent gene programs, mainly the ones estab-
lished by Neftel et al. mentioned earlier [37]. More recent
work taking a deeper look at the spatially separate gli-
oma regions established four different gene expression
modules characteristic for the hypoxic, vascular, invasive,
and tumor core niches, which were described to be
related but different to the ones established by Ravi
et al. [38]. Furthermore, a 3D spatial sampling approach
was recently introduced, which allows the study of glio-
blastomas from a spatially resolved whole-tumor perspec-
tive. This revealed that glioblastoma exhibits diverse
patterns of clonal expansion and infiltration. Specifically,
genetic subclones can grow in spatially distinct regions,
yet can also infiltrate and coexist within the same area.
Additionally, malignant and non-malignant cells can be
found intermixed throughout the whole tumor [39]. This
highlights the importance of comprehensive tumor sam-
pling. Moreover, this study exemplifies how a deeper
understanding of glioblastoma biology, especially its
extensive heterogeneity, which may initially appear to be
unrelated to clinical practice, might eventually contribute
to innovations impacting both the diagnosis and therapy
of glioblastomas.

Besides the established intratumoral heterogeneity
and differences related to the spatial identity of glioblas-
toma cells, changes over time have been noted and have
often been studied together with spatial heterogeneity.
Exploring longitudinal changes, computational methods
predicting the number and clonal composition of subpop-
ulations in glioblastoma revealed that each analyzed glio-
blastoma sample consisted of around 7 subpopulations.
This relates to hundreds of clonal subpopulations if an
entire large glioblastoma is to be fully analyzed. Addi-
tionally, matched primary and recurrent glioblastomas
were characterized, identifying differences in their clonal
composition and defining some common patterns of
recurrence [8, 40]. Further research on matched primary
and recurrent glioblastomas revealed that genomic pro-
files of recurrent glioblastomas differ significantly from
those of the initial tumors, with one study finding that

p53 pathway alterations are predictive of a high number
of subclonal mutations [41] and another concluding that
re-biopsy and re-profiling are needed for clinical
decision-making, especially in patients with distant recur-
rent tumors, which had even fewer mutations in common
with the primary tumor than locally recurrent tumors [42].
It was later shown that TCGA subtypes assigned to an
entire tumor sample are not permanent but may switch
to another subtype, which was shown to happen in tumor
progression and recurrence, with the mesenchymal sub-
type more frequently occurring in recurrent tumors com-
pared to the corresponding primary tumors, which more
often displayed proneural and classical subtypes [19, 22].
Investigating a cohort of paired primary and recurrent
glioblastoma resections through RNA-seq helped to fur-
ther characterize the changes between primary and recur-
rent tumors. The analysis underscored previous findings
that recurrent tumors preferentially show mesenchymal
progression and indicated that the mesenchymal subtype
might indeed be the evolutionary preferred transcrip-
tional path. Hallmark glioblastoma genes showed no dif-
ference in expression over time. It was further shown that
glioblastomas evolve not solely by molecular evolution of
the malignant cells themselves but also through interac-
tions with the tumor microenvironment [43]. In this
regard, a very recent study highlighted a lower fraction of
malignant cells and a reciprocal increase in glial and neu-
ronal cell types in the tumor microenvironment, reflect-
ing the co-evolution of the GBM ecosystem [44].
However, the underpinnings of the temporal heterogene-
ity in glioblastoma are still being unraveled, with discus-
sions pointing toward selective pressure and the impacts
of therapy, such as DNA damage induced by radiother-
apy or chemotherapy, as potential accelerators for tem-
poral evolution [8].

2.4 | Heterogeneity in epigenomics and
beyond

Glioblastoma heterogeneity has primarily been explored
and described through genomic and transcriptomic data,
but it extends beyond these omes, notably into the epigen-
ome as well. DNA methylation profiling studies not only
highlighted the epigenetic inter-patient heterogeneity, but
additionally allowed for the subclassification of glioblasto-
mas, with the resulting epigenetically determined sub-
groups overlapping with TCGA subtypes [12, 45]. This
inter-patient heterogeneity in DNA methylation was later
demonstrated to possess a spatial and temporal compo-
nent as well [21]. Research into epigenetic spatial heteroge-
neity, particularly regarding DNA methylation, has been
conducted, but the extent of epigenetic heterogeneity on a
spatial or single-cell level remains unclear. Wenger and
colleagues revealed the existence of different DNA methyl-
ation subclasses inside individual tumors [46]. However,
this extent of heterogeneity was not confirmed by Verburg
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and colleagues, who, using their own cohort, showed that
this apparent epigenetic spatial heterogeneity was more
likely an artifact explained by the highly variable tumor
purity [47]. Further investigation into the temporal epige-
netic heterogeneity of glioblastomas revealed DNA meth-
ylation subclasses switching from primary to recurrent
tumors. Notably, there was an observed tendency toward
the mesenchymal subclass [48], mirroring similar tenden-
cies identified using transcriptomic data.

Beyond DNA methylation, heterogeneity was also
found in other epigenetic modifications. It was found that
active enhancers in tumors classified as mesenchymal and
classical subtypes, following the TCGA classification sys-
tem, are implicated in driving cell migration and invasion
associated gene expression. In contrast, enhancers in glio-
blastomas classified as the proneural subtype are
involved in controlling gene expression of genes associ-
ated with a less aggressive phenotype [19, 49]. Temporal
heterogeneity has also been observed using epigenomic
data, with one single cell multi-omics study finding differ-
ences in chromatin accessibility between primary and
recurrent tumors, which related to an increased preva-
lence of the mesenchymal transcriptional subtype in
recurrent tumors [50]. Furthermore, Mathur and col-
leagues recently illustrated intratumoral heterogeneity in
the chromatin landscape of glioblastomas utilizing single-
nucleus ATAC-seq data [39]. Epigenetic contributions to
spatial heterogeneity were also uncovered, with epige-
netic immune editing shown to lead to glioblastomas
acquiring specific transcriptional programs resulting in
immune evasion, which in turn contributes to spatial het-
erogeneity [51]. This brings up another important aspect
to consider, that the heterogeneity is not only inherent to
the malignant glioblastoma cells themselves, but also
to the tumor microenvironment [52]. While a deep dive into
the heterogeneity of the tumor microenvironment itself is
beyond the scope of this work, its influence on the malig-
nant cells will be briefly explored. Numerous studies have
highlighted the intricate interplay between malignant cells
and their tumor microenvironment in glioblastoma [22,
23, 52] and contributions of the tumor microenvironment
toward bidirectional subtype switching of glioblastoma
cells were uncovered [37]. Hypoxia drives mesenchymal
gene expression [53] and a study linking hypoxia and a
mesenchymal phenotype also showed that creatine metab-
olism was linked to the proneural gene expression subtype
and concluded that metabolic adaptation plays an impor-
tant role in the transcriptional heterogeneity of glioblasto-
mas [54]. Recent research showed that distinct tumor cell
domains within glioblastomas are associated with distinct
immune landscapes [55]. Additionally, the tumor microen-
vironment affects not only the tumor cells themselves but
also the non-neoplastic cells [33].

Summing up the exploration of glioblastoma het-
erogeneity, it is evident that omics data have been
instrumental in gaining a better understanding of glio-
blastomas, especially by unveiling their inter-patient
and intratumoral heterogeneity.

3 | OMICS IN DIAGNOSIS

3.1 | Diagnostic process and known
prognostic and/or predictive biomarkers

In diagnosing gliomas, omics data already play an impor-
tant role in determining the specific tumor type, since the
2016 update of the WHO Classification introduced
molecular markers into the diagnostic process for the first
time [56]. Traditionally, the diagnosis of glioblastoma
was reached through histopathological analysis after sur-
gical resection or biopsy. However, to correctly diagnose
a glioblastoma, a molecular analysis is now routinely per-
formed [2] (Figure 2). Besides genetic characteristics
needed for the diagnosis itself, DNA methylation is also
routinely analyzed, with a focus on MGMT promoter
methylation [1, 12].

This epigenetic modification of specific cytosine-
phosphate-guanine (CpG) island sites within the MGMT
promoter silences the MGMT gene. Although the meth-
ylation of the MGMT promoter has been identified as a
predictor for glioblastoma patient survival in numerous
studies, there may also be certain limitations. Research
conducted by the TCGA has suggested that the predictive
value of the MGMT promoter methylation may be con-
fined to glioblastomas of the classical subtype [57].
Despite these uncertainties, methylation of the MGMT
promoter remains a relevant positive predictive factor for
TMZ therapy and additionally functions as a positive
prognostic marker, providing information about the
overall outcome, regardless of treatment [58].

Other important prognostic biomarkers, like the
IDH1 mutation and the related G-CIMP phenotype, are
diagnostically relevant since tumors with IDH1 muta-
tions are now formally excluded from the group of glio-
blastoma but are named astrocytomas even in the
presence of microvascular proliferation or necrosis. Fur-
ther biomarkers commonly assessed include EGFR gene
amplification, TERT promoter mutation, and the chro-
mosome copy number alteration of chromosome 7 gain
and chromosome 10 loss. These markers allow for the
diagnosis of glioblastoma in the absence of histological
features like microvascular proliferation or necrosis
[2, 58]. However, their prognostic value remains contro-
versial. While EGFR amplification or overexpression has
been considered a negative prognostic factor, its signifi-
cance for glioblastoma prognosis is contested, with some
recent studies finding no significant correlation with over-
all survival [58, 59]. Similarly, the prognostic impact of
TERT promoter mutations and the +7/�10 chromosome
copy number alteration is still under discussion [58, 60].

3.2 | Finding new prognostic and/or predictive
biomarkers in a heterogeneous tumor

A myriad of potential prognostic markers has been pro-
posed, ranging from those derived from tissue samples to

6 of 13 MÖLLER ET AL.

 17503639, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bpa.70027 by C

ochraneItalia, W
iley O

nline L
ibrary on [30/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



circulatory biomarkers. However, the evidence support-
ing most of these remains scant [58, 59]. A significant
obstacle in identifying reliable biomarkers for glioblas-
toma lies in the notable heterogeneity and plasticity
observed both between patients and within individual
tumors. This variability, particularly within a single
tumor, complicates the search for consistent prognostic
markers, as the presence of any given biomarker can dif-
fer across different regions of the tumor. However, the
exploration of tumor heterogeneity helped to uncover
several new potential prognostic and predictive bio-
markers. By analyzing inter-patient heterogeneity in a
cohort of high-grade gliomas, Phillips and colleagues
were among the first to demonstrate that tumor subtypes,
identified through genomic data, possess prognostic sig-
nificance [16]. Similarly, TCGA subtypes have been
linked to survival outcomes, with patients harboring pre-
dominantly proneural subtype glioblastomas surviving
longer. Furthermore, the impact of aggressive treatment
regimens was evaluated, revealing that while tumors clas-
sified as classical and mesenchymal subtypes benefit from
such approaches, those of the proneural subtype do
not [17]. In their landmark study, Patel et al. found a neg-
ative correlation between the degree of heterogeneity
within a tumor and patient prognosis [23]. This aligns
with other research establishing the degree of genetic sim-
ilarity, essentially the degree of heterogeneity, as a predic-
tive biomarker correlated with a favorable and consistent
therapeutic response [34].

Prognostic value was also found in subtype classifica-
tions based on omics data beyond genomics and tran-
scriptomics. Recent research identified various metabolic
subtypes of glioblastomas, which correspond to differing
survival durations, proposing that metabolomic profiling
could stratify patients into distinct prognostic catego-
ries [61]. Methylation classification based on the Heidel-
berg classifier [12] was demonstrated to have prognostic
significance, with the RTKI methylation class showing
lower survival then other subclasses [62]. Moreover,
DNA methylation subclasses could be instrumental in
forecasting the effectiveness of treatments or predicting
other clinical outcomes. For instance, DNA methylation
subclasses can predict survival benefits following gross
total tumor resection [63], and the RTKII subclass shows
a greater frequency of seizures compared to others [64].
Furthermore, the potential for predicting seizures using
genomic biomarkers has also been explored [65]. Sepa-
rately, an independent correlation between global DNA
methylation levels and patient survival has been demon-
strated. Specifically, patients exhibiting higher levels of
global DNA methylation tend to survive longer, a phe-
nomenon that may be attributed to the increased cellular
radiosensitivity associated with elevated global DNA
methylation levels [66].

In addition to single-omics data, multi-omics data are
increasingly being considered for integration into the
diagnostic processes for glioblastoma [67, 68]. Even

multi-omics data encompassing radiomics and genomics,
along with clinical measurements, was used to develop an
AI-based tool for predicting overall survival [69]. More-
over, there are efforts underway to enhance the insights
obtained from histopathology that are utilizing omics
data. A notable example is the work of Zheng et al. who
utilized scRNA-seq and spatial transcriptomics to train a
freely accessible model that predicts transcriptional sub-
types in H&E-stained glioblastoma whole-slide images.
Their analysis revealed that samples with a high propor-
tion of cells expressing a hypoxia-induced transcriptional
program tended to have a poor prognosis. Furthermore,
they identified correlations between the spatial cellular
architecture within the tumors and patient outcomes [70].

Besides identifying biomarkers through the analysis of
glioblastoma heterogeneity, omics data helped to discover
other potentially prognostic and/or predictive biomarkers.
Recent research has introduced novel prognostic markers,
such as the level of functional connectivity between glio-
blastoma and the normal brain after demonstrating that
glioblastomas can functionally reorganize human neural
circuits in a way that promotes tumor progression, nega-
tively impacting patient survival [71, 72].

3.3 | New sample acquisition techniques
capturing spatial and temporal heterogeneity

Moreover, the spatial and temporal diversity of glioblas-
tomas poses challenges for determining the optimal
method for sample collection. Currently, diagnostic and
prognostic assessments are primarily based on tissue
obtained from the initial surgical resection of the tumor,
representing only a snapshot in time and space. This
underscores the need for a revised approach to sample
collection and analysis, one that accounts for the
dynamic and heterogeneous nature of glioblastoma. To
date, several studies have developed various spatial sam-
pling techniques, demonstrating the feasibility of obtain-
ing spatially resolved samples that more accurately
capture the spatial diversity of the tumor [39, 73]. To cap-
ture the temporal heterogeneity, it would be necessary to
collect samples more regularly, particularly at the time of
tumor recurrence. Given that only 20%–30% of recurrent
tumors are accessible to surgery [8], biopsies could offer a
practical solution.

Amid the evolving focus on molecular analysis in
glioblastoma diagnostics, liquid biopsies have emerged as
a promising tool for investigating the disease’s molecular
characteristics. Liquid biopsies encompass a variety of
techniques unified by the principle of analyzing tumor-
derived information present in body fluids, which can be
more readily and repeatedly obtained than the tumor
tissue itself. Such analyses, often utilizing omics technolo-
gies, may target circulating tumor cells, -DNA or -RNA,
-proteins, and extracellular vesicles. For glioblastomas,
cerebro-spinal fluid is particularly valuable, although
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blood and urine are also under study for their potential
use [74, 75]. With applications ranging from biomarker
identification to disease monitoring, liquid biopsies, espe-
cially those analyzing circulating tumor cells and DNA,
are already being integrated into some clinical trials for
these purposes [74, 76].

4 | OMICS IN THERAPY

The standard of care protocol for glioblastoma, which
includes maximal feasible surgical resection followed by
radiotherapy and TMZ chemotherapy, has remained
largely unchanged since its establishment by Stupp at the
beginning of this century [4]. Despite numerous attempts
to introduce new treatments, results have long been
underwhelming, especially for targeted therapies [77, 78].
Glioblastoma treatment faces significant challenges due
to many reasons, one being its special location inside the
CNS. The presence of the blood–brain barrier and
the blood-tumor barrier—a compromised version of the
former—significantly hinders effective drug delivery [79].
Innovative efforts to overcome these barriers, which span
from physical methods like focused ultrasound to molec-
ular and cellular strategies, have utilized omics technolo-
gies in their development. The use of omics technologies,
particularly single-cell sequencing, not only aids in the
development of these strategies but is also expected to
deepen our understanding of these barriers, potentially
enhancing drug delivery capabilities [80].

Another challenge in treating glioblastoma is the
immune privileged status of the CNS, characterized by
low basal MHC II expression, low levels of antigen pre-
senting cells, and the continued expression of immuno-
suppressive cytokines. This is further aggravated by the
immunosuppressive properties of the glioblastoma tumor
microenvironment [81, 82]. Several intrinsic aspects of
glioblastoma biology also complicate treatment. For
instance, the highly infiltrative nature of malignant glio-
blastoma cells renders complete tumor resection nearly
impossible, as the tumor often spreads into essential areas
of the brain that cannot be surgically removed. This infil-
tration also poses significant challenges for therapies
ranging from radiotherapy to chemotherapy, which are
often unable to reach all tumor cells, with nearly impossi-
ble to detect single tumor cells thought to exist often far
away from the main tumor mass in otherwise intact areas
of the brain. Furthermore, the pronounced heterogeneity
of glioblastomas, along with the presence of an often
treatment-resistant GSC population [83], complicates the
development of effective targeted therapies.

While unraveling glioblastomas intratumoral hetero-
geneity it has become evident that the expression levels of
many potential therapeutic targets vary significantly,
even inside a single tumor, to the point of being only spo-
radically expressed [19]. Therapies that do not affect all
tumor cells simultaneously may inadvertently foster a

more immunosuppressive tumor microenvironment, poten-
tially reducing the effectiveness of other treatments [84].
Another hurdle in the treatment of glioblastoma is the
tumors plasticity, particularly the ability of malignant cells
to alter their phenotype [50, 85], which can be accelerated
by therapies applying selective pressure, thereby leading to
changes in tumor composition in ways that are not yet fully
understood [8, 86].

Nevertheless, improving our understanding of the het-
erogeneity of glioblastoma biology helped uncover poten-
tially targetable mutations [57], with recent studies even
identifying potential tumor-wide therapeutic targets [39,
87, 88]. Such widespread therapeutic targets could be lev-
eraged by targeted therapies that aim at crucial genes,
proteins, and pathways within the tumor. Currently, sig-
nificant efforts are underway to identify vital targets by
pinpointing genes essential for tumor survival. These
studies often employ whole-genome CRISPR screens to
detect critically important genes, with numerous pub-
lished studies already revealing specific cancer dependen-
cies of glioblastoma [27, 89–95]. The newly identified
therapeutic targets extend beyond specific targetable genes
and pathways, encompassing also broader aspects such as
dietary interventions, with one paper suggesting that a
lysine-restricted diet could help slow glioblastoma growth
in synergy withMYC inhibition and anti-PD1 therapy [96].
The same group recently proposed threonine restriction as
a possible dietary intervention in cancer treatment, after
first experiments using patient-derived glioblastoma xeno-
grafts showed that threonine restriction inhibited tumor
growth [97].

Despite the identification of numerous potential tar-
gets, targeted therapies for glioblastoma have historically
shown limited success [77, 78, 98]. However, more prom-
ising developments are emerging from the field of immu-
notherapy. A variety of immunotherapeutic approaches
have been explored, including immune checkpoint inhibi-
tors, cancer vaccines, oncolytic viruses, and adoptive cell
therapies such as CAR-T cells. While there is promising
data from multiple studies on these immunotherapies, the
overall variability in results means that it is still too early
to draw definitive conclusions [79, 81, 82]. Adoptive cell
therapies, particularly CAR T-cells, are among these
promising immunotherapies gaining interest, after intra-
ventricularly applied CAR T-cells engineered to target
the EGFR variant III using a second-generation CAR
and also engineered to secrete a wildtype EGFR-targeting
T-cell engaging antibody molecule, have shown dramatic
and rapid radiological tumor response in three patients
with recurrent glioblastoma. However, the response was
only transient in two of the three patients [76]. Despite
these intriguing results, with only three patients treated
thus far, and considering the less promising outcomes of
other CAR T-cell designs targeting EGFR [99, 100], it is
too early to draw firm conclusions. Another cell-based
immunotherapy approach utilizes a type of tumor-
specific neoantigen created by cancer-specific RNA

8 of 13 MÖLLER ET AL.

 17503639, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bpa.70027 by C

ochraneItalia, W
iley O

nline L
ibrary on [30/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



splicing events known as neojunctions. Although neo-
junctions exhibit intratumoral heterogeneity, some
neojunction-derived neoantigens can be found through-
out the entire tumor. These neoantigens can be specifi-
cally targeted by T cells in vitro, representing a potential
new immunotherapeutic approach capable of overcom-
ing intratumoral heterogeneity [87].

Interestingly, while most clinical trials have not dem-
onstrated a clear benefit for all participants, several studies
report a subset of patients who have shown exceptional
responses to the specific therapy. This observation suggests
a potential role for omics data in glioblastoma treatment,
specifically in the identification of predictive biomarkers.
These biomarkers could help determine which patients are
likely to respond favorably to a particular therapy,
enhancing patient selection for clinical trials. Given the
vast heterogeneity of glioblastomas, it is unlikely that a
single therapeutic strategy will be universally effective
[30, 92]. Consequently, treatment is moving toward a more
individualized approach based on specific tumor charac-
teristics rather than solely on tumor type, a trend already
emerging in current clinical studies [76]. Additionally,
future clinical trials could benefit from selecting a more
homogeneous patient population based on molecular
tumor profiles. The use of liquid biopsies or other tech-
niques for more frequent assessment of molecular features
could significantly improve treatment monitoring and
enable rapid adjustments to therapy as needed. However,
for these methods and the underlying omics technologies
to be viable in clinical settings, as envisioned in precision
oncology, several challenges remain. These include reduc-
ing costs, enhancing throughput, and developing robust
bioinformatic pipelines to process the data effectively.

5 | DISCUSSION

Omics, especially genomics and epigenomics, are already
essential in the diagnosis and treatment of glioblastomas
and are poised to become even more integral in the
future. Most omics analyses are conducted on samples
obtained from the initial maximal feasible surgical resec-
tion. While this will likely continue to be a valuable
source of samples, there is a need to enhance sample
acquisition methods to better represent the extensive
intratumoral heterogeneity of glioblastomas. Innovations
such as improved spatial sampling to reflect regional var-
iations [39, 73] and liquid biopsies for longitudinal tumor
surveillance [74] have been suggested. Especially given
the increasing understanding of the inherent plasticity of
glioblastomas, the importance of frequent reassessments
of the molecular tumor characteristics has become more
apparent.

While it can be expected that the use of omics in glio-
blastoma diagnosis and therapy will increase, the impact
this might have on future classifications is open to
debate. Based on the landscape of currently preclinically

and clinically explored therapies [77, 81], it appears that
future treatments for glioblastoma will increasingly target
specific molecular characteristics rather than relying on
the currently used broader approach of surgery, radio-
therapy, and chemotherapy. Given this trend, the current
classification system might become less relevant in guid-
ing treatment decisions. While the existing classification
system already includes some molecular characteristics,
potential future therapies may also target biomarkers
that, while not characteristic of glioblastomas, are still
expressed, such as immune checkpoints. With the general
trend toward individualized treatments, it is likely that
clinical decision-making will evolve from an approach
predominantly focused on tumor type to one that priori-
tizes specific molecular characteristics, particularly those
that are targetable.

However, for this shift toward personalized treat-
ments to be effective, clinical trial enrollment needs to
change. Specifically, the selection of patients for trials
involving targeted therapies should transition from being
primarily based on tumor type to focusing on the pres-
ence of targetable biomarkers. Currently, trials often
merely include biomarker expression as an additional cri-
terion to a cohort already defined by a specific tumor
type, rather than making it the central focus of patient
selection. While this is reasonable for targeted therapies
where the target biomarker is characteristically expressed
on only this specific tumor type, such as EGFRvIII in
glioblastomas, other targeted therapies, where the target
is expressed on multiple tumor types, might benefit from
an approach not limited by tumor type. Adopting this
approach could help accelerate the process of delivering
effective treatments to patients for two main reasons.
Firstly, studies not confined to specific tumor types could
potentially enroll large numbers of participants more
quickly. Secondly, this strategy could eliminate the need
for separate clinical trials for each tumor type that might
benefit from the therapy, thus streamlining the research
and approval process. For example, a therapy targeting
biomarker X could be simultaneously tested in glioblas-
tomas and astrocytomas with high expression levels of
X. A recent commentary presented similar arguments;
however, proposing the much more revolutionary shift
from a tumor classification system based on the tumor’s
organ of origin to one based on molecular characteristics
in mind [101].

Even without a significant overhaul of the general
tumor classification system, the current system may still see
a weakened role in influencing clinical decisions regarding
treatment choices. However, its relevance in tumor grading
and its prognostic purpose are likely to persist and poten-
tially even increase as new biomarkers are integrated. A
variety of alternative classification methods that could aug-
ment or enhance current systems have been proposed.
These include classifications based on EGFR expression,
DNAmethylation patterns, the immune microenvironment,
the stability of somatic mutations, among other potential

OMICS IN GLIOBLASTOMA DIAGNOSIS AND THERAPY 9 of 13

 17503639, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bpa.70027 by C

ochraneItalia, W
iley O

nline L
ibrary on [30/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



criteria [102]. Another potential avenue for further integrat-
ing omics data into the diagnostic process involves the addi-
tion of glioblastoma subtypes. These subtypes could be
delineated based on the cell populations already identified
in various studies, from TCGA subtypes [17] and cellular
states [25] to pathway-based approaches [29] and beyond.
Most of these studies appear to identify similar cell popula-
tions, as evidenced by the significant overlaps reported in
their findings, despite utilizing various methods. Given the
intratumoral heterogeneity of glioblastomas, which prevents
classifying the entirety of a tumor as a single subtype, future
classification systems might instead be based on the domi-
nant subtype or the prevalence of the respective subtypes
within the tumor.

Additionally, omics data can be used to provide
ground truths for training histology-based classifiers and
might in that regard even enhance traditional histopatho-
logical analysis [70]. One of the most significant contribu-
tions omics has on glioblastoma diagnosis and therapy lies
in its important contributions toward a better understand-
ing of glioblastomas, which will continue to inspire new
treatment approaches and, ultimately, holds the promise
of leading to improved patient outcomes in the future.
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