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Background: The preoperative prediction of glioma, integrated histological/molecular classification, and 
prognosis are critical for personalized patient management and treatment optimization. This study aimed 
to explore whether preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), an 
advanced MRI technique, can comprehensively and noninvasively evaluate gliomas.
Methods: Adult patients (June 2013 to May 2021) with diffuse glioma, retrospectively reclassified by the 
2021 World Health Organization (WHO) classification criteria in this cohort study, underwent conventional 
and DCE-MRI examinations at our institution. Quantitative measurements, including the volume transfer 
constant (Ktrans), volume of extravascular extracellular space per unit volume of tissue (Ve), and rate constant 
of backflux (Kep), were derived from the tumor parenchyma areas. The diagnostic efficacy of glioma grading 
and genotyping, such as isocitrate dehydrogenase (IDH) and 1p/19q status, was evaluated using receiver 
operating characteristic (ROC) analysis. The prognostic predictive value was assessed using Cox or logistic 
regression analysis to build models visualized by nomograms. The area under the curve (AUC), calibration 
curves, and decision curves were used to evaluate the performance of these models.
Results: The study population consisted of 101 participants [mean age ± standard deviation (SD), 
47.05±12.81 years (72 males and 29 females)]. Tumor.Kep.max emerged as the most crucial parameter, 
serving as an independent protective predictor of 1p/19q-codeletion [odds ratio (OR) and 95% confidence 
interval (CI): 0.98 (0.97–0.996), AUC: 0.71 (0.58–0.82)], whereas it was negatively associated with high-grade 
gliomas [OR: 0.972 (0.950–0.996), AUC: 0.87 (0.80–0.94)] and IDH-mutant [OR: 1.02 (1.000–1.03), AUC: 
0.72 (0.61–0.81)]. Tumor.Ve.max demonstrated excellent diagnostic value [AUC: 0.93 (0.86–1.00); sensitivity, 
100%; specificity, 90.7%; P<0.001] for diagnosing cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) 
status. Tumor Ktrans.max emerged as an independent prognostic risk factor for glioma patients [AUCs for 1-, 
3-, and 5-year survival, 0.75 (0.58–0.92), 0.64 (0.47–0.82), and 0.66 (0.43–0.89), respectively].
Conclusions: DCE-MRI technology holds significant value in glioma diagnosis, particularly in integrated 
molecular diagnostics, predicting grading, molecular genotype including IDH status, and prognosis, thereby 
offering a comprehensive preoperative evaluation framework. This approach enables clinicians to accurately 
stratify patients, thus optimizing treatment strategies.
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Introduction

Glioma heterogeneity significantly influences clinical 
treatment strategies and patient outcomes. Previous studies 
have highlighted that higher World Health Organization 
(WHO) classifications correlate with increased glioma 
malignancy and poorer prognosis. Additionally, the 
molecular profile of gliomas is crucial for diagnosis, surgery, 
and survival outcomes (1-3). However, traditional diagnosis 
has limitations, such as invasiveness, incomplete sampling, 
and an inability to fully capture tumor heterogeneity. 
Therefore, there is a pressing need for noninvasive methods 
to preoperatively predict glioma characteristics, WHO 
grade, molecular genetics, and survival.

Perfusion imaging, which visualizes tumor blood flow, 
microvasculature, and angiogenesis, has emerged as a 
promising noninvasive modality for glioma assessment (4,5). 
Dynamic contrast-enhanced (DCE) perfusion imaging, 
based on T1 signal changes, offers a detailed portrayal 
of the tumor microvasculature, including vessel density, 
blood-brain barrier (BBB) integrity, and permeability (6-8). 
Yan et al. demonstrated the superior performance of DCE 
magnetic resonance imaging (DCE-MRI) parameters in 
glioma grading and survival prediction compared with other 
imaging modalities, such as arterial spin labeling (ASL) or 
intravoxel incoherent motion (IVIM) diffusion-weighted 
imaging (DWI) (9). Thus, DCE-MRI plays a unique and 
irreplaceable role in preoperative glioma evaluation and 
warrants further investigation (10).

Numerous studies have underscored the utility of DCE-
MRI in predicting tumor grade, survival, and specific 
molecular types, such as isocitrate dehydrogenase (IDH) 
mutations (11-14). However, gaps remain in understanding 
its full potential. Although studies have explored quantitative 
DCE-derived parameters, such as transfer constant (Ktrans), 
extracellular volume fraction (Ve), and reflux constant (Kep), 
less attention has been given to semiquantitative measures, 
such as the initial area under the curve (iAUC), which can 
provide insights into tumor physiology and blood volume 
variations (15). Additionally, there are limited data on how 
DCE-derived parameters correlate with molecular markers, 
such as cyclin-dependent kinase inhibitor 2A/B (CDKN2A/

B), chromosome 7 gain, and chromosome 10 loss (+7/−10), 
which are critical in glioma classification according to 
the 2021 WHO guidelines. Furthermore, some studies 
have suggested the use of histogram analysis to derive 
parameters such as mean and maximum values from regions 
of interest (ROI) for glioma assessment (16). This raises the 
question of whether the maximum, minimum, and average 
values from both the tumor parenchyma and peritumor 
parenchyma can effectively predict glioma diagnosis and 
prognosis.

Our study aimed to comprehensively explore and 
compare the preoperative utility of various DCE-MRI-
derived parameters, including maximum, minimum, and 
average values from the tumor and peritumor parenchyma, 
in grading gliomas, identifying molecular subtypes, and 
predicting prognosis. Additionally, we constructed and 
presented predictive models in a nomogram format, offering 
a quantitative tool for individual risk prediction and patient 
benefit assessment. The evaluation of these nomograms will 
focus on their discrimination ability, accuracy, and clinical 
practicality to assess their overall clinical effectiveness. 
We present this article in accordance with the STROBE 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-2025-36/rc).

Methods

Study participants

This study was conducted in accordance with the Declaration 
of Helsinki and its subsequent amendments. The study was 
approved by the Medical Ethics Committee of The First 
Affiliated Hospital of Sun Yat-sen University (No. [2021]209). 
The Ethics Committee waived the need for informed consent 
due to the retrospective nature of the study.

Patients [101 patients; mean age ± standard deviation (SD), 
47.05±12.81 years; 72 males and 29 females] who underwent 
preoperative MRI at the First Affiliated Hospital of Sun Yat-
sen University (June 2013 to May 2021) and were confirmed 
to have adult-type diffuse gliomas by pathology were enrolled 
retrospectively. Additional inclusion and exclusion criteria are 
presented in Figure 1. Follow-up survival data were collected 
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through clinical interviews until 31 May 2021. Overall 
survival (OS) was defined as the duration from the date of 
primary tumor resection to the date of death, censored at the 

date of the last follow-up visit if the patient was alive or lost to  
follow up.

MRI protocol

Images  were  acquired us ing a  3 .0T MR scanner 
(MAGNETOM Verio Prisma, Siemens Healthineers, 
Erlangen, Germany). The detailed imaging parameters are 
listed in Table 1. Each participant underwent conventional 
MRI sequences, including pre-contrast axial T1-weighted 
imaging (T1WI), axial T2-weighted imaging (T2WI), axial/
coronal T2-fluid-attenuated inversion recovery (FLAIR) 
imaging, and axial T1-weighted contrast-enhanced imaging 
(T1CE), in addition to DCE-MRI.

The DCE-MRI protocol comprised two precontrast T1-
volumetric interpolated breath-hold examination (T1-VIBE) 
sequences, each with distinct flip angles (2° and 15°), to 
calculate the T1-map, and dynamic contrast-enhanced time-
resolved angiography with stochastic trajectories sequences 
(TWIST; 75 measurements, total scan time of 358 s). A 
bolus injection of 0.1 mmol/kg body weight of gadolinium 
(Magnevist, Schering, Berlin, Germany) at an injection 
rate of 4 mL/s was started from the fifth measurement of 
75 phases in total, followed by a 20 mL 0.9% saline flush. 
Post-contrast sagittal three-dimensional (3D) T1-weighted 
magnetization-prepared rapid gradient-echo (MPRAGE) and 
T1CE images were obtained after DCE-MRI.

DCE-MRI analysis

All DCE-MRI data were transmitted to a commercially 
available and cl inically approved post-processing 
workstation (Sango via, Siemens Healthcare) for analysis 
using the Siemens Tissue 4D workflow according to the 
manufacturer’s instructions. Automatic motion correction 
and alignment were first performed. The tissue signal 
intensity was converted to gadolinium concentration. 
The two-compartment Toft’s model was used to fit the 
pharmacokinetic curves (17). Three types of the arterial 
input function (AIF; the slow, intermediate, and fast types), 
based on mathematical simulation, were automatically 
provided (18,19). According to the operation manual, one of 
the above three types with the smallest chi-square value was 
selected. ROIs were then sketched at the three consecutive 
and maximal levels of tumors after the consensus of two 
experienced radiologists according to previous studies  
(20-22). Within each level, two ROIs were positioned as 
follows:

Figure 1 Description of the inclusion and exclusion criteria. DCE, 
dynamic contrast-enhanced; MRI, magnetic resonance imaging.

234 patients with primary diagnosis of glioma

Patients ≥18 years of age (221 included)

Those that underwent tumor resection  
or biopsy within 3 weeks after MRI  

(123 included)

Those that underwent tumor resection  
within 3 weeks after MRI (115 included)

Patients finally pathologically diagnosed with 
adult diffuse glioma (104 included)

Those that were not given chemotherapy, 
radiotherapy, or targeted therapy before the 
operation or MR examinations (103 included)

Finally included 101 patients

Excluded (n=13):
• �With age less than 18 years

Excluded (n=98):
• �Without DCE-MRI at the First Affiliated 

Hospital of Sun Yat-sen University

Excluded (n=8):
• �Without tumor resection or biopsy

Excluded (n=11):
• �4 with pleomorphic xanthoastrocytoma
• �3 with pilocytic astrocytoma
• �2 with ganglioglioma
• �2 with dysembryoplastic 

neuroepithelial tumor

Excluded (n=1):
• �With histories of relapse after 

integrative treatment

Excluded (n=2):
• �With poor image quality
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	One ROI (irregularly shaped) encompassed all solid 
components of the tumor parenchyma (hereinafter 
referred to as the “tumor” region), excluding large 
vessels, meninges, and necrotic and hemorrhagic 
areas. ROI placements on DCE-derived maps were 
performed using T1CE as the reference when tumors 
showed enhancement; if there was no enhancement, 
T2-FLAIR images were used as the reference to draw 
the ROIs.

	The other ROI (circular, measuring 10 mm2) was 
randomly placed on areas extending ≤1 cm from the 
tumor margin (expressed as “peritumoral” hereinafter).

Representative images of the ROIs are shown in Figure 2.  
Thus, quantitative parameters, including Ktrans, Ve, and 
Kep, and the semiquantitative parameter iAUC which was 
in the first 60 seconds, were calculated. The minimum, 
mean, and maximum values of each DCE-MRI metric in 
each layer were recorded, and the average values of the 
three levels of each metric were used for analysis. A total of 
24 parameters [2 ROIs (tumor parenchyma/peritumoral) × 
4 parameters (Ktrans/Kep/Ve/iAUC) per ROI × 3 statistical 
values (the average of the maximum/minimum/mean 
values across the three levels) per parameter] were derived, 
such as the minimum value of Ve derived from the tumor 
parenchyma (tumor.Ve.min).

Histopathological and molecular evaluation

The mutation statuses of IDH1 and IDH2 were determined 
using high-throughput sequencing methods. The status 

of 1p/19q, epidermal growth factor receptor (EGFR), 
and CDKN2A/B was evaluated using fluorescence in situ 
hybridization (FISH) (23). Following the 2021 WHO 
Central Nervous System (CNS) classification, tumors were 
reclassified using an integrated histomolecular diagnosis, 
which incorporated existing molecular results and original 
pathologic diagnoses.

Statistical analysis

The data were analyzed using the software SPSS 26 (IBM 
Corp., Armonk, NY, USA), the SPSSAU data scientific 
analysis platform (https://spssau.com/) (24), and the R 
programming language (version 4.1.2, The R Foundation 
for Statistical Computing, Vienna, Austria).

Normally distributed data are expressed as mean ± 
SD, and non-normally distributed data are expressed as 
median ± interquartile range (IQR). Univariate analysis 
was conducted using unpaired Student’s t-tests, one-way 
analysis of variance (ANOVA), Mann-Whitney rank-sum 
tests, Kruskal-Wallis tests, or chi-square tests, if available. 
Multivariate analysis was performed using logistic or Cox 
regression models, incorporating age, sex, and univariate 
variables with a P value less than 0.1 as covariates. The 
predictive or prognostic models were comprehensively 
evaluated and compared using the area under the curve 
(AUC) calculated from receiver operating characteristic 
(ROC) curves and DeLong tests. Nomograms were 
constructed to visually represent these models using the 
R package nomogram and calibration curve analysis, 

Table 1 Parameters of MRI sequences 

Parameters
T1WI T2WI T2-FLAIR DCE-MRI T1-MPRAGE T1CE

Spin-echo Turbo spin-echo Turbo spin-echo T1-VIBE TWIST Echo planar imaging Spin-echo

Contrast agent – – – – Gadolinium Gadolinium Gadolinium

Dose (mmol/Kg) – – – – 0.1

Flip angles 150° 150° 150° 2°/15° 12° 8° 150°

TR/TE (ms/ms) 2,000/17 4,200/109 9,000/84 3.83/1.37 4.89/1.88 2,300/2.43 2,000/17

Slice thickness (mm) 6 6 6 3.5 3.5 0.75 6

Field of view (mm2) 220×220 220×220 220×220 220×220 220×220 240×225 220×220

Voxel resolution (mm3) 0.7×0.7×6 0.6×0.6×6 0.7×0.7×6 1.4×1.4×3.5 1.4×1.4×3.5 0.8×0.8×0.8 0.7×0.7×6

DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; MRI, magnetic resonance imaging; T1CE, T1-weighted contrast-enhanced 
imaging; T1-MPRAGE, T1-magnetization-prepared rapid gradient-echo; T1-VIBE, T1-volumetric interpolated breath-hold examination; T1WI, T1-
weighted imaging; T2-FLAIR, T2-fluid-attenuated inversion recovery; T2WI, T2-weighted imaging; TE, echo time; TR, repetition time; TWIST, time-

resolved angiography with stochastic trajectories sequences.

https://spssau.com/
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and decision curve analysis (DCA) was performed (25). 
Furthermore, the 1-, 2-, and 5-year survival rates of 
individuals were predicted. Statistical significance was 
set at P<0.05, and the results were presented with a 95% 
confidence interval (CI) in parentheses.

Results

Demographic and oncological information

Patient demographic information and oncological 
characteristics, including histopathological and molecular 
data, are presented in Table 2. There were 61/101 high-

grade gliomas (HGGs; WHO grade 4) and 40/101 low-
grade gliomas (LGGs; WHO grade 2 and 3). Notably, 23 
individuals harbored IDH-mutant astrocytoma (12 classified  
as WHO grade 2, 5 as grade 3, and 6 as grade 4), 14 
presented with IDH-mutant and 1p/19q-codeleted 
oligodendroglioma (11 cases of WHO grade 2 and 3 of 
grade 3), and 55 had grade 4 IDH-wildtype glioblastoma, 
according to the WHO 2021 classification. A total of 9 cases 
were classified as IDH-wildtype, not otherwise specified 
(NOS), because of incomplete information, and the detailed 
molecular information is shown in Table S1. Until 31 May 
2021, 49 (48.5%) patients were alive, 41 (40.6%) had died, 

Figure 2 Representative ROI delineations. This selected patient was a 69-year-old man with IDH-wildtype glioblastoma confirmed by 
pathology. (A) T2-weighted FLAIR image; (B) contrast-enhanced T1-weighted image; (C) iAUC image; (D) Ktrans image; (E) Ve image; 
(F) Kep image. (C-F) ROI 1 (marked in green) represented the tumor parenchyma tissues, and ROI 2 (marked in yellow) represented the 
peripheral zones. FLAIR, fluid-attenuated inversion recovery; IDH, isocitrate dehydrogenase; iAUC, initial area under the curve for the first 
60 seconds; ROI, region of interest. 

A

D

B

E

C

F

https://cdn.amegroups.cn/static/public/QIMS-2025-36-Supplementary.pdf


Ma et al. DCE-MRI predicting glioma diagnosis and prognosis9860

Copyright © 2025 AME Publishing Company. All rights reserved.   Quant Imaging Med Surg 2025;15(10):9855-9870 | https://dx.doi.org/10.21037/qims-2025-36

and 11 (10.9%) had been lost to follow-up.
As shown in Table 2, only age but not sex was found to 

be significantly associated with genotype, such as IDH and 
1p/19q status, diagnosis, and tumor grade. Specifically, 
gliomas with high-grade, IDH-wildtype, and 1p/19q-
noncodeletion tended to occur in older patients.

Glioma grading with DCE-MRI-related parameters

Different groups of HGG and LGG
According to the univariate analysis (Table S2), parameters 
derived from the tumor parenchyma, including the 
maximum, mean, and minimum values, significantly 

Table 2 Participant demographic, histopathologic, and molecular data

Parameter Number
Gender (n=101) Age (years)

Male (n=72) Female (n=29) P value Mean ± SD P value

Group 101 0.82 <0.0001****

Low-grade 40 28 12 39.80±9.50

High-grade 61 44 17 51.80±12.52

CNS WHO grade 101 0.84 <0.0001****

Grade 2 29 21 8 39.27±9.32

Grade 3 11 7 4 41.40±10.36

Grade 4 61 44 17 51.80±12.52

IDH 101 0.78 <0.0001****

Wild-type 64 45 19 52.38±11.83

Mutant 37 27 10 37.84±8.56

1p/19q 85 0.25 0.01*

Codeletion 19 16 3 40.63±9.17

Non-codeletion 66 47 19 47.70±13.22

EGFR amplification 56 0.95 0.31

No amplification 37 25 12 50.97±13.85

Amplification 19 13 6 54.63±9.33

+7/−10 cytogenetic signature 20 0.52 0.06

No +7/−10 18 11 7 42.50±13.19

+7/−10 2 2 0 62.00±11.31

CDKN2A/B homozygous deletion 48 0.94 0.13

No deletion 43 35 8 40.16±11.14

Deletion 5 4 1 48.40±11.74

Integrated histomolecular diagnosis 101 0.40 <0.0001****

Astrocytoma, IDH-mutant 23 14 7 36.65±7.52

Oligodendroglioma, IDH-mutant and 
1p/19q codeleted

14 12 2 39.79±10.03

Glioblastoma, IDH-wildtype 55 35 13 53.45±11.87

IDH-wildtype, NOS 9 5 4 45.78±9.73

*, P<0.05; ****, P<0.0001. CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; CNS, central nervous system; EGFR, epidermal growth 
factor receptor; IDH, isocitrate dehydrogenase; NOS, not otherwise specified; SD, standard deviation; WHO, World Health Organization.

https://cdn.amegroups.cn/static/public/QIMS-2025-36-Supplementary.pdf
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differentiated LGGs from HGGs (P<0.05). Specifically, 
Kep values were lower in HGGs, whereas other parameters 
exhibited higher values in HGGs. Furthermore, the tumor.
iAUC.mean significantly demonstrated the highest AUC 
[0.853 (0.763–0.920)] with the best 90.2% sensitivity 
and 70% specificity using the optimal-retrospectively 
determined threshold of 0.08 (P<0.05, Table S2 and  
Figure 3A).

Subsequently, multivariate logistic regression analysis 
revealed that age [odds ratio (OR): 1.058 (1.007–1.110)] 
and tumor.Kep.max [OR: 0.972 (0.950–0.996)] were 
promoting factors for predicting HGGs (P<0.05, Table 3). 
However, compared to univariate analysis using tumor.
iAUC.mean, the prediction model did not exhibit improved 
discrimination ability with a greater AUC [0.87 (0.80–0.94), 
P>0.05, Figure 3A].

The model was visualized using a nomogram (Figure 3B) 
with good diagnostic capability and adequate calibration 
(Figure 3C). DCA (Figure 3D) further confirmed the clinical 
validity of the model, revealing that the cutoff value of 
0.54 determined by ROC analysis fell within the range of 
threshold probabilities (0.03–0.78).

Subgroup analysis of WHO Grades 2, 3, and 4
The univariate analysis revealed that parameters derived 
from the tumor parenchyma, peritumoral-iAUC-max, 
and peritumoral-iAUC-mean could differentiate different 
grades of gliomas (P<0.05, Table S3). However post hoc 
pairwise comparisons showed that only parameters derived 
from the tumor parenchyma effectively differentiated 
gliomas with WHO grades 2 and 4 (P<0.001), or between 
WHO grades 2 and 3 (P<0.05); meanwhile, no statistically 
significant differences were observed between grades 3 and 
4 (Table S3).

Multivariate logistic regression analysis (Table 3) revealed 
that WHO grade exhibited a positive correlation with age 
[OR: 1.068 (1.004–1.136)] and a negative correlation with 
tumor.Kep.max [OR: 0.973 (0.95–0.997)]. The prediction 
model successfully discriminated gliomas with WHO grades 
of 2 [AUC, 0.893 (0.815–0.957), Figure 3E and Table S4] 
and 4 [AUC, 0.858 (0.776–0.931), Figure 3F and Table S5].

Furthermore, the models were visualized using 
nomograms (Figure 3G,3H) with strong diagnostic 
capability and adequate calibration (Figure 3I,3J). DCA 
(Figure 3K,3L) further confirmed the wide clinical validity 
of the model within the range of threshold probabilities 
(0.05–0.89 or 0.05–0.81).

Glioma genotyping with DCE-MRI-related parameters

IDH gene
According to the univariate analysis (Table S6), the results 
were comparable to those observed in the above groups. 
Specifically, in predicting IDH genotype, tumor.iAUC.mean 
performed the best [AUC, 0.770 (0.690–0.868), Figure 4A], 
with the best specificity of 86.5%, although there was no 
evidence of a difference compared to the others (P>0.05).

According to the multivariate analysis (Table 3), tumor.
Kep.max was independently associated with IDH status [OR: 
1.015 (1.000–1.029)], and age was negatively associated with 
survival [OR: 0.894 (0.851–0.939)]. Compared to the highest 
AUC in the univariate analysis, the predictive power of this 
multifactor model [AUC, 0.855 (0.779–0.920)] improved 
significantly (P<0.05). Furthermore, this predictive 
model was visualized using a nomogram (Figure 4B)  
with good diagnostic capability, adequate calibration ability, 
and wide clinical validity within the range of threshold 
probabilities (0.06–0.84) (Figure 4C,4D).

1p/19q
The univariate analysis (Table S7) revealed that Ktrans.
min had the best specificity for predicting 1p/19q in tumors 
(84.2%), and Kep.max exhibited the best sensitivity (73.7%). 
Furthermore, Kep.mean demonstrated the highest AUC 
[0.708 (0.563–0.835), Figure 4E].

According to the logistic regression analysis (Table 3), 
tumor.Kep.max served as an independent predictive factor 
for 1p/19q codeletion [OR: 0.982 (0.968–0.996)]. However, 
the predictive power of this model did not improve [AUC, 
0.705 (0.581–0.821), P<0.05].

Nomograms were constructed (Figure 4F), and DCA 
indicated the acceptable potential clinical usefulness of the 
nomograms (Figure 4G). Nevertheless, the calibration plot 
revealed a deviation from the true events, suggesting that 
the model was not well calibrated (Figure 4H).

CDKN2A/B gene
In diagnosing the CDKN2A/B genotype, Ve, Kep, and 
iAUC obtained from the tumor parenchyma provided 
excellent diagnostic values (Figure 4I and Table S8, P<0.01). 
Remarkably, tumor.Ve.max achieved the largest AUC of 
0.93, coupled with 100% sensitivity and 90.7% specificity, 
using an optimal retrospectively determined threshold of 
2.87. Additionally, Kep showed 100% specificity and was 
lower for tumors with homozygous CDKN2A/B deletion 

https://cdn.amegroups.cn/static/public/QIMS-2025-36-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-2025-36-Supplementary.pdf
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Figure 3 ROC curve plots with AUCs of all selective DCE-MRI-related parameters and corresponding predictive models for differentiating 
LGGs and HGGs (A), WHO grade 2 (E), and WHO grade 4 (F) gliomas. Nomograms for individually predicting the probability of high-
grade (B), WHO grade 2 (G), and WHO grade 4 (H) gliomas. Calibration plots of corresponding predictive models for differentiating 
LGGs and HGGs (C), WHO grade 2 (I), and WHO grade 4 (J) gliomas. DCAs of corresponding predictive models for differentiating 
LGGs and HGGs (D), WHO grade 2 (K), and WHO grade 4 (L) gliomas. AUC, area under the curve; DCA, decision curve analysis; DCE-
MRI, dynamic contrast-enhanced magnetic resonance imaging; HGGs, high-grade gliomas; iAUC, initial area under the curve for the first 
60 seconds; LGGs, low-grade gliomas; ROC, receiver operating characteristic; WHO, World Health Organization.
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Table 3 The logistic regression results for predicting gliomas of different group (HGG or LGG), different WHO grade, IDH-mutant, 1p/19q 
codeletion, CDKN2A/B homozygous deletion 

Predictors Parameter P (for HL) β SE P (for β) OR (95% CI)

Group Age 0.69 0.06 0.03 0.02* 1.058 (1.007–1.110)

tumor.Kep.max −0.03 0.01 0.02* 0.972 (0.950–0.996)

Grade Age 0.26 0.07 0.03 0.04* 1.07 (1.004–1.14)

tumor.Kep.max −0.03 0.01 0.03* 0.973 (0.95–0.997)

IDH Age 0.15 −0.11 0.03 <0.001*** 0.89 (0.85–0.94)

tumor.Kep.max 0.01 0.01 0.049* 1.02 (1.00–1.03)

Constant 3.81 1.18 0.01* 47.78 (4.46–511.67)

1p/19q tumor.Kep.max 0.03 −0.02 0.01 0.01* 0.982 (0.968–0.996)

Constant 2.14 0.49 <0.001*** 8.50 (3.28–22.02)

CDKN2A/B tumor.Ve.max 0.001 13.19 8.77 0.13 5.36×105 (0.019–1.55×1013)

Constant −39.3 25.82 0.13 0 (0–8.21×105)

*, P<0.05; ***, P<0.001. β, regression coefficient; CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; CI, confidence interval; HGG, high-
grade glioma; HL, Hosmer-Lemeshow test; IDH, isocitrate dehydrogenase; LGG, low-grade glioma; OR, odds ratio; SE, standard error of 
regression coefficient; WHO, World Health Organization.

than for those without CDKN2A/B deletion.
Unfortunately, despite these promising results, no 

significant variables were incorporated into the logistic 
regression equation to predict the CDKN2A/B status. 
Furthermore, the model was visualized using nomograms 
(Figure 4J), which exhibited good diagnostic capability; 
however, the calibration plot revealed a deviation from true 
events, suggesting that the model was not well calibrated 
(Figure 4K). DCA (Figure 4L) revealed that the model 
demonstrated an acceptable clinical validity.

EGFR and +7/–10 cytogenetic signature
To determine the EGFR or +7/−10 type (Tables S9,S10), 
Ve derived from the peritumoral area had the smallest 
P value of 0.061 and 0.058 (borderline significant, 
respectively). ROC analysis revealed that the AUC was 
0.649 or 0.917 (P=0.069 or 0.059), with 73.7% or 100% 
specificity and 59.5% or 83.3% sensitivity for predicting 
EGFR amplification or the +7/−10 cytogenetic signature, 
respectively. However, they did not establish a related 
prediction model.

Glioma prognosis with DCE-MRI-related parameters

The final multivariate Cox regression analysis identified 
tumor.Ktrans.max [HR: 1.70 (1.05–2.74)], and tumor.

iAUC.min [HR: 4.34 (1.60–11.79)] as independent 
prognostic risk factors for glioma patients (P<0.05, Table 4).  
Time-dependent ROC analysis revealed AUC values with 
95% CI of 0.75 (0.58–0.92), 0.64 (0.47–0.82), and 0.66 
(0.43–0.89) for 1-, 3-, and 5-year survival, respectively 
(Figure 5A). Adequate calibration (Figure 5B) was developed 
for practical use, and a nomogram (Figure 5C) exhibited 
acceptable stratification capacity. The DCAs (Figure 5D-5F)  
demonstrated that the prognostic model offered a good 
overall net benefit for 1-year survival outcome (Figure 5D), 
indicating its strong potential for predicting the survival of 
patients with glioma.

Discussion

Based on the latest 2021 WHO classification, this 
retrospective study aimed to investigate the clinical 
utility of preoperative DCE-derived parameters in adult 
diffuse gliomas. Our findings indicate that certain DCE-
derived parameters, such as the maximum values of Kep 
and Ktrans derived from tumor tissue, exhibit excellent 
diagnostic performance in predicting glioma prognosis 
and grading, as well as identifying the genetic status of 
IDH, 1p/19q, and CDKN2A/B (Table S11). Additionally, 
we provided diagnostic threshold values for various 
significant parameters and visualized prediction models 

https://cdn.amegroups.cn/static/public/QIMS-2025-36-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-2025-36-Supplementary.pdf
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Figure 4 ROC curve plots with AUCs of all selective DCE-MRI-related parameters and corresponding predictive models, calibration plots, 
and DCAs of corresponding predictive models for differentiating different IDH genotypes (A,C,D), different 1p/19q genotypes (E,G,H), 
and different CDKN2A/B genotypes (I,K,L). Nomograms for individually predicting the probability of IDH mutation (B), 1p/19q codeletion 
(F), and CDKN2A/B homozygous deletion (J) gliomas. AUC, area under the curve; CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; 
DCA, decision curve analysis; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; iAUC, initial area under the curve for 
the first 60 seconds; IDH, isocitrate dehydrogenase; ROC, receiver operating characteristic.
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Table 4 The results of Cox regression

Variance
Univariate Cox regression Multivariate Cox regression

P HR (95% CI) β SE P HR (95% CI)

Age – – – – ns –

Sex – – – – ns –

tumor.Ktrans.max 0.03* 1.27 (1.03–1.56) 0.53 0.24 0.03* 1.70 (1.05–2.74)

tumor.Ktrans.mean 0.06 5.67 (0.96–33.35) – – ns –

peritumoral.Ve.max 0.08 1.599 (0.95–2.69) – – ns –

peritumoral.Ve.mean 0.01* 6.03 (1.58–22.99) – – ns –

tumor.iAUC.min† 0.001** 3.54 (1.67–7.50) 1.47 0.51 0.004** 4.34 (1.60–11.79)
†, this continuous variable was transformed into categorical variables according to the mode “0”. ns, P>0.05; *, P<0.05; **, P<0.01. β, 
regression coefficient; CI, confidence interval; HR, hazard ratio; iAUC, initial area under the curve for the first 60 seconds; SE, standard 
error of regression coefficient.

Figure 5 Time-dependent ROC curve plots with AUCs (A), calibration plots (B), nomograms for visualization (C), and decision curves (D-F)  
of the Cox regression model for 1-, 3-, and 5-year overall survival with all selected DCE-MRI-related parameters. AUC, area under the 
curve; DCA, decision curve analysis; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; iAUC, initial area under the 
curve for the first 60 seconds; OS, overall survival; ROC, receiver operating characteristic. 

Points 

Tumor.iAUC.min 

Tumor.Ktrans.max 

Total points

Linear predictor

12-month survival probability 

36-month survival probability 

60-month survival probability

D E F
0.25

0.20 

0.15

0.10 

0.05

0.00

0.25

0.20 

0.15

0.10 

0.05

0.00

0.25

0.20 

0.15

0.10 

0.05

0.00

Threshold probability, % Threshold probability, %Threshold probability, %

12-month DCA 36-month DCA 60-month DCA

N
et

 b
en

ef
it

N
et

 b
en

ef
it

N
et

 b
en

ef
it

A
1.0

0.8

0.6

0.4 

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1−Specificity

S
en

si
tiv

ity

12-month AUC: 0.75 (95% CI: 0.583–0.917) 

36-month AUC: 0.642 (95% CI: 0.465–0.82) 

60-month AUC: 0.658 (95% CI: 0.43–0.886)

B C
1.0

0.8

0.6

0.4 

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

A
ct

ua
l r

at
e 

of
 O

S
-m

on
th

s

Nomogram predicted probability of OS-months
n=90 d=41 p=2, subjects per group
Gray, ideal

X-resamping optimism added, B =100
Based on observed-predicted

Cal. 12 months
Cal. 36 months
Cal. 60 months
Bias-corrected
Ideal

0	 25	 50	 75	 100 0	 25	 50	 75	 1000	 25	 50	 75	 100

All
Model
None

All

Model

None

All
Model
None

0	 10010 20 30 40 50 60 70 80 90

0

1

0 1 2 3 4 5 6 7 8 9 10 11

0 10 20 30 40 50 60 70 80 90 100 110

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.8   0.7   0.6 0.5 0.4 0.3 0.2

0.3 0.2  0.1

0.3 0.2  0.1



Ma et al. DCE-MRI predicting glioma diagnosis and prognosis9866

Copyright © 2025 AME Publishing Company. All rights reserved.   Quant Imaging Med Surg 2025;15(10):9855-9870 | https://dx.doi.org/10.21037/qims-2025-36

using nomograms, which offer a relatively quantitative and 
intuitive approach with clinically useful thresholds to meet 
the practical needs of clinical decision-makers.

According to the univariate analysis, numerous DCE-
related parameters were significantly different between 
HGGs and LGGs, between WHO grade 2- and 3- 
gliomas, between WHO grade 2- and 4- gliomas, and 
between different statuses of IDH, 1p/19q, and CDKN2A/
B, as well as for predicting glioma prognosis. Notably, 
tumor.Kep.max emerged as the most crucial parameter 
because it served as an independent predictive factor in 
several final prediction models. Kep is known to reflect 
vessel permeability and surface area (26). More malignant 
and infiltrative gliomas are associated with increased 
permeability and larger surface areas, leading to the 
accumulation of contrast agents in the extravascular 
compartment, resulting in delayed reverse transfer and a 
decreased rate (27). Accordingly, lower Kep values indicate 
higher glioma grades and IDH-wild genotypes (27).  
Possible reasons for these findings include variations in 
grouping criteria (some studies classify HGG as WHO 
grades 3 and 4), differences in the WHO CNS edition, 
and patient cohorts. Another explanation is that our study 
utilized genomic sequence analysis to detect both IDH1 
and IDH2 mutations, whereas previous studies primarily 
focused on IDH1 R132H  mutation detection using 
immunohistochemistry, which represents only the most 
common mutation in gliomas (5,28-30). This approach 
may have resulted in slightly higher false-negative rates, 
such as missing mutations in IDH2 (27).

Regarding 1p/19q status, Santwijk et al. concluded that 
the impact of 1p/19q codeletion on DCE-related metrics 
remains poorly understood and has not been fully elucidated 
despite a systematic literature search (5). In addition, Ahn 
et al. demonstrated that DCE indices were not significantly 
associated with 1p/19q codeletion in LGG (28). However, 
in our study, a lower Kep tended to be 1p/19q-codeleted. 
Therefore, our findings provide valuable insights into this 
field of research.

To the best of our knowledge, there are limited 
studies predicting CDKN2A/B or +7/−10 status using 
MR, particularly DCE-MRI (14,31-36). Importantly, 
our study revealed that Ve derived from tumor tissue is 
an independent positive predictor of CDKN2A/B status. 
We hypothesized that this may be due to the correlation 
between Ve and cellularity/mitotic activity (37,38). 
Although our study was one of the earlier studies to attempt 
to predict the +7/−10 status using DCE-derived parameters, 

the results were not promising. Nevertheless, our data 
provide preliminary evidence of a correlation between 
DCE-derived parameters and CDKN2A/B phenotypes.

Contrary to our expectations, no significant parameters 
were associated with EGFR amplification, which plays a 
crucial role in promoting tumor growth and invasion. We 
speculate that this may be attributed to an unbalanced 
patient population and insufficient sample size, which 
may have led to selection bias and limited the power of 
the analysis to detect differences in DCE-derived indices. 
Future studies with larger sample sizes and additional 
genetic testing are required to resolve this uncertainty.

Consistent with the established literature, our study 
reaffirmed the prognostic value of Ktrans and iAUC 
derived from tumor, demonstrating that higher Ktrans 
was associated with worse OS or higher HR, and the 
iAUC was found to be an independent negative prognostic 
factor (39-41). Notably, our analysis revealed diminished 
prognostic utility of peritumoral DCE-MRI parameters 
for molecular marker prediction and survival outcome 
assessment—a finding that diverges from prior HGG-
specific studies reporting improved OS associated with 
high Ve in peritumoral edema (26). This discrepancy 
may be multifactorial. Primarily, the inclusion of LGG 
cases in our cohort introduced distinct pathophysiological 
characteristics, particularly relatively restricted peritumoral 
infiltration compared to the HGG populations examined in 
previous investigations. Furthermore, technical limitations 
warrant consideration, including (I) intrinsic heterogeneity 
within the peritumoral microenvironment affecting 
parameter consistency; and (II) non-standardized ROI 
selection protocols in peritumoral regions. In future studies, 
we plan to prioritize areas with higher tumor infiltration 
for ROI placement, although accurately identifying such 
regions remains a methodological challenge.

This study has some l imitations.  First ,  despite 
exceeding the numbers of patients in many previous 
studies (4,27,29,42,43), the sample size remains limited. 
Second, the data were retrospectively collected from a 
single center, potentially introducing selection bias. Third, 
owing to technical constraints, this study did not analyze 
the prognostic marker TERT or another DCE-derived 
parameter, Vp. Future investigations that incorporate more 
molecular markers, integrated histopathological verification, 
and expanded measurements of Vp through multicenter 
retrospective or prospective studies are warranted to provide 
more insightful results regarding the clinical applications of 
DCE-MRI.
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Conclusions

This study comprehensively evaluated the performance 
of DCE-derived parameters in patients with glioma, 
highlighting the clinical value of DCE-MRI in the diagnosis 
of glioma, especially for integrated molecular diagnostics 
and prognosis. We also developed convenient and effective 
prediction models and nomograms for use by clinicians. 
Future studies with larger sample sizes, such as those for 
TERT, EGFR, and +7/−10, will further refine the predictive 
ability of DCE-MRI for genotyping performance.
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Supplementary

Table S1 The Detailed Molecular Information of 9 Cases with Gliomas of IDH-wildtype, NOS

ID sex age IDH 1p19q
EGFR 
amplification

+7/–10 
cytogenetic 
signature

CDKN2A/B 
homozygously 
deletion

necrosis
microvascular 
proliferation

original histologic 
diagnosis

original 
histologic 
WHO grade

OS (m) survival status

1 male 47 wild-type non-codeletion no deletion diffuse astrocytomas III 24.00 dead

2 male 50 wild-type diffuse astrocytomas II 92.80 alive

3 male 51 wild-type no +7/−10 gemistocytic astrocytoma II - lost to follow-up

4 female 43 wild-type codeletion no no oligodendrogliomas II 39.10 alive

5 male 65 wild-type non-codeletion no amplification no +7/−10 no diffuse astrocytomas II 2.40 alive

6 female 40 wild-type no amplification no +7/−10 not obvious diffuse astrocytomas II 74.60 dead

7 female 48 wild-type anaplastic astrocytoma III

8 male 31 wild-type non-codeletion no deletion  low-grade glioma II 31.60 dead

9 female 37 wild-type no amplification no +7/−10 no oligoastrocytoma II 72.70 alive

A blank in the table indicates that the attribute was not mentioned or not tested. The following tables show the results of the univariate statistical analysis. Initially, non-parametric univariate analysis 
was performed to evaluate whether any significant difference was presented in different groups. Then, for statistically significant parameters, receiver operating characteristic (ROC) curve analysis 
was performed to assess the discriminant capacity, describing the area under the ROC curves (AUCs), sensitivity, specificity, and cut-offs. The following additional abbreviations have been used in 
the following tables. Unless otherwise indicated, “*” indicates that p < 0.05, “**” indicates that p < 0.01, “***” indicates that p<0.001, “ns” indicates that p>0.05. p1, p value of the non-parametric test 
(two-tailed); p2, asymptotic p value of the ROC curve; 95% CI, 95% CI of AUC; Y, optimal Youden’s index. In addition, the units of DCE parameters such as Ktans and Ve throughout the following 
tables are shown below, not displayed in the tables: The unit of Ktrans: min -1. The unit of Kep: min-1. The unit of iAUC: mM/sec. There is no unit for the DCE parameter of Ve and iAUC. WHO, World 
Health Organization; OS, overall survival; NOS, not otherwise specified.

file:////Users/Molly/Documents/工作/%25E9%25A9%25AC%25E6%2585%25A7/AppData/Local/youdao/dict/Application/8.9.8.0/resultui/html/index.html#/javascript:;
file:////Users/Molly/Documents/工作/%25E9%25A9%25AC%25E6%2585%25A7/AppData/Local/youdao/dict/Application/8.9.8.0/resultui/html/index.html#/javascript:;
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Table S2 The Partial Representative Results of Non-parametric Tests and ROC Analysis of Useful Metrics for Diagnosing LGGs and HGGs

parameter

group (median)

p1 AUC p2 95% CI Y SE SP cut-offHGG  
(n=61)

LGG  
(n=40)

tumor.Ktrans.min 0.010 0.000 ** 0.666 ** 0.571 ~ 0.749 0.357 0.557 0.800 0.010 

tumor.Ktrans.max 0.530 0.330 * 0.625 * 0.494 ~ 0.745 0.321 0.721 0.600 0.360 

tumor.Ktrans.mean 0.150 0.060 *** 0.777 *** 0.683 ~ 0.842 0.444 0.869 0.575 0.080 

tumor.Ve.min 0.030 0.000 *** 0.748 *** 0.656 ~ 0.827 0.520 0.770 0.750 0.010 

tumor.Ve.max 2.480 2.030 ns 0.607 ns 0.497 ~ 0.716 0.266 0.541 0.725 2.370 

tumor.Ve.mean 0.440 0.090 *** 0.805 *** 0.713 ~ 0.887 0.611 0.836 0.775 0.180 

tumor.Kep.max 16.300 63.340 *** 0.758 *** 0.638~ 0.843 0.464 0.775 0.689 30.450 

tumor.Kep.mean 1.580 5.235 *** 0.800 *** 0.670 ~ 0.898 0.610 0.725 0.885 4.320 

tumor.iAUC.min 0.000 0.000 * 0.600 ns 0.486 ~ 0.708 0.195 0.295 0.900 0.000 

tumor.iAUC.max 0.660 0.170 *** 0.802 *** 0.708 ~ 0.871 0.529 0.754 0.775 0.360 

tumor.iAUC.mean 0.240 0.025 *** 0.853 *** 0.763 ~ 0.920 0.602 0.902 0.700 0.080 

peritumoral.iAUC.max 0.020 0.010 ns 0.609 ns 0.493 ~ 0.724 0.254 0.754 0.500 0.000 

peritumoral.iAUC.mean 0.010 0.000 ns 0.591 ns 0.476 ~ 0.707 0.215 0.590 0.625 0.000 

ROC, receiver operating characteristic; LGG, low-grade glioma; HGG, high-grade glioma; AUC, area under the curve; CI, confidence 
interval; SE, sensitivity; SP, specificity; iAUC, initial area under the curve for the first 60 seconds.

Table S3 The Partial Representative Results of Non-parametric Tests and Post Hoc Pairwise Comparisons for Diagnosing Different Grades

parameter

grade (median)

p
p for WHO 
grade 2 vs. 

WHO grade 3

p for WHO 
grade 2 vs. 

WHO grade 4

p for WHO 
grade 3 vs. 

WHO grade 4
WHO grade 2 

(n=29)
WHO grade 3 

(n=11)
WHO grade 4 

(n=61)

tumor-Ktrans-min 0.00 0.01 0.01 ** ns *** ns

tumor-Ktrans-mean 0.06 0.11 0.15 *** ns *** ns

tumor-Ve-min 0.00 0.04 0.03 *** ** *** ns

tumor-Ve-mean 0.08 0.46 0.44 *** ** *** ns

tumor-Kep-max 75.01 28.58 16.30 *** ** *** ns

tumor-Kep-mean 5.89 1.69 1.58 *** *** *** ns

tumor-iAUC-min 0.00 0.00 0.00 * * * ns

tumor-iAUC-max 0.15 0.43 0.66 *** * *** ns

tumor-iAUC-mean 0.01 0.16 0.24 *** * *** ns

peritumoral-iAUC-max 0.00 0.05 0.02 * ns ns ns

peritumoral-iAUC-mean 0.00 0.03 0.01 * ns ns ns

WHO, World Health Organization; iAUC, initial area under the curve for the first 60 seconds.



Copyright © 2025 AME Publishing Company. All rights reserved.  https://dx.doi.org/10.21037/qims-2025-36

Table S4 The partial representative AUC, Sensitivity, and Specificity Values, and Optimal Threshold for Useful Metrics for Diagnosing WHO 
Grade 2 gliomas

parameter AUC p2 95% CI Y SE SP cut-off

tumor-Ktrans-min 0.71 ** 0.604 ~ 0.816 0.438 0.542 0.897 0

tumor-Ktrans-mean 0.789 *** 0.677 ~ 0.878 0.516 0.861 0.655 0.06

tumor-Ve-min 0.813 *** 0.737 ~ 0.879 0.598 0.736 0.862 0

tumor-Ve-mean 0.858 *** 0.763 ~ 0.928 0.695 0.764 0.931 0.19

tumor-Kep-max 0.827 *** 0.739 ~ 0.912 0.557 0.724 0.833 54.68

tumor-Kep-mean 0.872 *** 0.788 ~ 0.942 0.689 0.828 0.861 4.86

tumor-iAUC-min 0.605 ns 0.491 ~ 0.720 0.209 0.278 0.931 0

tumor-iAUC-max 0.84 *** 0.748 ~ 0.916 0.619 0.722 0.897 0.34

tumor-iAUC-mean 0.886 *** 0.810 ~ 0.950 0.702 0.806 0.897 0.1

peritumoral-iAUC-max 0.643 * 0.523 ~ 0.744 0.239 0.722 0.517 0

peritumoral-iAUC-mean 0.64 * 0.532 ~ 0.750 0.273 0.583 0.69 0

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; SE, sensitivity; SP, specificity; iAUC, initial area 
under the curve for the first 60 seconds.

Table S5 The Partial Representative AUC, Sensitivity, and Specificity Values, and Optimal Threshold for Useful Metrics for Diagnosing WHO 
grade 4 gliomas

parameter AUC p2 95% CI Y SE SP cut-off

tumor-Ktrans-min 0.666 ** 0.557 ~ 0.774 0.357 0.557 0.8 0

tumor-Ktrans-mean 0.777 *** 0.680 ~ 0.866 0.444 0.869 0.575 0.07

tumor-Ve-min 0.748 *** 0.654 ~ 0.838 0.52 0.77 0.75 0

tumor-Ve-mean 0.805 *** 0.709 ~ 0.889 0.611 0.836 0.775 0.17

tumor-Kep-max 0.758 *** 0.650 ~ 0.845 0.464 0.775 0.689 27.99

tumor-Kep-mean 0.8 *** 0.693 ~ 0.901 0.61 0.725 0.885 4.31

tumor-iAUC-min 0.597 ns 0.486 ~ 0.708 0.195 0.295 0.9 0

tumor-iAUC-max 0.802 *** 0.701 ~ 0.888 0.529 0.754 0.775 0.34

tumor-iAUC-mean 0.853 *** 0.768 ~ 0.925 0.602 0.902 0.7 0.07

peritumoral-iAUC-max 0.61 ns 0.496 ~ 0.714 0.254 0.754 0.5 0

peritumoral-iAUC-mean 0.591 ns 0.484 ~ 0.701 0.215 0.59 0.625 0

ROC, receiver operating characteristic; LGG, low-grade glioma; HGG, high-grade glioma; AUC, area under the curve; CI, confidence 
interval; SE, sensitivity; SP, specificity; iAUC, initial area under the curve for the first 60 seconds.
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Table S6 The Partial Representative Results of Non-parametric tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of IDH

parameter

IDH (median)

p1 AUC p2 95% CI Y SE SP cut-offwild-type 
(n=61)

mutation 
(n=36)

tumor-Ktrans-min 0.010 0.000 * 0.629 * 0.540 ~ 0.714 0.272 0.516 0.757 0.000 

tumor-Ktrans-mean 0.150 0.080 *** 0.713 *** 0.584 ~ 0.802 0.358 0.547 0.811 0.130 

tumor-Ve-min 0.030 0.000 *** 0.710 *** 0.613 ~ 0.819 0.421 0.719 0.703 0.000 

tumor-Ve-mean 0.420 0.090 *** 0.738 *** 0.643 ~ 0.828 0.467 0.656 0.811 0.340 

tumor-Kep-max 21.630 54.680 *** 0.705 *** 0.559 ~ 0.815 0.370 0.730 0.641 27.990 

tumor-Kep-mean 1.720 5.160 *** 0.714 *** 0.606 ~ 0.820 0.473 0.676 0.797 3.970 

tumor-iAUC-max 0.590 0.240 *** 0.710 *** 0.601 ~ 0.788 0.476 0.719 0.757 0.340 

tumor-iAUC-mean 0.220 0.050 *** 0.770 *** 0.690 ~ 0.868 0.459 0.594 0.865 0.170 

ROC, receiver operating characteristicAUC, area under the curve; CI, confidence interval; SE, sensitivity; SP, specificity; iAUC, initial area 
under the curve for the first 60 seconds.

Table S7 The Partial Representative Results of Non-parametric Tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of 
1p19q

parameter

1p19q (median)

p1 AUC p2 95% CI Y SE SP cut-offcodeletion 
(n=19)

 non-codeletion 
(n=66)

tumor-Ktrans-min 0.000 0.000 * 0.657 * 0.535 ~ 0.757 0.327 0.485 0.842 0.000 

tumor-Ve-min 0.000 0.020 ** 0.702 ** 0.574 ~ 0.811 0.411 0.621 0.789 0.000 

tumor-Ve-mean 0.110 0.375 * 0.687 * 0.541 ~ 0.837 0.388 0.652 0.737 0.160 

tumor-Kep-max 70.650 27.510 ** 0.705 ** 0.575 ~ 0.828 0.388 0.737 0.652 42.040 

tumor-Kep-mean 5.190 1.895 ** 0.708 ** 0.563 ~ 0.835 0.389 0.632 0.758 5.150 

tumor-iAUC-mean 0.030 0.150 * 0.677 * 0.533 ~ 0.802 0.359 0.727 0.632 0.070 

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; SE, sensitivity; SP, specificity; iAUC, initial area 
under the curve for the first 60 seconds.
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Table S9 The Partial Representative Results of Non-parametric tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of EGFR

EGFR amplification (median)

p1 AUC p2 95% CI Y SE SP cut-offno amplification 
(n=37)

amplification 
(n=19)

tumor-Ve-min 0.020 0.050 ns 0.649 ns 0.505 ~ 0.793 0.326 0.947 0.378 0.000 

peritumoral-Ve-min 0.020 0.010 ns 0.649 ns 0.502 ~ 0.797 0.331 0.595 0.737 0.010 

tumor-iAUC-mean 0.190 0.270 ns 0.648 ns 0.499 ~ 0.797 0.280 0.632 0.649 0.250 

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; SE, sensitivity; SP, specificity; iAUC, initial area 
under the curve for the first 60 seconds.

Table S10 The Partial Representative Results of Non-parametric Tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of 
+7/–10 Cytogenetic Signature

+7/–10 cytogenetic 
signature (median)

p1 AUC p2 95% CI Y SE SP cut-off
no +7/−10  

(n=18)
+7/−10  
(n=2)

peritumoral-Ktrans-max 0.090 0.035 ns 0.903 ns 0.728 ~ 1.078 0.778 0.778 1.000 0.050 

peritumoral-Ve-max 0.210 0.020 ns 0.903 ns 0.758 ~ 1.048 0.778 0.778 1.000 0.030 

peritumoral-Ve-mean 0.075 0.010 ns 0.917 ns 0.779 ~ 1.054 0.833 0.833 1.000 0.020 

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; SE, sensitivity; SP, specificity; iAUC, initial area 
under the curve for the first 60 seconds.

Table S8 The Partial Representative Results of Non-parametric Tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of 
CDKN2A/B Homozygous Deletion 

parameter

CDKN2A/B homozygously 
deletion (median)

p1 AUC p2 95% CI Y SE SP cut-off
no deletion 

(n=43)
deletion  

(n=5)

tumor-Ve-max 2.060 2.960 ** 0.930 ** 0.857 ~ 1.004 0.907 1.000 0.907 2.870 

tumor-Ve-mean 0.090 0.700 * 0.830 * 0.719 ~ 0.942 0.744 1.000 0.744 0.190 

tumor-Kep-min 0.030 0.000 * 0.784 * 0.645 ~ 0.922 0.674 0.674 1.000 0.010 

tumor-Kep-mean 5.190 1.580 * 0.837 * 0.701 ~ 0.974 0.674 0.674 1.000 4.000 

tumor-iAUC-max 0.220 0.440 * 0.777 * 0.597 ~ 0.956 0.581 1.000 0.581 0.240 

tumor-iAUC-mean 0.030 0.140 * 0.791 * 0.644 ~ 0.937 0.628 1.000 0.628 0.070 

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; SE, sensitivity; SP, specificity; iAUC, initial area 
under the curve for the first 60 seconds.
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Table S11 The Partial Representative Results of Logistic Models for Predicting HGG, WHO Grade 2, WHO Grade 4, IDH Mutation, 1p19q 
Codeletion, and CDKN2A/B Homozygous Deletion 

model N AUC SE SP Y cut-off accuracy PPV NPV

pro-group 101 0.870 0.82 0.8 0.62 0.608 0.811 0.836 0.70

pro-grade2 101 0.893 0.793 0.903 0.696 0.494 0.861 0.759 0.903

pro-grade4 101 0.858 0.82 0.8 0.62 0.54 0.802 0.86 0.727

pro-IDH 101 0.85 0.892 0.703 0.595 0.264 0.762 0.627 0.9

pro-1p19q 85 0.705 0.652 0.737 0.388 0.798 0.659 0.894 0.368

pro-CDKN2A/B 48 0.93 1 0.907 0.907 0.315 0.896 0.5 0.975

AUC, area under the curve; CI, confidence interval; SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive 
value.




