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Background: The preoperative prediction of glioma, integrated histological/molecular classification, and
prognosis are critical for personalized patient management and treatment optimization. This study aimed
to explore whether preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), an
advanced MRI technique, can comprehensively and noninvasively evaluate gliomas.

Methods: Adult patients (June 2013 to May 2021) with diffuse glioma, retrospectively reclassified by the
2021 World Health Organization (WHO) classification criteria in this cohort study, underwent conventional
and DCE-MRI examinations at our institution. Quantitative measurements, including the volume transfer
constant (Ktrans), volume of extravascular extracellular space per unit volume of tissue (Ve), and rate constant
of backflux (Kep), were derived from the tumor parenchyma areas. The diagnostic efficacy of glioma grading
and genotyping, such as isocitrate dehydrogenase (IDH) and 1p/19q status, was evaluated using receiver
operating characteristic (ROC) analysis. The prognostic predictive value was assessed using Cox or logistic
regression analysis to build models visualized by nomograms. The area under the curve (AUC), calibration
curves, and decision curves were used to evaluate the performance of these models.

Results: The study population consisted of 101 participants [mean age = standard deviation (SD),
47.05£12.81 years (72 males and 29 females)]. Tumor.Kep.max emerged as the most crucial parameter,
serving as an independent protective predictor of 1p/19q-codeletion [odds ratio (OR) and 95% confidence
interval (CI): 0.98 (0.97-0.996), AUC: 0.71 (0.58-0.82)], whereas it was negatively associated with high-grade
gliomas [OR: 0.972 (0.950-0.996), AUC: 0.87 (0.80-0.94)] and IDH-mutant [OR: 1.02 (1.000-1.03), AUC:
0.72 (0.61-0.81)]. Tumor.Ve.max demonstrated excellent diagnostic value [AUC: 0.93 (0.86-1.00); sensitivity,
100%; specificity, 90.7%; P<0.001] for diagnosing cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B)
status. Tumor Ktrans.max emerged as an independent prognostic risk factor for glioma patients [AUCs for 1-,
3-, and 5-year survival, 0.75 (0.58-0.92), 0.64 (0.47-0.82), and 0.66 (0.43-0.89), respectively].
Conclusions: DCE-MRI technology holds significant value in glioma diagnosis, particularly in integrated
molecular diagnostics, predicting grading, molecular genotype including IDH status, and prognosis, thereby
offering a comprehensive preoperative evaluation framework. This approach enables clinicians to accurately

stratify patients, thus optimizing treatment strategies.
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Introduction

Glioma heterogeneity significantly influences clinical
treatment strategies and patient outcomes. Previous studies
have highlighted that higher World Health Organization
(WHO) classifications correlate with increased glioma
malignancy and poorer prognosis. Additionally, the
molecular profile of gliomas is crucial for diagnosis, surgery,
and survival outcomes (1-3). However, traditional diagnosis
has limitations, such as invasiveness, incomplete sampling,
and an inability to fully capture tumor heterogeneity.
Therefore, there is a pressing need for noninvasive methods
to preoperatively predict glioma characteristics, WHO
grade, molecular genetics, and survival.

Perfusion imaging, which visualizes tumor blood flow,
microvasculature, and angiogenesis, has emerged as a
promising noninvasive modality for glioma assessment (4,5).
Dynamic contrast-enhanced (DCE) perfusion imaging,
based on TT1 signal changes, offers a detailed portrayal
of the tumor microvasculature, including vessel density,
blood-brain barrier (BBB) integrity, and permeability (6-8).
Yan et al. demonstrated the superior performance of DCE
magnetic resonance imaging (DCE-MRI) parameters in
glioma grading and survival prediction compared with other
imaging modalities, such as arterial spin labeling (ASL) or
intravoxel incoherent motion (IVIM) diffusion-weighted
imaging (DWI) (9). Thus, DCE-MRI plays a unique and
irreplaceable role in preoperative glioma evaluation and
warrants further investigation (10).

Numerous studies have underscored the utility of DCE-
MRI in predicting tumor grade, survival, and specific
molecular types, such as isocitrate dehydrogenase (IDH)
mutations (11-14). However, gaps remain in understanding
its full potential. Although studies have explored quantitative
DCE-derived parameters, such as transfer constant (Ktrans),
extracellular volume fraction (Ve), and reflux constant (Kep),
less attention has been given to semiquantitative measures,
such as the initial area under the curve (IAUC), which can
provide insights into tumor physiology and blood volume
variations (15). Additionally, there are limited data on how
DCE-derived parameters correlate with molecular markers,
such as cyclin-dependent kinase inhibitor 2A/B (CDKN2A/
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B), chromosome 7 gain, and chromosome 10 loss (+7/-10),
which are critical in glioma classification according to
the 2021 WHO guidelines. Furthermore, some studies
have suggested the use of histogram analysis to derive
parameters such as mean and maximum values from regions
of interest (ROI) for glioma assessment (16). This raises the
question of whether the maximum, minimum, and average
values from both the tumor parenchyma and peritumor
parenchyma can effectively predict glioma diagnosis and
prognosis.

Our study aimed to comprehensively explore and
compare the preoperative utility of various DCE-MRI-
derived parameters, including maximum, minimum, and
average values from the tumor and peritumor parenchyma,
in grading gliomas, identifying molecular subtypes, and
predicting prognosis. Additionally, we constructed and
presented predictive models in a nomogram format, offering
a quantitative tool for individual risk prediction and patient
benefit assessment. The evaluation of these nomograms will
focus on their discrimination ability, accuracy, and clinical
practicality to assess their overall clinical effectiveness.
We present this article in accordance with the STROBE
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-2025-36/rc).

Methods
Study participants

This study was conducted in accordance with the Declaration
of Helsinki and its subsequent amendments. The study was
approved by the Medical Ethics Committee of The First
Affiliated Hospital of Sun Yat-sen University (No. [2021]209).
The Ethics Committee waived the need for informed consent
due to the retrospective nature of the study.

Patients [101 patients; mean age + standard deviation (SD),
47.05+12.81 years; 72 males and 29 females] who underwent
preoperative MRI at the First Affiliated Hospital of Sun Yat-
sen University (June 2013 to May 2021) and were confirmed
to have adult-type diffuse gliomas by pathology were enrolled
retrospectively. Additional inclusion and exclusion criteria are
presented in Figure 1. Follow-up survival data were collected

Quant Imaging Med Surg 2025;15(10):9855-9870 | https://dx.doi.org/10.21037/qims-2025-36


https://qims.amegroups.com/article/view/10.21037/qims-2025-36/rc
https://qims.amegroups.com/article/view/10.21037/qims-2025-36/rc

Quantitative Imaging in Medicine and Surgery, Vol 15, No 10 October 2025 9857

234 patients with primary diagnosis of glioma

Excluded (n=13):
* With age less than 18 years

Y

Patients =18 years of age (221 included)

Excluded (n=98):
* Without DCE-MRI at the First Affiliated
Hospital of Sun Yat-sen University

Y

Y

Those that underwent tumor resection
or biopsy within 3 weeks after MRl
(123 included)

Excluded (n=8):
e Without tumor resection or biopsy

Y

Those that underwent tumor resection
within 3 weeks after MRI (115 included)

Excluded (n=11):

© 4 with pleomorphic xanthoastrocytoma

* 3 with pilocytic astrocytoma

* 2 with ganglioglioma

e 2 with dysembryoplastic
neuroepithelial tumor

Y

Patients finally pathologically diagnosed with
adult diffuse glioma (104 included)

Excluded (n=1):
e With histories of relapse after
integrative treatment

Y

Y

Those that were not given chemotherapy,
radiotherapy, or targeted therapy before the
operation or MR examinations (103 included)

Excluded (n=2):
* With poor image quality

Y

Finally included 101 patients

Figure 1 Description of the inclusion and exclusion criteria. DCE,

dynamic contrast-enhanced; MRI, magnetic resonance imaging.

through clinical interviews until 31 May 2021. Overall
survival (OS) was defined as the duration from the date of
primary tumor resection to the date of death, censored at the
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date of the last follow-up visit if the patient was alive or lost to
follow up.

MRI protocol

Images were acquired using a 3.0T MR scanner
(MAGNETOM Verio Prisma, Siemens Healthineers,
Erlangen, Germany). The detailed imaging parameters are
listed in Table 1. Each participant underwent conventional
MRI sequences, including pre-contrast axial T'1-weighted
imaging (T1WI), axial T2-weighted imaging (T2WI), axial/
coronal T2-fluid-attenuated inversion recovery (FLAIR)
imaging, and axial T1-weighted contrast-enhanced imaging
(T1CE), in addition to DCE-MRI.

The DCE-MRI protocol comprised two precontrast T1-
volumetric interpolated breath-hold examination (T'1-VIBE)
sequences, each with distinct flip angles (2° and 15°), to
calculate the T1-map, and dynamic contrast-enhanced time-
resolved angiography with stochastic trajectories sequences
(TWIST; 75 measurements, total scan time of 358 s). A
bolus injection of 0.1 mmol/kg body weight of gadolinium
(Magnevist, Schering, Berlin, Germany) at an injection
rate of 4 mL/s was started from the fifth measurement of
75 phases in total, followed by a 20 mL 0.9% saline flush.
Post-contrast sagittal three-dimensional (3D) T1-weighted
magnetization-prepared rapid gradient-echo (MPRAGE) and
T1CE images were obtained after DCE-MRI.

DCE-MRI analysis

All DCE-MRI data were transmitted to a commercially
available and clinically approved post-processing
workstation (Sango via, Siemens Healthcare) for analysis
using the Siemens Tissue 4D workflow according to the
manufacturer’s instructions. Automatic motion correction
and alignment were first performed. The tissue signal
intensity was converted to gadolinium concentration.
The two-compartment Toft’s model was used to fit the
pharmacokinetic curves (17). Three types of the arterial
input function (AIF; the slow, intermediate, and fast types),
based on mathematical simulation, were automatically
provided (18,19). According to the operation manual, one of
the above three types with the smallest chi-square value was
selected. ROIs were then sketched at the three consecutive
and maximal levels of tumors after the consensus of two
experienced radiologists according to previous studies
(20-22). Within each level, two ROIs were positioned as
follows:
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Table 1 Parameters of MRI sequences
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T1WI T2WI T2-FLAIR DCE-MRI T1-MPRAGE T1CE

Parameters

Spin-echo  Turbo spin-echo Turbo spin-echo T1-VIBE TWIST Echo planar imaging Spin-echo
Contrast agent - - - - Gadolinium Gadolinium Gadolinium
Dose (mmol/Kg) - - - - 0.1
Flip angles 150° 150° 150° 2°/15° 12° 8° 150°
TR/TE (ms/ms) 2,000/17 4,200/109 9,000/84 3.83/1.37 4.89/1.88 2,300/2.43 2,000/17
Slice thickness (mm) 6 6 6 3.5 3.5 0.75 6
Field of view (mm?) 220x220 220x220 220x220 220x220 220x220 240x225 220x220
Voxel resolution (mm®) 0.7x0.7x6 0.6x0.6x6 0.7x0.7x6 1.4x1.4x3.5 1.4x1.4x3.5 0.8x0.8x0.8 0.7x0.7x6

DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; MRI, magnetic resonance imaging; T1CE, T1-weighted contrast-enhanced
imaging; T1-MPRAGE, T1-magnetization-prepared rapid gradient-echo; T1-VIBE, T1-volumetric interpolated breath-hold examination; T1WI, T1-
weighted imaging; T2-FLAIR, T2-fluid-attenuated inversion recovery; T2WI, T2-weighted imaging; TE, echo time; TR, repetition time; TWIST, time-

resolved angiography with stochastic trajectories sequences.

% One ROI (irregularly shaped) encompassed all solid
components of the tumor parenchyma (hereinafter
referred to as the “tumor” region), excluding large
vessels, meninges, and necrotic and hemorrhagic
areas. ROI placements on DCE-derived maps were
performed using T1CE as the reference when tumors
showed enhancement; if there was no enhancement,
T2-FLAIR images were used as the reference to draw
the ROIs.

% The other ROI (circular, measuring 10 mm®) was
randomly placed on areas extending <1 cm from the
tumor margin (expressed as “peritumoral” hereinafter).
Representative images of the ROIs are shown in Figure 2.

Thus, quantitative parameters, including Ktrans, Ve, and

Kep, and the semiquantitative parameter iAUC which was

in the first 60 seconds, were calculated. The minimum,

mean, and maximum values of each DCE-MRI metric in
each layer were recorded, and the average values of the
three levels of each metric were used for analysis. A total of

24 parameters [2 ROIs (tumor parenchyma/peritumoral) x

4 parameters (Ktrans/Kep/Ve/iAUC) per ROI x 3 statistical

values (the average of the maximum/minimum/mean

values across the three levels) per parameter] were derived,
such as the minimum value of Ve derived from the tumor
parenchyma (tumor.Ve.min).

Histopathological and molecular evaluation

The mutation statuses of IDHI and IDH?2 were determined
using high-throughput sequencing methods. The status
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of 1p/19q, epidermal growth factor receptor (EGFR),
and CDKN2A/B was evaluated using fluorescence in situ
hybridization (FISH) (23). Following the 2021 WHO
Central Nervous System (CNS) classification, tumors were
reclassified using an integrated histomolecular diagnosis,
which incorporated existing molecular results and original
pathologic diagnoses.

Statistical analysis

The data were analyzed using the software SPSS 26 (IBM
Corp., Armonk, NY, USA), the SPSSAU data scientific
analysis platform (https://spssau.com/) (24), and the R
programming language (version 4.1.2, The R Foundation
for Statistical Computing, Vienna, Austria).

Normally distributed data are expressed as mean =
SD, and non-normally distributed data are expressed as
median = interquartile range (IQR). Univariate analysis
was conducted using unpaired Student’s #-tests, one-way
analysis of variance (ANOVA), Mann-Whitney rank-sum
tests, Kruskal-Wallis tests, or chi-square tests, if available.
Multivariate analysis was performed using logistic or Cox
regression models, incorporating age, sex, and univariate
variables with a P value less than 0.1 as covariates. The
predictive or prognostic models were comprehensively
evaluated and compared using the area under the curve
(AUC) calculated from receiver operating characteristic
(ROC) curves and DeLong tests. Nomograms were
constructed to visually represent these models using the
R package nomogram and calibration curve analysis,
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Figure 2 Representative ROI delineations. This selected patient was a 69-year-old man with IDH-wildtype glioblastoma confirmed by
pathology. (A) T2-weighted FLAIR image; (B) contrast-enhanced T1-weighted image; (C) iAUC image; (D) Ktrans image; (E) Ve image;

(F) Kep image. (C-F) ROI 1 (marked in green) represented the tumor parenchyma tissues, and ROI 2 (marked in yellow) represented the

peripheral zones. FLAIR, fluid-attenuated inversion recovery; IDH, isocitrate dehydrogenase; iAUC, initial area under the curve for the first

60 seconds; RO, region of interest.

and decision curve analysis (DCA) was performed (25).
Furthermore, the 1-, 2-; and 5-year survival rates of
individuals were predicted. Statistical significance was
set at P<0.05, and the results were presented with a2 95%
confidence interval (CI) in parentheses.

Results
Demographic and oncological information

Patient demographic information and oncological
characteristics, including histopathological and molecular
data, are presented in Tuble 2. There were 61/101 high-

Copyright © 2025 AME Publishing Company. All rights reserved.

grade gliomas (HGGs; WHO grade 4) and 40/101 low-
grade gliomas (LGGs; WHO grade 2 and 3). Notably, 23
individuals harbored IDH-mutant astrocytoma (12 classified
as WHO grade 2, 5 as grade 3, and 6 as grade 4), 14
presented with IDH-mutant and 1p/19q-codeleted
oligodendroglioma (11 cases of WHO grade 2 and 3 of
grade 3), and 55 had grade 4 IDH-wildtype glioblastoma,
according to the WHO 2021 classification. A total of 9 cases
were classified as IDH-wildtype, not otherwise specified
(NOS), because of incomplete information, and the detailed
molecular information is shown in Table S1. Until 31 May
2021, 49 (48.5%) patients were alive, 41 (40.6%) had died,
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Table 2 Participant demographic, histopathologic, and molecular data
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Gender (n=101) Age (years)
Parameter Number
Male (n=72)  Female (n=29) P value Mean + SD P value
Group 101 0.82 <0.0001****
Low-grade 40 28 12 39.80+9.50
High-grade 61 44 17 51.80+12.52
CNS WHO grade 101 0.84 <0.0001****
Grade 2 29 21 8 39.27+9.32
Grade 3 11 7 4 41.40+10.36
Grade 4 61 44 17 51.80+12.52
IDH 101 0.78 <0.0001****
Wild-type 64 45 19 52.38+11.83
Mutant 37 27 10 37.84+8.56
1p/19q 85 0.25 0.01*
Codeletion 19 16 3 40.63+9.17
Non-codeletion 66 47 19 47.70+13.22
EGFR amplification 56 0.95 0.31
No amplification 37 25 12 50.97+13.85
Amplification 19 13 6 54.63+9.33
+7/-10 cytogenetic signature 20 0.52 0.06
No +7/-10 18 11 7 42.50+13.19
+7/-10 2 2 0 62.00+11.31
CDKN2A/B homozygous deletion 48 0.94 0.13
No deletion 43 35 8 40.16+11.14
Deletion 5 4 1 48.40+11.74
Integrated histomolecular diagnosis 101 0.40 <0.00071****
Astrocytoma, IDH-mutant 23 14 7 36.65+7.52
Oligodendroglioma, /IDH-mutant and 14 12 2 39.79+10.03
1p/19q codeleted
Glioblastoma, IDH-wildtype 55 35 13 53.45+11.87
IDH-wildtype, NOS 9 5 4 45.78+9.73

*, P<0.05; ***, P<0.0001. CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; CNS, central nervous system; EGFR, epidermal growth
factor receptor; IDH, isocitrate dehydrogenase; NOS, not otherwise specified; SD, standard deviation; WHO, World Health Organization.

and 11 (10.9%) had been lost to follow-up.

As shown in Table 2, only age but not sex was found to
be significantly associated with genotype, such as IDH and
1p/19q status, diagnosis, and tumor grade. Specifically,
gliomas with high-grade, IDH-wildtype, and 1p/19q-
noncodeletion tended to occur in older patients.

Glioma grading with DCE-MRI-related parameters

Different groups of HGG and LGG
According to the univariate analysis (Table S2), parameters
derived from the tumor parenchyma, including the

maximum, mean, and minimum values, significantly
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differentiated LGGs from HGGs (P<0.05). Specifically,
Kep values were lower in HGGs, whereas other parameters
exhibited higher values in HGGs. Furthermore, the tumor.
iAUC.mean significantly demonstrated the highest AUC
[0.853 (0.763-0.920)] with the best 90.2% sensitivity
and 70% specificity using the optimal-retrospectively
determined threshold of 0.08 (P<0.05, Table S2 and
Figure 34).

Subsequently, multivariate logistic regression analysis
revealed that age [odds ratio (OR): 1.058 (1.007-1.110)]
and tumor.Kep.max [OR: 0.972 (0.950-0.996)] were
promoting factors for predicting HGGs (P<0.05, Table 3).
However, compared to univariate analysis using tumor.
iAUC.mean, the prediction model did not exhibit improved
discrimination ability with a greater AUC [0.87 (0.80-0.94),
P>0.05, Figure 3A].

The model was visualized using a nomogram (Figure 3B)
with good diagnostic capability and adequate calibration
(Figure 3C). DCA (Figure 3D) further confirmed the clinical
validity of the model, revealing that the cutoff value of
0.54 determined by ROC analysis fell within the range of
threshold probabilities (0.03-0.78).

Subgroup analysis of WHO Grades 2, 3, and 4

The univariate analysis revealed that parameters derived
from the tumor parenchyma, peritumoral-iAUC-max,
and peritumoral-iAUC-mean could differentiate different
grades of gliomas (P<0.05, Table S3). However post hoc
pairwise comparisons showed that only parameters derived
from the tumor parenchyma effectively differentiated
gliomas with WHO grades 2 and 4 (P<0.001), or between
WHO grades 2 and 3 (P<0.05); meanwhile, no statistically
significant differences were observed between grades 3 and
4 (Table S3).

Multivariate logistic regression analysis (7able 3) revealed
that WHO grade exhibited a positive correlation with age
[OR: 1.068 (1.004-1.136)] and a negative correlation with
tumor.Kep.max [OR: 0.973 (0.95-0.997)]. The prediction
model successfully discriminated gliomas with WHO grades
of 2 [AUC, 0.893 (0.815-0.957), Figure 3L and Table S4]
and 4 [AUC, 0.858 (0.776-0.931), Figure 3F and Table S5].

Furthermore, the models were visualized using
nomograms (Figure 3G,3H) with strong diagnostic
capability and adequate calibration (Figure 31,37). DCA
(Figure 3K,3L) further confirmed the wide clinical validity
of the model within the range of threshold probabilities
(0.05-0.89 or 0.05-0.81).

Copyright © 2025 AME Publishing Company. All rights reserved.

Glioma genotyping with DCE-MRI-related parameters

IDH gene
According to the univariate analysis (Table S6), the results
were comparable to those observed in the above groups.
Specifically, in predicting IDH genotype, tumor.iAUC.mean
performed the best [AUC, 0.770 (0.690-0.868), Figure 44,
with the best specificity of 86.5%, although there was no
evidence of a difference compared to the others (P>0.05).
According to the multivariate analysis (7Table 3), tumor.
Kep.max was independently associated with IDH status [OR:
1.015 (1.000-1.029)], and age was negatively associated with
survival [OR: 0.894 (0.851-0.939)]. Compared to the highest
AUC in the univariate analysis, the predictive power of this
multifactor model [AUC, 0.855 (0.779-0.920)] improved
significantly (P<0.05). Furthermore, this predictive
model was visualized using a nomogram (Figure 4B)
with good diagnostic capability, adequate calibration ability,
and wide clinical validity within the range of threshold
probabilities (0.06-0.84) (Figure 4C,4D).

1p/19q

The univariate analysis (Table S7) revealed that Ktrans.
min had the best specificity for predicting 1p/19q in tumors
(84.2%), and Kep.max exhibited the best sensitivity (73.7%).
Furthermore, Kep.mean demonstrated the highest AUC
[0.708 (0.563-0.835), Figure 4.

According to the logistic regression analysis (Table 3),
tumor.Kep.max served as an independent predictive factor
for 1p/19q codeletion [OR: 0.982 (0.968-0.996)]. However,
the predictive power of this model did not improve [AUC,
0.705 (0.581-0.821), P<0.05].

Nomograms were constructed (Figure 4F), and DCA
indicated the acceptable potential clinical usefulness of the
nomograms (Figure 4G). Nevertheless, the calibration plot
revealed a deviation from the true events, suggesting that
the model was not well calibrated (Figure 4H).

CDKN2A/B gene

In diagnosing the CDKN2A/B genotype, Ve, Kep, and
iAUC obtained from the tumor parenchyma provided
excellent diagnostic values (Figure 41 and Table S8, P<0.01).
Remarkably, tumor.Ve.max achieved the largest AUC of
0.93, coupled with 100% sensitivity and 90.7% specificity,
using an optimal retrospectively determined threshold of
2.87. Additionally, Kep showed 100% specificity and was
lower for tumors with homozygous CDKN2A/B deletion
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Figure 3 ROC curve plots with AUCs of all selective DCE-MRI-related parameters and corresponding predictive models for differentiating
LGGs and HGGs (A), WHO grade 2 (E), and WHO grade 4 (F) gliomas. Nomograms for individually predicting the probability of high-
grade (B), WHO grade 2 (G), and WHO grade 4 (H) gliomas. Calibration plots of corresponding predictive models for differentiating
LGGs and HGGs (C), WHO grade 2 (I), and WHO grade 4 (J) gliomas. DCAs of corresponding predictive models for differentiating
LGGs and HGGs (D), WHO grade 2 (K), and WHO grade 4 (L) gliomas. AUC, area under the curve; DCA, decision curve analysis; DCE-
MRI, dynamic contrast-enhanced magnetic resonance imaging; HGGs, high-grade gliomas; iAUC, initial area under the curve for the first

60 seconds; LGGs, low-grade gliomas; ROC, receiver operating characteristicc WHO, World Health Organization.
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Table 3 The logistic regression results for predicting gliomas of different group (HGG or LGG), different WHO grade, IDH-mutant, 1p/19q

codeletion, CDKN2A/B homozygous deletion

Predictors Parameter P (for HL) B SE P (for B) OR (95% Cl)
Group Age 0.69 0.06 0.03 0.02* 1.058 (1.007-1.110)
tumor.Kep.max -0.03 0.01 0.02* 0.972 (0.950-0.996)
Grade Age 0.26 0.07 0.03 0.04* 1.07 (1.004-1.14)
tumor.Kep.max -0.03 0.01 0.03* 0.973 (0.95-0.997)
IDH Age 0.15 -0.11 0.03 <0.001*** 0.89 (0.85-0.94)
tumor.Kep.max 0.01 0.01 0.049* 1.02 (1.00-1.03)
Constant 3.81 1.18 0.01* 47.78 (4.46-511.67)
1p/19q tumor.Kep.max 0.03 -0.02 0.01 0.01* 0.982 (0.968-0.996)
Constant 214 0.49 <0.001*** 8.50 (3.28-22.02)
CDKN2A/B tumor.Ve.max 0.001 13.19 8.77 0.13 5.36x10° (0.019-1.55x10")
Constant -39.3 25.82 0.13 0 (0-8.21x10%)

*, P<0.05; ***, P<0.001. B, regression coefficient; CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; ClI, confidence interval; HGG, high-
grade glioma; HL, Hosmer-Lemeshow test; IDH, isocitrate dehydrogenase; LGG, low-grade glioma; OR, odds ratio; SE, standard error of

regression coefficient; WHO, World Health Organization.

than for those without CDKN2A/B deletion.
Unfortunately, despite these promising results, no
significant variables were incorporated into the logistic
regression equation to predict the CDKN2A/B status.
Furthermore, the model was visualized using nomograms
(Figure 47), which exhibited good diagnostic capability;
however, the calibration plot revealed a deviation from true
events, suggesting that the model was not well calibrated
(Figure 4K). DCA (Figure 4L) revealed that the model

demonstrated an acceptable clinical validity.

EGFR and +7/-10 cytogenetic signature

To determine the EGFR or +7/-10 type (Tables §9,510),
Ve derived from the peritumoral area had the smallest
P value of 0.061 and 0.058 (borderline significant,
respectively). ROC analysis revealed that the AUC was
0.649 or 0.917 (P=0.069 or 0.059), with 73.7% or 100%
specificity and 59.5% or 83.3% sensitivity for predicting
EGFR amplification or the +7/-10 cytogenetic signature,
respectively. However, they did not establish a related
prediction model.

Glioma prognosis with DCE-MRI-velated parameters

The final multivariate Cox regression analysis identified
tumor.Ktrans.max [HR: 1.70 (1.05-2.74)], and tumor.

Copyright © 2025 AME Publishing Company. All rights reserved.

iAUC.min [HR: 4.34 (1.60-11.79)] as independent
prognostic risk factors for glioma patients (P<0.05, Table 4).
Time-dependent ROC analysis revealed AUC values with
95% CI of 0.75 (0.58-0.92), 0.64 (0.47-0.82), and 0.66
(0.43-0.89) for 1-, 3-, and 5-year survival, respectively
(Figure 5A). Adequate calibration (Figure 5B) was developed
for practical use, and a nomogram (Figure 5C) exhibited
acceptable stratification capacity. The DCAs (Figure SD-5F)
demonstrated that the prognostic model offered a good
overall net benefit for 1-year survival outcome (Figure 5D),
indicating its strong potential for predicting the survival of
patients with glioma.

Discussion

Based on the latest 2021 WHO classification, this
retrospective study aimed to investigate the clinical
utility of preoperative DCE-derived parameters in adult
diffuse gliomas. Our findings indicate that certain DCE-
derived parameters, such as the maximum values of Kep
and Ktrans derived from tumor tissue, exhibit excellent
diagnostic performance in predicting glioma prognosis
and grading, as well as identifying the genetic status of
IDH, 1p/19q, and CDKN2A/B (Table S11). Additionally,
we provided diagnostic threshold values for various
significant parameters and visualized prediction models
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Figure 4 ROC curve plots with AUCs of all selective DCE-MRI-related parameters and corresponding predictive models, calibration plots,
and DCAs of corresponding predictive models for differentiating different IDH genotypes (A,C,D), different 1p/19q genotypes (E,G,H),
and different CDKN2A4/B genotypes (LK,L). Nomograms for individually predicting the probability of IDH mutation (B), 1p/19q codeletion
(F), and CDKN2A/B homozygous deletion (J) gliomas. AUC, area under the curve; CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B;
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the first 60 seconds; IDH, isocitrate dehydrogenase; ROC, receiver operating characteristic.
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Table 4 The results of Cox regression
Univariate Cox regression Multivariate Cox regression
Variance
P HR (95% Cl) B SE P HR (95% Cl)

Age - - - - ns -

Sex - - - - ns -
tumor.Ktrans.max 0.03* 1.27 (1.03-1.56) 0.53 0.24 0.03* 1.70 (1.05-2.74)
tumor.Ktrans.mean 0.06 5.67 (0.96-33.35) - - ns -
peritumoral.Ve.max 0.08 1.599 (0.95-2.69) - - ns -
peritumoral.Ve.mean 0.01* 6.03 (1.58-22.99) - - ns -
tumoriAUC.min’ 0.001* 3.54 (1.67-7.50) 1.47 0.51 0.004* 4.34 (1.60-11.79)
T this continuous variable was transformed into categorical variables according to the mode “0”. ns, P>0.05; *, P<0.05; **, P<0.01. B,

error of regression coefficient.

regression coefficient; Cl, confidence interval; HR, hazard ratio; iAUC, initial area under the curve for the first 60 seconds; SE, standard

Sensitivity

—#2-month AUC: 0.75 (95% Cl: 0.583-0.917)
86-month AUC: 0.642 (95% CI: 0.465-0.82)

—860-month AUC: 0.658 (95% Cl: 0.43-0.886)
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curve; DCA, decision curve analysis; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; iAUC, initial area under the
curve for the first 60 seconds; OS, overall survival; ROC, receiver operating characteristic.
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using nomograms, which offer a relatively quantitative and
intuitive approach with clinically useful thresholds to meet
the practical needs of clinical decision-makers.

According to the univariate analysis, numerous DCE-
related parameters were significantly different between
HGGs and LGGs, between WHO grade 2- and 3-
gliomas, between WHO grade 2- and 4- gliomas, and
between different statuses of IDH, 1p/19q, and CDKN2A4/
B, as well as for predicting glioma prognosis. Notably,
tumor.Kep.max emerged as the most crucial parameter
because it served as an independent predictive factor in
several final prediction models. Kep is known to reflect
vessel permeability and surface area (26). More malignant
and infiltrative gliomas are associated with increased
permeability and larger surface areas, leading to the
accumulation of contrast agents in the extravascular
compartment, resulting in delayed reverse transfer and a
decreased rate (27). Accordingly, lower Kep values indicate
higher glioma grades and IDH-wild genotypes (27).
Possible reasons for these findings include variations in
grouping criteria (some studies classify HGG as WHO
grades 3 and 4), differences in the WHO CNS edition,
and patient cohorts. Another explanation is that our study
utilized genomic sequence analysis to detect both IDHI
and IDH?2 mutations, whereas previous studies primarily
focused on IDHI RI132H mutation detection using
immunohistochemistry, which represents only the most
common mutation in gliomas (5,28-30). This approach
may have resulted in slightly higher false-negative rates,
such as missing mutations in IDH2 (27).

Regarding 1p/19q status, Santwijk ez a/. concluded that
the impact of 1p/19q codeletion on DCE-related metrics
remains poorly understood and has not been fully elucidated
despite a systematic literature search (5). In addition, Ahn
et al. demonstrated that DCE indices were not significantly
associated with 1p/19q codeletion in LGG (28). However,
in our study, a lower Kep tended to be 1p/19q-codeleted.
Therefore, our findings provide valuable insights into this
field of research.

To the best of our knowledge, there are limited
studies predicting CDKN2A/B or +7/-10 status using
MR, particularly DCE-MRI (14,31-36). Importantly,
our study revealed that Ve derived from tumor tissue is
an independent positive predictor of CDKN2A/B status.
We hypothesized that this may be due to the correlation
between Ve and cellularity/mitotic activity (37,38).
Although our study was one of the earlier studies to attempt
to predict the +7/-10 status using DCE-derived parameters,

Copyright © 2025 AME Publishing Company. All rights reserved.
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the results were not promising. Nevertheless, our data
provide preliminary evidence of a correlation between
DCE-derived parameters and CDKN2A4/B phenotypes.

Contrary to our expectations, no significant parameters
were associated with EGFR amplification, which plays a
crucial role in promoting tumor growth and invasion. We
speculate that this may be attributed to an unbalanced
patient population and insufficient sample size, which
may have led to selection bias and limited the power of
the analysis to detect differences in DCE-derived indices.
Future studies with larger sample sizes and additional
genetic testing are required to resolve this uncertainty.

Consistent with the established literature, our study
reaffirmed the prognostic value of Ktrans and iAUC
derived from tumor, demonstrating that higher Ktrans
was associated with worse OS or higher HR, and the
iAUC was found to be an independent negative prognostic
factor (39-41). Notably, our analysis revealed diminished
prognostic utility of peritumoral DCE-MRI parameters
for molecular marker prediction and survival outcome
assessment—a finding that diverges from prior HGG-
specific studies reporting improved OS associated with
high Ve in peritumoral edema (26). This discrepancy
may be multifactorial. Primarily, the inclusion of LGG
cases in our cohort introduced distinct pathophysiological
characteristics, particularly relatively restricted peritumoral
infiltration compared to the HGG populations examined in
previous investigations. Furthermore, technical limitations
warrant consideration, including (I) intrinsic heterogeneity
within the peritumoral microenvironment affecting
parameter consistency; and (II) non-standardized ROI
selection protocols in peritumoral regions. In future studies,
we plan to prioritize areas with higher tumor infiltration
for ROI placement, although accurately identifying such
regions remains a methodological challenge.

This study has some limitations. First, despite
exceeding the numbers of patients in many previous
studies (4,27,29,42,43), the sample size remains limited.
Second, the data were retrospectively collected from a
single center, potentially introducing selection bias. Third,
owing to technical constraints, this study did not analyze
the prognostic marker TERT or another DCE-derived
parameter, Vp. Future investigations that incorporate more
molecular markers, integrated histopathological verification,
and expanded measurements of Vp through multicenter
retrospective or prospective studies are warranted to provide
more insightful results regarding the clinical applications of
DCE-MRI.
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Conclusions

This study comprehensively evaluated the performance
of DCE-derived parameters in patients with glioma,
highlighting the clinical value of DCE-MRI in the diagnosis
of glioma, especially for integrated molecular diagnostics
and prognosis. We also developed convenient and effective
prediction models and nomograms for use by clinicians.
Future studies with larger sample sizes, such as those for
TERT, EGFR, and +7/-10, will further refine the predictive
ability of DCE-MRI for genotyping performance.
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Supplementary

Table S1 The Detailed Molecular Information of 9 Cases with Gliomas of IDH-wildtype, NOS

+7/-10 CDKN2A/B . - . . original
EGFR ) . microvascular original histologic ) . .
ID sex age IDH 1p19q - cytogenetic homozygously necrosis . . . . histologic OS (m) survival status
amplification . ; proliferation diagnosis
signature deletion WHO grade
1  male 47  wild-type non-codeletion no deletion diffuse astrocytomas 11l 24.00 dead
2 male 50  wild-type diffuse astrocytomas Il 92.80 alive
3 male 51 wild-type no +7/-10 gemistocytic astrocytoma |l - lost to follow-up
4 female 43 wild-type codeletion no no oligodendrogliomas Il 39.10 alive
5 male 65  wild-type non-codeletion no amplification no +7/-10 no diffuse astrocytomas Il 2.40 alive
6 female 40  wild-type no amplification no +7/-10 not obvious  diffuse astrocytomas Il 74.60 dead
7 female 48  wild-type anaplastic astrocytoma I}
8 male 31 wild-type non-codeletion no deletion low-grade glioma Il 31.60 dead
9 female 37  wild-type no amplification no +7/-10 no oligoastrocytoma 1l 72.70 alive

A blank in the table indicates that the attribute was not mentioned or not tested. The following tables show the results of the univariate statistical analysis. Initially, non-parametric univariate analysis
was performed to evaluate whether any significant difference was presented in different groups. Then, for statistically significant parameters, receiver operating characteristic (ROC) curve analysis
was performed to assess the discriminant capacity, describing the area under the ROC curves (AUCs), sensitivity, specificity, and cut-offs. The following additional abbreviations have been used in
the following tables. Unless otherwise indicated, “*” indicates that p < 0.05, “**” indicates that p < 0.01, “***” indicates that p<0.001, “ns” indicates that p>0.05. p1, p value of the non-parametric test
(two-tailed); p2, asymptotic p value of the ROC curve; 95% Cl, 95% CI of AUGC; Y, optimal Youden’s index. In addition, the units of DCE parameters such as Ktans and Ve throughout the following
tables are shown below, not displayed in the tables: The unit of Ktrans: min "'. The unit of Kep: min™'. The unit of IAUC: mM/sec. There is no unit for the DCE parameter of Ve and iAUC. WHO, World
Health Organization; OS, overall survival; NOS, not otherwise specified.
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Table S2 The Partial Representative Results of Non-parametric Tests and ROC Analysis of Useful Metrics for Diagnosing LGGs and HGGs

group (median)

parameter HGG LGG p1 AUC p2 95% Cl Y SE SP cut-off
(n=61) (n=40)
tumor.Ktrans.min 0.010 0.000 b 0.666 * 0.571~0.749 0.357 0.557 0.800 0.010
tumor.Ktrans.max 0.530 0.330 * 0.625 * 0.494 ~ 0.745 0.321 0.721 0.600 0.360
tumor.Ktrans.mean 0.150 0.060 - 0.777 - 0.683 ~ 0.842 0.444 0.869 0.575 0.080
tumor.Ve.min 0.030 0.000 - 0.748 - 0.656 ~ 0.827 0.520 0.770 0.750 0.010
tumor.Ve.max 2.480 2.030 ns 0.607 ns 0.497 ~ 0.716 0.266 0.541 0.725 2.370
tumor.Ve.mean 0.440 0.090 - 0.805 - 0.713 ~ 0.887 0.611 0.836 0.775 0.180
tumor.Kep.max 16.300 63.340 - 0.758 o 0.638~ 0.843 0.464 0.775 0.689 30.450
tumor.Kep.mean 1.580 5.235 - 0.800 **0.670 ~ 0.898 0.610 0.725 0.885 4.320
tumor.iAUC.min 0.000 0.000 * 0.600 ns  0.486 ~0.708 0.195 0.295 0.900 0.000
tumor.iAUC.max 0.660 0.170 b 0.802 »** 0.708 ~ 0.871 0.529 0.754 0.775 0.360
tumor.iAUC.mean 0.240 0.025 - 0.853 = 0.763 ~ 0.920 0.602 0.902 0.700 0.080
peritumoral.iAUC.max 0.020 0.010 ns 0.609 ns  0.493 ~0.724 0.254 0.754 0.500 0.000
peritumoral.iAUC.mean  0.010 0.000 ns 0.591 ns  0.476 ~0.707 0.215 0.590 0.625 0.000

ROC, receiver operating characteristic; LGG, low-grade glioma; HGG, high-grade glioma; AUC, area under the curve; Cl, confidence
interval; SE, sensitivity; SP, specificity; iIAUC, initial area under the curve for the first 60 seconds.

Table S3 The Partial Representative Results of Non-parametric Tests and Post Hoc Pairwise Comparisons for Diagnosing Different Grades

grade (median) p for WHO p for WHO p for WHO

parameter WHO grade2 WHO grade 3 WHO grade 4 p grade 2 vs. grade 2 vs. grade 3 vs.
(n=29) (n=11) (n=61) WHO grade 3 WHO grade 4 WHO grade 4

tumor-Ktrans-min 0.00 0.01 0.01 > ns i ns
tumor-Ktrans-mean 0.06 0.11 0.15 e ns e ns
tumor-Ve-min 0.00 0.04 0.03 o > o ns
tumor-Ve-mean 0.08 0.46 0.44 e b e ns
tumor-Kep-max 75.01 28.58 16.30 o * e ns
tumor-Kep-mean 5.89 1.69 1.58 e e e ns
tumor-iAUC-min 0.00 0.00 0.00 * * * ns
tumor-iAUC-max 0.15 0.43 0.66 b * i ns
tumor-iAUC-mean 0.01 0.16 0.24 e * e ns
peritumoral-iAUC-max 0.00 0.05 0.02 * ns ns ns
peritumoral-iAUC-mean 0.00 0.03 0.01 * ns ns ns

WHO, World Health Organization; iAUC, initial area under the curve for the first 60 seconds.
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Table S4 The partial representative AUC, Sensitivity, and Specificity Values, and Optimal Threshold for Useful Metrics for Diagnosing WHO
Grade 2 gliomas

parameter AUC p2 95% ClI Y SE SP cut-off
tumor-Ktrans-min 0.71 * 0.604 ~ 0.816 0.438 0.542 0.897 0
tumor-Ktrans-mean 0.789 i 0.677 ~ 0.878 0.516 0.861 0.655 0.06
tumor-Ve-min 0.813 i 0.737 ~ 0.879 0.598 0.736 0.862 0
tumor-Ve-mean 0.858 b 0.763 ~ 0.928 0.695 0.764 0.931 0.19
tumor-Kep-max 0.827 b 0.739 ~ 0.912 0.557 0.724 0.833 54.68
tumor-Kep-mean 0.872 e 0.788 ~ 0.942 0.689 0.828 0.861 4.86
tumor-iAUC-min 0.605 ns 0.491 ~ 0.720 0.209 0.278 0.931 0
tumor-iAUC-max 0.84 b 0.748 ~ 0.916 0.619 0.722 0.897 0.34
tumor-iAUC-mean 0.886 e 0.810 ~ 0.950 0.702 0.806 0.897 0.1
peritumoral-iAUC-max 0.643 * 0.523 ~ 0.744 0.239 0.722 0.517 0
peritumoral-iAUC-mean 0.64 * 0.532 ~ 0.750 0.273 0.583 0.69 0

ROC, receiver operating characteristic; AUC, area under the curve; Cl, confidence interval; SE, sensitivity; SP, specificity; iIAUC, initial area
under the curve for the first 60 seconds.

Table S5 The Partial Representative AUC, Sensitivity, and Specificity Values, and Optimal Threshold for Useful Metrics for Diagnosing WHO
grade 4 gliomas

parameter AUC p2 95% ClI Y SE SP cut-off
tumor-Ktrans-min 0.666 ** 0.557 ~ 0.774 0.357 0.557 0.8 0
tumor-Ktrans-mean 0.777 b 0.680 ~ 0.866 0.444 0.869 0.575 0.07
tumor-Ve-min 0.748 b 0.654 ~ 0.838 0.52 0.77 0.75 0
tumor-Ve-mean 0.805 b 0.709 ~ 0.889 0.611 0.836 0.775 0.17
tumor-Kep-max 0.758 b 0.650 ~ 0.845 0.464 0.775 0.689 27.99
tumor-Kep-mean 0.8 b 0.693 ~ 0.901 0.61 0.725 0.885 4.31
tumor-iAUC-min 0.597 ns 0.486 ~ 0.708 0.195 0.295 0.9 0
tumor-iAUC-max 0.802 b 0.701 ~ 0.888 0.529 0.754 0.775 0.34
tumor-iAUC-mean 0.853 b 0.768 ~ 0.925 0.602 0.902 0.7 0.07
peritumoral-iAUC-max 0.61 ns 0.496 ~ 0.714 0.254 0.754 0.5 0
peritumoral-iAUC-mean 0.591 ns 0.484 ~ 0.701 0.215 0.59 0.625 0

ROC, receiver operating characteristic; LGG, low-grade glioma; HGG, high-grade glioma; AUC, area under the curve; Cl, confidence
interval; SE, sensitivity; SP, specificity; iIAUC, initial area under the curve for the first 60 seconds.
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Table S6 The Partial Representative Results of Non-parametric tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of IDH

IDH (median)
parameter wild-type mutation  P1 AUC p2 95% ClI Y SE SP cut-off
(n=61) (n=36)
tumor-Ktrans-min 0.010 0.000 * 0.629 * 0.540 ~ 0.714 0.272 0.516 0.757 0.000
tumor-Ktrans-mean 0.150 0.080 o 0.713 o 0.584 ~ 0.802 0.358 0.547 0.811 0.130
tumor-Ve-min 0.030 0.000 o 0.710 o 0.613 ~ 0.819 0.421 0.719 0.703 0.000
tumor-Ve-mean 0.420 0.090 o 0.738 o 0.643 ~ 0.828 0.467 0.656 0.811 0.340
tumor-Kep-max 21.630 54.680 i 0.705 i 0.559 ~ 0.815 0.370 0.730 0.641 27.990
tumor-Kep-mean 1.720 5.160 - 0.714 o 0.606 ~ 0.820 0.473 0.676 0.797 3.970
tumor-iAUC-max 0.590 0.240 - 0.710 o 0.601 ~ 0.788 0.476 0.719 0.757 0.340
tumor-iAUC-mean 0.220 0.050 o 0.770 o 0.690 ~ 0.868 0.459 0.594 0.865 0.170

ROC, receiver operating characteristicAUC, area under the curve; Cl, confidence interval; SE, sensitivity; SP, specificity; iAUC, initial area
under the curve for the first 60 seconds.

Table S7 The Partial Representative Results of Non-parametric Tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of
1p19q

1p19q (median)

parameter codeletion non-codeletion P71 AUC p2 95% Cl Y SE SP cut-off
(n=19) (n=66)
tumor-Ktrans-min ~ 0.000 0.000 * 0.657 * 0.535 ~ 0.757 0.327 0.485 0.842 0.000
tumor-Ve-min 0.000 0.020 ** 0.702 * 0.574 ~ 0.811 0.411 0.621 0.789 0.000
tumor-Ve-mean 0.110 0.375 * 0.687 * 0.541 ~ 0.837 0.388 0.652 0.737 0.160
tumor-Kep-max 70.650 27.510 ** 0.705 ** 0.575 ~ 0.828 0.388 0.737 0.652 42.040
tumor-Kep-mean 5.190 1.895 > 0.708 * 0.563 ~ 0.835 0.389 0.632 0.758 5.150
tumor-iAUC-mean  0.030 0.150 * 0.677 * 0.533 ~ 0.802 0.359 0.727 0.632 0.070

ROC, receiver operating characteristic; AUC, area under the curve; Cl, confidence interval; SE, sensitivity; SP, specificity; iIAUC, initial area
under the curve for the first 60 seconds.
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Table S8 The Partial Representative Results of Non-parametric Tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of

CDKN2A4/B Homozygous Deletion

CDKN2A/B homozygously
deletion (median)

parameter p1 AUC p2 95% ClI Y SE SP cut-off
no deletion deletion
(n=43) (n=5)
tumor-Ve-max 2.060 2.960 > 0.930 * 0.857 ~ 1.004 0.907 1.000 0.907 2.870
tumor-Ve-mean 0.090 0.700 * 0.830 * 0.719 ~ 0.942 0.744 1.000 0.744 0.190
tumor-Kep-min 0.030 0.000 * 0.784 * 0.645 ~ 0.922 0.674 0.674 1.000 0.010
tumor-Kep-mean 5.190 1.580 * 0.837 * 0.701 ~ 0.974 0.674 0.674 1.000 4.000
tumor-iAUC-max 0.220 0.440 * 0.777 * 0.597 ~ 0.956 0.581 1.000 0.581 0.240
tumor-iAUC-mean 0.030 0.140 * 0.791 * 0.644 ~ 0.937 0.628 1.000 0.628 0.070

ROC, receiver operating characteristic; AUC, area under the curve; Cl, confidence interval; SE, sensitivity; SP, specificity; iIAUC, initial area

under the curve for the first 60 seconds.

Table S9 The Partial Representative Results of Non-parametric tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of EGFR

EGFR amplification (median)

no amplification amplification ~ P1 AUC P2 95% Cl Y SE Sl cut-off

(n=37) (n=19)
tumor-Ve-min 0.020 0.050 ns 0.649 ns 0.505 ~ 0.793 0.326 0.947 0.378 0.000
peritumoral-Ve-min 0.020 0.010 ns 0.649 ns 0.502 ~ 0.797 0.331 0.595 0.737 0.010
tumor-iAUC-mean 0.190 0.270 ns 0.648 ns 0.499 ~ 0.797 0.280 0.632 0.649 0.250

ROC, receiver operating characteristic; AUC, area under the curve; Cl, confidence interval; SE, sensitivity; SP, specificity; iIAUC, initial area

under the curve for the first 60 seconds.

Table S10 The Partial Representative Results of Non-parametric Tests and ROC Analysis of Useful Metrics for Diagnosing the Genotype of

+7/-10 Cytogenetic Signature

+7/-10 cytogenetic
signature (median)

p1 AUC p2 95% ClI Y SE SP cut-off
no +7/-10  +7/-10
(n=18) (n=2)
peritumoral-Ktrans-max 0.090 0.035 ns 0.903 ns 0.728 ~1.078 0.778 0.778 1.000 0.050
peritumoral-Ve-max 0.210 0.020 ns 0.903 ns 0.758 ~ 1.048 0.778 0.778 1.000 0.030
peritumoral-Ve-mean 0.075 0.010 ns 0.917 ns 0.779 ~ 1.054 0.833 0.833 1.000 0.020

ROC, receiver operating characteristic; AUC, area under the curve; Cl, confidence interval; SE, sensitivity; SP, specificity; iIAUC, initial area

under the curve for the first 60 seconds.
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Table S11 The Partial Representative Results of Logistic Models for Predicting HGG, WHO Grade 2, WHO Grade 4, IDH Mutation, 1p19q
Codeletion, and CDKN2A/B Homozygous Deletion

model N AUC SE SP Y cut-off accuracy PPV NPV
pro-group 101 0.870 0.82 0.8 0.62 0.608 0.811 0.836 0.70
pro-grade2 101 0.893 0.793 0.903 0.696 0.494 0.861 0.759 0.903
pro-grade4 101 0.858 0.82 0.8 0.62 0.54 0.802 0.86 0.727
pro-IDH 101 0.85 0.892 0.703 0.595 0.264 0.762 0.627 0.9

pro-1p19q 85 0.705 0.652 0.737 0.388 0.798 0.659 0.894 0.368
pro-CDKN2A/B 48 0.93 1 0.907 0.907 0.315 0.896 0.5 0.975

AUC, area under the curve; Cl, confidence interval; SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive
value.
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