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ABSTRACT
Cerebral tumors, particularly in pediatric patients, pose a significant challenge in oncology. Radiotherapy is a crucial com-

ponent of the multimodal treatment approach for these tumors. Understanding the molecular basis of these tumors, particularly

their response to radiotherapy, is crucial for improving treatment outcomes and patient survival. Many cancer‐based studies

have investigated gene expression patterns and gene signatures associated with radiotherapy. However, such studies are scarce

in the field of pediatric cerebral tumors. Moreover, no studies have been conducted on the changes in gene expression profiles

“before and after radiotherapy treatment in pediatric cerebral tumors,” especially in diffuse intrinsic pediatric glioma, actually

classified as diffuse midline glioma. This review aims to explore the expression of gene profiles in cerebral tumors before and

after radiotherapy, unraveling the molecular mechanisms underlying treatment response and potential biomarkers for prog-

nosis and therapeutic targeting. By examining the current literature (years 2011–2023), we provide an overview of the present

understanding of the gene expression changes associated with radiotherapy in intrinsic brain tumors. Insights from these

studies suggest alterations in key signaling pathways, DNA repair mechanisms, and cell cycle regulation in response to

radiotherapy. Our analysis highlighted potential genomic targets and the importance of identifying key genes and pathways

involved in these responses to develop personalized treatment strategies and improve patient outcomes.

1 | Introduction

Cerebral tumors are a significant health concern due to their
complex heterogenous nature and potential impact on cognitive
function and overall well‐being [1]. The importance of under-
standing brain tumors lies in their potential to cause severe

neurological symptoms and their effect on a patient's quality of life.
One vital aspect of brain tumors is their diverse range of types and
subtypes, each with distinct characteristics and treatment impli-
cations. Advances in genomics, molecular profiling, and imaging
technologies have enhanced our understanding of brain tumor
biology, and it has been observed that among the various factors
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affecting brain tumor onset, development, and progression, epige-
netic modifications, including DNA methylation, histone modifi-
cations, and noncoding RNAs, act as key contributors.

To date, radiation therapy plays a crucial role in the treatment of
various tumors, including cerebral tumors, and the molecular ef-
fects of radiation on the gene expression profiles of cerebral
tumors are not fully understood. Many gene expression profiling
studies have been carried out in different tissues and cell types to
identify specific genes and pathways involved in radiation‐induced
cellular responses, including DNA damage recognition, repair
mechanisms, cell cycle checkpoints, apoptosis, and inflammation
in response to radiation [2, 3]. Genomic studies identified platelet‐
derived growth factor receptor A (PDGFRA) gene mutations in
high‐grade astrocytomas and glioblastomas (GBMs), particularly
in the proneural subtype. PDGFRA mutations are common in
GBMs and play a role in tumor progression. PDGFRA amplifica-
tion is frequent in pediatric and adult GBMs, with a higher
prevalence in de novo GBMs than in lower‐grade astrocytomas.
This suggests its impact on tumor aggressiveness and treatment
response. These findings highlight the importance of PDGFRA‐
driven pathways in GBMs [4, 5], though further research is needed
to understand their molecular characteristics better.

Several studies have been performed aimed at investigating gene
signatures associated with radiotherapy in prostate cancer patients.
For example, through a comprehensive analysis of gene expression
data from prostate cancer patients who received radiotherapy,
Kogionou et al. [6] identified a set of 6 genes (CCR7, FCGR2B,
BTLA, CD6, CD3D, and CD3E) that were downregulated post‐
radiotherapy compared to pre‐radiotherapy samples. Several simi-
lar studies established the potential of gene signatures as a pre-
dictive tool for assessing treatment outcomes and prognosis in
prostate cancer patients undergoing radiotherapy [7–9].

Considerable research work has also been conducted to study
epigenetic changes, such as DNA methylation, in breast cancer
patients who received fractionated radiotherapy and develop
gene signatures that can predict the radiosensitivity of breast
cancer patients [10, 11]. Some studies focused on monitoring
changes in gene expression patterns during adjuvant radio-
therapy in breast cancer patients and used integrative analyses to
identify radiation‐related genes and biomarkers associated with
breast cancer [12, 13]. Similar studies have also been accom-
plished for rectal cancer [14, 15] and cervical cancer [16] patients.

Understanding the molecular basis of acute and persistent
radiation responses is crucial for improving treatment outcomes
and minimizing radiation‐induced side effects. By identifying
key genes and pathways involved in these responses, it may be
possible to develop targeted therapies that enhance tumor cell
killing while sparing normal tissues. These gene signatures
could potentially aid in selecting the most effective radiotherapy
treatment options for individual cancer patients. However, such
studies are yet to be conducted extensively for cerebral tumors,
especially for pediatric brain tumors, as only a few have been
found in the literature. Understanding how radiation influences
the gene expression profiles can not only shed light on the
underlying mechanisms of treatment response and resistance
but also identify potential targets for intervention to sensitize
tumors to radiation or overcome treatment resistance.

2 | Literature Selection

Relevant studies and comprehensive reviews addressing gene ex-
pression profiles associated with radiotherapy in pediatric brain
tumors were meticulously searched. However, we could not find
any information about the changes in gene expression profiles
before and after radiotherapy treatment in pediatric brain tumors.
So, a narrative approach was adopted to create and analyze rele-
vant studies and findings. The narrative review aimed to provide a
cohesive narrative highlighting the current understanding of gene
expression alterations associated with radiotherapy in intrinsic
brain tumors, particularly on diffuse intrinsic pontine glioma
(DIPG), also classified as diffuse midline gliomas (DMG). Hence-
forth, in this study, DIPG has been referred to as DMG.

We conducted a comprehensive literature search in PubMed to
identify relevant studies published between 2011 and 2023. The
search focused on three main areas: (i) the impact of radiotherapy
treatment on gene expression profiles in patients with intrinsic
brain tumors, (ii) gene expression profiles in brain tumors, with a
specific focus on DMG, and (iii) differential gene expression and
potential genomic targets for novel therapeutic approaches in DMG.

A literature search using the keywords “pediatric brain
tumors,” “pre and postradiotherapy” and “gene expression
profiles” returned zero (0) results. To ensure the comprehen-
siveness of the search, we expanded the search radius to include
literature that is indirectly related to the mainstay of the study.
Thus, we conducted multiple literature searches with additional
keywords: “brain tumors,” “radiotherapy,” “diffuse midline
glioma,” “therapeutic drugs affecting gene expression,” and
“gene signatures,” which retrieved 181 studies. Studies that
appeared in multiple searches were considered only once. Then,
the publications were evaluated for relevance, and after careful
investigation, 47 studies were deemed appropriate for this
narrative review, primarily focusing on gliomas (intrinsic brain
tumors), while 134 studies were excluded. Key findings and
insights on gene expression alterations following radiotherapy
in intrinsic brain tumors and future therapeutic strategies were
extracted and synthesized to construct a coherent narrative.

This narrative review aims to address the scarcity of literature
in the field and provide valuable insights into an emerging area
of research. By consolidating and analyzing relevant studies
from 2011 to 2023, we look forward to bridging the literature
gap and contributing to the current understanding of gene ex-
pression profiles associated with intrinsic brain tumors and
radiotherapy response.

3 | Insights Into Gene Expression in Cerebral
Tumors

3.1 | Diffuse Midline Glioma (DIPG/DMG),
Intrinsic Brain Tumors, and Gene Expression
Profiles

Gene expression patterns have been studied for most intrinsic
brain tumors. Overexpression of the ASPM gene has been
identified as a potential molecular target in glioblastoma and
medulloblastoma [17]. Similarly, in glioblastoma multiforme
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(GBM), changes in DNA repair and cell‐cycle gene expression
were observed to occur during tumor development, and gene
expression profiles of a 27 gene signature, protein‐coding genes
(PCGs) and long noncoding RNAs (lncRNAs) were identified
and analyzed [18, 19].

Clinical and molecular heterogeneity of medulloblastoma, a
common malignant brain tumor in children, was unraveled by
investigation of gene expression profiling. Northcott et al. [20]
demonstrated that the four major medulloblastoma subtypes
activate distinct genetic pathways, each contributing to tumor
formation and progression. Group 1, the WNT group, is char-
acterized by axon guidance signaling, which directs neural
development but, when dysregulated, promotes uncontrolled
cell proliferation. Additionally, WNT/β‐catenin signaling
influences cell fate and proliferation; its activation in WNT
tumors is associated with aggressive tumor behavior, making it
a critical target for intervention. Alterations in O‐glycan bio-
synthesis, which affect protein modification and cell adhesion,
may further contribute to tumor progression. Group 2, the SHH
group, is essential for embryonic development but implicated in
tumor growth when dysregulated. Furthermore, activating
genes linked to human embryonic stem‐cell pluripotency sug-
gests a role in sustaining tumorigenic potential. In group 3,
phototransduction, glutamate receptor, and MAPK signaling
indicate unique metabolic profiles and tumor‐promoting
mechanisms, offering potential therapeutic targets. The group
4 subtype is influenced by p53 signaling, a crucial tumor sup-
pressor pathway, alongside semaphorin signaling, which affects
tumor behavior. These distinct pathways highlight the biologi-
cal diversity of medulloblastoma and provide promising ave-
nues for targeted therapies.

Analogously, ependymal tumors across all anatomic compart-
ments were divided based on gene expression profiling, and
subgroup‐specific pathways were identified [21]. Later, these
findings formed the rationale for the DNA‐methylation‐based
classification of brain tumors, as the methylation of cytidine
nucleotides is a major and well‐investigated gene silencing
mechanism. The biological and clinical diversity of choroid
plexus carcinomas, rare primary brain tumors in children, was
recently discovered by targeted gene expression profiling [22].

DMG is a highly malignant neoplasm that occurs primarily in
children and young adults across the midline structures of the
central nervous system, including the spinal cord, medulla
oblongata, pons, and thalamus. The molecular hallmark of DMG
is the loss of trimethylation at lysine 27 on histone H3
(H3K27me3) [23], a highly conserved epigenetic modification
associated with transcriptional repression and heterochromatin
formation. This loss is primarily driven by a recurrent missense
mutation (Lys27Met; K27M) in one of the histone H3‐encoding
genes, most commonly H3F3A (histone H3.3, ~75%), or less
frequently H3C2, H3C3 (histone H3.1, up to 25%), and in rare
cases, H3C14 (histone H3.2). A distinct subset of DMGs lacks
mutations in the H3 gene family but exhibits overexpression of
EZHIP (EZH inhibitory protein), which leads to a similar loss of
H3K27me3. EZHIP functions as a natural antagonist of the
polycomb repressive complex 2 (PRC2) by inhibiting the EZH1/
EZH2 methyl‐transferase activity, thereby causing down-
regulation of histone H3 trimethylation on lysine 27 residue. This

alternative mechanism of H3K27me3 depletion highlights the
epigenetic dysregulation central to DMG pathogenesis [24–27].

The major gene expression state in DMG cells is the over-
expression of many genes due to the downregulation of PRC2,
thus preventing the repression of genes associated with cancer
development. Apart from cancer‐related genes, DMG cells alter
the expression of genes involved in metabolic processes, such as
methionine metabolism and the tricarboxylic acid cycle, as well
as glucose and glutamine uptake [28]. Reciprocal to PRC2
inhibition, upregulation of SWI/SNF complex was noted in H3
K27M mutant DMG. Overexpression of SMARCA2, SMARCA4,
and PBRM1, as well as key members of the forkhead family of
transcription factors FOXO1, were considered therapeutic vul-
nerabilities of DMG [29, 30]. Another promising target for
therapeutic interventions in DMG is the upregulated and
phosphorylated (Tyr705) STAT3 protein [31].

Comparative analysis of gene expression profiles of DMG and
healthy pons samples revealed upregulation of the TGFB2 in
tumors. Moreover, high levels of TGFB2 mRNA predict ex-
tremely poor outcomes in DMG but not in other pediatric high‐
grade gliomas. Interestingly, the expression of TGFB3 had the
opposite effect, and its upregulation was associated with a
slightly better prognosis [32].

A recent study describes diverse gene expression programs in
different spatial compartments of DMG specimens. Cells from
the core tumor compartment predominantly expressed genes
associated with neuronal development, particularly those reg-
ulating oligodendrocyte precursor cells. On the other hand, cells
from the vascular niche show enrichment in pathways related
to reactive immune responses, hypoxia, and radial glia devel-
opment, while those in the hypoxic niche exhibit strong acti-
vation of hypoxia and radial glia development signatures [33].

These distinct gene expression patterns (Table 1) can be used as
biomarkers for investigating tumor behavior, particularly in
response to radiotherapy‐induced epigenetic modifications.
Understanding these signatures could provide critical insights
into how radiotherapy reshapes the tumor epigenome and
influences treatment outcomes. Similar to research in breast
and prostate cancers, longitudinal pre‐ and post‐radiotherapy
studies in cerebral cancers could uncover novel epigenetic
regulatory mechanisms. Such insights would not only deepen
our understanding of tumor plasticity and adaptation but also
aid in refining personalized therapeutic strategies and improv-
ing the prognosis for patients with intrinsic brain tumors.

3.2 | Gene Expression in Intrinsic Brain Tumors
Upon Radiotherapy Treatment: Pre and
Postradiotherapy Gene Expression

Among the earlier studies contributing to a better under-
standing of the molecular alterations as effects of radiotherapy
on the gene profile expression of intrinsic brain tumors include
the work by Joki et al. [34], which examined changes in gene
expression in recurrent malignant glioma following radio-
therapy using complementary DNA (cDNA) microarrays.
Tumor samples from patients with recurrent malignant glioma
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who had undergone radiotherapy were collected, and their gene
expression profiles were compared to those of untreated glio-
mas. The results revealed significant alterations in gene ex-
pression between recurrent malignant gliomas following
radiotherapy and untreated gliomas. Significant alterations in
gene expression were observed in recurrent tumors following
radiation treatment, particularly in growth factor signaling
pathways. Paracrine signaling factors, such as Vascular En-
dothelial Growth Factor (VEGF) and Platelet‐Derived Growth
Factor Receptor β (PDGFRβ), exhibited reduced mRNA levels
in recurrent tumors compared to primary tumors in three out of
four patients. Similarly, autocrine signaling factors, including
Epidermal Growth Factor Receptor (EGFR), Platelet‐Derived
Growth Factor α (PDGFα), Platelet‐Derived Growth Factor A
(PDGFA), and Basic Fibroblast Growth Factor (bFGF), also
showed decreased expression in recurrent tumors. These find-
ings highlight the genetic adaptations that occur in response to
radiotherapy‐induced selective pressures, potentially altering
tumor cell survival, proliferation, and microenvironment in-
teractions. Understanding these gene expression changes may
provide valuable insights into tumor recurrence and resistance
mechanisms, offering potential molecular targets for future
therapeutic strategies. These findings provided important in-
sights into the genetic changes that occur in response to
radiotherapy that could help identify potential targets for future
therapeutic interventions.

Several studies have investigated the molecular mechanisms
underlying the adaptive response of gliomas to radiation treat-
ment. For example, Li et al. [35] identified a 5‐gene signature
(HOXC10, LOC101928747, CYB561D2, RPL36A, and RPS4XP2)
associated with radiotherapy response and prognosis through a
comprehensive analysis of gene expression data from glioma
patients who underwent radiotherapy. Another study focused
on identifying genes aberrantly expressed in murine glioblas-
toma during radiotherapy using bioinformatic data mining ap-
proaches identified that Chemokine and IL‐6 signaling
pathway‐associated genes were increased in the irradiated
strains [36]. Raviraj et al. [37] reviewed the epigenetics of brain
tumors, with a specific focus on the modulation of epigenetic
changes during radiation therapy, and found that epigenetic
modifications impact gene transcription, including Polycomb
genes and V‐Myc avian myelocytomatosis viral oncogene
(MYCN) in glioblastoma.

Matsko et al. [38] explored the link between the
O‐6‐methylguanine‐DNA methyl‐transferase (MGMT) gene ex-
pression and the response to treatment in glioblastoma patients
who received radiotherapy. Their findings revealed a remark-
able decrease in glioblastoma size in patients with low levels of
MGMT gene expression. MGMT is an enzyme involved in DNA
repair, and its high expression has been associated with resist-
ance to DNA alkylating agents, such as temozolomide (TMZ),

TABLE 1 | Gene expression profiles associated with intrinsic brain tumor types.

Tumors Gene Expression Profile References

Glioblastoma and
medulloblastoma

Overexpression of ASPM gene [17]

Glioblastoma multiforme Changes in DNA repair and cell‐cycle gene expression, identification of a
27‐gene signature, protein‐coding genes (PCGs), and long noncoding RNAs

(lncRNAs)

[19]

Medulloblastoma Activation of genes associated with

− axon guidance signaling (WNT and SHH groups)

− WNT/β‐catenin signaling

− O‐glycan biosynthesis

− human embryonic stem‐cell pluripotency
− phototransduction pathway

− glutamate receptor signaling

− MAPK signaling

− p53 signaling

− semaphorin signaling

− cAMP‐mediated signaling

− G‐protein‐coupled receptor signaling

[20]

Diffuse midline glioma Overexpression of the EZHIP gene due to

− downregulation of PRC2,

− upregulation of SWI/SNF complex

− overexpression of SMARCA2, SMARCA4, PBRM1, FOXO1, and
phosphorylated STAT3 protein

[24–31]

Diffuse midline glioma − Upregulation of TGFB2 (associated with a poor prognosis)

− upregulation of TGFB3 (associated with a slightly better prognosis)

[32]
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concomitantly used with radiotherapy [39]. Notably, MGMT
promoter methylation correlated with a positive response to
TMZ in glioblastoma patients [40, 41] and showed prognostic
value even in those glioblastoma patients who did not receive
TMZ with radiotherapy [42]. Despite TMZ use, no studies have
demonstrated a clear role of temozolomide in the setting of
DIPG, and it is largely an extrapolation of glioblastoma therapy.
Studies support a high expression of MGMT in H3 K27‐altered
DMGs, contributing to temozolomide resistance in DIPG.
Despite advances in medical care and preclinical and clinical
studies, the median overall survival of DIPGs is 9–15 months, a
figure that has remained unchanged for decades. Lower MGMT
expression has been associated with favorable treatment out-
comes for glioblastoma patients [38], which could also be re-
garded as the cause and not the effect of irradiation. However,
all studies indicate that MGMT gene expression levels could
serve as a predictive biomarker for treatment response in
glioblastoma.

In a recent study, Walker et al. [43] investigated the molec-
ular mechanisms underlying the adaptive response of glioma
cells to radiation treatment. They identified a key protein
complex called PTEFb, whose inhibition leads to the dis-
ruption of chromatin reorganization, resulting in diminished
transcriptional induction and impaired DNA damage repair
and cell cycle regulation. The study showed that exposure to
radiation leads to rapid reorganization of active chromatin,
enabling PTEFb‐mediated transcriptional induction within a
few hours.

Akkari et al. [44] explored how glioma macrophage populations
change dynamically after radiotherapy and suggested that
inhibition of the colony‐stimulating factor‐1 receptor (CSF‐1R)
can be used as a therapeutic strategy to overcome resistance and
improve survival in preclinical models. They also identified
specific gene expression patterns after irradiation in murine
gliomas and confirmed altered gene and protein expression in
recurrent human glioblastoma. Cifarelli et al. [45] studied
molecular characteristics underlying the diverse radiation
responses through molecular profiling and observed distinct
gene expression patterns and molecular signatures, which
provided insights into the biological processes and pathways
involved in mesenchymal glioblastoma and its response to
radiation therapy.

Another study [46] focused on the development and validation
of a gene expression signature that can predict prognosis in
lower‐grade glioma (LGG) patients who have undergone sur-
gery and adjuvant radiotherapy. Analysis of gene expression
data, recorded in The Cancer Genome Atlas (TCGA), related to
a cohort of 289 LGG patients identified 5 genes (MAP3K15,
MAPK10, CCL3, CCL4, and ADAMTS1) significantly associated
with patient outcomes, specifically the overall survival.

These results suggest that these prognostic gene expression
signatures have potential clinical utility in guiding treatment
decisions and predicting outcomes for patients with intrinsic
brain tumors who undergo surgery and adjuvant radio-
therapy (Table 2). They also provide a valuable tool for
identifying patients requiring more aggressive therapeutic
approaches or closer surveillance. Furthermore, insights

gained from gene expression profiling studies can contribute
to the identification of novel molecular targets for radio-
sensitization, allowing for more effective radiation treatment
regimens. Altogether, these findings may lead to future ways
of developing personalized treatment strategies and targeted
therapies to improve outcomes for patients with intrinsic
brain tumors.

3.3 | Molecular Insights and Emerging
Therapeutic Strategies for Diffuse Midline Glioma

DMG is a highly lethal disease, with most patients surviving less
than 1 year after diagnosis and fractioned radiotherapy being
the first‐line treatment. Despite various treatment attempts,
overall survival has not improved significantly [1]. Given the
pressing need to enhance survival rates, there is a growing
interest in better comprehending the molecular characteristics
of DMG and facilitating personalized treatment approaches, as
traditional radiological imaging alone has not been sufficient
for substantial progress.

To understand the complex genetics of pediatric brain stem
gliomas (BSGs), multiple studies have been conducted in the
last two decades. One of the important primary studies in this
direction was the investigation of ERBB1 amplification and
overexpression in BSGs and their relationship with TP53 ex-
pression and mutations [47]. ERBB1 gene expression signifi-
cantly increased with higher‐grade tumors, while TP53
abnormalities were grade‐independent, suggesting that ERBB1
signaling could be a potential therapeutic target for childhood
BSGs. In another study, Li et al. [48] assessed the presence of
EGFRvIII expression in pediatric DMG samples and found that
EGFRvIII was expressed in a significant portion of the samples,
suggesting that it may be a potential target for treatment in
these often fatal pediatric tumors.

ONC201 (Figure 1), a drug with properties as a DRD2 antago-
nist and mitochondrial ClpP activators [1], has shown promise
in early responses for patients with DMG harboring the H3
K27M mutation, a condition for which there are limited treat-
ment options beyond radiation therapy [49]. This study also
uncovered a potential resistance mechanism involving an
EGFR/FOXG1‐driven gene regulatory network, suggesting
future combination therapy possibilities by targeting EGFR.

Researchers also conducted a genome‐wide CRISPR screen by
targeting the rate‐limiting enzyme DHODH with the
clinical‐stage inhibitor BAY2402234 (Figure 1), which reduced
uridine‐5’‐phosphate (UMP) pools, induced DNA damage, and
triggered apoptosis, ultimately extending the survival of mice
with intracranial DMG xenografts [50]. By exploiting this
metabolic vulnerability, this study highlights BAY2402234 as a
promising therapeutic option for DMGs.

Somatic mutations in ACVR1 are common in DMG [51], and
treatment with ALK2 inhibitors (ALK2i) has shown promising
results in reducing cell viability and prolonging survival in
animal models. However, as standalone treatments, these
inhibitors could not achieve a complete antitumor response. A
novel artificial intelligence study identified a combination
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therapy involving vandetanib and everolimus (Figure 1) as a
potential treatment approach [52]. The tyrosine kinase inhibitor
vandetanib, which inhibits VEGFR/RET/EGFR, targets ACVR1
and reduces DMG cell viability In Vitro. When combined with
the mTOR/ABC transporter inhibitor everolimus, the survival
results were extended, and tumor burden in a DMG xenograft
model was reduced.

In another recent study [53], a single‐center experience was
conducted in treating patients with DMG by comparing targeted
therapies with nimotuzumab/vinorelbine or temozolomide
(Figure 1) (affected mTOR/p‐mTOR pathway and BRAF
V600E) with standard care. The first‐line treatment included
radiotherapy and specific drugs based on the molecular profile
of the tumor. The overall survival (OS) rate was significantly
higher in patients who received personalized, targeted therapies
than those treated with standard care. Notably, everolimus was
identified as the treatment associated with the best overall
survival in this study.

Through a systematic computational approach using publicly
available databases and gene signatures from DMG patients and

cancer cell lines, Zhao et al. [54] investigated therapeutic agents
capable of reversing the DMG gene signature to resemble nor-
mal tissue. They identified two drugs, triptolide and mycophe-
nolate mofetil (MMF), demonstrating significant inhibition of
DMG cell viability. MMF treatment also inhibited tumor growth
in In Vivo models, suggesting the potential of these clinically
available drugs for treating DMG.

Another interesting approach was discussed in the extensive
review by Nazh et al. [55] regarding the application of anti‐GD2
Chimeric Antigen Receptor T cells (CAR‐T cells) for neuro-
blastoma and gliomas. Engineered CAR‐T cells, designed to
recognize disialoganglioside GD2 (a disialoganglioside belong-
ing to b‐series ganglioside), exhibit promising durability and
potency, with the added capability to penetrate the blood‐brain
barrier. Ongoing clinical trials focus on pediatric and adult
patients with high‐grade GD2‐expressing gliomas [56, 57].

Srikanthan et al. [58] discuss the landscape of clinical trials and
targeted therapies for DMG, stating that approximately 250
clinical trials have been initiated targeting various biological
pathways, with PDGFRA and EGFR being among the

TABLE 2 | Genes associated with radiotherapy response in intrinsic brain tumors.

Gene Association with radiotherapy References

Vascular endothelial growth factor (VEGF) Reduction in mRNA levels in recurrent malignant gliomas
postradiotherapy

[34]

Platelet‐derived growth factor receptor β
(PDGFRβ)

Reduction in mRNA levels in recurrent malignant gliomas
postradiotherapy

[34]

Epidermal growth factor receptor (EGFR) Decreased mRNA levels in recurrent malignant gliomas
postradiotherapy

[34]

Platelet‐derived growth factor α (PDGFα) Decreased mRNA levels in recurrent malignant gliomas
postradiotherapy

[34]

Platelet‐derived growth factor A (PDGF A) Decreased mRNA levels in recurrent malignant gliomas
postradiotherapy

[34]

Basic fibroblast growth factor (bFGF) Decreased mRNA levels in recurrent malignant gliomas
postradiotherapy

[34]

HOXC10
LOC101928747
CYB561D2
RPL36A
RPS4XP2

Identified as biomarkers associated with radiotherapy response
and prognosis in glioma patients

[35]

Chemokine and IL‐6 signaling pathway‐
associated genes

Increased expression during radiotherapy [36]

O‐6‐methylguanine‐DNA methyl‐
transferase (MGMT)

Low levels associated with reduction in glioblastoma size
postradiotherapy

[38]

PTEFb Implicated in chromatin reorganization and DNA damage
repair postradiotherapy

[43]

Colony‐stimulating factor‐1 receptor
(CSF‐1R)

Dynamic changes postradiotherapy, potential therapeutic
target

[44]

MAP3K15
MAPK10
CCL3
CCL4
ADAMTS1

Associated with overall survival in lower‐grade glioma patients
postradiotherapy

[46]
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FIGURE 1 | Chemical structure of some drugs and Inhibitors for the treatment of diffuse midline glioma (DMG).

7 of 11

 10981128, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ed.22122 by C
ochraneItalia, W

iley O
nline L

ibrary on [29/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



frequently amplified genes. However, therapies targeting
PDGFRA, such as imatinib and dasatinib (Figure 1), have
shown limited effectiveness [59]. Clinical trials exploring anti‐
EGFR drugs (nimotuzumab, gefitinib, and erlotinib) have
demonstrated some benefit in specific subsets of DMG patients
[60–62]. JMJD3 inhibitors, including panobinostat and GSK‐4,
targeting histone deacetylase and demethylase, have moved into
clinical trials, showing promising results [63, 64]. Chromatin
remodelers, such as EZH2, have been targeted, with promising
results with tazemetostat (Figure 1) [65]. Transcriptional regu-
lators like BET family proteins (JQ1) and CDK7 inhibitors
(THZ1) have also been investigated for their therapeutic
potential in DMG [66, 67].

To sum up, the current research landscape in DMG emphasizes
the urgent need for effective therapeutic strategies to improve
patient outcomes. Despite the grim prognosis of DMG, recent
studies have revealed potential avenues for personalized treat-
ment approaches (Table 3). Notably, ONC201 has exhibited
early promise in targeting DIPG/DMG harboring the H3 K27M
mutation, while genome‐wide CRISPR screens have identified
metabolic vulnerabilities exploitable with inhibitors like
BAY2402234. Additionally, combination therapies, such as
vandetanib and everolimus, have shown efficacy in preclinical
models, emphasizing the importance of synergistic approaches.
Furthermore, personalized, targeted therapies guided by
molecular profiling have demonstrated superior outcomes
compared to standard care, with everolimus emerging as an up‐
and‐coming agent. Exciting advancements in immunotherapy,
including anti‐GD2 Chimeric Antigen Receptor T cells (CAR‐T
cells), also offer potential avenues for effective treatment.

However, challenges remain, especially in overcoming resist-
ance mechanisms and optimizing therapeutic regimens.

4 | Perspectives

Currently, radiotherapy is the “gold standard” treatment used
and very often combined with chemotherapy. Radiotherapy is a
palliative treatment as it alleviates symptoms. Chemo-
therapeutic drugs do not lead to results as they are mostly
unable to cross the blood‐brain barrier (BBB). BBB plays an
important role in regulating central nervous system (CNS)
homeostasis, and in this case, it represents an obstacle for many
low lipophilic drugs to reach it (Lipinski's rule of five). Pre-
liminary studies were performed using Focused Ultrasound
(FUS) to open BBB temporarily, allow a milder use of radio-
therapy, and facilitate the passage of BBB from drugs. There are
some ongoing investigations on patient‐derived xenograft DMG
mouse model (Olaparib) [68, 69] and clinical trials in which
DMG patients H3 K27‐altered are treated with FUS and
ONC201 (NCT), doxorubicin (NCT05123534, NCT05615623,
NCT05630209) [70], etoposide (NCT05762419), panobinostat
(NCT04804709). These studies have not yet been concluded, but
the corresponding interim results are available. We hope that in
the near future, due to the lack of data, the clinical protocol
used to manage DMG patients should include the possibility of
performing a biopsy even after post‐RT treatment to detect
changes in the gene expression profile compared to profile
detected in the biopsy performed before administration of RT,
to guide clinicians in choosing the appropriate personalized
multi‐targeted treatment.

TABLE 3 | Drugs and inhibitors (Figure 1) for the treatment of diffuse midline glioma (DMG) and their molecular effects.

Drug/Inhibitor Molecular effects References

ONC201 DRD2 antagonist, mitochondrial protease
ClpP inducer/activator

[1, 49]

BAY2402234 Reduces UMP pools, induces DNA damage,
triggers apoptosis

[50]

ALK2 inhibitors (ALK2i) (e.g., LDN‐214117) Reduces cell viability and prolongs survival in
animal models

[51]

Vandetanib and everolimus combination therapy Inhibits VEGFR/RET/EGFR, reduces DMG
cell viability, reduces tumor burden

[52]

Nimotuzumab/vinorelbine or temozolomide Affects the mTOR/p‐mTOR pathway and
BRAF V600E, improves overall survival

[53]

Triptolide and mycophenolate mofetil (MMF) Inhibits DIPG/DMG cell viability and tumor
growth in In Vivo models

[54]

Anti‐GD2 Chimeric Antigen Receptor T cells (CAR‐T cells) Recognizes disialoganglioside GD2, penetrates
the blood‐brain barrier

[55–57]

PDGFRA and EGFR inhibitors (e.g., imatinib for PDGFRA;
brigatinib and afatinib as EGFR reversible and irreversible
inhibitors, respectively)

Target frequently amplified genes [58–62]

JMJD3 inhibitors (panobinostat, GSK‐4) Target histone deacetylase and demethylase [58, 63, 64]

EZH2 inhibitors (tazemetostat) Target chromatin remodelers [58, 65]

BET family protein inhibitors (JQ1) Target transcriptional regulators [58, 66]

CDK7 inhibitors (THZ1) Target transcriptional regulators [58, 67]
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5 | Conclusion

In conclusion, gene expression profiling studies have provided
valuable insights into the molecular mechanisms underlying
acute and persistent responses to radiation. Such studies have
important implications for optimizing radiation therapy, tai-
loring treatment strategies, and improving patient outcomes. By
integrating knowledge of epigenetic alterations and their
response to radiation, we can pave the way for personalized
treatment approaches and improve outcomes for patients with
pediatric brain tumors, especially in the case of DIPG/DMG [66,
67, 71–74]. We hope to raise awareness worldwide so that ex-
tensive comparative studies are conducted on the gene expres-
sion profiles before and after radiotherapy. Understanding the
gene expression changes occurring during irradiation will pave
the way for better prognosis and personalized approaches to
cancer treatment.

In conclusion, the intricate landscape of cerebral tumors, par-
ticularly pediatric brain tumors like DIPG, presents a complex
challenge in terms of diagnosis and treatment. Despite signifi-
cant advancements in genomics, molecular profiling, and
imaging technologies, much remains to be elucidated regarding
the molecular effects of radiotherapy on gene expression pro-
files in these tumors. While studies in other cancer types have
provided valuable insights into the genetic alterations induced
by radiotherapy and their implications for treatment outcomes,
research in pediatric brain tumors, especially DIPG, remains
limited.
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