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Simple Summary

Gliomas, including glioblastoma (GBM), are aggressive brain tumors in which chronic
inflammation helps cancer cells grow, invade, and evade immunity. This review focus on
three connected inflammatory circuits, NF-κB, COX-2–prostaglandin E2 (EP2/EP4), and
the NLRP3–IL-1 pathway. This inflammatory triangle may shape tumor behavior and the
surrounding immune microenvironment. We summarize evidence that diet-derived natural
anti-inflammatory agents (polyphenols such as curcumin, resveratrol, EGCG, quercetin;
isothiocyanates such as sulforaphane; terpenes/lignans such as boswellic acids and hon-
okiol; ω-3-derived mediators; and berberine) may affect these signals, reduce invasion, and
improve sensitivity to radiotherapy or temozolomide in experimental models. We summa-
rize that these compounds may act as low-toxicity adjuncts to standard care, ideally using
brain-directed formulations and biomarker monitoring based on their well-established
anti-inflammatory and antioxidant roles.

Abstract

Chronic inflammation is a well-established hallmark of cancer, playing a critical role in
the initiation and progression of gliomas. Recent evidence underscores the importance
of anti-inflammatory natural products as chemotherapeutic and potentially as chemopre-
ventive agents, offering a safe and multifaceted approach to mitigate tumor-promoting
inflammation in the brain. This review explores the interplay between major inflammation-
related pathways—such as NF-κB, COX-2, and the NLRP3 inflammasome—and key bioac-
tive compounds derived from natural sources such as polyphenols, isothiocyanates, ter-
penes/lignans, and omega-3-derived mediators. We provide evidence on the effect of these
compounds on the above inflammatory triangle. We discuss emerging in vitro, in vivo
preclinical and translational evidence in the context of glioma biology and highlight how
these compounds may pass the blood–brain barrier (BBB) and modulate the tumor microen-
vironment (TME), including immune cell infiltration and cytokine profiles that may act in
a pro- or anti-inflammatory manner, highlighting their capacity to inhibit GBM-associated
inflammation. Each substance may differentially influence the components of the inflam-
matory triangle. Overall, we position these agents as low-toxicity, formulation-aware
adjuncts to standard care. The ultimate goal is offering novel insights on low-toxicity,
inflammation-targeting interventions against malignant brain tumors.
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1. Introduction
1.1. Introduction on Cancer, Brain Cancer, and Inflammatory Response

Globally, cancer is a leading cause of human mortality. According to the Global Burden
of Disease Study, new cancer cases doubled since 1990 to 18.5 million and deaths rose to
10.4 million in 2023, while by 2050 there is an estimation for 30.5 million new cases and
over 18 million deaths each year [1]. In 2023, an estimated 41.7% of cancer deaths were
attributable to modifiable risk factors, underscoring the potential for prevention to curb the
future burden [1]. Primary malignant brain tumors remain among the most lethal types
of cancer, with glioma and high-grade glioblastoma (GBM) accounting for the majority
of deaths, despite recent advances in surgery, radiotherapy, and systemic therapies [2–4].
Based on population data, five-year survival for GBM remains low, near 7%, underscoring
an urgent need for preventive and adjunct strategies that occur before or during early
disease [4]. Additionally, among all primary malignant brain and other CNS tumors, the
overall five-year relative survival remains only at ~36%, highlighting the present limits of
the current standards of care [5]. For diffuse gliomas, guidelines continue to recommend
a combination of resection of maximal safe margins, tumor irradiation, and alkylating
chemotherapy adapted to molecular subtype, based on the 2021 WHO classification [6,7].
There are several updated practice frameworks, such as EANO, RANO/EANO PET guid-
ance, and NCCN that aim to refine diagnostics, response assessment, and adjuvant options.
However, for most patients, diffuse gliomas are a devastating disease [7–9].

Targeting inflammatory responses associated with gliomagenesis and progression of
the disease has been proposed as an additional treatment for brain tumors [10]. Inflam-
mation has been extensively studied in several types of cancer and has emerged in the
modern adaptation of the conceptual framework of “hallmarks of cancer” as an enabling
characteristic and a therapeutic target [10]. In gliomas, the transcriptional programs that
are affected by inflammation include three regulators. The transcription factor NF-κB [11],
cyclooxygenase-2 (COX-2)–PGE2 signaling via the EP2/EP4 receptors [12], and the NLRP3
inflammasome [13]. NF-κB, COX-2, and PGE2 have been shown to cooperate to promote
proliferation, invasion, angiogenesis, and escape of immune surveillance. These pathways
are active in tumor cells and across the tumor microenvironment (TME). In particular,
tumor-associated microglia and macrophages (collectively TAMs) may create positive
feedback loops. These loops sustain an inflammation-dependent immunosuppressive
niche [14]. NF-κB signaling is frequently upregulated in GBM and connects inflamma-
tory stimuli in cells with gene expression patterns that enhance survival, stemness, and
treatment resistance [15]. Interestingly, NF-kB-related networks have been shown to be
attractive targets for natural product-related therapies [16]. In addition, both canonical
and non-canonical NF-κB signaling intersect with signaling pathways such as those of
TGF-β, PI3K/Akt, and MAPK that altogether amplify a pro-tumorigenic, proliferative
signaling within the TME [11]. Elevated COX-2 and PGE2 can further affect TAMs to act
in an immunosuppressive manner. Since such action correlates with aggressive disease,
both COX-2 and PGE2 may be considered as rational targets in GBM [12,17]. Furthermore,
NLRP3 activation in gliomas has context-dependent effects. Recent evidence links NLRP3
signaling to granulocytic recruitment in the TME and therapy antagonism, further support-
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ing that inflammasome and tumor-promoting inflammation modulation may have strong
antiglioma action [10].

1.2. Problem Definition and Scope

This narrative review focuses on adult diffuse gliomas and glioblastoma (GBM) and
evaluates how NF-κB, COX-2–PGE2 (EP2/EP4), and NLRP3–IL-1 signaling intersect with
natural anti-inflammatory compounds to shape the TME. GBM incidence increases with
age and is modestly higher in males, contextualizing the population at risk. Key prog-
nostic/predictive markers include IDH mutation, 1p/19q codeletion, and MGMT pro-
moter methylation, which guide contemporary management and trial stratification. Our
scope is gliomas not non-CNS cancers, and we emphasize translational relevance (deliv-
ery/BBB/BTB, biomarker readouts) rather than extrapolation [7–9,18].

The use of natural anti-inflammatory compounds, such as diet-derived or phytochemi-
cal agents may combine potential anticancer activity with a higher tolerability profile [19,20].
Many of these molecules seem to converge on the same inflammatory pathways that are
aberrant in glioma, which include the activation of NF-κB, COX-2, and NLRP3, providing
a mechanistic basis for potential chemopreventive and adjunct therapeutic roles [12,19,21].
Pleiotropic actions may simultaneously influence redox balance, epigenetic regulation,
and metabolic signaling, properties that are advantageous in genetically heterogeneous
tumors [11].

Importantly, the glioma TME is densely populated by TAMs and other myeloid cells,
often comprising up to half of the live cells within GBM, and these cells are highly re-
sponsive to inflammatory stimuli [3]. Recent literature reviews detail the heterogeneity of
microglia versus infiltrating macrophages and outline therapeutic concepts aimed at repro-
gramming the roles of these cell populations rather than depleting them [14,22,23]. Many
natural agents modulate macrophage polarization, cytokine secretion, and prostaglandin
pathways; they may influence the TME toward an antitumor phenotype when paired with
standard therapy [12,24].

The gut–brain–tumor axis adds another layer of complexity and a connection between
inflammation and tumor promotion. Emerging data suggest that gut microbial composition
and metabolites regulate systemic and neuroinflammatory responses, with preliminary
evidence linking dysbiosis to brain tumor biology and therapy responses [25,26]. Observa-
tional studies and meta-analyses indicate that healthier dietary patterns, rich in vegetables,
fruits, fish, and whole grains, associate with lower glioma risk, though study heterogeneity
remains [27–29]. A clear causality for specific protective dietary factors in glioma has not
been established yet, underscoring the need for novel experimental designs [30]. Neverthe-
less, preclinical and early translational works suggest that dietary modulation (including
low-carbohydrate paradigms) and microbiome-associated strategies may attenuate neuroin-
flammation and interact with antitumor immunity in glioma models, while gut dysbiosis
promotes glioma [31,32].

From a safety and feasibility standpoint, several natural compounds commonly dis-
cussed in neuro-oncology contexts, such as curcumin and resveratrol, have been examined
across non-glioma clinical settings and generally display acceptable tolerability at com-
monly studied oral doses, with bioavailability as a key limitation [33,34]. Umbrella and
recent systematic reviews emphasize that while safety is encouraging, efficacy signals are
inconsistent and often limited by small, heterogeneous trials and formulation issues [33,35].
These realities argue for adjunct rather than replacement roles and motivate formula-
tion innovations, such as nano-delivery and phytosomes, to improve brain exposure and
pharmacokinetics [6].
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Within this review, we discuss the interplay of natural anti-inflammatory compounds
with three core inflammatory compounds in glioma, namely, NF-κB, COX-2, and NLRP3,
and how these interactions might reprogram the TME to reduce gliomagenesis, immunosup-
pression, and invasion. We frame these compounds as low-toxicity, inflammation-targeted
complements to standard care rather than as stand-alone cures, with a goal of improving
quality of life and delaying progression and, in the future, of identifying possible subgroups
for which preventive or adjunct approaches are most impactful.

1.3. Methods—Scope of the Literature Survey

The current work is a narrative review. We searched PubMed and Scopus for English-
language reports (2015–2025, plus earlier foundational studies) using combinations of
glioma OR glioblastoma AND (NF-κB OR COX-2 OR PGE2 OR EP2 OR EP4 OR NLRP3
OR IL-1β) AND (polyphenols OR sulforaphane OR honokiol OR ginsenosides OR ω-3
OR specialized pro-resolving mediators OR berberine). We prioritized mechanistic and
orthotopic in vivo evidence and recent syntheses for broader context. References were
selected to illustrate mechanisms, translational constraints (BBB/BTB, formulation), and
adjunctive potential not to exhaustively catalogue all publications.

2. Inflammation in Glioma: Core Components
It is known that gliomas, especially glioblastoma multiforme, are sustained by in-

flammatory circuitry that may integrate tumor-promoting signals with the TME interplay.
Among the core components of inflammation are NF-κB-associated signaling, the COX-
2/PGE2 cascade, and NLRP3 inflammasome activation, which together may influence
proliferation, invasion, angiogenesis, and immune evasion [3,36,37]. Within the modern
“hallmarks of cancer” framework, tumor-promoting inflammation is an enabling character-
istic, making these pathways important for possible therapeutic interventions [10].

2.1. NF-κB Signaling: A Central Inflammatory Integrator in Glioma

The NF-κB pathways are commonly stress- and cytokine-responsive signaling cascades
in which IκB kinases (IKKα/IKKβ with NEMO) phosphorylate IκB inhibitors, targeting
them for degradation and freeing NF-κB transcription factor dimers (commonly p65/RelA–
p50) to translocate to the nucleus. There, NF-κB drives transcription of a wide array of target
genes. Based on the initial signal, the specific dimer activated, and the cell type, NF-κB can
induce inflammation, immunity, cell survival, and metabolism. A tight negative feedback
(such as IκBα resynthesis) and alternative (non-canonical) signaling via NIK–IKKα that
processes the p100 subunit to p52 can also fine-tune context-dependent responses [11].

Canonical NF-κB signaling, typically based on IKKβ-dependent phosphorylation and
degradation of IκBα, enabling p65/p50 nuclear translocation, and non-canonical signal-
ing, NIK-IKKα-dependent processing of p100 to p52/RelB, are both engaged in glioma,
integrating cytokines (e.g., TNFα, IL-1β), DAMPs, and receptor tyrosine kinase activ-
ity [38,39]. Aberrant activation has been shown to support tumor-cell survival, metabolic
adaptation, angiogenesis, invasion, and therapy resistance, while it may also contribute to
immunosuppression within the TME [14,38]. Recent research highlights that NF-κB may
act towards GBM pathogenesis, with upstream drivers including the EGFR/PI3K/Akt
pathway, TGF-β signaling, and extracellular matrix remodeling. Downstream effectors may
include cytokines, chemokines, and EMT-based transcriptional responses [40]. Experimen-
tal studies have established a link between NF-κB activity and chemotherapy resistance.
An interesting example includes the RIP2/NF-κB/PD-L1-driven induction of autophagy
following temozolomide treatment, showing a role in treatment failure, enforced by in vitro
and xenograft GBM models [41]. At the TME level, NF-κB signaling in tumor-associated
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microglia/macrophages (TAMs) shapes pro-inflammatory cytokine expression and anti-
gen presentation, biasing toward an immune-evasive local environment [14]. Through
crosstalk with STAT3, MAPKs, and PI3K/Akt, NF-κB amplifies glioma stem-like cells,
their invasion, and resistance to radiation and temozolomide [38]. Collectively, these data
support that NF-κB modulators may have tumor suppressor roles in GBM. Towards this
direction, a recent work by our team has introduced an NF-κB-related network that is
active during the antiglioma action of natural compounds deglucohellebrin, n-p-cumaroyl-
serotonine, and moschamine [16]. This network explains the antiglioma role of each of
these substances [42–44].

2.2. COX-2/PGE2: Prostaglandin Signaling and Immune Evasion

Cyclooxygenase-2 (COX-2/PTGS2) catalyzes arachidonic acid conversion to prostagla-
ndins, with PGE2 acting via EP receptors (EP1–EP4). In cancer, EP2/EP4 are key mediators
of immunosuppression and tumor progression [45]. In glioma, COX-2 is frequently upreg-
ulated in tumor cells and myeloid populations, and PGE2 signaling contributes to growth,
angiogenesis, and immune evasion [46]. Recent work shows that the COX-2/PGE2 axis
reshapes the GBM TME and alters glioma-associated microglia/macrophage (GAM/TAM)
dynamics, sustaining pro-tumorigenic cytokine loops that promoting vascular changes in
the TME [46].

Mechanistically, PGE2 signals through EP2 and EP4 receptors, and dual or selective
blockade of either one reduces growth, angiogenesis, and immune evasion in preclinical
models of malignant glioma [47]. Beyond tumor-cell intrinsic effects, PGE2 drives myeloid-
derived suppressor cell (MDSC) differentiation and suppressive programming, largely via
EP2/EP4, which limits antitumor T- and NK-cell activity [45,48]. In glioma, PGE2-EP4
signaling has been specifically tied to inhibition of NK-cell function and IFN-γ production,
further consolidating a role in immune evasion [49].

The result of elevated COX-2/PGE2 signaling is a TME that leans toward immuno-
suppression, enhanced invasion via matrix remodeling and EMT-associated signaling, and
a pro-angiogenic phenotype in GBM models [46,47].

2.3. NLRP3 Inflammasome: IL-1 Family Signaling and Myeloid Cell Populations

The NLRP3 inflammasome is activated through a two-step process involving priming
and activation. During the priming phase, signals such as pathogen-associated or damage-
associated molecular patterns activate NF-κB, which induces the transcription of NLRP3,
pro–IL-1β, and pro–IL-18, thereby increasing the availability of key inflammasome compo-
nents. The subsequent activation step is triggered by a wide range of stimuli, including
potassium efflux, mitochondrial dysfunction, or lysosomal damage, that promote NLRP3
oligomerization and its assembly with the adaptor protein ASC and the effector protease
caspase-1. This assembled complex enables the autocatalytic activation of caspase-1, lead-
ing to the cleavage and maturation of the pro-inflammatory cytokines IL-1β and IL-18, and
the induction of pyroptotic cell death [50]. In the CNS, NLRP3 links signals like DAMPs,
ROS, ionic flux to neuroinflammation. in tumors, its effects are context-dependent and can
be pro- or antitumorigenic [50].

Accumulating recent evidence suggests that NLRP3 contributes to glioma progression
by enabling an immunosuppressive microenvironment and facilitating invasion [51]. No-
tably, NLRP3 activation expands granulocytic populations, inhibits antitumor immunity,
and antagonizes STING-pathway therapy in GBM models [52]. Clinically relevant cytokine
loops can also emerge. IL-1β-positive TAMs can amplify PGE2-EP4 signaling, which in
turn accelerates GBM progression and provides a link between inflammasome activity
and prostaglandin-driven immune evasion [53]. Through IL-1β/IL-18 and downstream
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chemokines, NLRP3 signaling promotes myeloid recruitment, T-cell dysfunction, and tissue
remodeling that support invasion [14,52]. While in some tumors inflammasome activity
may act as an antitumor mechanism, current GBM data show a possible pro-tumorigenic,
immunosuppressive action [13,50].

2.4. Crosstalk and Positive-Feedback Loops Across NF-κB, COX-2/PGE2, and NLRP3

The three above-discussed pathways may take part in several positive-feedback loops;
therefore their crosstalk is discussed as an inflammatory triangle as presented in Figure 1.

Figure 1. An inflammatory triangle in glioma: directional crosstalk and natural modula-
tors. The presented nodes include NF-κB (yellow), COX-2→PGE2 (EP2/EP4) (orange), and
NLRP3→IL-1β/IL-18 (red). Blue arrows on dashed edges indicate direction of effect with
the mechanisms labeled along each edge: (1) NF-κB→NLRP3: NLRP3 priming (pro-IL-1β ↑);
(2) NLRP3 → NF-κB: IL-1β-mediated NF-κB amplification; (3) NF-κB→COX-2/PGE2: PTGS2/COX-
2 induction; (4) COX-2/PGE2→NF-κB: EP2/EP4-dependent NF-κB modulation; (5) NLRP3→COX-
2/PGE2: IL-18-driven COX-2 upregulation; (6) COX-2/PGE2→NLRP3: sustained NLRP3–IL-18
signaling. “Targeted by” boxes list representative natural modulators for each node. Abbrevi-
ations: PTGS2 = gene encoding COX-2; PGE2 = prostaglandin E2; EP2/EP4 = PGE2 receptors;
SPMs = specialized pro-resolving mediators.

NF-κB transcriptionally primes NLRP3 and pro-IL-1β, positioning canonical inflam-
matory signals such as TNFα or TLR ligands to sensitize GBM/TME cells to inflammasome
activation. In this context, inflammasome engagement may enhance cytokine release and
inflammatory crosstalk, reinforcing the chronic pro-tumorigenic characteristics of the GBM
microenvironment [38].

In turn, IL-1β upregulates COX-2, and PGE2 (via EP4) reinforces IL-1β producing
TAMs and forming an autocrine/paracrine loop that sustains immunosuppression. The
signaling between cytokine and eicosanoid pathways preserves chronic inflammation and
promotes GBM progression by limiting effective antitumor immunity [53].
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PGE2 can feed back on NF-κB-regulated genes and myeloid polarization, while NF-κB
drives PTGS2 expression, closing a recurring triangle of activation. This interlinked network
amplifies inflammatory signaling and reinforces immunosuppressive TAM phenotypes
within the GBM microenvironment [38,46]. Because TAMs are among the most abundant
immune cells in GBM, often even dominating the leukocyte compartment, these feedback
loops may scale system-wide, influencing glioma stem-like niche, angiogenesis, and even
therapy response [14]. Single-cell and spatial studies continue to analyze the relative
contributions of microglia and infiltrating macrophages, showing that both exhibit context-
dependent plasticity strongly influenced by NF-κB, PGE2/EP4, and IL-1 signaling. This
convergence underscores how inflammatory circuits coordinate innate immune adaptation
and immunosuppressive niche formation in GBM [14,54].

In total, these three core components of inflammatory response can extensively interact
and influence each other, tipping the balance to an oncogenic microenvironment. The core
interactions are presented in Figure 1 as a core inflammatory triangle. The targeted action
on antiglioma agents of each component as seen in the figure are presented in the next
sections.

2.5. Cell-Death and Stress Programs Relevant to Resistance

Beyond cytokine signaling, glioma responses involve apoptosis, autophagy, ferropto-
sis, and mitochondrial stress programs that interface with NF-κB/COX-2/NLRP3 pathways.
For example, ginsenosides can trigger ferroptosis in GBM models [55], while berberine
engages mitochondrial apoptosis alongside NF-κB suppression [56], illustrating how anti-
inflammatory agents intersect resistance biology. These mechanisms are elaborated per
compound class in Section 4.

3. Tumor Microenvironment (TME)
Glioma grows within a densely interactive environment of immune, glial, and vascular

cells that collectively enforce immune evasion and treatment resistance. Tumor-associated
macrophages and microglia (TAMs) are the dominant immune population—frequently
approaching ~50% of live cells, a feature underscoring their central role in shaping the
TME [14]. Contemporary studies converge on the view that the glioma’s TME may im-
pact the failure of immunotherapies by sustaining chronic, multilayered immunosuppres-
sion [37].

Tumor-associated macrophages in glioma comprise two major populations: brain-
resident microglia and infiltrating monocyte-derived macrophages (MDMs). These com-
partments differ in developmental origin, molecular markers, spatial distribution, and
function. Microglia, characterized by markers such as TMEM119 and P2RY12, are broadly
distributed throughout the tumor and often predominate numerically. In contrast, CCR2+

MDMs originate from circulating bone marrow-derived monocytes and tend to accumulate
in perivascular and hypoxic regions, where they adopt distinct transcriptional and func-
tional states [57]. Single-cell analyses have revealed distinct macrophage specializations
within GBM, including hypoxic, phagocytic/lipid-rich, and transitional states, challenging
the classical M1/M2 dichotomy and highlighting the context-dependent plasticity of these
cells. Spatial-omics studies further demonstrate that microglial CD39 often localizes adja-
cent to tumor-cell CD73, forming purinergic signaling that elevates extracellular adenosine
levels and is associated with poor clinical outcomes [57].

Cytokine and chemokine networks may also play roles in recruiting and programming
myeloid cells within the GBM microenvironment. GBM cells and associated stromal ele-
ments secrete CCL2, CCL7, CXCL12, CSF-1, and VEGF, which collectively attract monocytes
and myeloid-derived suppressor cells (MDSCs) while predetermining their differentiation
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toward immunosuppressive phenotypes [58]. In both murine and human glioma models,
concurrent blockade of CCL2 and CCL7 is required to effectively inhibit the trafficking
of CCR2+/CX3CR1+ MDSCs [59]. In parallel, elevated TGF-β signaling originating from
both tumor and stromal sources exerts immunosuppressive effects and is associated with
aggressive disease biology and poor prognosis [60]. These axes interface with inflammatory
circuits that can also include NF-κB and feed into COX-2/PGE2-dependent prostaglandin
signaling, amplifying myeloid recruitment and polarization [57].

Compared with many extracranial tumors, glioma harbors relatively low effector
T-cell infiltration and profound dysfunction of the T-cell population [37]. Regulatory T
cells (Tregs) prominently contribute to checkpoint blockade resistance. In experimental
models of gliomas, Treg-targeted strategies convert suppressive Tregs into effector-like cells
and enhance antitumor immunity [61]. However, in clinical trials, these strategies failed
in GBM, probably due to the combined effects of immune-cold tumor biology, myeloid
suppression, and TME restriction [37].

Another significant cell type in the TME is reactive astrocytes, which concentrate at
tumor margins, remodel extracellular matrix, and shape immune responses via cytokines,
complement, and metabolic support to tumor cells [62]. Experimental and review studies
show that tumor-associated astrocytes promote an immunosuppressive phenotype and can
be required for GBM maintenance, with genetic studies in experimental models illustrating
a causal influence [63,64]. GBM’s vascular system is also abnormal and heterogeneous. En-
dothelial cells (ECs) not only deliver oxygen/nutrients but also provide paracrine signaling
and support a niche that sustains glioma stem-like cells (GSCs) and invasion [65]. Recent
studies have shown that EC-secreted chemokines, such as IL-8 and CXCL12, promote high-
grade glioma invasion and chemotaxis [66]. In parallel, blood–brain/blood–tumor barrier
(BBB/BTB) heterogeneity limits drug exposure at infiltrative margins [67]. Complementary
approaches, such as the use of nanomedicine or MR-guided ultrasound, attempt to bypass
these barriers in GBM [68].

IDH status is also a feature that we should take into account in the TME. Adult-type
IDH-mutant gliomas typically have a TME with fewer tumor-infiltrating lymphocytes
and an altered microglia myeloid compartment, while IDH-wildtype GBM exhibits higher
overall immune infiltration but with stronger immunosuppressive features [69,70].

Overall, the immunobiology of glioma and GBM is associated with inflammatory
responses and due to that is linked to COX-2/PGE2, NF-κB, and inflammasome/IL-1
signaling pathways. Targeting these interconnected axes may offer an approach to change
the TME toward a less suppressive state. Agents that reduce PGE2 production or block
EP2/EP4 receptors, inhibit NF-κB-dependent cytokine expression, or limit IL-1β release
might promote such changes. Strategies combined with standard treatments might also
prove useful [48,67].

4. Natural Anti-Inflammatory Compounds in Glioma and the TME
Natural compounds are diet- or botanical-derived molecules, like polyphenols, isoth-

iocyanates, terpenes, and alkaloids, that may exert multi-target anti-inflammatory and
immunomodulatory effects relevant to glioma biology. For this review, we are focusing on
the most studied agents and on compound classes with reproducible anti-inflammatory
activity relevant to glioma biology. Our focus is on modulation of NF-κB, COX-2/PGE2,
and inflammasome/IL-1 signaling, while noting BBB/BTB considerations and basic
safety [40,71,72].
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4.1. Polyphenols

Polyphenols are a broad group of antioxidant compounds found in many plant-based
foods that may exert immunomodulatory effects through their ability to regulate redox
balance and inflammatory signaling networks. Polyphenols such as curcumin, resveratrol,
and EGCG can modulate COX-2/PGE2, NF-κB, and inflammasome pathways, offering
natural means to combat GBM [73].

Curcumin is a bioactive polyphenol from Curcuma longa that exhibits broad anti-
inflammatory, antioxidant, and immunomodulatory activities [74]. Recent reviews con-
clude that curcumin suppresses NF-κB and COX-2, lowers pro-inflammatory cytokines,
and interacts with multiple cancer-relevant pathways such as those of MAPKs [75]. In
GBM, systematic and narrative reviews report that curcumin has antitumor effects but
emphasize the limitations of bioavailability and BBB limit. Based on the heterogeneous
study designs, the data support an adjunct rather than a clear antiglioma effect [76,77].

Notably, curcumin synergizes with irradiation and temozolomide (TMZ) in GBM cell
lines, reducing proliferation and increasing G2/M arrest and apoptosis at comparatively
low micromolar levels [78]. These radiosensitizing effects have been replicated with dif-
ferent radiation modalities and are consistently attributed to interference with survival
pathways that intersect NF-κB and related nodes [79]. A 2024 systematic review and
meta-analysis of 24 studies (304 animals) reported a significant overall reduction in glioma
tumor growth with curcumin across model types and formulations, supporting on-target
antitumor effects in vivo [76]. Earlier mechanistic in vivo work also showed curcumin
enhances radiation efficacy and curbs GBM stem-like traits, consistent with its in vitro ra-
diosensitization profile [80]. Clinically, curcumin is generally well tolerated, while the data
highlight the need for better pharmacokinetic analysis [81,82]. Given a notable antiplatelet
activity, high-dose curcumin may also interact with anticoagulants [83].

Resveratrol is a naturally occurring polyphenol found in grapes, berries, peanuts, and
red wine. It has gained attention for its antioxidant, anti-inflammatory, and neuroprotective
properties across cancer and neurodegenerative disease contexts [84]. In glioma models,
resveratrol can enhance temozolomide (TMZ) responses via STAT3 down-regulation and
induce apoptosis when combined with TMZ [85,86]. Clinical reviews support generally
acceptable safety, but in vivo antiglioma action remains inconsistent, again favoring an
adjunct role to standard treatment options [87]. As with other polyphenols, resveratrol ex-
hibits antiplatelet effects that could raise bleeding risk alongside antithrombotic drugs [88].

Epigallocatechin-3-gallate (EGCG) is the major catechin found in green tea and one of
the most studied dietary polyphenols. It exhibits strong antioxidant and anti-inflammatory
activities, influencing signaling networks that regulate cell survival, metabolism, and
immune responses [89]. EGCG down-regulates IL-1β-induced iNOS/COX-2 by stabilizing
IκBα and limiting NF-κB activation [89]. Cancer immunology reviews further summarize
EGCG’s anticancer and immunomodulatory actions, though GBM-specific clinical data are
few [90]. Safety guidance from systematic reviews shows that >800 mg per day of EGCG
and other ingredients found in green tea may also elevate liver enzymes, showing that
optimal dosing is essential [91].

Quercetin is a flavonoid widely distributed in fruits, vegetables, and teas, known for
its potent antioxidant and anti-inflammatory properties [92]. In glioma and GBM models,
quercetin has been shown to inhibit tumor-cell migration and invasion by suppressing the
GSK3β/β-catenin/ZEB1 signaling axis [93]. It also induces apoptosis, even in MGMT+

GBM cells, through modulation of Wnt/β-catenin and Akt/NF-κB pathways, highlighting
its potential to overcome resistance mechanisms [94]. Moreover, quercetin can enhance
membrane trafficking of TRAIL receptors, promoting bystander cell killing and ampli-
fying cytotoxic responses [95]. Additional studies suggest that quercetin’s regulation of
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Rac1–p66Shc signaling and ROS levels further contributes to its antitumor activity [96].
Human safety looks acceptable at moderate doses, with ongoing efforts to improve oral
bioavailability [97].

Taken together, polyphenols may regulate inflammation and influence invasion and re-
sistance pathways but face delivery constraints in brain tumors. The bibliography suggests
polyphenols as low-toxicity adjuncts to standard therapy. An improvement in bioavailabil-
ity may further aid their action [71].

4.2. Isothiocyanates and Organosulfur Compounds

Isothiocyanates, produced from glucosinolate hydrolysis in cruciferous vegetables,
and organosulfur compounds from garlic and related plants are recognized for their potent
cytoprotective and anti-inflammatory actions. These phytochemicals influence key regu-
lators such as NF-κB, Nrf2, and inflammasome signaling, linking them to antitumor and
immune-modulatory effects [98,99].

A well-studied molecule in this category is sulforaphane (SFN). SFN activates Nrf2
transcription factor, offering cytoprotective action and may also inhibit the NLRP3 inflam-
masome, directly intersecting inflammation and oxidative stress pathways [100]. In GBM
models, SFN has been shown to reverse resistance to TMZ by down-regulating NF-κB
and MGMT, and to independently trigger UPR-mediated apoptosis via ATF4–CHOP [17].
Recent studies reinforce SFN’s CNS-relevant anti-inflammatory and neuroprotective profile,
supporting its candidacy for TME-targeting strategies [17].

In total, isothiocyanates like SFN demonstrate broad activity, simultaneously acti-
vating Nrf2-driven antioxidant responses while suppressing NF-κB and IL-1-mediated
inflammatory signaling. In glioma and GBM models, these effects extend to enhanced
sensitivity to temozolomide (TMZ), suggesting potential synergy with standard therapy.
Their favorable safety profile as dietary metabolites supports further exploration, although
optimal dosing, stability, and formulation strategies will be critical to ensure adequate brain
exposure and therapeutic efficacy [17,100].

4.3. Terpenes, Lignans, and Saponins

Terpenes (including monoterpenes and triterpenoids), lignans, and saponins are
structurally distinct phytochemicals found in many herbs, seeds, and medicinal plants.
Through modulation of NF-κB, STAT3, and Nrf2 signaling, these compounds demon-
strate anti-inflammatory, pro-apoptotic, and immune-regulatory effects relevant to cancer
biology [101].

Boswellic acids, especially acetyl-11-keto-β-boswellic acid (AKBA), are non-redox in-
hibitors of 5-lipoxygenase that also modulate NF-κB signaling, providing a complementary
“double hit” on prostanoid and leukotriene pathways [102]. In glioma and GBM models,
AKBA exerts antiproliferative effects and influences cellular metabolism and autophagy,
indicating potential for therapeutic synergy with existing treatments [103]. Clinically,
boswellic acid formulations have been evaluated in small studies for the management
of radiation-induced cerebral edema and necrosis, reflecting their anti-inflammatory ac-
tivity in the CNS, although direct evidence of efficacy against GBM progression remains
limited [104].

Ginsenosides, the principal bioactive saponins of Panax species, display diverse anti-
inflammatory and antiglioma activities. Specific compounds such as Rg5 inhibit GBM
growth through ferroptosis mediated by the NR3C1–HSPB1–NCOA4 axis [55], while RK3
has been shown to suppress glioma phenotypes in both in vitro and in vivo models [105].
Broader reviews highlight the immunomodulatory action of ginsenosides, including inhi-
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bition of NF-κB signaling and regulation of endothelial–glial interactions, underscoring
a potential in assisting GBM therapy [106].

Honokiol is a biaryl lignan derived from Magnolia species, notable for its ability to
cross the blood–brain barrier and accumulate in the CNS, particularly when delivered in
liposomal formulations [107,108]. In GBM models, honokiol reprograms tumor-associated
macrophages toward pro-inflammatory M1-like states while suppressing tumor growth. It
also targets glioma stem-like cells in preclinical studies, and isolated clinical reports describe
the use of liposomal honokiol in recurrent GBM, suggesting translational feasibility as
an adjunct therapeutic strategy [109].

These compound classes intersect multiple inflammatory and metabolic pathways—including
leukotriene signaling, ferroptosis regulation, and macrophage polarization—and may act
synergistically with COX-2, NF-κB, and IL-1-targeted strategies. Among them, honokiol
and various ginsenosides show particularly promising effects on the TME, highlighting
their potential as adjunct modulators of GBM.

4.4. Fatty Acids and Specialized Pro-Resolving Mediators (SPMs)

Fatty acids, particularly omega-3 polyunsaturated species, serve as precursors for
specialized pro-resolving mediators (SPMs) including resolvins, protectins, and maresins.
These lipid mediators orchestrate the active resolution of inflammation through modulation
of myeloid cell activity, cytokine clearance, and restoration of tissue integrity [110].

In temozolomide-resistant glioma cells, the omega-3 polyunsaturated fatty acids eicos-
apentaenoic acid (EPA) and docosahexaenoic acid (DHA) disrupt resistant phenotypes and
alter cellular metabolism, supporting the concept that lipid mediators can influence therapy
responsiveness [111]. In vivo, DHA has been shown to reduce intratumoral levels of PGE2

and prostacyclin, consistent with suppression of COX-2 activity and potential modulation
of the TME [112]. Broader oncology and neuro-oncology studies further indicate that
omega-3 PUFAs may inhibit tumor progression in part by shifting eicosanoid profiles away
from PGE2 dominance, although clinical data specific to GBM remain preliminary [113,114].

Specialized pro-resolving mediators (SPMs) such as resolvins, protectins, and maresins
actively terminate inflammation rather than simply suppressing it, promoting leukocyte
clearance and restoration of tissue homeostasis in preclinical models of cancer and neuroin-
flammation [115]. Although GBM-specific data remain limited, the mechanistic rationale
for integrating ω-3-derived SPMs with standard-of-care therapies is compelling, given their
potential to counteract chronic inflammation and immune dysfunction within the GBM
TME [116].

By reducing PGE2 signaling and enhancing pro-resolving pathways, omega-3 fatty
acids and their SPM derivatives align mechanistically with COX-2 and EP-receptor-targeted
strategies. In the era of personalized medicine, successful clinical translation is needed to
optimize dosing, formulation, and to identify patients most likely to benefit [112,115].

4.5. Isoquinoline Alkaloids

Isoquinoline alkaloids are a diverse class of plant-derived compounds with notable
bioactive properties, including anti-inflammatory, antioxidant, and antitumor effects.
Through modulation of signaling pathways such as NF-κB, MAPK, and apoptotic cas-
cades, these alkaloids have shown potential to influence cancer-cell proliferation, survival,
and the TME [117]. Among them, berberine (BBR) consistently inhibits NF-κB signal-
ing, reduces pro-inflammatory cytokines, and triggers apoptosis, with glioma-cell data
showing growth and migration suppression through TGF-β/SMAD and mitochondrial
pathways [56]. Reviews highlight CNS-protective actions but also underscore low oral
bioavailability, reinforcing the need for delivery optimization in brain tumors [118].
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4.6. Converging Mechanisms

The data presented in Section 4 are summarized in Table 1. Across classes, we
have shown that the compounds in this section are associated with NF-κB, COX-2–PGE2

(EP2/EP4), and NLRP3–IL-1 inflammatory pathways. Polyphenols (curcumin, resveratrol,
EGCG, quercetin) consistently temper NF-κB/COX-2 programs while curbing invasion
and, in several models, heightening radio-/chemo-sensitization. Sulforaphane also leads
to Nrf2 activation and selective NLRP3 dampening, with signals for reversing TMZ resis-
tance. Terpenes/lignans/saponins (boswellic acids, honokiol, ginsenosides) extend this
footprint to leukotriene–NF-κB crosstalk, macrophage re-polarization in the TME, and, in
some cases, ferroptosis. Lipid mediators (omega-3 PUFAs and specialized pro-resolving
mediators) shift eicosanoid balance away from PGE2, and berberine suppresses NF-κB and
pro-inflammatory cytokines with additional effects on TGF-β/SMAD and mitochondrial
apoptosis. Taken together, these actions point to a multi-node modulation of glioma in-
flammation and the microenvironment. Real-world use should be formulation-aware and
accompanied by safety/interaction checks, with target-engagement biomarkers confirm-
ing NF-κB, PGE2–EP2/EP4, or IL-1 modulation. Resistance mechanisms are presented in
Table 2.

Table 1. Synopsis of natural anti-inflammatory compounds in glioma.

Molecule Class Primary Inflammatory
Targets GBM-Relevant Actions Evidence Stage (GBM) *

Curcumin Polyphenol NF-κB ↓
COX-2/PGE2 ↓

Radiosensitization;
chemo-sensitization (TMZ);

anti-invasion

in vitro ++; in vivo
(orthotopic) +

Resveratrol Polyphenol
(stilbene)

NF-κB crosstalk ↓;
COX-2/PGE2 ↓ (indirect)

STAT3 ↓; TMZ synergy;
anti-migration in vitro ++; in vivo +

EGCG Polyphenol
(catechin)

NF-κB ↓; COX-2/iNOS ↓;
IL-1β signaling ↓

Potentiates combos
(e.g., metabolic + TMZ) in vitro ++; in vivo +

Quercetin Polyphenol
(flavonol)

NF-κB ↓ (indirect); COX-2
pathway ↓

Wnt/β-catenin ↓;
anti-invasion; pro-apoptotic in vitro ++; in vivo +

Sulforaphane Isothiocyanate NF-κB ↓; NLRP3/IL-1β ↓
Reverses TMZ resistance

(MGMT ↓);
ATF4-CHOP apoptosis

in vitro ++; in vivo ++

Boswellic acids
(e.g., AKBA) Triterpenoid acids

5-LOX ↓; NF-κB ↓
(crosstalk); COX-2
cross-regulation

Anti-edema/anti-angiogenic
signals

in vitro +; early human
(supportive care) ±

Ginsenosides
(e.g., Rg5, RK3)

Triterpenoid
saponins

NF-κB ↓ (class effect);
COX-2 ↓ (reported)

Ferroptosis induction;
antiproliferative in vitro +; in vivo +

Honokiol Lignan NF-κB ↓; COX-2/PGE2 ↓
(indirect)

TAM re-polarization
(M2→M1); GSC targeting;

brain-accumulating
(liposomal)

in vitro ++; in vivo ++;
early human ±

ω-3 PUFAs
(EPA/DHA) Fatty acids COX-2 substrate shift →

PGE2 ↓

Pro-resolving mediator
precursors; metabolism

re-tuning
in vitro +; in vivo +

SPMs Lipid mediators
Pro-resolution of

inflammation; IL-1/TNF
programs ↓

Immune “de-escalation”
without broad suppression preclinical +

Berberine Isoquinoline
alkaloid

NF-κB ↓; pro-inflammatory
cytokines ↓

TGF-β/SMAD and
mitochondrial apoptosis

effects
in vitro +; in vivo ±

* The evidence stage is denoted with + or ++, based on the available data in each stage. Abbreviations: TMZ,
temozolomide; GSC, glioma stem-like cell; PK, pharmacokinetics; 5-LOX, 5-lipoxygenase.
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Table 2. Resistance mechanisms and representative compounds (GBM models).

Resistance
Mechanism/Pathway

Typical Readouts in GBM
Models

Representative
Compounds Evidence Stage (GBM) *

NF-κB-driven
survival/inflammation

IκBα loss; NF-κB target
genes; cytokines

Curcumin, resveratrol,
EGCG, honokiol, berberine in vitro ++; in vivo +

COX-2–PGE2
immunosuppression

COX-2/PGE2 ↓; EP2/EP4
modulation

Polyphenols; ω-3
PUFAs/SPMs; boswellic

acids; honokiol
in vitro +; in vivo +

NLRP3–IL-1 axis
IL-1β/IL-18 ↓;

ASC/caspase-1
modulation

Sulforaphane; EGCG;
SPMs preclinical +

Apoptosis (mitochondrial) Caspase-3/9; BAX/BCL-2;
∆Ψm Berberine; polyphenols in vitro +; in vivo ±

Autophagy (context
dependent) LC3-II, p62 Polyphenols (selected

reports) in vitro ±

Ferroptosis GPX4/ACSL4; lipid-ROS Ginsenosides (e.g., Rg5) in vitro +; in vivo +
* The evidence stage is denoted with + or ++, based on the available data in each stage.

5. Conclusions
Chronic, tumor-promoting inflammation is a modifiable co-driver of glioma biology.

Across this review we focused on three convergent axes—NF-κB, COX-2/PGE2, and the
NLRP3–IL-1 pathway—and on how natural anti-inflammatory agents and diet–microbiome
strategies can dial down these signals while restructuring the TME to avoid immune toler-
ance. These interventions have not been presented as stand-alone cures but rather as adjunct
and chemopreventive agents that complement surgery, radiotherapy, and chemotherapy
with comparatively low toxicity. Our synthesis is narrative and focuses on mechanistic and
translational themes rather than on a systematic enumeration of all studies. Many findings
are preclinical or observational; human data remain limited and heterogeneous. Effects
likely depend on brain exposure/BTB heterogeneity, product formulation/standardization,
and patient context (e.g., steroid exposure, metabolic profile). These factors motivate
biomarker-anchored, formulation-aware trials to define clinical utility.

We have seen that multiple compounds (e.g., curcumin, resveratrol, quercetin, sul-
foraphane, honokiol; omega-3-derived mediators) suppress NF-κB/COX-2/IL-1 signaling,
reduce invasion, induce apoptosis, and sensitize tumors to radiation or temozolomide.
Early human studies show feasibility and symptom-control potential in selected settings,
especially as an adjunct strategy, but demonstrating definitive benefit still requires well-
designed trials. Mechanistically, the myeloid-dominant TME is critical. Interventions
that reduce PGE2, inhibit NF-κB-driven cytokine programs, or limit NLRP3/IL-1β output
can shift tumor-associated microglia/macrophages away from suppressive states. In total,
treating neuroinflammation as a therapeutic opportunity might open a path for low-toxicity,
inflammation-targeted adjuncts in glioma. We suggest that by strict translational design
and patient-centered implementation, these strategies can be further assessed to draw
conclusions on whether they are potent adjunct therapeutic interventions against this
devastating disease.

Future Directions

Priorities include biomarker-anchored trials (NF-κB/COX-2/IL-1 activity and EP
receptor tone), validated brain exposure for chosen formulations (addressing BBB/BTB
heterogeneity), and combination designs with chemoradiation or targeted agents. Given
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potential neuroprotective effects and immune system augmentation, future studies should
incorporate cognitive outcomes and safety pharmacology tailored to neuro-oncology.
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