

Adaptive radiation therapy for glioblastoma: clinical efficacy and recurrence patterns

Received: 7 April 2025

Accepted: 8 December 2025

Published online: 13 December 2025

Cite this article as: Matsuyama T., Yamada S., Otsuka H. *et al.* Adaptive radiation therapy for glioblastoma: clinical efficacy and recurrence patterns. *Radiat Oncol* (2025). <https://doi.org/10.1186/s13014-025-02778-6>

Tomohiko Matsuyama, Shigeo Yamada, Hirohito Otsuka, Takahiro Watakabe, Yoshiyuki Fukugawa & Natsuo Oya

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 Adaptive Radiation Therapy for Glioblastoma: Clinical Efficacy and
2 Recurrence Patterns

3 Short Running Title: ART for Glioblastoma: Efficacy & Recurrence
4 Patterns

5

6 Tomohiko Matsuyama, Shigeo Yamada, Hirohito Otsuka, Takahiro
7 Watakabe, Yoshiyuki Fukugawa, Natsuo Oya

8

9

10 Department of Radiation Oncology, Kumamoto University Hospital,
11 1-1-1, Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan

12 *Corresponding author

13 Tomohiko Matsuyama

14 **Abstract**

15 **Background**

16 Glioblastoma (GBM) is an aggressive primary brain tumor with a high
17 recurrence rate despite multimodal treatment approaches. Adaptive
18 radiation therapy (ART) involves adjusting the treatment plan based
19 on tumor and resection cavity changes during radiotherapy,

Commented [MOU1]: Dear Author,

Thank you for choosing to work with us again. We have noted your feedback on the previous manuscript, where you have highlighted improvement areas. I have edited this manuscript considering your feedback. Having undergone previous editing rounds, this manuscript did not require heavy or extensive revisions. However, rest assured that I have checked it thoroughly per the service scope.

AI translation:

亲爱的作者，
感谢您再次选择与我们合作。我们已经注意到您对之前手稿的反馈，您已经指出了改进的地方。我根据您的反馈编辑了此手稿。由于之前已经进行了多次编辑，此手稿不需要进行大量的或广泛的修订。然而，我保证已经彻底检查过它，以符合服务范围。

Commented [EA2]: Dear Author,

AI 100 submissions@editage.com

submissions@editage.com

1 potentially improving treatment precision while reducing radiation
2 exposure to normal brain tissue. However, the clinical outcomes and
3 recurrence patterns associated with ART remain unclear. We aimed to
4 evaluate the efficacy of ART for GBM treatment, focusing on survival
5 outcomes and recurrence patterns.

6 Methods

7 We retrospectively analyzed a prospectively collected cohort of 59
8 patients with pathologically confirmed GBM who received
9 postoperative three-dimensional conformal radiotherapy (3D-CRT)-
10 based ART between April 2015 and November 2018. Mid-treatment
11 magnetic resonance imaging was performed after delivery of 34–36 Gy.
12 Based on these images, an offline single-time-point ART boost plan
13 was generated to accommodate changes in tumor size and the
14 resection cavity. Radiotherapy consisted of 40 Gy in 20 fractions to the
15 initial target, followed by a 20 Gy boost in 10 fractions (total 60 Gy in
16 30 fractions over six weeks). Progression-free survival (PFS) and
17 overall survival (OS) were estimated using the Kaplan–Meier method.
18 Recurrence patterns were classified by the spatial relationship

Commented [A3]: Most journals require that an abbreviation be spelled out at its first occurrence in the text, followed by the abbreviation in parentheses. (Exception: If the abbreviation is on the journal's list of permitted abbreviations, this need not be done.) Note also that abbreviations need to be independently defined in the abstract and the main text of the paper. Abbreviations need not be introduced if they are not used again.

AI translation:

1 between recurrent tumor volume and the 95% isodose line.

2 **Results**

3 During a median follow-up period of 19.2 (range, 2.1–81.6) months, 36
 4 patients (61.0%) experienced tumor recurrence, and 32 (54.2%) died.

5 The 1- and 2-year OS rates were 93.9% and 54.6%, respectively, with
 6 a median OS of 26.6 months. The 6- and 12-month PFS rates were
 7 71.1% and 46.1%, respectively, with a median PFS of 10.5 months.

8 Central recurrence was the most common pattern (29 patients, 78%),
 9 followed by distant (5 patients, 14%) and in-field recurrences (3
 10 patients, 8%). Marginal recurrence was not observed. No cases of
 11 grade 2 or higher radiation necrosis were observed, and only two
 12 cases of grade 1 radiation necrosis were identified.

13 **Conclusions**

14 ART for GBM is associated with favorable survival outcomes and low
 15 toxicity. ART does not increase the risk of marginal recurrence, and
 16 the incidence of radiation necrosis is low. Further studies are required
 17 to optimize ART protocols to maximize their clinical benefits.

18

Commented [MOU4]: The comma before "and" serves as a punctuation mark to indicate a pause between the two independent clauses. It helps to clarify the sentence's structure and makes it easier for the reader to parse the information by separating the two distinct thoughts.

Furthermore, using the comma helps to avoid potential confusion or ambiguity that could arise if the clauses were run together without any punctuation. It enhances readability, ensuring that each clause is distinct and facilitates better comprehension of the sentence's meaning.

AI translation:

and "and" serves as a punctuation mark to indicate a pause between the two independent clauses. It helps to clarify the sentence's structure and makes it easier for the reader to parse the information by separating the two distinct thoughts.

1 **Keywords:** Adaptive radiation therapy, Glioblastoma, Clinical efficacy,

2 Recurrence patterns

3

4 **Background**

5 Glioblastoma (GBM) is the most common primary malignant brain
6 tumor in adults and remains a significant treatment challenge, despite
7 advances in imaging technologies and therapeutic approaches. The
8 standard treatment for GBM consists of maximal surgical resection,
9 followed by postoperative radiation therapy (RT) with temozolomide
10 (TMZ). However, GBM is known for its therapy-resistant nature and
11 high recurrence rate, with a median survival of approximately 15
12 months after diagnosis.^{1,2} Although multimodal treatments have
13 modestly improved outcomes,³ the prognosis remains poor for most
14 patients.

15 Radiotherapy for GBM is further complicated by dynamic changes in
16 tumor volume and resection cavity during the treatment period.⁴⁻⁹ For
17 example, an increase in tumor volume during treatment can
18 compromise target coverage if the original RT plan is followed.

1 Conversely, if the resection cavity shrinks, the surrounding normal
2 brain tissue may be exposed to radiation. These challenges highlight
3 the importance of adapting radiotherapy to account for the structural
4 changes during treatment.

5 Adaptive RT (ART) is a technique designed to address these challenges
6 by adjusting the radiation treatment plan in response to changes in
7 the tumor and surrounding tissues during treatment. This approach
8 has the potential to improve the target dose coverage while reducing
9 radiation exposure in normal brain tissues. In recent years, online ART
10 using MR-linac platforms has also been introduced; the Phase II
11 UNITED1 trial reported that margin reduction was feasible with a low
12 marginal recurrence rate.¹⁰

13 In our previous prospective study,¹¹ we demonstrated that ART could
14 improve the dose distribution by incorporating mid-treatment
15 magnetic resonance imaging (MRI) scans to adapt to treatment plans.
16 These adjustments allowed for better coverage of the target volume
17 and reduced radiation exposure to the healthy brain tissue (Fig. 1).
18 Although promising, ART also raises certain challenges, such as the

1 potential for radiation necrosis when the irradiation field is expanded
2 or marginal recurrence when the field is excessively reduced.
3 To date, limited data are available on the clinical outcomes of ART in
4 patients with GBM. This study aimed to evaluate the clinical outcomes
5 and recurrence patterns associated with ART in patients with GBM.
6 By focusing on these aspects, we hope to contribute to a better
7 understanding of the role of ART in improving the treatment strategies
8 for GBM.

9

10 **Materials and Methods**

11 **Patient selection**

12 This retrospective analysis used a prospectively collected cohort of
13 adult glioblastoma patients treated with ART at our institution.
14 Although the ART protocol and delivery were predefined,
15 treatment-outcome and recurrence-pattern evaluations were
16 performed retrospectively, as these endpoints were not specified at
17 study inception. The prospective cohort received IRB approval from
18 Kumamoto University (IRB No. 1893).

1 Of 61 consecutive patients enrolled in the prospective ART study, two
2 pediatric cases (<18 years) were excluded due to distinct genetic
3 profiles and prognoses, yielding 59 adult patients for analysis. All
4 tumors were classified as WHO grade IV glioblastoma per the 2007 or
5 2016 WHO CNS tumor classifications. Patients underwent
6 postoperative radiotherapy between April 2015 and November 2018
7 (Table 1).

8 We restricted the cohort to those receiving three-dimensional
9 conformal radiotherapy (3D-CRT), excluding patients treated with
10 intensity-modulated radiotherapy (IMRT) or volumetric-modulated arc
11 therapy (VMAT). Although VMAT is now standard for postoperative
12 GBM at our center, the original prospective study compared 3D-CRT
13 preplans with 3D-CRT boost plans, and no VMAT/IMRT cases were
14 enrolled in this analysis.

15

16 **Adaptive radiation therapy protocol**

17 A summary of the offline, single-time-point ART used in this study is
18 as follows. The clinical target volume initial (CTVinitial) was

1 delineated as the high-signal area on T2-weighted imaging with a 1-
2 cm margin, as observed on both preoperative and postoperative MRI
3 scans. The planning target volume initial (PTVinitial) was defined by
4 adding a 0.5-cm margin to the CTVinitial. A dose of 40 Gy, divided into
5 20 sessions, was initially administered to the PTVinitial using three or
6 four beams, with one or two beams that were non-coplanar. All
7 treatment plans were generated using the Eclipse treatment planning
8 system (Varian Medical Systems, Palo Alto, CA, USA). The dose
9 distribution was adjusted to ensure that 95% of the planning target
10 volume (PTV) received at least 95% of the prescribed dose.
11 Adjustments were made as necessary with respect to the dose
12 constraints for organs at risk, such as the optic nerve and the eyes.
13 After delivering 34–36 Gy to the initial planning target volume
14 (PTV_initial), a single offline mid-treatment contrast-enhanced MRI
15 (MRI_mid) was obtained to generate the adaptive boost plan. On
16 MRI_mid, the enhancement zone and resection cavity plus a 1 cm
17 margin defined the clinical target volume boost (clinical target volume
18 [CTV]_boost); adding a 0.5 cm margin around CTV_boost defined the

1 planning target volume boost (PTV_boost). Hyperintense areas on
2 T2-weighted/FLAIR images were included only if deemed residual
3 tumor rather than edema. If the enhancing tumor decreased on
4 MRI_mid, corresponding brain tissue from the pretreatment
5 enhancement was retained in CTV_boost. Adaptive radiotherapy was
6 applied to all patients regardless of change magnitude. PTV_boost
7 then received a 20 Gy boost in 10 fractions. Thus, the initial PTV
8 received 40 Gy in 20 fractions, followed by a 20 Gy boost in 10
9 fractions, totaling 60 Gy in 30 fractions over 6 weeks. All treatments
10 were delivered on a Varian Clinac iX linear accelerator. Image
11 guidance at each fraction used either the on-board imaging (OBI)
12 system, orthogonal kV radiographs matched to cranial bone anatomy,
13 or the ExacTrac stereoscopic kV imaging system (Brainlab AG, Munich,
14 Germany). Patients were immobilized with a thermoplastic mask.
15 Further plan details are provided in our previous report.¹¹
16 Concurrently, patients received oral TMZ according to the Stupp
17 protocol.¹

18 **Posttreatment follow-up**

1 After completing treatment, patients underwent contrast-enhanced
2 MRI monthly and had regular follow-up visits with a neurosurgeon and
3 radiation oncologist for six months. If no recurrence was detected
4 during that period, MRI surveillance was then extended to every two
5 months.

6

7 **Assessment of treatment response and recurrence patterns**

8 In this retrospective study, we analyzed the treatment responses and
9 recurrence patterns in GBM using the Response Assessment in Neuro-
10 Oncology (RANO) criteria,¹² specifically as follows: (1) Within the first
11 12 weeks post-RT, progression was defined as the appearance of new
12 enhancing lesions in high-dose regions or beyond the 80% isodose line
13 or by histopathologic evidence of a viable tumor through biopsy or
14 reoperation. (2) Beyond 12 weeks post-RT, disease progression was
15 defined as meeting any of the following criteria: (a) New enhancing
16 lesions outside the radiation field while on steroid treatment; (b) An
17 increase in lesion diameter of $\geq 25\%$; (c) Clinical deterioration; (d)
18 Increase in T2/ non-enhancing lesions while on antiangiogenic therapy.

1 Recurrence pattern classification

2 If recurrence was observed, contrast-enhanced MRI was combined
3 with boost treatment planning computed tomography using Eclipse.
4 Recurrence patterns were classified into four categories based on the
5 relationship between the recurrent tumor volume on contrast-
6 enhanced MRI and the 95% isodose line (i.e., the 19 Gy line) of the
7 boost treatment plan (Fig. 2). The classification was as follows: (1)
8 Central recurrence: At least 95% of the recurrent tumor volume is
9 located within the 95% isodose line. (2) In-field recurrence: Between
10 80% and 95% of recurrent tumors are located within the 95% isodose
11 line. (3) Marginal recurrence: Between 20% and 80% of the recurrent
12 tumor volume is within the 95% isodose line. (4) Distant recurrence:
13 < 20% of the recurrent tumor volume is within the 95% isodose line.

14 Survival analysis

15 Overall survival (OS) and progression-free survival (PFS) were
16 assessed. OS was measured from initial surgery to death or last
17 follow-up. PFS was defined as the interval from surgery to
18 radiographic progression per RANO criteria or death, whichever

1 occurred first. Both OS and PFS were estimated by the Kaplan-Meier
2 method.

3 **Evaluation of central nervous system necrosis**

4 Central nervous system necrosis was evaluated using the Common
5 Terminology Criteria for Adverse Events, version 5.0.

6 **Ethical approval**

7 This retrospective study was approved by the Ethics Committee of
8 Kumamoto University Hospital (Approval Number: 3038).

9

10 **Results**

11 Data were censored on 5 April 2023. During the follow-up period, 32
12 (54.2%) deaths and 36 (61.0%) recurrences were confirmed (median
13 follow-up period, 19.2 [range, 2.1–81.6] months). The 1-year OS rate
14 was 93.9% (95% confidence interval [CI], 82.2–97.8), and the 2-year
15 OS rate was 54.6% (95% CI, 38.7–68.0), with a median OS of 26.6
16 months. The 6- and 12-month PFS rates were 72.0% (95% CI, 58.6–
17 82.0) and 46.1% (95% CI, 32.6–58.6), respectively, with a median PFS
18 of 10.5 months. (Fig. 3).

1 Bevacizumab was administered to 31 patients after RT. Of these, three
2 were started on bevacizumab at the start of RT for clinical research
3 purposes, and the remaining patients received ~~it~~ at recurrence as part
4 of salvage therapy. The duration of treatment varied according to
5 clinical response. No cases of grade 2 or higher radiation necrosis
6 were observed during the follow-up period. Radiation necrosis was
7 suspected in two patients: one was diagnosed with grade 1 necrosis,
8 and the other was suspected to have grade 1 necrosis.
9 Salvage surgery was performed on 11 patients, 2 of whom underwent
10 re-irradiation following recurrence after surgery. In addition, one
11 patient underwent re-irradiation without salvage surgery.
12 The details of the recurrence patterns are listed in Table 2, and
13 representative cases are illustrated in Fig. 4.

14

15 The most common initial recurrence pattern was central recurrence
16 (29 patients), followed by distant (5 patients) and in-field (3 patients)
17 recurrences. No marginal recurrences were observed. The median
18 time from the initial surgery to the first recurrence was 6.2 (range,

Commented [MOU5]: Revised to eliminate redundancy.

AI translation:

□□□□□□□□□□□□□□

1 1.9-28.7) months for central recurrence, 14.8 (range, 4.3-15.5)
2 months for distant recurrence, and 3.9 (range, 3.0-10.1) months for
3 in-field recurrence.
4 During the RT period, 6 patients exhibited an expansion of the
5 enhancement area on MRI, which subsequently shrank or disappeared.
6 Among these, four patients did not show re-expansion of the
7 enhancement area, suggesting the possibility of pseudoprogression
8 during the RT period. Among these cases, an example of a 45-year-old
9 male patient is shown in Fig. 5. Although the initially enlarged
10 enhancement area decreased after RT, this patient later developed a
11 central recurrence at a different site within the 95% isodose line.

12

13 **Discussion**

14 The clinical outcomes of ART for glioblastoma in our cohort were
15 comparable to, or exceeded, those reported in recent studies.^{1-3,13}
16 GBM often exhibits residual tumor growth and cavity displacement
17 between planning and treatment. In our prior prospective dosimetric
18 study of 61 patients (including two pediatric cases later excluded from

1 the present analysis),¹¹ ART improved target coverage while reducing
2 radiation exposure to normal brain tissue. Specifically, gross tumor
3 volume (GTV) was compared between n treatment initiation and mid-
4 treatment MRI; mean ratios of mid-treatment to baseline GTV showed
5 a **significant** decrease in the proportion of patients with GTR (0.84)
6 and an increase in those without (1.30). As a result, in the GTR group,
7 ART reduced the irradiated normal brain volume; for example, the
8 median V20 (volume of normal brain receiving ≥ 20 Gy) decreased
9 from 2.0 mL to 0.8 mL. Simultaneously, in the non-GTR group, ART
10 improved target coverage, with median PTV V95 (the percentage of
11 the PTV receiving at least 95% of the prescribed dose) increasing from
12 91.9% with non-ART plans to 98.2% with ART plans. Thus, the adaptive
13 approach allows expansion of the treatment field when residual
14 tumors grow or new lesions appear and contraction when the
15 resection cavity shrinks. These favorable outcomes likely reflect
16 reliable delivery of 60 Gy through timely replanning before the boost
17 phase based on observed tumor changes. However, two study-specific
18 factors may have influenced the favorable survival rates: First,

Commented [MOU6]: Please note that the word "significant(ly)" must be accompanied with a p-value to suggest its significance. However, appropriate synonyms such as "considerable(ly)/remarkable(ly)" can be used instead. Therefore, please provide the p-value, if available or replace the word with its appropriate synonym as per your intended meaning at all relevant instances.

AI translation:

significant(ly) must be accompanied with a p-value to suggest its significance. However, appropriate synonyms such as "considerable(ly)/remarkable(ly)" can be used instead. Therefore, please provide the p-value, if available or replace the word with its appropriate synonym as per your intended meaning at all relevant instances.

1 exclusion of patients requiring IMRT or VMAT boosts, who had larger
2 or more irregular tumors, resulted in a cohort well-suited to 3D-CRT;
3 second, limited on-site follow-up for some patients may have affected
4 survival estimates.

5 Our approach ensured that replanning was performed after 34–36 Gy,
6 just before the final 20 Gy boost phase. However, the optimal timing
7 for adaptive replanning in ART remains unclear and requires further
8 investigation. Senkesen et al.⁹ performed replanning at approximately
9 42 Gy and demonstrated that this mid-treatment adjustment
10 significantly improved tumor coverage while reducing doses to critical
11 structures, such as the brainstem and optic chiasm. This emphasizes
12 the importance of careful replanning to ensure that normal tissues are
13 spared without compromising tumor control. In contrast, Stewart et
14 al.⁸ quantified tumor dynamics during concurrent chemoradiation and
15 reported that significant tumor migration (> 5 mm) occurred in
16 approximately 58% of the patients by the 10th fraction. These findings
17 highlight the necessity for early intervention, as the tumor volume and
18 position can change considerably within the first half of the treatment.

1 Bernchou et al.⁷ demonstrated that large variations in GTV occurred
2 early in the treatment course, often in the 10th fraction. Although they
3 found that sufficient CTV margins prevented the need for replanning
4 in their cohort, they noted that in cases of substantial tumor changes,
5 failure to adapt the plan could lead to geographical misses and
6 suboptimal tumor coverage. Given the significant variability in tumor
7 dynamics observed during treatment, these studies collectively
8 suggest that early replanning during the course of RT could be
9 beneficial for certain patients. Further studies are required to refine
10 the optimal timing and criteria for replanning to maximize therapeutic
11 outcomes while minimizing risks to healthy tissues.

12 Although adaptive replanning offers significant benefits, a potential
13 concern with ART is that reducing the irradiation field in response to
14 tumor shrinkage may increase the risk of marginal recurrence. When
15 the resection cavity or residual tumor contracts, shrinkage of the
16 irradiation field may leave residual tumor cells at the margins,
17 potentially leading to recurrence outside the treated area. Thus,
18 balancing the benefits of reducing radiation exposure to healthy

1 tissues with the risk of undertreating the tumor margins is crucial. In
2 this study, central recurrence was the most frequent pattern, followed
3 by distant and in-field recurrences; no marginal recurrence was
4 observed. This finding is consistent with those of several previous
5 studies that reported central recurrence as the predominant pattern
6 in patients with GBM treated with RT. Ogura et al.¹⁴ reported that
7 central recurrence occurred in 66.7% of cases, with rare marginal
8 recurrence. Similarly, McDonald et al.¹⁵ demonstrated that PTV
9 margins of ≤ 1 cm were not associated with an increased risk of
10 marginal recurrence. This suggests that ART can effectively maintain
11 tumor control while minimizing radiation exposure to normal tissues
12 by avoiding unnecessarily large treatment margins. Gebhardt et al.¹⁶
13 reported that of 95 documented recurrences, 81% had an in-field
14 component, 6% a marginal component, and 28% a distant component.
15 Notably, 66% of the patients experienced in-field-only recurrence,
16 whereas marginal-only and distant-only recurrences accounted for 3%
17 and 15%, respectively. In our study, despite using relatively small CTV
18 margins with ART, the recurrence patterns were consistent with those

1 reported previously. This outcome may be explained by the fact that
2 even when mid-treatment MRI showed tumor shrinkage, the brain
3 tissue where the tumor was originally present was still included in the
4 GTV during replanning, ensuring comprehensive coverage of the
5 potential residual tumor cells.

6 In addition to the risk of marginal recurrence, another concern with
7 ART is the potential increase in neurotoxicity due to the expansion of
8 the irradiation field in response to tumor growth or
9 pseudoprogression.¹⁷ If the MRI performed during replanning shows
10 an increase in the enhancing region that is misinterpreted as true
11 tumor progression, this could lead to unnecessary expansion of the
12 irradiation field. Such expansions may increase the dose to the normal
13 brain tissue, potentially elevating the risk of radiation necrosis.
14 Pseudoprogression is commonly observed within the first few months
15 after RT,¹⁷ but the possibility of its occurrence during the treatment
16 period cannot be ruled out. This uncertainty complicates adaptive
17 replanning, as the misinterpretation of pseudoprogression as tumor
18 progression may lead to overtreatment and an increased risk of

1 neurotoxicity. Despite these potential risks, the incidence of radiation-
2 induced necrosis in our study was low. We did not observe any cases
3 of symptomatic brain necrosis; only one case of grade 1 necrosis and
4 one case of suspected grade 1 necrosis were identified in our study.

5 This suggests that careful dose management and vigilant monitoring
6 of dose-volume parameters in the normal brain can help mitigate the
7 risk of significant neurotoxicity. However, because a substantial
8 proportion of patients in this cohort received bevacizumab, which may
9 have influenced the observed incidence of necrosis, further studies are
10 warranted to clarify this association.¹⁸

11 When considering the initial recurrence pattern and time to
12 recurrence for each recurrence type, Ogura et al. reported that the
13 median time to recurrence was longer for central/in-field recurrences
14 than for outfield/distant recurrences.¹⁴ In contrast, our study
15 demonstrated a tendency for central/in-field recurrences to occur
16 earlier than distant recurrences. This discrepancy may be related to
17 differences in treatment approaches, particularly ART use. In ART, the
18 irradiation field is redefined based on mid-treatment MRI, which

Commented [A7]: No revisions were required here.

1 sometimes reveals new lesions. As a result, recurrences that would
2 have been classified as distant under a conventional radiotherapy
3 approach may instead be counted as central or in-field in ART,
4 provided they fall within the updated target volume. Consequently,
5 distant recurrences in ART are more likely to represent truly late-
6 emerging lesions, which may account for the observed delay in their
7 appearance. On the other hand, Milano et al.¹⁹ reported that distant
8 recurrences tended to occur later than central or in-field recurrences,
9 particularly among patients with longer survival durations.
10 Differences in recurrence classification and evaluation criteria across
11 studies may also contribute to these discrepancies. Further research
12 is warranted to clarify the influence of ART on recurrence patterns.
13 In recent years, MRI-linac-delivered online ART has emerged as a
14 promising extension of the offline approach. Detsky et al.¹⁰ recently
15 reported a weekly online-adaptive protocol for high-grade glioma in a
16 single-arm, Phase II trial (NCT04726397). Despite using an
17 exceptionally small CTV margin of 5 mm (with a 3 mm PTV margin),
18 the marginal-recurrence rate was only 4%, demonstrating the

1 feasibility of tighter margins when employing regular online
2 adaptation. Ongoing multicenter trials will provide additional
3 evidence: UNITED 2 is evaluating whether hypofractionated
4 chemoradiotherapy can safely combine further margin reduction with
5 dose escalation under weekly online adaptation;²⁰ UNITED 3 is
6 assessing a two-phase adaptive schedule that incorporates detailed
7 neurocognitive and quality-of-life endpoints.²¹ In light of our findings,
8 definitive results from these prospective trials of adaptive
9 radiotherapy for glioblastoma are eagerly awaited to clarify optimal
10 margins and the timing of replanning in both online and offline MRI-
11 guided ART workflows.

12 During the RT period, six patients exhibited an initial expansion of the
13 enhancing lesion on MRI, followed by shrinkage. Among these, four
14 patients showed no subsequent re-expansion of the enhancing lesion,
15 suggesting the possibility of pseudoprogression. Although it is also
16 possible that these four patients initially progressed during the RT
17 period and subsequently responded to RT, the absence of later re-
18 expansion is consistent with the possibility of pseudoprogression.

Commented [MOU8]: Collocations are combinations of words often used together. When certain expressions do not sound "natural" or "right," consult a dictionary for usage. For example,
Original: We arrived on the same conclusion.
Revised: We arrived at the same conclusion. The same change has been made throughout the text, where applicable.

AI translation:
Original: We arrived on the same conclusion.
Revised: We arrived at the same conclusion.

1 Pseudoprogression is typically reported to occur within three months
2 after the completion of RT,¹⁷ but these cases indicate that it can also
3 manifest during the treatment period. This observation provides new
4 insights into pseudoprogression, suggesting that it may manifest
5 during treatment in some cases. Expanding the irradiation field in
6 response to pseudoprogression can lead to overtreatment or increased
7 neurotoxicity. Therefore, careful interpretation of MRI changes is
8 essential when considering adaptive replanning, and evaluating the
9 dose to normal brain tissue is also important. In the future, as it
10 becomes possible to accurately distinguish between
11 pseudoprogression and true tumor progression, the quality of ART will
12 improve.

13

14 This study has some limitations. First, this was a single institution
15 retrospective study, meaning that the treatment strategies, eligibility
16 criteria, and adaptive replanning protocols were specific to our
17 institution. As this was a retrospective analysis, our study was subject
18 to potential selection bias and data availability constraints.

1 Additionally, the generalizability of our findings to other institutions
2 remains uncertain, and further validation through multi-institutional
3 prospective studies is required to confirm our findings. Furthermore,
4 our study utilized relatively small CTV margins, which may have
5 influenced the tumor control and recurrence patterns. Although our
6 results suggest that ART with small margins does not increase the risk
7 of marginal recurrence, further studies are required to evaluate
8 whether similar outcomes can be achieved across different patient
9 populations and treatment settings. Additionally, all treatment
10 outcomes reported in this study were based on 3DCRT. Currently,
11 IMRT and VMAT are widely used to treat postoperative GBM. Because
12 these techniques achieve steeper dose gradients, tumor changes
13 during treatment may have a greater impact on the dose distribution.
14 Further evaluations of ART using IMRT and VMAT are needed.
15 Second, our toxicity assessment primarily focused on radiation
16 necrosis; however, the potential impact of ART on cognitive function
17 remains unclear. Although no cases of symptomatic radiation necrosis
18 were observed, the retrospective nature of our study limited our

1 ability to systematically evaluate the neurocognitive outcomes. The
2 long-term effects of adaptive replanning, particularly regarding
3 changes in irradiation volume and dose distribution, require further
4 investigation. Future studies incorporating neurocognitive
5 assessments are needed to better understand the potential risks of
6 ART-related neurotoxicity.

7 **Conclusions**

8 In this offline, single-time-point cohort, ART for GBM did not increase
9 marginal-recurrence rates and maintained a low incidence of radiation
10 necrosis. Moreover, ART yielded favorable clinical outcomes,
11 including encouraging OS and progression-free survival rates. These
12 results support ART as a safe and effective means of enhancing
13 radiotherapy precision in GBM. Further research is needed to
14 optimize ART protocols, particularly to establish optimal replanning
15 intervals and assess long-term effects on tumor control and
16 neurotoxicity.

17 **List of Abbreviations**

18 3DCRT three-dimensional conformal radiotherapy

1 ART adaptive radiation therapy

2 CI confidence interval

3 CTVinitial clinical target volume initial

4 GBM glioblastoma

5 IMRT intensity-modulated radiotherapy

6 MRI magnetic resonance imaging

7 MRI_{mid} mid-treatment contrast-enhanced magnetic resonance

8 imaging

9 OS overall survival

10 PFS progression-free survival

11 PTVinitial planning target volume initial

12 RANO Response Assessment in Neuro-Oncology

13 RT radiation therapy

14 TMZ temozolomide

15 VMAT volumetric-modulated arc therapy

16

17 **Declarations**

18 **Ethics approval and consent to participate**

1 This retrospective study was approved by the Ethics Committee of
2 Kumamoto University Hospital (Approval Number: 3038).

3 **Consent for publication**

4 Not applicable

5 **Availability of data and materials**

6 The datasets used and/or analyzed during the current study are
7 available from
8 the corresponding author on reasonable request.

9 **Competing interests**

10 The authors declare that they have no competing interests.

11 **Funding**

12 The authors have no sources of support to report.

13 **Authors' contributions**

14 All authors contributed to the study conception and design. TM
15 developed the study design; collected, analyzed, and interpreted the
16 data; performed the statistical analysis; and wrote the manuscript. All
17 authors read and approved the final manuscript.

18 **Acknowledgments**

1 Not applicable

2

3

4 1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus
5 concomitant and adjuvant temozolomide for glioblastoma. *N Engl J
6 Med.* 2005;352(10):987-996. doi: [10.1056/NEJMoa043330](https://doi.org/10.1056/NEJMoa043330).

7 2. Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial
8 of bevacizumab for newly diagnosed glioblastoma. *N Engl J Med.*
9 2014;370(8):699-708. doi: [10.1056/NEJMoa1308573](https://doi.org/10.1056/NEJMoa1308573).

10 3. Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating
11 fields plus maintenance temozolomide vs maintenance temozolomide
12 alone on survival in patients with glioblastoma: A randomized clinical
13 trial. *JAMA*. 2017;318(23):2306-2316. doi: [10.1001/jama.2017.18718](https://doi.org/10.1001/jama.2017.18718).

14 4. Manon R, Hui S, Chinnaian P, et al. The impact of mid-
15 treatment MRI on defining boost volumes in the radiation treatment
16 of glioblastoma multiforme. *Technol Cancer Res Treat*. 2004;3(3):303-
17 307. doi: [10.1177/153303460400300308](https://doi.org/10.1177/153303460400300308)..

18 5. Tsien C, Gomez-Hassan D, ten Haken RK, et al. Evaluating

1 changes in tumor volume using magnetic resonance imaging during
2 the course of radiotherapy treatment of high-grade gliomas:
3 implications for conformal dose-escalation studies. *Int J Radiat Oncol*
4 *Biol Phys.* 2005;62(2):328-332. doi: [10.1016/j.ijrobp.2004.10.010](https://doi.org/10.1016/j.ijrobp.2004.10.010).

5 6. Champ CE, Siglin J, Mishra MV, et al. Evaluating changes in
6 radiation treatment volumes from post-operative to same-day planning
7 MRI in High-grade gliomas. *Radiat Oncol.* 2012;7:220. doi:
8 [10.1186/1748-717X-7-220](https://doi.org/10.1186/1748-717X-7-220).

9 7. Bernchou U, Arnold TST, Axelsen B, et al. Evolution of the gross
10 tumour volume extent during radiotherapy for glioblastomas.
11 *Radiother Oncol.* 2021;160:40-46. doi: [10.1016/j.radonc.2021.04.001](https://doi.org/10.1016/j.radonc.2021.04.001).

12 8. Stewart J, Sahgal A, Lee Y, et al. Quantitating interfraction
13 target dynamics during concurrent chemoradiation for glioblastoma:
14 A prospective serial imaging study. *Int J Radiat Oncol Biol Phys.*
15 2021;109(3):736-746. doi: [10.1016/j.ijrobp.2020.10.002](https://doi.org/10.1016/j.ijrobp.2020.10.002).

16 9. Senkesen Ö, Tezcanlı E, Abacıoğlu MU, et al. Limited field
17 adaptive radiotherapy for glioblastoma: changes in target volume and
18 organ at risk doses. *Radiat Oncol J.* 2022;40(1):9-19. doi:

1 [10.3857/roj.2021.00542](https://doi.org/10.3857/roj.2021.00542).

2 10.

3 J Detsky, AW Chan, DM Palhares, JM Hudson, J Stewart, H Chen, *et*

4 *al.* MR-Linac On-Line Weekly Adaptive Radiotherapy for High Grade

5 Glioma (HGG): Results from the UNITED Single Arm Phase II Trial. *Int*

6 *J Radiat Oncol Biol Phys.* 2024;120 (2) : p. S4

7 11. Matsuyama T, Fukugawa Y, Kuroda J, *et al.* A prospective

8 comparison of adaptive and fixed boost plans in radiotherapy for

9 glioblastoma. *Radiat Oncol.* 2022;17(1):40. doi: [10.1186/s13014-022-02007-4](https://doi.org/10.1186/s13014-022-02007-4).

10 12. Wen PY, Macdonald DR, Reardon DA, *et al.* Updated response

11 assessment criteria for high-grade gliomas: response assessment in

12 neuro-oncology working group. *J Clin Oncol.* 2010;28(11):1963-1972.

13 doi: [10.1200/JCO.2009.26.3541](https://doi.org/10.1200/JCO.2009.26.3541).

14 13. Stupp R, Hegi ME, Gorlia T, *et al.* Cilengitide combined with

15 standard treatment for patients with newly diagnosed glioblastoma

16 with methylated MGMT promoter (CENTRIC EORTC 26071-22072

17 study): a multicentre, randomised, open-label, phase 3 trial. *Lancet*

1 *Oncol*. 2014;15(10):1100-1108. doi: [10.1016/S1470-2045\(14\)70379-1](https://doi.org/10.1016/S1470-2045(14)70379-1).

2 14. Kengo Ogura TM, Arakawa Y, Ogura M, Sakanaka K, Hiraoka

3 S. MaM: initial and cumulative recurrence patterns of glioblastoma

4 after temozolomide-based chemoradiotherapy and salvage treatment:

5 a retrospective cohort study in a single institution. *Radiol Oncol*.

6 2013;8.

7 15. McDonald MW, Shu HKG, Curran WJ Jr., Crocker IR. Pattern of

8 failure after limited margin radiotherapy and temozolomide for

9 glioblastoma. *Int J Radiat Oncol Biol Phys*. 2011;79(1):130-136. doi:

10 [10.1016/j.ijrobp.2009.10.048](https://doi.org/10.1016/j.ijrobp.2009.10.048).

11 16. Gebhardt BJ, Dobelbower MC, Ennis WH, Bag AK, Markert JM,

12 Fiveash JB. Patterns of failure for glioblastoma multiforme following

13 limited-margin radiation and concurrent temozolomide. *Radiat Oncol*.

14 2014;9:130. doi: [10.1186/1748-717X-9-130](https://doi.org/10.1186/1748-717X-9-130).

15 17. Hygino da Cruz LC Jr., Rodriguez I, Domingues RC, Gasparetto

16 EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging

17 challenges in the assessment of posttreatment glioma. *AJNR Am J*

18 *Neuroradiol*. 2011;32(11):1978-1985. doi: [10.3174/ajnr.A2397](https://doi.org/10.3174/ajnr.A2397).

1 18. Levin VA, Bidaut L, Hou P, et al. Randomized double-blind
2 placebo-controlled trial of bevacizumab therapy for radiation necrosis
3 of the central nervous system. *Int J Radiat Oncol Biol Phys.*
4 2011;79(5):1487-1495. doi: [10.1016/j.ijrobp.2009.12.061](https://doi.org/10.1016/j.ijrobp.2009.12.061).

5 19. Milano MT, Okunieff P, Donatello RS, et al. Patterns and timing
6 of recurrence after temozolomide-based chemoradiation for
7 glioblastoma. *Int J Radiat Oncol Biol Phys.* 2010;78(4):1147-1155. doi:
8 [10.1016/j.ijrobp.2009.09.018](https://doi.org/10.1016/j.ijrobp.2009.09.018).

9 20. National Library of Medicine (US) UNITY-BasED MR-
10 Linac Adaptive Simultaneous Integrated Hypofractionated Boost Trial
11 for High Grade Glioma in the Elderly (UNITED2). Identifier
12 NCT05565521. <https://clinicaltrials.gov/study/NCT05565521>

13 21. National Library of Medicine (US) UNITY-Based MR-Linac Guided
14 Adaptive RadioThErapy for High GraDe Glioma-3 (UNITED-3).
15 Identifier
16 NCT05720078. <https://clinicaltrials.gov/study/NCT05720078>

17

18 **Figure Legends**

1 **Fig. 1** Representative examples of single-time-point offline adaptive
2 boost planning.

3 A-B: 42-year-old man, right temporal lobe glioblastoma.

4 A: Baseline contrast-enhanced T1-weighted MRI (MRI_{pre}) with
5 resection cavity (red) and CTV (orange) contours and the
6 corresponding 95% isodose line (magenta).

7 B: Mid-treatment MRI (MRI_{mid}) showing resection-cavity (red)
8 shrinkage and the adapted CTV (orange); the adapted 95% isodose
9 line (magenta) encloses a 28% smaller volume than MRI_{pre}.

10 C-D: 53-year-old man, left parietal lobe glioblastoma.

11 C: MRI_{pre} with resection cavity (red) and CTV (orange) contours and
12 the corresponding 95% isodose line (magenta).

13 D: MRI_{mid} shows resection-cavity (red) shrinkage and the adapted
14 CTV (orange); the adapted 95% isodose line (magenta) encloses a 40%
15 smaller volume than MRI_{pre}.

16

17 **Fig. 2** Recurrence patterns based on 95% isodose lines. Recurrence
18 patterns were classified based on the overlap between the recurrent

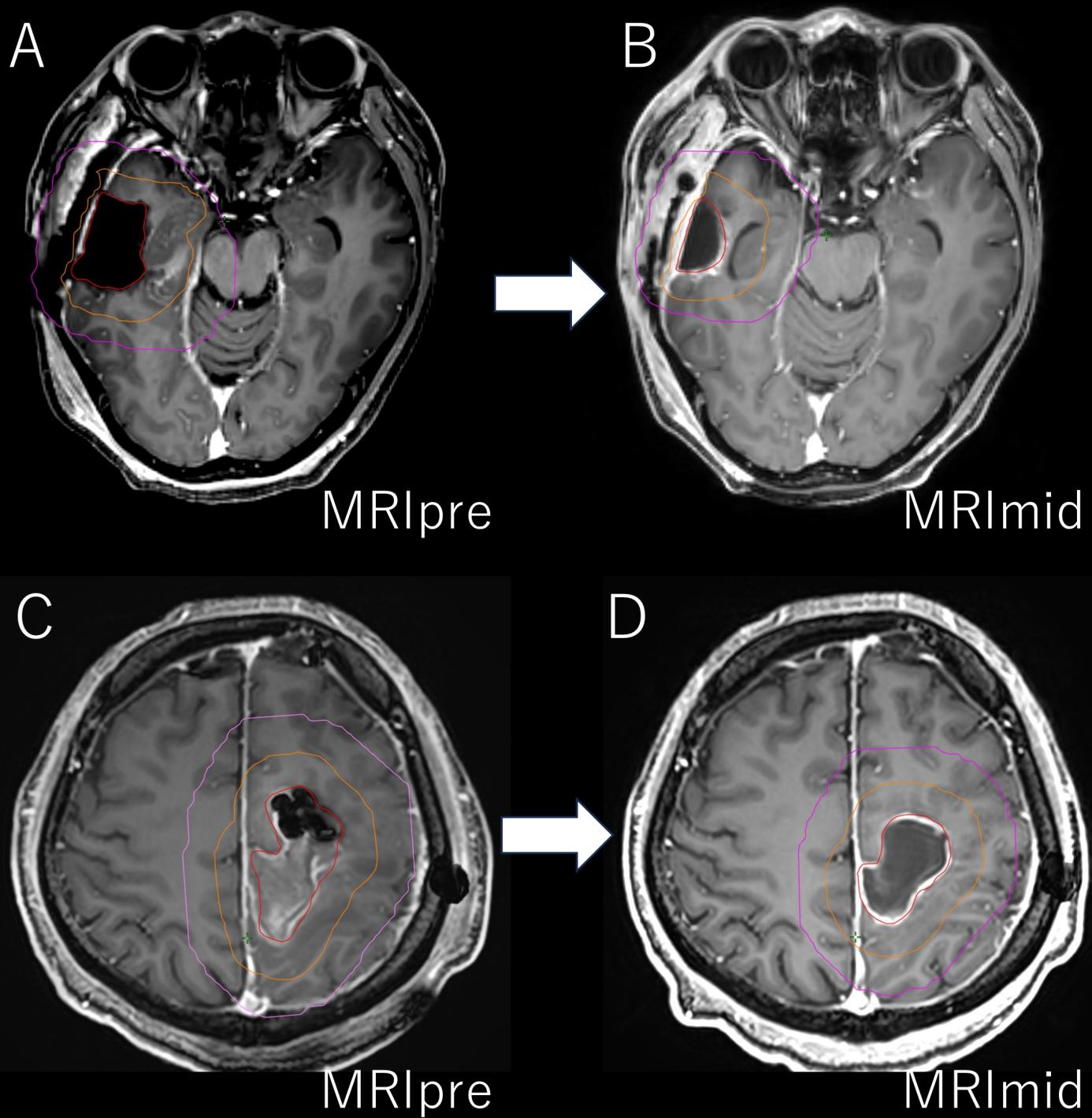
1 tumor volume on contrast-enhanced magnetic resonance imaging and
2 the 95% isodose line (19 Gy) of the boost plan. Central recurrence:
3 $\geq 95\%$ overlap. In-field recurrence: 80–95% overlap. Marginal
4 recurrence: 20–80% overlap. Distant recurrence: <20% overlap.

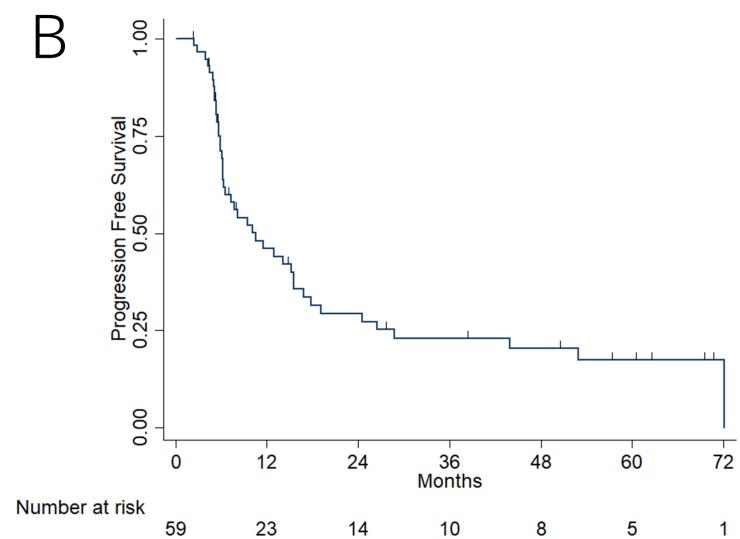
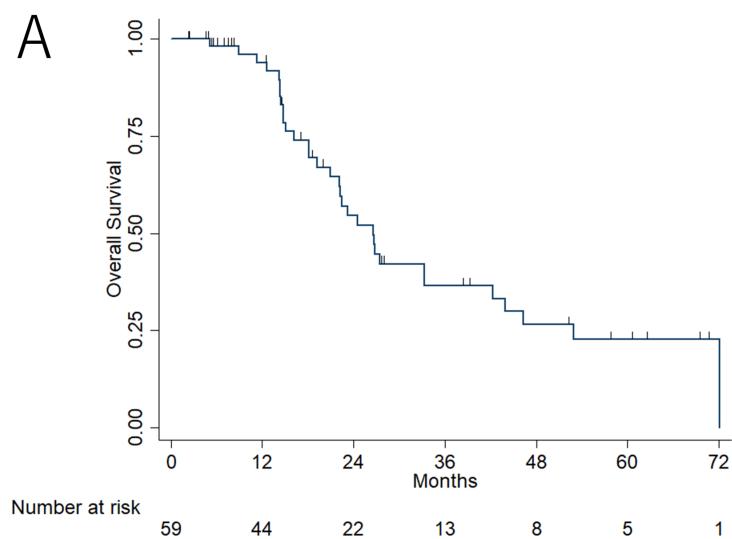
5 **Fig. 3** Kaplan-Meier survival curves for overall survival (OS) and
6 progression-free survival (PFS). Kaplan-Meier survival curves of
7 patients treated with adaptive radiation therapy for glioblastoma. (A)
8 OS. (B) PFS.

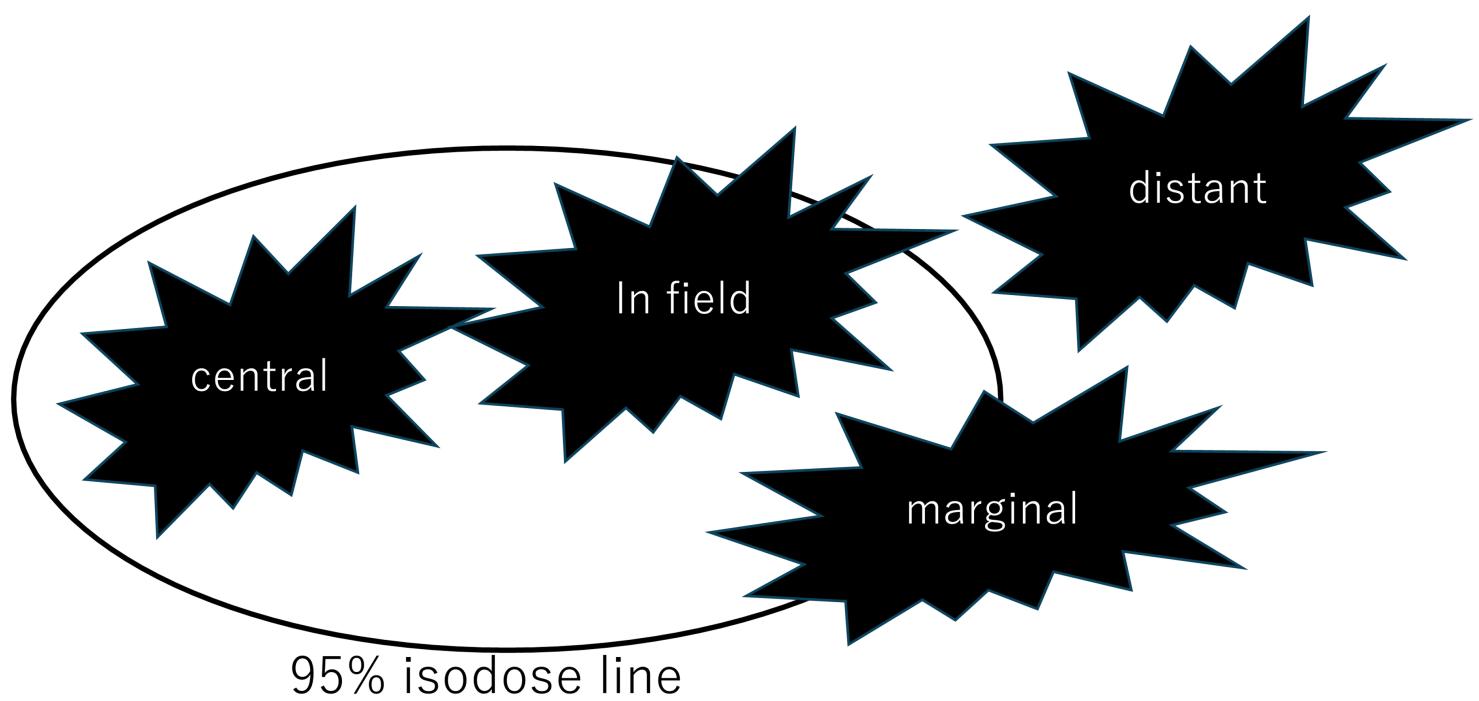
9 **Fig. 4** Recurrence patterns after adaptive radiation therapy. Magnetic
10 resonance imaging images showing the recurrence patterns of
11 glioblastoma. The orange line represents the 95% isodose line. (A)
12 Central. (B) In-field. (C) Distant.

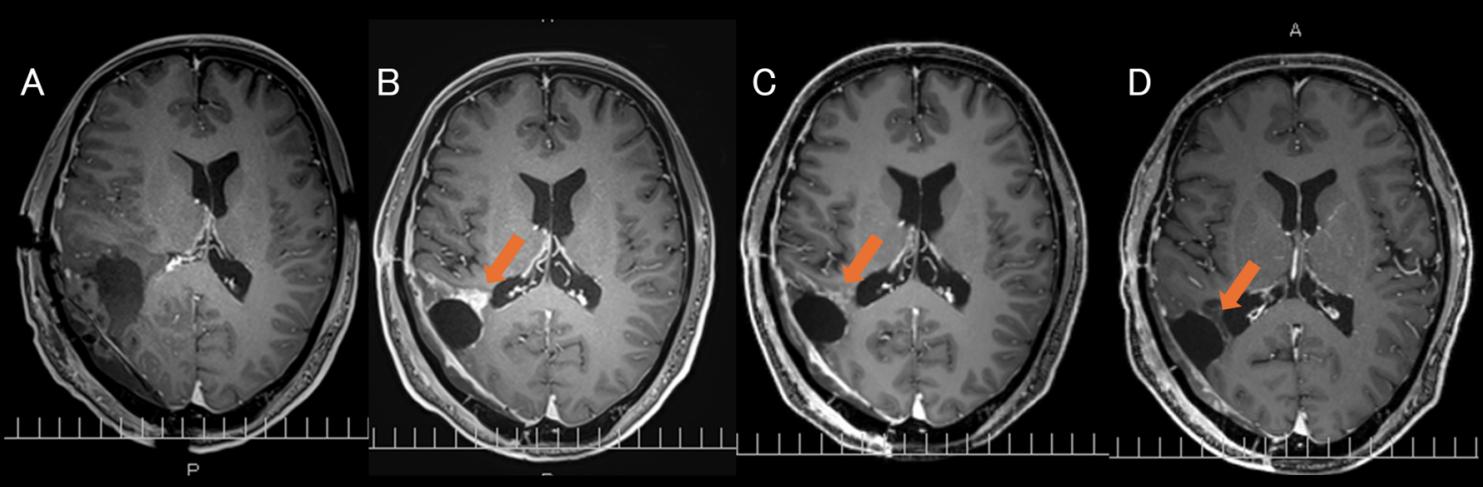
13 **Fig. 5** Suspected pseudoprogression during radiation therapy in a 45-
14 year-old male patient. (A) Pretreatment. (B) Mid-treatment shows an
15 apparent increase in enhancement. (C) End of radiation therapy,
16 showing partial regression. (D) Two months posttreatment, showing
17 further shrinkage, supporting pseudoprogression.

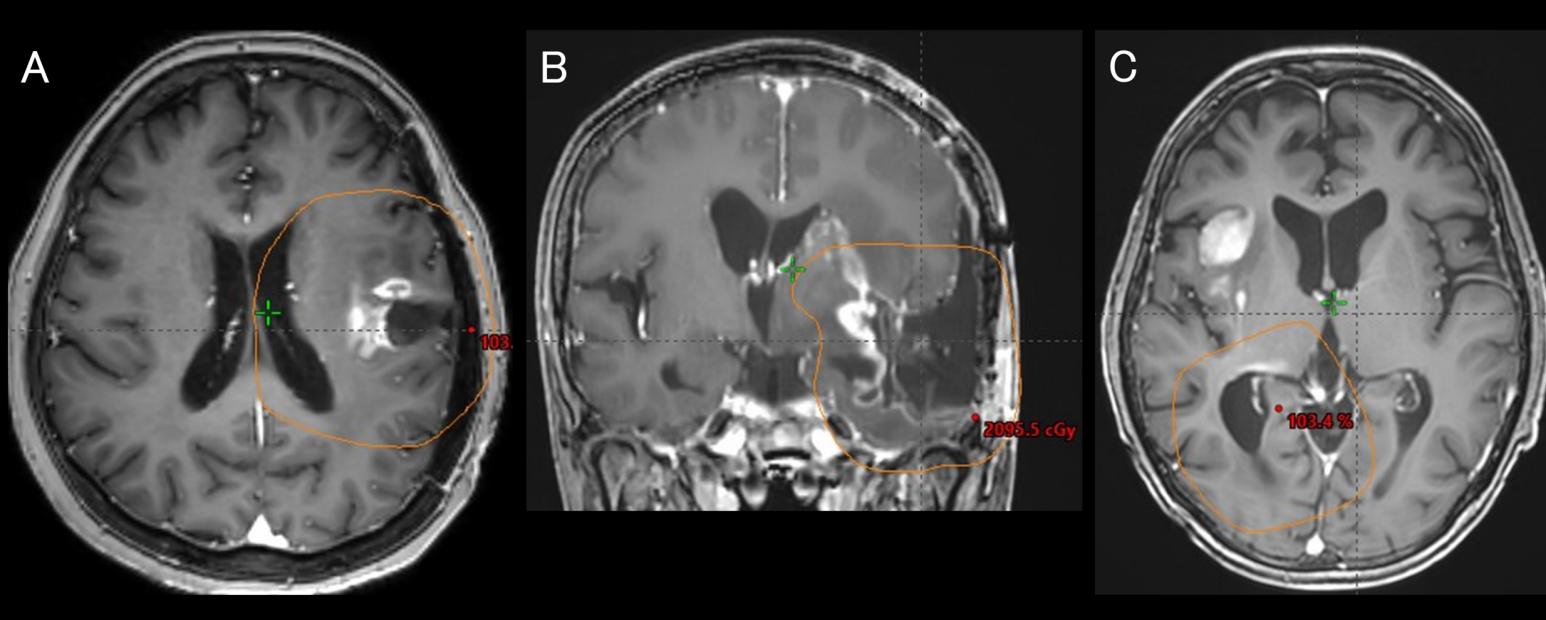
18


Table 1 Patient characteristics (n=61)



Variable	n (%)
Sex	
Male	36 (59)
Female	25 (41)
Age (median, range)	64, 4-78
KPS	
<70	18 (30)
80-90	18 (30)
90-100	25 (41)
Extent of surgical resection	
GTR	31 (51)
STR	23 (38)
Bx	7 (11)
Location of tumor	
Frontal	17 (28)
Parietal	13 (21)
Temporal	22 (36)
Occipital	3 (5)
Thalamus	2 (3)
Cerebellum	2 (3)
Multifocal	2 (3)
O6-methylguanine-DNA methyl-transferase status	
Methylated	30 (49)
Unmethylated	21 (34)
Unknown	10 (16)
IDH1-R132H immunohistochemistry	
Positive	3(5)
Negative	55(92)
Equivocal	1(2)
Unknown	1(2)
Months from surgery to radiation (median, range)	0.6 (0.3-4.1)


1 KPS, Karnofsky Performance Status; GTR, gross total resection; STR,
2 subtotal resection.; Bx, biopsy only; IDH, Isocitrate dehydrogenase


Table 2 Recurrence patterns


Recurrence type	n (%)	Median recurrence (Months)	time to	Range (Months)
Central	29 (78)	6.2		1.9-28.7
Distant	5 (14)	14.8		4.3-15.5
In-field	3 (8)	3.9		3.0-10.1
Marginal	0	N/A		N/A

