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Abstract

Medulloblastoma, the most common malignant brain tumor of childhood, is an aggressive embryonal tumor that arises from
the posterior fossa. On the molecular level, four clinically relevant subgroups have been established, which have already
been integrated into routine diagnostic procedures and treatment stratification. The initial step in treating medulloblastoma
typically involves maximal safe surgical resection, followed by craniospinal irradiation in most patients (except very young
children) and chemotherapy. Efforts to improve cure rates and reduce long-term detrimental effects led to the reduction in
radiotherapy and adaptation of chemotherapy. Gradually, over the past decades, these strategies have resulted in significant
improvements in treatment outcomes. However, patients with a medulloblastoma recurrence still fare badly, especially those
children who already had radiotherapy as part of their initial treatment. Whereas there is no universal treatment strategy at
relapse and the outcome remains poor, recently, the administration of anti-angiogenic metronomic therapy led to sustained
long-term survival in a quarter of patients. Nonetheless, there remains an unmet need to improve survival and mitigate
therapy-induced morbidity by developing new treatment strategies. Promising new approaches include targeting the Sonic
Hedgehog pathway, addressing transcriptional and epigenetic drivers, improving drug delivery, and overcoming treatment
resistance. Although the most common malignant brain tumor of childhood, the number of novel approaches in addition to
a molecularly subdivided entity renders it difficult to form large clinical trials.

1 Introduction
Key Points
Medulloblastoma is an aggressive embryonal tumor that

Medulloblastoma is the most common malignant brain arises from the posterior fossa (Fig. 1). The standard-of-

tumor of childhood. care treatment includes maximal safe resection, craniospinal
The initial step of treatment typically involves maximal irradiation (CSI), and systemic chemotherapy. Very young
safe surgical resection, followed by radiotherapy (in children less than 3 years of age, who cannot safely receive
children who are old enough) and chemotherapy. craniospinal radiation, are treated instead with conventional

chemotherapy, augmented with intraventricular chemother-
apy, or high-dose chemotherapy followed by autologous
stem cell transplantation. Despite the advances in multi-
modal therapy, the treatment of high-risk medulloblastoma
remains challenging, especially in the setting of recurrence.
We review the current state of medulloblastoma diagno-
sis and therapy, with a focus on new evolving therapeutic
approaches.

Over the past decades, diagnosis and therapy of medul-
loblastoma have steadily improved, resulting in better
treatment outcomes.
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Fig. 1 Magnetic resonance imaging of the initial tumor in a patient
with medulloblastoma (courtesy of the authors)

2 Epidemiology

Medulloblastoma is the most common malignant brain
tumor of childhood and rarely occurs in adulthood. In chil-
dren and adolescents, the annual incidence rate of all pri-
mary brain and other central nervous system (CNS) tumors
is 6.02 per 100,000 population. Medulloblastomas account
for 6.3% of all CNS tumors in individuals aged 0-19 years
[1].

3 Early Clinical and Radiographic Diagnosis

Medulloblastoma was first recognized as a distinct entity
by Cushing and Bailey in 1925, who described a series of
densely cellular brain tumors of the posterior fossa [2]. Early
diagnosis relied entirely on clinical features. Later, indirect
methods such as pneumoencephalography were used to diag-
nose brain tumors. The introduction of computed tomog-
raphy revolutionized brain tumor diagnosis in the 1970s,
and magnetic resonance imaging quickly became the gold
standard of care from the 1980s onward [3].

Most patients with medulloblastoma present with head-
ache, nausea, vomiting, and ataxia. The symptoms are attrib-
uted to the localization in the posterior fossa on the one
hand, and reflect increased intracranial pressure on the other
hand. The first step in the diagnostic process is imaging of
the brain. Current standard of care is magnetic resonance
imaging of the entire CNS compartment, brain and spine,
which is sensitive for the detection of solid metastases and
leptomeningeal dissemination.
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4 Histopathological Classification Evolution

Definitive diagnosis has always required histology. Early
on, medulloblastomas were simply categorized as a type of
primitive neuroepithelial cerebellar tumor (PNET). Devel-
opments in neuropathology led to the recognition of histo-
logical variants. Four classic morphological patterns were
defined: (1) classic; (2) desmoplastic/nodular; (3) medul-
loblastoma with extensive nodularity; and (4) large cell/
anaplastic; [4].

In the 21st century, genomic studies revolutionized
medulloblastoma diagnosis. There has been a long contro-
versy, whether medulloblastoma is a PNET localized in the
cerebellum, or if it was an identity on its own. Using DNA
microarray gene expression data in the early 2000s, it could
be proved that medulloblastoma can be clearly distinguished
from supratentorial PNETs [5]. Later on, the term PNET
was even removed from the World Health Organization clas-
sification, because on the molecular level, it could be dem-
onstrated that this term encompasses a variety of different
tumor entities [6, 7].

Four clinically relevant molecular subgroups, WNT,
Sonic hedgehog (SHH), Group 3, and Group 4, have been
established. WNT tumors harbor CTNNBI (f-catenin) muta-
tions and have a favorable prognosis. SHH tumors involve
mutations in SHH pathway genes (PTCHI, SUFU, SMO)
and TP53 in some cases, and have a bimodal occurrence in
infants and adults. Group 3 (often MYC amplified) affects
infants and young children, with the worst overall survival,
while Group 4 has an intermediate prognosis [8]. The four
subgroups have recently been differentiated into further sub-
types [9, 10].

The latest World Health Organization classification has
incorporated these diagnostic developments. Medulloblas-
tomas remain under one umbrella, but now have subgroup
distinctions, integrating imaging, morphology, and molecu-
lar data into a unified diagnosis [11].

These four molecular subgroups have already been inte-
grated into routine diagnostic procedures. To date, further
subtyping has not led to the development of more effective
targeted treatments.

5 Treatment

Maximal safe resection is a cornerstone of medullo-
blastoma management, serving key roles in diagnosis,
relieving intracranial pressure, and local tumor control.
Advances in surgical techniques, particularly the use of
intraoperative imaging and neuromonitoring, have sig-
nificantly improved the likelihood of achieving a gross
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total resection while minimizing the risk to neurological
function [12].

In the early days, medulloblastomas were seen as hav-
ing a consistently unfavorable prognosis [13]. In a series in
England published in 1953, some patients could be cured
by adequate irradiation of the entire brain and cord. This
principle is based on postmortem findings from untreated
medulloblastoma cases, which almost universally revealed
tumor deposits throughout the brain and spinal cord, which
have seeded from the primary cerebellar tumor [14].

In a larger series in Toronto, published in 1969, com-
plete CSI led to durable 5-year survival in a subset of chil-
dren [15]. These early data established surgery plus high-
dose CSI of 36 Gy with posterior fossa boosts of 50-54 Gy
as the backbone of curative therapy.

Although staging was established universally according
to Chang et al. [16], clinical studies are somewhat difficult
to compare regarding residual tumors, age, histological
variants, and metastases, which differ from study to study.
Efforts to improve cure rates and reduce long-term side
effects led to the reduction in radiotherapy and the addi-
tion of chemotherapy. Gradually, over the past decades,
these strategies have resulted in significant improvements
in treatment outcomes.

In the beginning of these efforts with large multicenter
studies, a reduction in radiotherapy to a dose of 23.4 Gy
neuroaxis irradiation compared with the standard dose
of 36 Gy without additional chemotherapy was associ-
ated with an increased risk of recurrence [17]. Likewise,
chemotherapy did not prove to be beneficial early on. In
a randomized trial, adjuvant chemotherapy with vincris-
tine, CCNU, and prednisone did not benefit patients with
low-stage medulloblastoma compared with patients receiv-
ing radiotherapy only [18]. Similar results were revealed
with a randomized trial comparing CSI only with CSI and
adjuvant chemotherapy with vincristine and CCNU [19].

Another study to improve the outcome with chemo-
therapy was comparing vincristine, CCNU and prednisone
(VCP) plus radiotherapy with an “eight-drugs-in-one-day”’
(8-in-1; vincristine, methylprednisolone, CCNU, hydroxy-
urea, procarbazine, cisplatin, cyclophosphamide, and cyta-
rabine) and radiotherapy. VCP was the superior combina-
tion compared with 8-in-1 chemotherapy, maybe in part
because in the 8-in-1 arm radiotherapy was delayed [20].
The addition of cisplatin to CCNU and vincristine and
standard radiation therapy with 36 Gy CSI led to improved
cure rates and proved that chemotherapy plays an impor-
tant role in children with medulloblastoma [21].

Comparing maintenance chemotherapy after initial radio-
therapy with cisplatin, CCNU and vincristine to neoadjuvant
chemotherapy (cyclophosphamide, vincristine, methotrex-
ate, etopside, carboplatin), maintenance chemotherapy was
more effective in low-risk medulloblastoma. Moreover,

neoadjuvant chemotherapy increased the myelotoxicity
associated with subsequent radiotherapy, leading to more
frequent treatment interruptions and prolonged overall treat-
ment duration. Delayed and/or protracted radiotherapy was
found to have a negative impact on the outcome [22].

A landmark study that long defined the standard of care
for children with non-disseminated medulloblastoma dem-
onstrated that treatment with reduced-dose CSI (23.4 Gy),
followed by a 30 Gy boost to the posterior fossa and adju-
vant chemotherapy with CCNU, cisplatin, and vincristine,
resulted in a 5-year progression-free survival rate of 80%
[23].

The immature brain has a high sensitivity to radiotherapy-
induced cognitive deficits [24-26], which can increase for
years after radiotherapy [27, 28]. These findings have set age
limitations on the use of radiotherapy, and especially CSI in
children. To avoid the devastating effects of irradiation of the
neuroaxis in very young children, a study investigated inten-
sive postoperative chemotherapy alone in children under 3
years of age. After surgery, children received intravenous
chemotherapy (cyclophosphamide, vincristine, methotrex-
ate, carboplatin, and etoposide), augmented with intraven-
tricular methotrexate. This approach revealed encouraging
survival rates, proving that postoperative chemotherapy
alone is a promising treatment for medulloblastoma in young
children, although those patients with visible metastases in
magnetic resonance imaging seldom survive [29]. Recently,
the addition of high-dose methotrexate to intensive chemo-
therapy including high-dose consolidation chemotherapy
with hematopoietic stem-cell infusion led to significant
improvements especially in group 3 medulloblastoma [30].
Another important finding using molecular stratification in
high-risk medulloblastoma was that in group 3 medulloblas-
toma the addition of carboplatin led to significant improve-
ment in survival [31].

Craniospinal irradiation is associated with a significant
cognitive risk in all patients treated for pediatric medullo-
blastoma [24]. In recent decades, there was the attempt to
modulate radiotherapy on the technical side to decrease the
often devastating late effects.

Hyperfractionated radiotherapy divides the total dose of
radiation into small doses and treatment fractions are given
more than once a day. Hyperfractionated radiotherapy poten-
tially permits a dose escalation to improve local tumor con-
trol, thereby increasing the biologic effective dose to the
neuroaxis, without a concomitant increase of the biologi-
cally effective dose to the normal CNS. This strategy was
applied in a European randomized controlled trial. Unfor-
tunately, hyperfractionated radiotherapy was not superior
to standard radiotherapy regarding survival, and overall
cognitive ability was not significantly different in standard
risk medulloblastoma [32, 33]. The situation is not so clear-
cut in metastatic medulloblastoma. Intensive chemotherapy
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including intraventricular chemotherapy before hyperfrac-
tionated radiotherapy and intensified maintenance therapy
thereafter in metastatic medulloblastoma conferred overall
favorable survival in this difficult-to-treat group of children
[34]. The Milano strategy with a hyperfractionated acceler-
ated radiotherapy regimen after surgery in high-risk medul-
loblastoma with intensive chemotherapy achieved improved
survival that exceeded previously reported outcomes in all
high-risk categories [35].

Proton beam therapy is a type of radiotherapy that uses a
beam of high-energy protons, particles found in the nuclei of
atoms, rather than high-energy electromagnetic rays (called
“photons”). Proton radiotherapy is an advanced treatment
option compared with conventional photon radiotherapy,
delivering much lower doses of radiation to healthy tissues
surrounding the tumor. After proton radiotherapy entered
the field, its use and importance continue to grow stead-
ily around the world. This led to a worldwide exponential
increase in the number of centers using proton radiotherapy
[36]. To achieve the same target clinical dose, proton radio-
therapy deposits a smaller dose to healthy tissue compared
with photon radiotherapy [37]. Even in the context of CSI,
patients treated with proton radiotherapy experienced sig-
nificantly better long-term outcomes in global intelligence
quotient, perceptual reasoning, and working memory com-
pared with patients treated with photon radiotherapy [38].

5.1 Trials with Discouraging Results

Not all trials had the expected and desired outcome in being
less toxic while improving or at least maintaining the cure
rates. Nonetheless, these trials, although disappointing,
helped to move the field forward.

A pilot study aimed to treat children with WNT-acti-
vated medulloblastoma omitting radiotherapy completely
and using surgery followed by chemotherapy alone. Unfor-
tunately, the first enrolled children experienced early
relapses, with both local and leptomeningeal recurrences.
Because of these early relapses, the study had to be closed
for safety concerns. A major takeaway is that radiotherapy
is required to effectively treat children with WNT-altered
medulloblastoma [39]. As a result, subsequent trials with
WNT-altered medulloblastoma focused on reducing radia-
tion doses rather than eliminating radiotherapy completely.
Results of a COG study (NCT02724579) and a SIOP study
(NCT02066220) are pending.

A prospective phase II study in children less than 4
years of age with non-metastatic nodular desmoplastic
or medulloblastoma with extensive nodularity examined
omitting intraventricular methotrexate from its chemother-
apy backbone. The omission of intraventricular metho-
trexate resulted in unacceptably high relapse rates in this
infant SHH-driven subgroup. The study had to close early
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as well, confirming that in the case of conventional chemo-
therapy, serial intraventricular chemotherapy is required
for adequate disease control in children who are too young
to receive CSI [40].

In average-risk medulloblastoma, a trial tested reduc-
ing the boost volume (posterior fossa vs involved-field
tumor bed) and reducing the CSI dose (23.4 Gy vs 18 Gy)
in younger children. Involved-field radiotherapy was non-
inferior to whole posterior fossa radiotherapy. However,
reducing CSI to 18 Gy significantly worsened the outcome
and showed that CSI should not be lowered below 23.4 Gy in
unselected average-risk patients, proving the importance of
molecular stratification [41]. A list of trials with encouraging
results and discouraging results can be found in Table 1 of
the Electronic Supplementary Material.

5.2 Recruiting Trials for Initial Treatment
of Medulloblastoma

Currently, there is a small number of actively recruiting
trials for the initial treatment of medulloblastoma in chil-
dren. NCT04474964 is investigating low-dose CSI fol-
lowed by adjuvant chemotherapy in WNT medulloblastoma.
NCTO05535166 explores the use of molecular and clinical
risk-adapted therapy in young children with newly diagnosed
patients, testing the use of HD-MTX chemotherapy only in
very young children with SHH-2 medulloblastoma and in
infants with group 3 and group 4 medulloblastoma, treat-
ing with systemic chemotherapy and delayed risk-adapted
CSI augmented with carboplatin. Additionally, there will
be a comparison in infants and young children treated with
systemic chemotherapy only to patients treated with sys-
temic chemotherapy and intra-ventricular chemotherapy, or
delayed risk-adapted irradiation.

Taken together, treatment of pediatric medulloblastoma
has evolved from surgery and radiotherapy alone to highly
stratified, multi-modal regimens. Contemporary therapy is
risk-adapted, incorporating both clinical stage and molecular
subgroup, to maximize cure while limiting late effects. Cur-
rent trials continue to refine CSI dosing and chemotherapy,
especially for WNT and SHH subtypes, novel targeted and
immune-based therapies are being tested to improve out-
comes in high-risk groups.

6 Recurrent Pediatric Medulloblastoma

While at initial tumor diagnosis multi-modal therapy
proved to be highly effective in the majority of patients
with medulloblastoma, approximately 30% of patients
experience disease relapse, which is often metastatic at the
time of recurrence (Fig. 2). Most patients with recurrence
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Table 1 Ongoing trials of emerging therapies in medulloblastoma

Agent Trial number  Title

CX 4945 NCT03904862 Testing the Safety and Tolerability of CX-4945 in Patients With Recur-
rent Medulloblastoma Who May or May Not Have Surgery

Difluoromethylornithine NCT04696029 DFMO as Maintenance Therapy for Molecular High/Very High Risk
and Relapsed Medulloblastoma

CDK4/6 inhibitor NCT06959979 Novel Molecular Targets and Innovative Therapeutic Perspective in
Medulloblastoma

Digoxin NCT06701812 Digoxin Medulloblastoma Study

Apatinib NCT04501718 Apatinib Combined with Temozolomide and Etoposide Capsules in the
Treatment of Recurrent Medulloblastoma in Children

PLX038 NCT06161519 PLXO038 in Primary Central Nervous System Tumors Containing MYC
or MYCN Amplifications

TTRNA-DC vaccines; TTRNA-xALT; Td vaccine; NCT06514898 Adoptive T Cell Therapy, DC Vaccines, and Hematopoietic Stem Cells

pembrolizumab Combined With Immune checkPOINT Blockade in Patients With

Medulloblastoma

Nivolumab NCT06466798 Fourth Ventricular Administration of Immune Checkpoint Inhibitor
(Nivolumab) and Methotrexate or 5-Azacytidine for Recurrent Medul-
loblastoma, Ependymoma, and Other CNS Malignancies

PEP-CMV; tetanus diphtheria vaccine NCT05096481 PEP-CMYV Vaccine Targeting CMV Antigen to Treat Newly Diagnosed
Pediatric HGG and DIPG and Recurrent Medulloblastoma

BIOLOGICAL.: IL13Ralpha2- CAR T cells NCT04661384 Brain Tumor-Specific Inmune Cells (IL13Ralpha2-CAR T Cells) for
the Treatment of Leptomeningeal Glioblastoma, Ependymoma, or
Medulloblastoma

Atovaquone NCT06624371 Atovaquone Combined With Radiation in Children With Malignant
Brain Tumors

Olaparib; 177Lu-DOTATATE NCT06607692 Study in Children and Adolescents of 177Lu-DOTATATE (Lutathera®)
Combined with the PARP Inhibitor Olaparib for the Treatment of
Recurrent or Relapsed Solid Tumours Expressing Somatostatin
Receptor (SSTR) (LuPARPed)

Multi-tumor antigen specific cytotoxic T lymphocytes NCT06193759 Immunotherapy for Malignant Pediatric Brain Tumors Employing
Adoptive Cellular Therapy (IMPACT)

iC9-GD2-CAR T cells NCT05298995 GD2-CAR T Cells for Pediatric Brain Tumours

B7-H3-CAR T cells NCT05835687 Loc3CAR: Locoregional Delivery of B7-H3-CAR T Cells for Pediatric
Patients With Primary CNS Tumors

G207 NCT03911388 HSV G207 in Children With Recurrent or Refractory Cerebellar Brain

Tumors

CAR chimeric antigen receptor

of their medulloblastoma will eventually succumb to their
disease, especially those children who had previously
undergone radiotherapy as part of their initial treatment
strategy [42-48].

Historically, a standard salvage regimen was lacking,
and treatment has relied on individualized combinations
of surgery, radiotherapy, and chemotherapy. Multiple stud-
ies have shown that resection at relapse is associated with
longer survival, especially for isolated local recurrences,
albeit with limited long-term success [45, 48—50].

Over the decades, many cytotoxic regimens have been
tried in relapsed medulloblastoma. None proved uniformly
effective. Objective responses were typically transient, and
2-year survival remained below 25% [43, 44]. High-dose
chemotherapy represents the most aggressive form of chem-
otherapy, adopted from other pediatric solid tumor protocols

into the setting of relapsed medulloblastoma. High-dose
chemotherapy was not generally successful in previously
pre-irradiated patients, with only a small number of patients
from these highly selected cohorts remaining alive [5S1-53].

Historically, clinicians were reluctant to re-irradiate
patients with medulloblastoma because of the high risk of
cumulative neurotoxicity, including brain necrosis. Pres-
ently, re-irradiation remains challenging, but might be an
important salvage tool with disease control in a subset of
patients [54, 55].

In children who were too young to be irradiated at diag-
nosis, a substantial proportion of these CSI-naive children
with relapsed medulloblastoma were salvageable with subse-
quent CSI-based regimens [56]. A multicenter retrospective
analysis evaluated outcomes in children with relapsed early-
childhood SHH-subgroup medulloblastoma who had not
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Fig.2 Magnetic resonance imaging of a disseminated medulloblas-
toma at recurrence (courtesy of the authors)

received initial CSI, focusing on different salvage treatment
approaches. Overall outcomes were poor, however, patients
treated with combined chemo-radiotherapy demonstrated the
longest post-relapse survival [57].

A commonly employed treatment approach for recur-
rent medulloblastoma is the combination of temozolomide
and irinotecan (TEMIRI) [58], which was additionally
augmented with bevacizumab [59]. These treatments were
generally well tolerated and demonstrated an acceptable
response rate, but did not result in prolonged responses in
previously irradiated patients.

The MEMMAT trial, an anti-angiogenic metronomic
regimen, incorporated intravenous bevacizumab together
with oral agents (thalidomide, fenofibrate, celecoxib, etopo-
side, cyclophosphamide), intravenous bevacizumab, and
intraventricular chemotherapy (etoposide, cytarabine). This
outpatient regimen produced a 45% response rate and dis-
ease control in 57.5% of patients with previously irradiated
medulloblastoma. Moreover, a quarter of the patients had
sustained long-term survival [60].

7 Neuropsychology and Late Effects

Childhood medulloblastoma survivors are at risk for cogni-
tive and academic declines, unemployment, and impaired
fertility [61-64]. The standard of care for survivors of child-
hood cancer is defined in the “Long-Term Follow-Up Guide-
lines for Survivors of Childhood, Adolescent, and Young
Adult Cancers” [65].

Children treated for medulloblastoma often show a
reduced capacity to acquire new information and skills
compared with their peers. Declines in academic perfor-
mance and overall intellectual functioning have long been
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recognized as significant consequences of the disease and its
treatment. More recent studies have further highlighted defi-
cits in critical cognitive domains, with particular susceptibil-
ity to impairments in processing speed [66]. The dose of CSI
was strongly associated with neurocognitive outcomes, but
also the tumor itself and the surgical resection lead to low
psychomotor abilities and decreased processing speed [67].
Hearing loss may develop in patients receiving CSI and the
platinum-based agent cisplatin owing to its ototoxic effects,
with children being particularly susceptible [68].

Posterior fossa syndrome, a complication associated with
surgery in the posterior fossa region, affects up to 29% of
patients with medulloblastoma. Posterior fossa syndrome
presents variably but is typically characterized by reduced
speech or mutism, and commonly occurs alongside ataxia,
hypotonia, emotional lability, and other neurocognitive
impairments. Patients who experience posterior fossa syn-
drome experience more severe neurocognitive deficits with
minimal improvement over time [69].

8 Future Perspectives
8.1 Liquid Biopsy

Currently, physicians primarily depend on tumor biopsies to
determine the neuropathological classification and detect the
potential presence of a specific druggable (genetic) altera-
tion. A liquid biopsy has the advantage of being less inva-
sive, rapidly accessible, and can be performed sequentially
when compared to standard tissue biopsies. The possibility
of serial sampling of cerebrospinal fluid (CSF) and blood
enables real-time monitoring of the treatment response,
allowing earlier intervention and a more dynamic treatment
management [70, 71].

The field is only at the beginning and rapidly evolving.
Initial experience has already been gained in some areas. A
longitudinal analysis of serial CSF-derived cell-free DNA
revealed that a minimal residual disease assessment is a use-
ful method of predicting disease relapse in medulloblastoma
[72]. Droplet digital polymerase chain reaction has demon-
strated high sensitivity and specificity for detecting MYC
amplification in the CSF of patients with medulloblastoma
[73]. Low-pass whole genome sequencing of CSF-derived
cell-free DNA has proven to be feasible, with a higher sensi-
tivity for detecting tumors than a conventional CSF cytologic
analysis [74]. In the near future, a liquid biopsy will help us
with minimal invasive techniques not only to correctly diag-
nose a medulloblastoma and its subtype, but also to predict
the survival probability, monitor the treatment, and detect
early signs of recurrence within the routine workflow.
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8.2 Emerging Therapies

Nonetheless, there remains a great need to improve survival
and mitigate therapy-induced morbidity by developing novel
treatment approaches. The core principle of precision med-
icine is to tailor therapy based on predictors of response
or resistance to specific molecularly targeted treatments.
Advancements in the understanding of medulloblastoma
biology raises the hope for the development of more selec-
tive, effective, and less toxic therapeutic agents. However,
significant challenges remain. Many of the molecular altera-
tions in medulloblastoma are difficult to therapeutically tar-
get, and conducting clinical trials that use pathway-specific
biomarkers for patient selection is particularly difficult in
the context of a rare disease. A list of ongoing clinical trials
of emerging therapies in medulloblastoma is provided in
Table 1.

We consider new and potential approaches, beginning
with the SHH pathway, then move to transcriptional and
epigenetic drivers, enhancing drug delivery and overcom-
ing resistance, early-phase pediatric combination trials, and
finish with novel immunotherapy studies.

8.3 Hedgehog (SHH) Pathway-Directed Strategies

The tumor molecular subgroup currently has the ability to
guide some salvage decisions. For example, SHH medullo-
blastomas harbor mutations in the SHH pathway. Smooth-
ened (SMO) is a critical component of the SHH pathway,
regulating the suppressor of fused. SMO inhibitors prevent
suppressor of fused activation, thereby blocking the nuclear
translocation of GLI transcription factor proteins [75].

Vismodegib is a ligand-specific, brain-penetrant inhibi-
tor of SMO. Even though SHH tumors are sensitive to this
drug, no long-lasting responses have yet been described with
vismodegib as a single agent, both in adult and pediatric
medulloblastoma [76-78].

Two strategies for further development of inhibition of
the SHH pathway are realized. Discovery of a drug that
can synergize with vismodegib to improve its resistance
in patients and enhance its efficacy, and targeting the SHH
pathway further downstream.

The incorporation of SMO inhibitors into rational drug
combinations designed to prevent resistance was further
evaluated. In a clinical study, the addition of temozolomide
to vismodegib did not cause significant additional toxicity,
but failed to extend the duration of responses of vismodegib
in patients with SHH-activated recurrent medulloblastoma
[79].

EZH2 (Enhancer of Zeste Homolog 2) primarily tri-
methylates histone H3 on lysine 27 (H3K27me3), a key
epigenetic mark associated with gene silencing. In medul-
loblastoma cells and orthotopic SHH models, the combined

use of an EZH2 inhibitor and vismodegib demonstrated a
remarkable synergistic effect in suppressing medulloblas-
toma growth. The dual blockade more effectively suppresses
GLI transcriptional activity, presenting a promising treat-
ment option for medulloblastoma [80].

Cancers driven by mutations downstream in the SHH
pathway do not respond to SMO inhibition, and thus there
is a strong need for the identification of compounds that
act downstream of SMO, thereby overcoming resistance. A
series of benzoindolone derivatives that inhibit GLI-medi-
ated transcription downstream of SMO blocked SHH path-
way readouts in cultured medulloblastoma cells resistant to
SMO inhibitors. This epigenetic targeting of the SHH path-
way through modulation of BET bromodomains might serve
as an attractive strategy towards combating SHH pathway-
driven cancers [81].

OLIG2-expressing tumor stem cells have been identi-
fied as drivers of recurrence in SHH medulloblastoma [82].
CT-179, a small-molecule OLIG?2 inhibitor, targets SHH-
medulloblastoma stem-like cells that drive recurrence. The
brain-penetrant orally bioavailable OLIG2 inhibitor CT-179
combined efficiently with the CDK4/6 inhibitor palbociclib,
and in combination with radiotherapy significantly slowed
medulloblastoma progression in mouse models and orga-
noids [83].

Using an unbiased high-throughput screen with a library
of 172 compounds with known targets, the ribosomal S6
kinase 1 was identified as essential for SHH-MB cell sur-
vival. Pharmacological blockade of S6 kinase 1 induced
apoptosis and impaired tumor growth in orthotopic xeno-
grafts, suggesting that inhibition of S6 kinase 1 specifically
affects tumor growth in SHH medulloblastoma [84].

8.4 Targeting Transcriptional and Epigenetic
Drivers

The highest-risk tumors are driven by recurrent MYC ampli-
fications and experience poorer outcomes despite intensive
multi-modal therapy. Therapeutic targeting of MYC directly
has proven difficult so far, but inhibiting its transcriptional
cofactors could offer a promising alternative.

MYC-driven Group 3 medulloblastomas rely on the elon-
gation factor P-TEFb for aberrant transcriptional circuits.
Inhibiting CDKO9, a core component of P-TEFb, selectively
impairs tumor cell proliferation and induces apoptosis
in vitro and in orthotopic xenograft models. Inhibition of
transcriptional CDKs interfered with enhancer-promoter
activity in MYC-medulloblastoma and downregulated
MYC-driven transcriptional programs, demonstrating robust
anti-tumor activity, and might be a promising strategy for the
treatment of M YC-medulloblastoma [85].

Histone deacetylases and phosphoinositide 3-kinases are
two important classes of enzymes that regulate key cellular
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processes. CUDC-907, which simultaneously inhibits his-
tone deacetylases and phosphoinositide 3-kinases, reduced
the viability of MYC-driven Group 3 medulloblastoma cells,
patient-derived organoids, and xenograft models. Further-
more, when CUDC-907 was combined with cisplatin, the
GO0/G1 phase blocking effect was further improved. CUDC-
907 in combination with radiotherapy inhibited DNA dam-
age repair and boosted DNA damage. Dual inhibition tar-
geting the MYC upstream pathway (histone deacetylase/
phosphoinositide 3-kinase) exhibited significant anti-tumor
effectiveness [86].

MYC has demonstrated the capability to bind directly to
the EZH?2 promoter and activate EZH?2 transcription. EZH2
inhibition downregulates NUPR1, a stress-response factor
that facilitates DNA repair, thereby sensitizing medullo-
blastoma cells with high MYC expression to PARP inhibi-
tors. PARP inhibitors reportedly lead to replication stress in
MYC-overexpressing cancers. EZH2 inhibition with tazem-
etostat considerably increased the sensitivity of MYC-high
medulloblastoma tumor cells to the PARP inhibitor niraparib
in MYC-high medulloblastoma tumor cells. This epigenetic-
DNA -repair axis provides a rationale for dual-targeted ther-
apy in aggressive medulloblastoma [87].

8.5 Enhancing Drug Delivery and Overcoming
Resistance

Treatment of medulloblastoma is complicated by the ten-
dency to leptomeningeal dissemination. Two non-receptor
tyrosine kinases, ABL1 and ABL2, are key drivers of medul-
loblastoma dissemination. The allosteric ABL1/2 inhibitor,
asciminib, and the multi-tyrosine kinase inhibitor nilotinib
were combined with tariquidar, a third-generation P-glyco-
protein inhibitor. Tariquidar increased the brain concentra-
tions of asciminib and nilotinib, and increased cytotoxicity
in medulloblastoma cells. The work supports the inhibition
of P- glycoprotein as a potential possibility to improve CNS
penetration of targeted agents [88].

Administration of substances directly into the CSF is a
possible strategy to bypass the blood—brain barrier and the
delivery of drugs to the site of the tumor, which is frequently
used in the clinical setting [60]. Drugs suitable for intrathe-
cal administration and prolonged exposure time are urgently
needed. PLA-HPG nanoparticles that encapsulate the PARP
inhibitor talazoparib were developed for intrathecal admin-
istration, achieving high CSF concentrations and selective
uptake by leptomeningeal medulloblastoma cells. This has
led to sustained drug retention in the tumor when delivered
intrathecally. It demonstrates the feasibility of local nanopar-
ticle-mediated therapy for CNS metastases [89].

Recent advances in nanoparticle-based drug-delivery
systems allow for precise modulation of specific molecu-
lar pathways, thereby enhancing therapeutic efficacy while
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reducing off-target toxicities [90]. As stated above, current
Hedgehog inhibitors are effective initially to treat SHH-
MB but acquire resistance often after a short time. Sys-
temic administration of the Hedgehog inhibitor MDBS5 and
SF2523, a BRD4/PI3K dual inhibitor, loaded on a COG-
133 nanocarrier for enhanced drug delivery to the brain,
was used to effectively deliver these drugs to medulloblas-
toma tumor sites and significantly inhibited medulloblas-
toma progression compared with non-targeted nanoparticle
(NP) formulations [91]. An overview of targeted therapeutic
approaches as well as the underlying mechanisms of resist-
ance across all molecular subgroups of medulloblastoma is
reviewed here [92, 93].

8.6 Early-Phase Pediatric Combination Trials

The presence of molecular alterations in recurrent tumors
can be potentially addressed by targeted therapies. The
WEEI kinase is a negative regulator of the G2-M check-
point. Inhibition of WEE1 disrupts cell-cycle control, induc-
ing replication stress and premature mitotic entry. Inhibition
of the WEEI kinase by adavosertib (AZD1775) increases the
replicative stress from chemotherapy, using the sensitizing
effect of chemotherapy-induced DNA damage. Patients with
defined genetic alterations und recurrent medulloblastoma
were included in a pediatric phase I study to define the rec-
ommended dose and activity of adavosertib in combination
with carboplatin. Unfortunately, the regimen proved to be
too toxic for these heavily pretreated patients, moreover,
none of the patients with recurrent medulloblastoma showed
an objective response [94]. Combining adavosertib with iri-
notecan had a better tolerability, but did not meet the efficacy
endpoint in recurrent medulloblastoma [95].

Nifurtimox is a nitrofuran compound that has been
employed for over 50 years as a primary treatment for Cha-
gas disease, a parasitic infection. Nifurtimox induces the
formation of reactive oxygen species and increases oxida-
tive stress. In combination with topotecan and cyclophos-
phamide, the regimen was well tolerated, but again, the
responses in the subset of patients with medulloblastoma
were not durable [96].

8.7 Novel Inmunotherapy Studies

Immunotherapies aim at inducing anti-tumor immune
response (e.g., immune checkpoint inhibitors) or by target-
ing tumor-specific features (e.g., chimeric antigen receptor
T cells). While these therapies have shown very positive
results in certain adult cancers, their effectiveness in pedi-
atric solid tumors remains limited.

Chimeric antigen receptor T cells are genetically modi-
fied to equip T cells with the ability to recognize and target
a specific antigen. Chimeric antigen receptor T-cell therapy
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is a promising novel treatment and proved to be effective
in various hematological malignancies [97]. Gangliosides
are surface antigens that are expressed by pediatric tumors,
including medulloblastoma. An early-phase clinical trial
of GD2-chimeric antigen receptor T cells in patients with
GD2-positive medulloblastoma demonstrated the safety and
evidence of CNS trafficking [98].

Immunotherapy using checkpoint inhibitors represents a
promising option in several solid tumors in adults, espe-
cially melanoma [99]. The checkpoint inhibitors nivolumab
and ipilimumab were administered in pediatric patients
with refractory hypermutated cancer and mismatch repair
deficiency, and resulted in durable responses and prolonged
survival [100]. Unfortunately, in recurrent medulloblastoma,
nivolumab alone or in combination with ipilimumab showed
discouraging survival [101].

9 Conclusions

Treatment of pediatric medulloblastoma has evolved from
surgery and radiotherapy alone to highly stratified, multi-
modal regimens. Our rapidly expanding knowledge of
medulloblastoma biology is expected to drive the devel-
opment of an increasing array of diagnostic molecular
technologies and treatment approaches. Contemporary
therapy is risk adapted—incorporating both clinical stage
and molecular subgroup—to maximize cure while limiting
late effects. Current trials continue to refine CSI dosing and
chemotherapy, especially for WNT and SHH subtypes, and
novel targeted and immune-based therapies are being tested
to improve outcomes in high-risk groups. Yet, the small
number of patients in each stratum may hamper clinical tri-
als and large international efforts are needed to successfully
test novel treatment strategies.
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