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Abstract
Seizures are a common and challenging symptom in brain tumors, affecting 
approximately 60% of patients. Tumor-related epilepsy (TRE) in glioma pa-
tients requires personalized and dynamic management in a multidisciplinary 
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1   |   INTRODUCTION AND 
GENERAL REMARKS

Seizures are a frequent and difficult-to-treat symptom 
of cerebral neoplasms, occurring in approximately 60% 
of brain tumors (BTs) and often requiring complex and 
multidisciplinary management.1,2 Overall seizures are 
the presenting symptom in approximately one third of 
patients with cerebral tumors. On the other hand, BTs 
account for 3.5% of all epilepsies. The incidence of epi-
lepsy and seizure semiology, however, vary widely and 
depend on tumor type and location. Among patients 
with primary BTs, seizures are more prevalent in cases 
of low-grade tumors compared to high-grade ones.2,3 
It is not unusual that patients with high-grade tumors 
experience at least one seizure as first symptom of the 
condition or during the course of the disease and pre-
sent uncontrolled epileptic seizures during tumor evolu-
tion. However, chronic epilepsy points to the presence 
of brain neoplasms with distinct features, which have 
been denominated “low-grade epilepsy-associated tu-
mors” (LEATs) and mainly include glioneuronal and 
neuronal tumors (GNTs).4–8

Despite the variable frequency of seizures as a function 
of histologic type, an important factor associated with 
the development of seizures is tumor location. Seizures 
occur much more frequently in supratentorial (30%–70%) 
than infratentorial (6%) lesions. Moreover, the incidence 
of seizures increases as the site of tumor approaches the 
primary sensorimotor cortex, the temporal cortex, and 
the supplementary motor areas. Similarly, seizure devel-
opment is much more common with cortical than with 
noncortical deep lesions (63% vs. 29%).2

Antiseizure medications (ASMs) are usually pre-
scribed, either to control seizures or to prevent seizure 
occurrence, for example, after surgical treatment. Each 

of the modalities for tumor therapy (i.e., surgery, ra-
diotherapy, chemotherapy) contributes to seizure con-
trol, but specific problems may arise when combined 
with ASMs.9

Approximately one third of tumor-related epilepsy 
(TRE) patients, however, exhibit pharmacoresistance to 
ASMs, complicating their quality of life. Epilepsy and 
ASMs also contribute to cognitive decline, which remains 
a significant concern for BT patient management.10,11

This paper provides a comprehensive, multidisci-
plinary review of TRE, addressing its pathophysiology, 
classification, and management within the clinical con-
text of high-grade gliomas (HGGs), diffuse low-grade glio-
mas (DLGGs), and GNTs.

environment, especially for its intricate pathophysiology and unpredictable 
disease evolution. This investigation provides an updated overview about the 
pathophysiological mechanisms and treatment options of TRE associated with 
gliomas, based on expert contributions belonging to different areas. By combin-
ing the most recent discoveries and expert opinions, this study seeks to provide 
useful advice for TRE management in glioma patients. To improve patient out-
comes and quality of life, prospective, standardized, multicentric studies should 
be promoted to optimize TRE patient care and refine therapeutic approaches.

K E Y W O R D S

antiseizure medications, cerebral tumors, chemotherapy, epilepsy, epilepsy surgery, 
radiotherapy

Key points

•	 Antiseizure medications, surgery, chemother-
apy, and radiotherapy all contribute to con-
trolling seizures and require a cooperative and 
multidisciplinary approach.

•	 Maximal safe surgical resection, in both low- 
and high-grade gliomas, implies a double bene-
fit, in terms of both survival and seizure control.

•	 In glioneuronal tumors, lesionectomy with re-
moval of the adjacent epileptogenic zone pro-
vides the best outcomes.

•	 Preoperative long-term monitoring, intraop-
erative monitoring and mapping and electro-
corticography in selected cases improve the 
postoperative seizure outcome.

•	 Third-line antiseizure medications are com-
monly preferred because of their better tolera-
bility profile and lack of drug–drug interactions.
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2   |   MECHANISMS OF 
EPILEPTOGENESIS IN BTs

Epileptogenesis in individuals with BTs refers to a complex 
and multifactorial process involving various mechanisms 
such as alterations in neuronal excitability, abnormal neu-
ral network activity, and changes in the tumor microenvi-
ronment (Figure 1). Over the past decade, there has been a 
notable expansion in the literature concerning the patho-
physiology of TRE, highlighting shared mechanisms of 
epileptogenesis and tumor growth in glial tumors, as well 
as mechanisms of intrinsic epileptogenicity in LEATs.12,13

Recently, advancements in understanding tumor in-
trinsic molecular properties have shed light on how they 
create an environment susceptible to and supportive of 
hyperexcitability mechanisms. Genetic mutations and 
associated molecular pathways have emerged as piv-
otal factors sustaining both BTs and epilepsy, potentially 

elucidating tumoral and peritumoral hyperexcitability in 
specific tumor types.14,15

Recent experimental studies provide evidence link-
ing the B-Raf proto-oncogene (BRAF) V600E mutation 
in epileptogenic developmental BTs to their intrinsic 
epileptogenicity.16,17

Mutations in isocitrate dehydrogenase (IDH), in par-
ticular IDH1, are commonly found in DLGGs, correlating 
with improved tumor prognosis while also serving as an 
independent risk factor for increased seizure susceptibil-
ity.18,19 These mutations result in the accumulation of D-2-
hydroxyglutarate in tumors, which can increase neuronal 
excitation in a glia-dependent manner through various 
mechanisms recently explored in experimental models.20

Furthermore, recent research has highlighted the role 
of mechanistic target of rapamycin (mTOR) signaling 
pathway activation in IDH mutant glioma epileptogenic-
ity and tumor progression.21,22

F I G U R E  1   Epileptogenesis in brain tumors. It involves a multifactorial interplay between tumor-intrinsic genetic mutations 
(e.g., BRAF, IDH1), disrupted excitatory–inhibitory balance, neuron–glioma synaptic communication, neuroinflammation, and vascular/
metabolic dysfunction. These alterations promote hyperexcitability and seizure susceptibility while also driving tumor growth. ADK, 
adenosine kinase; BBB, blood–brain barrier; BRAF V600E, B-Raf proto-oncogene, serine/threonine kinase v600e mutation; Cl−, chloride 
ion; D-2-HG, D-2-hydroxyglutarate; ECM, extracellular matrix; GABA, γ-aminobutyric acid; IDH1/2, isocitrate dehydrogenase 1 and 2; 
mTOR, mechanistic target of rapamycin; PI3K, phosphoinositide 3-kinase; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit α; PNN, perineuronal net; RAS, rat sarcoma (a family of related proteins involved in cell signaling); RTK, receptor tyrosine kinase; 
system Xc, cystine/glutamate antiporter.
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These studies provide support for exploring the use of 
IDH inhibitors to control seizures, and simultaneously 
investigating the efficacy of mTOR inhibitors for seizure 
management could further advance research on mTOR 
inhibition targeting tumor growth. Genetic alterations 
in the RTK/RAS/PI3K pathway are a prevalent driver of 
tumorigenesis in IDH wild-type glioblastomas. Using a 
mouse model of glioblastoma, it has been demonstrated 
that several driver variants of PIK3CA promote neuronal 
activity, thereby identifying GPC3 (a secreted member of 
the glypican [GPC] family) as a contributor to both glioma 
tumorigenesis and network hyperexcitability.23

Interestingly, the patterns of cortical network activity 
are strongly influenced by tumor genetics.15

One pivotal aspect of epileptogenesis involves a dis-
ruption in the balance between excitation and inhibi-
tion, resulting from the loss of physiological homeostatic 
function of glioma cells and peritumoral astrocytes. This 
encompasses dysregulated potassium homeostasis, alter-
ations in gap–junction expression, compromised gluta-
mate transport, and disrupted neurotransmitter supply, all 
contributing to circuit hyperexcitability.24,25

In addition to glutamatergic dysfunction, which in-
volves an increase in extracellular glutamate levels and 
promotes glioma cell proliferation, evidence supports de-
fective inhibitory signaling in TRE. This includes the deg-
radation of perineuronal nets surrounding fast-spiking 
interneurons,26,27 as well as perturbed chloride homeosta-
sis due to changes in the expression of neuronal chloride 
cotransporters, leading to depolarizing γ-aminobutyric 
acidergic activity.28–30 Furthermore, intra- and peritu-
moral inflammatory changes, mediated by astrocytes 
and microglia, may also contribute to the disruption of 
the excitatory–inhibitory balance, thereby promoting 
epileptogenesis.31,32

Recently emerging insights from cancer neuroscience 
have provided a valuable framework for understand-
ing epileptogenesis in BTs.33 In experimental models of 
glioma, the activity of glutamatergic neurons has been 
shown to drive tumor growth of gliomas,34,35 involving 
both paracrine signaling23,35 and direct electrochemical 
communication, neuron-to-glioma synapses.35–37 These 
studies give support to bidirectional interactions between 
neurons and glioma cells, with neuronal activity driving 
glioma and gliomas increasing neuronal activity.35,38 Glial 
tumor cells electrically integrate into neural circuitry and 
may employ mechanisms of adaptive neuroplasticity to 
strengthen these growth-promoting neuron–glioma inter-
actions. Interestingly, neuronal activity-regulated brain-
derived neurotrophic factor signaling to the TrkB receptor 
in glioma cells may play a crucial role in such plasticity.39 
Another recent study underscores the complexity of the 
dysfunctional network in gliomas, revealing network-wide 

rhythmic intercellular Ca2+ waves that selectively activate 
the mitogen-activated protein kinase (MAPK) and NF-κB 
pathways, thereby driving BT growth40 and potentially 
contributing to epileptogenesis.41 Moreover, activity-
dependent dysregulation of myelin plasticity may contrib-
ute to aberrant circuit function and pathological network 
activity, potentially supporting pathological cell prolifera-
tion42 as well as epileptogenesis.43

Gliomas also disrupt functional hemodynamics, 
resulting in disturbed neurovascular coupling and 
seizure-induced hypoxia in affected cortical regions,44 
as well as blood–brain barrier breakdown.45 This may 
serve as an additional mechanism contributing to the 
pathological network underlying tumor growth and 
epileptogenesis.

3   |   ADVANCES IN THE 
CLASSIFICATION SYSTEM

Primary neoplasms of the central nervous system are rare 
and represent a small part of the much larger and more 
diverse cancer landscape.

Continuing the path started with the 2016 World Health 
Organization (WHO) classification, the new WHO 2021 
classification of central nervous system tumors has fur-
ther integrated molecular data into the typing, subtyping, 
and classification of primary tumor groups (Table 1).46

Why push on molecular data? The reason for this em-
phasis on molecular genetic diagnosis is the superiority 
of this approach in terms of tumor classification and cor-
relation with prognosis. Moreover, diagnosis based on 
morphology can be more subjective, with high variability 
among pathologists. Molecular genetics is then required 
to perform investigations (e.g., IDH1 R132H, TP53, ATRX, 
and 1p/19q codeletion).47

Until 2016, the diagnosis of these neoplasms was based 
on histology alone. Starting with the WHO 2016 classi-
fication and then more extensively with the WHO 2021 
classification, molecular biological data were integrated 
with anatomopathological data to provide an integrated 
diagnosis.48

With the WHO 2021 classification, some entities we 
have worked with before (e.g., gliomatosis) have disap-
peared and new, often very rare entities have appeared 
(Table 2).

The cornerstone of the new classification is the IDH 
mutation.49 The identification of this mutation makes it 
possible to subdivide glial tumors into IDH mutant and 
wild-type neoplasms, with very different biological and 
clinical characteristics. A more aggressive clinical course 
and a worse prognosis characterize wild-type IDH tumors. 
The glioblastomas were diffuse grade 4 IDH1/2 wild-type 
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gliomas with microvascular proliferation and/or inter-
tumoral necrosis. At the same time, a grade 2–3 IDH1/2 
wild-type astrocytic glioma can now be classified as a glio-
blastoma if it has at least one of the following molecular 

features: telomerase reverse transcriptase (TERT) pro-
moter mutation, epidermal growth factor receptor (EGFR) 
amplification, or concomitant gain of chromosome 7 and 
loss of chromosome 10.

T A B L E  1   Neuroepithelial tumors associated with epilepsy according to 2021 WHO classification.

Tumor histology according to CNS WHO 2021 WHO grading LEAT entitiesa
Molecular profiles and key genetic 
alterations

Adult diffuse gliomas

Astrocytoma, IDH mutant 2–4 No IDH1- IDH2, ATRX, TP53, CDKN2A/B

Oligodendroglioma, IDH mutant, 1p/19q-codeleted 2–3 No IDH1-IDH2, 1p-19q codeletion

Glioblastoma 4 No IDHwt, EGFR, TERT, LOH10q, gain 
7p, CDKN2A/B

Pediatric diffuse low-grade gliomas

Diffuse astrocytoma, MYB- or MYBL1-altered 1 Yes MYB, MYBL1

Angiocentric glioma 1 Yes MYB

Polymorphous low-grade neuroepithelial tumor of the 
young

1 Yes BRAF, FGFR

Diffuse low-grade glioma, MAPK pathway-altered nd nd FGFR1, BRAF

Circumscribed astrocytic gliomas

Pilocytic astrocytoma 1 Yes KIAA1549-BRAF, BRAF, NF1

High-grade astrocytoma with piloid features nd No BRAF, NF1, ATRX, CDKN2A/B 
(methylome)

Pleomorphic xanthoastrocytoma 2–3 No BRAF, CDKN2A/B

Subependymal giant cell astrocytoma 1 No TSC1, TSC2

Astroblastoma nd No MN1

Chordoid glioma 2 No PRKCA

Glioneuronal and neuronal tumors

Ganglioglioma 1–3 Yes BRAF

Gangliocytoma 1 No BRAF

Desmoplastic infantile ganglioglioma/astrocytoma 1 No nd

Dysembryoplastic neuroepithelial tumor 1 Yes FGFR1

Diffuse glioneuronal tumor with oligodendroglioma-
like features and nuclear clusters

nd nd Monosomy of chromosome 14 
(methylome)

Papillary glioneuronal tumor 1 Yes PRKCA

Rosette-forming glioneuronal tumor 1 No FGFR1, PIK3CA, NF1

Myxoid glioneuronal tumor nd No PDFGRA

Diffuse leptomeningeal glioneuronal tumor nd No KIAA1549-BRAF fusion, 1p 
(methylome)

Multinodular vacuolating neuronal tumor 1 Yes MAPK pathway

Dysplastic cerebellar gangliocytoma (Lhermitte–Duclos 
disease)

1 No PTEN

Central neurocytoma 2 No nd

Extraventricular neurocytoma 2 No FGFR (FGFR1-TACC1fusion), IDHwt

Cerebellar liponeurocytoma 2 No nd

Note: CDKN2A/B homozygous deletion is a frequent and clinically relevant alteration in high-grade gliomas, associated with poor prognosis and aggressive 
tumor behavior. Methylome: The analysis of the DNA methylation profile (methylome) is currently necessary for a definitive diagnosis.
Abbreviations: CNS WHO, WHO Classification of Tumors of the Central Nervous System; LEAT, low-grade epilepsy-associated tumor; MAPK, mitogen-
activated protein kinase; nd, not yet fully determined; WHO, World Health Organization; wt, wild type.
aLEAT entities: tumors well-recognized as being typically associated with epilepsy.
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The term IDH mutant glioblastoma was changed to 
WHO grade 4 astrocytoma, IDH mutant in the 2016 WHO 
classification. Astrocytoma consisted only of diffuse IDH 
mutant glioma and was divided into three grades (2, 3 or 
4) based on histological findings and CDKN2A/B homo-
zygous deletion status. Following this classification, we 
understood how an astrocytoma of histological grade 2 
could have a prognosis similar to that of a glioblastoma if 
it had a deletion for the CDK2NA mutation or a deletion 
of chromosome 10 or a gain of 7.10.

In IDH-mutated neoplasms, codeletions on chromo-
somes 1 and 19 allow the differentiation of oligodendro-
cytes from astrocytic tumors. Within oligodendroglial 
tumors, grades 2–3 are maintained; WHO grade 3 (ana-
plastic) is assigned to an IDH mutant oligodendroglioma, 
with 1p/19q codeletion, dense cellularity, microvascular 
proliferation, necrosis, and significant mitotic activity.

IDH-wildtype diffuse gliomas affecting pediatric pa-
tients are classified separately from IDH-wildtype diffuse 
gliomas occurring in adults. Diffuse, MYB- or MYBL1-
altered astrocytomas (WHO Classification of Tumors of 
the Central Nervous System grade 1) are responsible for 
refractory epilepsy (LEATs).50 These tumors can arise 
in any brain lobe and have both cortical and subcortical 
localization. They are characterized by moderate hyper-
cellularity and diffuse infiltration by monomorphic cells 
with ovoid to elongated nuclei. Mitotic activity is very low 
or absent. They are characterized by fusion between the 
MYB or MYBL1 genes.

Another tumor responsible for LEAT is the polymor-
phous low-grade neuroepithelial tumor of the young 
(PLNTY), almost always present in refractory epilepsy.51 
It is a grade 1 neuroepithelial tumor that mainly affects 
young and female patients but is also described in adults.

The usual localization is cortical or subcortical in the 
temporal lobe, with well-delineated tumor margins, ex-
tensive calcifications, and cystic tumor morphology with 
little or no enhancement.

PLNTYs have oligodendrogliomalike features with ex-
tensive CD34 expression. Genetic alteration of the MAPK 
pathway (including alterations in FGFR2/3 and BRAF) 
is characteristic. A classification of LEAT entities in pre-
sented in Table 3.52

4   |   HGGs AND EPILEPSY

Epilepsy represents the onset symptom in approximately 
40%–64% of HGG patients (Figure  2). Few studies have 
evaluated the prognostic effects of seizures that occur 
in the posttreatment scenario, although numerous pa-
pers have examined the influence of surgery on seizure 
outcome.53,54

Seizures at initial presentation in HGG were found to be 
associated with improved overall survival; a meta-analysis 
of 1836 glioblastoma multiforme patients showed reduced 
mortality in the subset of patients with positive seizure 
history (hazard ratio [HR] = .71, p ≤ .00001),55 and a 2018 
meta-analysis of 2088 patients showed increased mortal-
ity with negative seizure history (HR = 1.73, p ≤ .001).56 
Current theories for the underlying mechanism behind a 
possible protective effect of seizures in HGG include both 
cellular theories (such as slower growth rate and favorable 
molecular features, i.e., an association with IDH1 muta-
tion) and clinical theories (such as early detection of HGG 
through seizure workup).55–57

Seizure semiology in HGG was clearly described in a 
prospective study enrolling 72 patients (the vast majority 

2016 WHO classification Revised term 2021 WHO classification

Diffuse astrocytoma, IDH mutant Astrocytoma, IDH mutant; CNS WHO grade 2

Anaplastic astrocytoma, IDH mutant Astrocytoma, IDH mutant; CNS WHO grade 3

Glioblastoma, IDH mutant Astrocytoma, IDH mutant; CNS WHO grade 4

Diffuse midline glioma, H3 K27M 
mutant

Diffuse midline glioma, H3 K27-altered

Astroblastoma Astroblastoma, MN1-altered

Ependymoma, RELA fusion-positive Supratentorial ependymoma, ZFTA 
fusion-positive

Chordoid glioma of the third ventricle Chordoid glioma

Embryonal tumor with multilayered 
rosettes, C19MC-altered

Embryonal tumor with multilayered rosettes

Melanotic schwannoma Malignant melanotic nerve sheath tumor

Solitary fibrous tumor and 
hemangiopericytoma

Solitary fibrous tumor

Abbreviations: CNS, central nervous system; CNS WHO, WHO Classification of Tumors of the Central 
Nervous System; IDH, isocitrate dehydrogenase; WHO, World Health Organization.

T A B L E  2   Revised CNS tumor 
nomenclature in CNS WHO 5.
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having HGG) in which seizures were the first symptom of 
the tumor. Overall, the initial seizures were tonic–clonic 
(48%; without clear initial focal signs in more than half 
of the patients), focal motor (26%), focal with impaired 
awareness (10%), somatosensitive (8%), aphasic (4%), and 
other types (4%). The majority of cases (60%) had isolated 
seizures or a low seizure frequency at the onset of the 
disease, whereas a high seizure frequency or status epi-
lepticus (SE) was observed in 18% and 12% of cases, re-
spectively. After tumor removal, with a mean follow-up of 
5 months, 39 patients (57%) were seizure-free, four (6%) 
had a marked improvement of seizure frequency, 14 (20%) 
were unchanged, and 12 (17%) had a worsening of seizure 
frequency.

Once the diagnosis of HGG is suggested on the basis 
of neuroradiological features, the first step of treatment 
consists in gross total removal, which leads to complete 
seizure control in the vast majority of patients. Over the 
past decade, increasing evidence has demonstrated that 
the degree of HGG resection translates to improvements 
in overall survival and progression-free survival. An ex-
tended resection above the anatomical limits of the en-
hanced area (supramarginal resection) after complete 

microsurgical resection is an emerging topic, whenever 
possible with respect to functional integrity, with potential 
survival and TRE benefit.58 However total or supratotal re-
moval is not always possible due to the extension and lo-
cation of the tumor.59 In these cases, one should consider 
different surgical strategies (including no surgery, biopsy, 
or partial removal).

After surgery, additional treatment modalities include 
radiotherapy and chemotherapy. Fractionated radiother-
apy (54–60 Gy in 30 daily fractions) combined with che-
motherapy is an essential part of the management of any 
grade glioma aiming to improve local tumor control, pre-
serve and/or improve patient's functioning, and increase 
overall survival. Koekkoek et al.60 reviewed the effects of 
radiotherapy on seizure control and reported an improved 
seizure outcome after radiotherapy in 72%–77% of pa-
tients, with seizure freedom rates ranging from 20% after 
focal radiotherapy to 80% at 6 months after brachytherapy. 
Nevertheless, seizure frequency increases occasionally 
after surgery or radiotherapy, secondary to complications 
such as edema, bleeding, or radiation necrosis.

The alkylating chemotherapeutic agent temozolo-
mide (TMZ) is commonly used in combination with 

Histology, according to the 2021 
WHO classification Grading

LEAT 
entitiesa

Molecular profiles 
and key genetic 
alterations

Pediatric diffuse low-grade gliomas

Diffuse astrocytoma, MYB- or 
MYBL1-altered

1 Yes MYB, MYBL1

Angiocentric glioma 1 Yes MYB

Polymorphous low-grade 
neuroepithelial tumor of the young

1 Yes BRAF, FGFR

Diffuse low-grade glioma, MAPK 
pathway-altered

nd nd FGFR1, BRAF

Circumscribed astrocytic gliomas

Pilocytic astrocytoma 1 Yes KIAA1549-BRAF, 
BRAF, NF1

Glioneuronal and neuronal tumors

Ganglioglioma 1–3 Yes BRAF

Dysembryoplastic neuroepithelial 
tumor

1 Yes FGFR1

Diffuse glioneuronal tumor with 
oligodendroglioma-like features 
and nuclear clusters

nd nd Monosomy of 
chromosome 14 
(methylome)

Multinodular and vacuolating 
neuronal tumor

1 Yes MAPK pathway

Note: Methylome: The analysis of the DNA methylation profile (methylome) is currently necessary for a 
definitive diagnosis.
Abbreviations: LEAT, low-grade epilepsy-associated tumors; MAPK, mitogen-activated protein kinase; 
nd, not yet fully determined; WHO, World Health Organization.
aLEAT entities: tumors well-recognized as being typically associated with epilepsy.

T A B L E  3   LEATs in the 2021 WHO 
classification.
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8  |      MICHELUCCI et al.

F I G U R E  2   Tumor epilepsy case history: male, aged 50 years. Two-month history of focal seizures characterized by the sudden onset 
of visual hallucinations (scenes of his life flowing back in quick succession from adulthood to infancy) strictly confined to the right visual 
hemifield, sometimes evolving to tonic–clonic seizures. (A) Electroencephalogram showing left posterior slow activity intermingled 
with rare slow spikes. (B) Magnetic resonance imaging showing left posterior high-grade glioma. (C) Neuropathological examination: 
diffuse astrocytic glioma, isocitrate dehydrogenase (IDH) wild-type, and H3 wild-type, showing high mitotic activity and microvascular 
proliferation, and a TERT promoter mutation (c.-146C>T; C250T, VAF 59%), corresponding to a glioblastoma, IDH wild-type, grade 4, 
according to World Health Organization 2021.
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      |  9MICHELUCCI et al.

radiotherapy to increase the overall survival time in 
HGGs. The benefit of the addition of temozolomide to ra-
diotherapy in people with newly diagnosed glioblastoma 
was first demonstrated in 2005 in the pivotal EORTC 
26981/22981-NCIC CE3 randomized clinical trial61 and 
later confirmed in elderly patients with glioblastoma.62 
In both studies, the clinical benefit of TMZ treatment 
was largely confined to patients with glioblastomas with 
a methylated O6-methylguanine DNA methyltransferase 
(MGMT) promoter. In the CATNON trial, the efficacy of 
the addition of TMZ during and after radiotherapy was 
investigated in patients with grade 3 astrocytoma. In this 
study, the TMZ benefit was found to be restricted to pa-
tients with astrocytoma grade 3 with IDH1/2 mutations 
and as adjuvant treatment; there was no TMZ clinical 
benefit in patients with IDH1/2 wild-type gliomas, now 
referred to as glioblastoma, regardless of MGMT pro-
moter status.63,64

Additional targets for personalized medicine are 
also available (ESMO Scale for Clinical Actionability of 
Molecular Targets [ESCAT]  1–2, BRAF, NTRK, FGFR). 
Dabrafenib plus trametinib showed clinically meaningful 
activity in patients with BRAFV600E mutation-positive re-
current or refractory HGG and DLGG, so that BRAFV600E 
testing could potentially be adopted in clinical practice for 
patients with glioma.65

In terms of seizure control, a systematic review 
showed that TMZ reduced seizure frequency in 29%–
89.7% of patients with glioma, and the percentage of pa-
tients with complete seizure control after TMZ ranged 
from 19.4% to 72%.66 These good results were mostly 
obtained in patients with DLGG; TMZ seemed to have 
little effect on seizure control in elderly patients with 
glioblastoma. Chemotherapy with the alkylating agents 
procarbazine, lomustine (CCNU) or TMZ in DLGG has 
demonstrated, in retrospective series, a seizure reduc-
tion in >50% of the patients in most studies and seizure 
freedom ranging from 13% to 60%.60 Moreover, an Italian 
prospective study focused on the use of TMZ in DLGG 
requiring treatment after surgery has reported seizure 
reduction in 85% of patients, regardless of the radiolog-
ical response.67

The mechanism of action by which TMZ shows this 
antiepileptic effect is unclear. It has been speculated 
that TMZ may be exerting its effect by killing glioma 
cells that may be actively irritating surrounding neu-
rons or altering the peritumoral microenvironment to 
trigger seizures.66

Approximately two thirds of HGG patients show a 
recurrence or worsening of seizures after first-line treat-
ment, which marks disease progression.1,68 In DLGG, 
however, the association between seizure worsening and 
tumor evolution is poorly documented.69

5   |   LOW- GRADE GLIOMAS AND 
EPILEPSY

Supratentorial DLGGs, classified as WHO grade 2 tumors, 
are a heterogeneous group of slowly growing BTs derived 
from glial cell lines.46

DLGGs are relatively rare tumors, accounting for 6.4% 
of all adult primary central nervous system tumors.70 
They typically affect patients at a younger age compared 
with HGGs, with the peak incidence between ages 35 and 
44 years.70 Median survival for patients with low-grade gli-
omas (LGGs) ranges from 5 to 13 years and depends on 
specific histology and molecular features.70

The majority of patients diagnosed with DLGG develop 
TRE, often as the clinical onset of the disease.71 Surgery 
plays a central role in achieving both oncological benefit 
and seizure control.72,73

Tumor site, extent of resection (EOR), adjuvant radio-
therapy or chemotherapy, length of preoperative seizures, 
and number of ASMs required to control seizures are 
among the potential predictors of postoperative seizure 
outcome in DLGG patients. EOR emerges as one of the in-
dependent predictors of epileptic outcome in DLGG.73–76 
A large multicenter study by Still et al.75 showed that post-
operative seizure control in individuals with supratento-
rial DLGG was more likely when EOR was 91%. Ius et al.73 
emphasized the importance of combining volumetric 
resection thresholds (e.g., >90%) with molecular profil-
ing (e.g., IDH1/2 mutation, 1p/19q codeletion) to stratify 
patients and predict seizure outcomes. Their findings in-
dicate that early and extensive resection, when feasible, 
offers optimal seizure control, particularly in tumors with 
favorable molecular profiles.

Overall, in this clinical setting the impact of sur-
gery on postoperative seizure control can be attributed 
to the shared pathogenic mechanisms underlying gli-
oma growth and glioma-related epileptogenesis, as 
well as the presence of epileptogenic foci within the 
neocortical regions surrounding the glioma core.77 
Notwithstanding, approximately 40% of DLGG patients 
have persistent seizures following maximal resection.6,8 
Epileptogenic focus and tumor area are not always com-
pletely overlapping; epileptic activity is found mainly 
in peritumoral tissues, and sometimes it may extend 
beyond the tumor site. The refinement of the epilepto-
genic zone by means of preoperative long-term video-
electroencephalographic (EEG) monitoring (LTVEM) 
intended to record the seizures may be necessary for 
surgical strategy.

Although it is well known that recurrent seizures after 
a seizure-free period may herald malignant progression, 
the implications of seizure relapses for clinical outcome 
have not been systematically studied. Also, the exact 
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10  |      MICHELUCCI et al.

temporal relationship between seizures and tumor pro-
gression in DLGG remains unclear.78

In a recent investigation, Mazzucchi et  al.79 high-
lighted the importance of understanding the impact 
of posttumor resection seizures on survival outcomes 
in DLGG patients. Through their clinical retrospec-
tive study, the authors described an association be-
tween the persistence of seizures after tumor removal 
and decreased survival rates in this patient population. 
Furthermore, postsurgical seizure control could be a 
relevant factor to consider during follow-up of TRE, in 
particular when gross total resection is not achieved. 
Pathological findings on intraoperative electrocorticog-
raphy (iECoG) may suggest a “hidden” propensity to 
malignant progression, strictly related to the persistent 
neuronal hyperexcitability.78 Similarly, the study by 
Englot et al.80 suggested that seizures may influence gli-
oma biology, potentially affecting tumor growth and pro-
gression. Patients who continued to experience seizures 
postoperatively exhibited markedly poorer survival rates 
compared to those who became seizure-free following 
surgery. These results highlight the detrimental effect of 
persistent seizures on the prognosis of DLGG patients, 
emphasizing the importance of comprehensive seizure 
management strategies in the treatment of DLGG pa-
tients, not only for improving quality of life but also for 
potentially extending survival outcomes.

6   |   GNTs AND EPILEPSY

GNTs originate from neuroepithelial cells that form the 
wall of the neuronal tube during early embryonic develop-
ment. They are increasingly recognized as a cause of focal 
epilepsies, particularly in children and young adults.48 
GNTs account for .1%–1.3% of all BTs and are more com-
mon in infancy, with an incidence of 7.6%.68 These tumors 
comprise a mixture of glial and neuronal elements and are 
most commonly observed in the temporal lobe, particu-
larly at the temporoanterobasal mesial site.81 GNTs are 
classified among LEATs (Table 3), whose most frequent 
symptom is drug-resistant epilepsy. The occurrence of 
seizures is reported in up to 100% of dysembryoplastic 
neuroepithelial tumors (DNETs), 80%–90% of gangli-
ogliomas, and 60%–85% of low-grade astrocytomas and 
oligodendrogliomas.12

Seizures associated with GNTs are extremely respon-
sive to surgical treatment. Early surgical intervention 
seems to be significantly associated with improved seizure 
control.82 The best seizure outcome results are obtained 
with resection of the tumor and the adjacent epilepto-
genic zone as identified by noninvasive presurgical neuro-
physiological study. GNTs are frequently associated with 

cortical dysplasias (40%–80% of cases) and rarely with hip-
pocampal sclerosis (2%–25% of cases).83

The use of an epilepsy surgery-oriented strategy may 
result in an excellent seizure outcome (Engel I outcome 
up to 80%), thus enabling surgical treatment to be offered 
at an early stage.84 This approach can help to avoid the 
consequences of uncontrolled seizures and the side ef-
fects of prolonged pharmacological therapy, while also 
reducing the risk of tumor growth or malignant transfor-
mation. Although there is a paucity of evidence and no 
current treatment guidelines, adjuvant therapies such as 
radiotherapy and chemotherapy are mainly reserved for 
the setting of anaplastic gangliogliomas/malignant trans-
formations. It is possible that immunotherapy could be 
employed in the treatment of BRAF-mutated high-grade 
lesions.85

7   |   DIAGNOSTIC WORKUP OF 
TRE

TRE represents a peculiar etiology-specific epilepsy,86 re-
quiring a multidisciplinary approach from the onset of the 
condition.

Diagnostic work-p of TRE includes a detailed epilep-
tological medical history encompassing description of 
seizure types, seizure frequency and duration, presence of 
epileptic auras, possible triggers, post- and interictal man-
ifestations, and current and/or previous ASMs, including 
doses and any side effects.

Neurological examination carried out according to the 
Neurological Assessment in Neuro-Oncology scale and 
the Karnofsky Performance Score (KPS) is crucial to ob-
tain baseline data and assess neurological and global func-
tion at each further visit.87,88

In case of cognitive disturbances, comprehensive neu-
ropsychological testing should be performed, and Mini-
Mental State Examination or the Montreal Cognitive 
Assessment are useful to evaluate patients before and after 
treatments.

EEG recordings support the diagnosis of TRE and 
allow a better definition of the interictal and, more rarely, 
ictal features. These aspects are helpful for ASMs decision-
making. Routine EEGs may be completely normal or ex-
hibit normal background with focal slow activity and/or 
epileptiform activity. Continuous focal delta slowing is 
more often observed in HGGs, and it correlates with in-
volvement of white matter tracts.89

Prolonged EEG recordings and ambulatory EEG per-
mit a more thorough classification of seizure type and 
quantification of seizure frequency. However, the gold 
standard for EEG recording is LTVEM, especially in the 
case of refractory epilepsy associated with LEATs and 
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LGGs, with the aim of recording seizures and there-
fore disclosing the epileptogenic zone.90 Preoperative 
invasive EEG (iEEG) recordings are preferentially per-
formed in the case of LEATs, especially if they are lo-
cated extratemporally. In patients with TRE secondary 
to LGGs, the role of iEEG is controversial. Rosenow 
and Menzler91 consider preoperative iEEG only for sub-
jects with extratemporal lesions, if the tumor cannot 
be largely resected because of adjacent or overlapping 
eloquent areas. They suggest mapping the peritumoral 
zone to determine its relationships to the lesion, and 
the irritative and seizure-onset zones to maximize the 
lesionectomy. However, the evolution of neuroimaging, 
noninvasive EEG techniques, intraoperative monitor-
ing, and surgical approaches further limits the need for 
iEEG in the case of glioma-related epilepsy.92

Neuroimaging is crucial for the diagnosis of BT and 
the definition of the epileptogenic lesion. Brain mag-
netic resonance imaging (MRI) with T2-weighted, T2 
fluid attenuation inversion recovery sequences and three-
dimensional weighted sequences before and after contrast 
agent represents the diagnostic gold standard. Perfusion 
MRI, functional MRI with diffusion tensor imaging, and 
amino acid positron emission tomography are useful to 
define metabolic characteristics of the lesions and identify 
relations with white matter tracts.93

Finally, multimodal evoked potentials should be per-
formed preoperatively in all patients undergoing surgery 
with intraoperative monitoring and mapping (IOM), to 
obtain data useful for surgical planning and comparison 
with intraoperatively recorded traces.

The use of IOM is essential to preserve the integrity of 
motor and sensory areas and is a gold standard for surgery 
of gliomas.

Different brain functions can be assessed during awake 
surgery using electrical stimulation alone or in combina-
tion with neuropsychological testing.72 Motor, somatosen-
sory, and visual functions can be successfully monitored 
in sleeping patients.94

Neurophysiologic monitoring techniques support 
the surgeon during resection by continuously assessing 
functional integrity of eloquent brain areas and sub-
cortical pathways and warning about mechanical and/
or vascular injury. IOM may contribute to maximizing 
the extent of resection, minimizing potential functional 
deficits, and optimizing both oncological and epilep-
tological outcome.95 Factors influencing the decision 
between an awake versus asleep intraoperative setting 
should be carefully considered, encompassing surgical 
goals, patient cooperation, team expertise, and neuro-
oncological aspects.95

Thus, IOM should be performed in all glioma surger-
ies, regardless of their histology, when the lesion involves 

eloquent brain areas or white matter tracts, and in the 
presence of TRE. On the other hand, preoperative pres-
ence of severe neurological deficits may compromise the 
reliability of IOM and therefore make it useless.

The use of iECoG during glioma surgery is still con-
troversial.96 Increasing data show that iECoG can help in 
detecting epileptiform activity in tumoral and peritumoral 
tissues, aiding surgical resection and improving seizure 
outcomes.97 Furthermore, iECoG allows recognition of 
intraoperative seizures (IOS), usually electric seizures 
without motor signs.98 The occurrence of IOS may com-
promise patients' cooperation during awake craniotomy. 
Thus, a prompt detection of IOS prevents the possible evo-
lution in tonic–clonic seizures and the need for benzodi-
azepines or propofol drips and allows patients to be fully 
cooperative during the procedure.98

Intraoperative stereo-EEG may contribute to improv-
ing seizure outcomes in TRE, especially in lesions involv-
ing deep brain structures and in the case of hippocampal 
sparing.

During the follow-up period, patients undergo MRI 
with contrast at periodic intervals (2–6 months usually, 
according to histology) to assess disease status and treat-
ment response. However, in the case of more benign le-
sions, a longer timespan between neuroimaging can be 
considered.

Neurological assessments are crucial in cases of TRE, 
to evaluate recovery from possible postsurgical transient 
deficits, seizure outcome, and treatments benefits and to 
monitor the effectiveness of ASMs. Periodic EEG record-
ings are not needed, except in cases of ASM dose reduction, 
therapeutical changes, and seizure relapse in previously 
seizure-free patients. ASM tapering and withdrawal may 
be considered in selected cases and should always be per-
formed under neurological and EEG control. However, no 
evidence exists for an optimal seizure-free period before 
ASM tapering in TRE patients.90

8   |   SURGICAL APPROACH TO TRE

Surgical therapy represents the optimal treatment for 
TRE, irrespective of the specific histotype (HGG, DLGG, 
or LEAT) or brain site of the BT. Early surgical interven-
tion is crucial in ensuring a precise diagnosis, delineating 
the molecular and genetic profile of the lesions, and guid-
ing the subsequent sequence of chemoradiotherapy and 
targeted treatments. This approach is associated with a 
higher probability of achieving seizure freedom.

In the context of HGG- and DLGG-related epilepsy, 
the oncological aspects are of paramount significance. 
The objective of early surgery is to achieve maximal ex-
tent of tumor resection while preserving neurological and 
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neuropsychological functions. Awake surgery, MRI nav-
igation, IOM, intraoperative confocal laser imaging, in-
traoperative ultrasound, and fluorescence-guided surgery 
(5-aminolevulinc acid and fluorescein) represent the main 
neurosurgical tools capable of guiding the surgeon, reduc-
ing surgical time, and decreasing the risk of permanent 
deficits.99 When minor neurological deficits are predict-
able, they should be discussed with the patients and their 
caregivers, to evaluate together the best strategy to achieve 
good oncological and functional outcome.

A resection of >90% of the tumoral volume has been 
shown to offer the best long-term oncological prognosis 
for both HGG and DLGG,100,101 along with optimal seizure 
control (65.5% in DLGG and 50% in HGG),80,102 irrespec-
tive of tumoral locations.103 In addition, there have been 
suggestions that supratotal resection of diffuse gliomas 
may result in improved seizure control and oncological 
treatment outcomes.104 A particular focus of the current 
research is the investigation of whether anterior temporal 
lobectomy (a procedure routinely performed in patients 
with pharmacoresistant temporal lobe epilepsy) may con-
stitute a supramarginal resection in temporal glioblasto-
mas.105 The aim is to determine whether this may have 
implications for epileptological and oncological outcomes. 
Furthermore, a recent meta-analysis proposed that sei-
zure freedom is less likely to be achieved in patients with 
focal preoperative seizures and more likely to be achieved 
in patients with frontal lobe LGGs.106

Surgery is recommended for patients with IDH mutant 
and 10-19q codeleted oligodendrogliomas of WHO grade 2 
and IDH mutated astrocytoma of WHO grade 2. EOR rep-
resents a prognostic factor for anaplastic oligodendroglio-
mas and astrocytomas; thus, surgery should be performed 
as feasible.93 Surgery at tumor recurrence may provide 
therapeutic benefits, under a reasonable risk of postoper-
ative complications. It is important to reevaluate histology 

and detect molecular information, in the light of potential 
targeted therapy.107 Finally, surgery is advisable in the case 
of glioblastomas with KPS < 70; elderly patients should be 
considered candidates on an individual basis.

In the case of GNTs and other LEATs, the epileptologi-
cal aspects are found to be of greater significance than the 
oncological aspects. Surgery represents a curative treat-
ment in almost the totality of these lesions. Early removal 
and a short seizure history offer the best chance to achieve 
Engel I seizure outcome (in approximately 80% of cases).84 
When faced with these tumors, an epilepsy-oriented pre-
surgical workout is always suggested, including LTVEM to 
record seizures. The aims are to clearly define the anato-
moelectroclinical correlation and to determine whether 
tumor resection (lesionectomy) is sufficient to cure the sei-
zures or whether it is necessary to remove the lesion and 
the epileptogenic zone (tailored resection). Some shared 
opinions and consensus point out that lesionectomy alone 
provides good seizure outcome in GNTs located at extra-
temporal and temporolateral sites, whereas the results of 
lesionectomy alone appear to be disappointing at the tem-
poromesial site. A resection of the temporomesial struc-
tures (hippocampal–parahippocampal complex), even if 
the hippocampus is not clearly invaded by the tumor, of-
fers the most favorable epileptological outcome in mesial, 
especially long-lasting, temporal lobe epilepsy.84,108

In this context, iECoG monitoring has the potential to 
facilitate the identification and resection of the epilepto-
genic zone, a region that occasionally exhibits a greater 
extent than the primary tumor itself. The finding of con-
tinuous spiking, bursts, and recruiting discharges occur 
in almost 90% of patients with GNTs associated with 
focal cortical dysplasia, whereas they are rare in isolated 
GNTs.109

Table 4 presents the outcomes of surgical interventions 
for epilepsy according to histopathological classification.

T A B L E  4   Surgical aspects of TREs across HGGs, DLGGs, and LEATs.

TRE group Surgical indications Postsurgical seizure outcome Long-term follow-up

HGG Surgery for oncologic purposes and 
molecular profiling; seizure relief is 
secondary

Limited; seizure-free rates 
typically <30%
Strong association between 
seizure onset and longer survival

Short-term focus; seizure control 
has limited impact on prognosis

DLGG Maximal safe resection aiming at seizure 
control and oncologic stability; strong 
correlation with extent of resection and 
molecular markers

Favorable; seizure-free rates 
60%–80%; >90% if EOR >90% 
and favorable molecular profile

Long-term follow-up needed 
due to risk of seizure and tumor 
recurrence; seizure recurrence may 
indicate tumor recurrence and/or 
progression

LEAT Curative intent even in small or 
asymptomatic lesions; early surgery 
recommended

Excellent; seizure-free rates 
>80%–90%

Generally stable long-term outcome; 
low risk of recurrence

Abbreviations: DLGG, diffuse low-grade glioma; EOR, extent of resection; HGG, high-grade glioma; LEAT, low-grade epilepsy-associated tumor; TRE, tumor-
related epilepsy.
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9   |   ANTISEIZURE 
DRUGS, THERAPEUTIC 
PERSONALIZATION, AND 
INTEGRATION OF TREATMENTS

A preliminary issue concerns when to start antiseizures 
therapy in BT patients.

According to the updated Society for Neuro-Oncology 
and European Association of Neuro-Oncology (EANO) 
practice guideline on antiseizure prophylaxis, ASMs 
should not be prescribed to reduce the risk of seizures in 
newly diagnosed BT patients who have not had a seizure 
(level A class evidence). There is also insufficient evidence 
to recommend prescribing ASMs in seizure-naïve BT pa-
tients in the peri- or postoperative period to reduce the 
risk of seizures (level C class evidence).110 Still, this topic 
is highly debated, mainly because current available evi-
dence for the use of primary seizure prophylaxis is scanty 
and flawed.111 The prescription patterns of primary ASM 
prophylaxis vary widely between physicians, ranging from 
29% among EANO members to 78% among members of 
the American Association of Neurological Surgeons and 
the Congress of Neurological Surgeons.112,113

Glioma patients who experience a first seizure usually 
necessitate ASM treatment due to the high risk of a re-
current seizure, which is common practice among a vast 
majority (86%) of European physicians.112

There are many variables that influence the choice of 
ASMs in patients with BT, including gender, age, tumor 
histology and molecular findings, chemotherapy, patients' 
perspectives and needs (e.g., license to drive or desire 
for pregnancy), disease stage, and comorbidities. Few 
randomized clinical trials have examined the efficacy of 
ASMs in TRE. Most have evaluated ASMs as add-on ther-
apy rather than monotherapy. Sample sizes are often small 
and include variable tumoral pathologies. Therefore, ev-
idence is usually scanty, and recommendations are in-
ferred from expert opinions.

The type of the tumor plays an important role; whereas 
epilepsy secondary to LEATs such as gangliogliomas and 
DNETs may benefit from surgery, with high a chance of 
obtaining complete seizure remission and withdrawal of 
medications in the long term, seizures secondary to glio-
mas or cerebral metastases, irrespective of their frequency, 
need long-lasting antiseizure treatment without realistic 
possibility of complete recovery.90,114

First generation ASMs such as phenobarbital, carba-
mazepine, and phenytoin, although effective for reducing 
seizure frequency, are not usually recommended in TRE 
mostly because of increased risk for drug–drug interac-
tions and potentially more frequently occurring adverse 
effects.9,90,114 This is due to the inhibitory (valproate) or 
inducing (phenobarbital, carbamazepine, and phenytoin) 

effect on the hepatic drug-metabolizing enzymes, mostly 
involving the cytochrome P450 system. The enzyme-
inducing agents may interfere with chemotherapy and 
increase the risk of severe allergic reactions during radio-
therapy. Interactions with monoclonal antibodies such as 
irinotecan and bevacizumab used in the therapy of brain 
metastases have been also reported. Valproate was ini-
tially favored due to its potential antineoplastic effect as 
a histone deacetylase inhibitor.115 However, a subsequent 
pooled analysis of 1869 patients from four randomized 
clinical trials in newly diagnosed glioblastoma found 
that valproate use at the start of chemoradiotherapy was 
not associated with improved progression-free survival 
or overall survival compared with all other patients.116 
Valproate use has therefore declined, although it is often 
prescribed as a second- or third-line agent. Overall, the 
interaction potential of first-generation ASMs has led to 
widespread use, in clinical practice, of second- or third-
generation ASMs.

Among the newly introduced ASMs, levetiracetam is 
the most popular drug in the treatment of TRE, with pre-
scription percentages ranging from 80% to 90%.90,112,114 
The reasons for its success are the ease of use, a rapid ti-
tration, the lack of inducing properties, the good safety 
profile, and the availability of an intravenous formulation. 
Specific caution is required regarding the frontal localiza-
tion of the tumor for possible psychiatric reactions and 
thrombocytopenia.

Lamotrigine is an efficacious drug for seizure control, 
but the slow titration schedule limits its use in patients 
with rapidly progressive tumors and/or high seizure 
frequency.

Topiramate is a drug with multiple mechanisms of 
action, including action on sodium channels and antiglu-
tamatergic and γ-aminobutyric acidergic effects. Despite 
preliminary data on a good tolerability profile and high 
efficacy in TRE,117 its use is limited.

Lacosamide has recently been shown to achieve satis-
factory rates of seizure freedom as monotherapy in TRE, 
with 64.4% of patients being seizure-free at 3 months and 
55% at 6 months.118

Perampanel is a promising drug in the treatment of 
glioma-induced epilepsy, mostly because of its specific 
mechanism of action involving the glutamatergic path-
ways. Perampanel acts as a selective antagonist of gluta-
mate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptors and may therefore play a role in both the 
reduction in tumor growth and the control of epilep-
tiform activity. Salmaggi et  al.119 evaluated the impact 
of perampanel alone or in combination with temo-
zolomide on the growth of a number of glioblastoma 
grade 3 astrocytoma cell lines. Perampanel showed an-
titumor activity in all cell lines, and the combination of 
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perampanel and temozolomide had a significant syn-
ergistic effect, the antitumor activity being related to 
a proapoptotic effect. In humans, a number of studies 
have highlighted its efficacy and tolerability as add-on 
therapy in drug-resistant TRE.120

In elderly patients, comorbidities need special attention 
to avoid possible interactions, particularly with the new 
direct oral anticoagulants. In these cases, not only the old 
generation ASMs are contraindicated but also levetirace-
tam, a recommendation however based only on in  vitro 
studies and not on clinical evidence. In the elderly, hepatic 
and renal insufficiency may gradually develop, with clear-
ance changes requiring ASMs dosage adjustments.

Furthermore, the use of ASMs has specific implications 
that deserve special attention; ASMs may give rise to side 
effects, which may interfere with the clinical monitoring 
of the underlying pathology. Conversely, the underlying 
pathology may cause the appearance of subtle neurolog-
ical symptoms that may be attributed erroneously to the 
last add-on drug, giving rise to delays of diagnosis.9

Specific clinical contexts in the field of TRE consist of 
the treatment of SE and therapeutic management in the 
end-of-life stage of the disease.

SE may occur in different stages of BT, either as the 
first manifestation or during the course, often heralding 
tumor progression and contributing to a decline in func-
tional status.

Overall, a number of studies suggest that the treatment 
of SE in BT does not differ from that usually employed 
in non-BT patients, with treatment responsiveness and 
short-term clinical outcomes also showing compara-
ble results, including mortality rate.121–123 In a study by 
Tziakouri et al.123 comparing SE treatment and outcomes 
in glioma, other neoplastic, and nonneoplastic patients, it 
was observed that refractoriness and short-term mortality 
were similar in all groups.

Although in the end-of-life stages SE bears a dismal 
prognosis in the short term and therapeutic choices 
are easier, the treatment of SE in near-terminal condi-
tions (e.g., SE caused by long-standing glioblastoma) is 
a difficult issue, particularly regarding the acceptance of 
avoiding third-line therapies in patients who have not 
yet expressed end-of life decisions, with the risk of futile 
treatments in intensive care unit (ICU), including inva-
sive mechanical ventilation (IMV).124,125 In a multicenter 
retrospective study performed at four certified interdisci-
plinary BT centers in Germany, an in-hospital mortality 
rate of 60.6% was observed in 33 glioblastoma patients 
undergoing unplanned ICU treatment with IMV for a 
number of reasons, including SE.126 In this condition, the 
mortality rate was 50%, highlighting the difficulties of the 
decision-making process and the need for frequent reas-
sessment of goals during ICU stay. These observations 

suggest that a specific path to obtain anticipated deci-
sions and advanced care planning from the glioblastoma 
patients should be pursued following Italian law (No. 219 
of December 22, 2017).

10   |   CONCLUSIONS

TRE management warrants a special attention within 
the realm of symptomatic epilepsies, due to the consider-
able challenges it poses, arising from its intricate patho-
physiological mechanisms and its evolution over tumor 
progression.

This cooperative multidisciplinary overview provided a 
synthesis of key evidence and therapeutic advancements 
for TRE in BT patients (Table 5).

10.1  |  Pathophysiology of TRE

TRE has a complicated and dynamic etiology that includes 
neurotransmitter imbalances, neuroinflammation, and 
genetic abnormalities. These processes affect the hyper-
excitability of BTs by promoting tumor development and 
epileptogenesis. Understanding the intricate interplay of 
these mechanisms involved in epileptogenesis associated 
with BTs is essential for the development of precise thera-
peutic strategies aimed at enhancing seizure control and 
ultimately improving patient outcomes.

10.2  |  WHO 2021 tumor classification

The latest WHO classification integrates molecular data, 
improving tumor subtyping, prognosis, and clinical trial 
design, particularly for gliomas. Tumor behavior and 
treatment response can be better understood with the help 
of this molecular approach with clear advantages in terms 
of prognosis refinement and designing clinical trials.

10.3  |  Seizure control and surgery

The principle of maximal safe resection, in both LGG and 
HGG, implies a double benefit, in terms of both survival 
and seizure control. Supratotal resection is gaining at-
tention for sustained seizure control. In cases of highly 
epileptogenic tumors, such as GNTs, lesionectomy with 
removal of the adjacent epileptogenic zone provides the 
best outcomes, especially in cases of mesial temporal 
lobe epilepsy. The refinement of the epileptogenic zone 
by means of preoperative LTVEM intended to record the 
seizures may be necessary for surgical strategy, at least 
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T A B L E  5   Treatment of tumor-related epilepsy.

Glioma,
IDH mutated, 
WHO grade II or III

Glioblastoma, 
IDH wild type,
WHO Grade IV

Glioneuronal and

neuronal tumors

ASMs + surgery 
(supratotal, total or 
partial resection) 

radiotherapy/ 
temozolomide

2–3-monthly intervals

ASMs + surgery 
/biopsy/ imaging 
follow-up

ASMs + early surgery 
(preceded by non-invasive VEEG
LTM (++ in temporal-mesial 
locations) 

wait and see or 
radiotherapy/
temozolomide

Clinical surveillance 
chemotherapy

3–6-monthly intervals
6-12 monthly intervals

First-line
treatment

Second 
line 
treatment

Follow-up 
(neur.exam 
imaging)

- Repeat surgery
- Alkylating 
chemotherapy

- Bevacizumab

- Re-irradiation

- Experimental 
therapy 

- Palliative care

- Repeat surgery
- Alkylating 
chemotherapy

- Re-irradiation 

- Experimental 
therapy

In case of malignant 
progression 
(exceptional):

radiotherapy/  
chemotherapy

Change of ASMs 
plan

Change of ASMs 
plan

Repeat surgery 
preceded by non 
invasive or invasive 
(SEEG) VEEG LTM

Change of ASMs 
plan

Repeat surgery 
preceded by non 
invasive or invasive 
(SEEG) VEEG LTM

In case of 
tumor 
progression

In case of 
refractory 
Epilepsy

 15281167, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.18523 by C

ochraneItalia, W
iley O

nline L
ibrary on [13/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16  |      MICHELUCCI et al.

in selected cases. Use of IOM and iECoG allows identi-
fication of interictal electrographic highly epileptogenic 
patterns, improving the possibility of achieving a good 
postoperative seizure outcome.

10.4  |  Radiotherapy and chemotherapy

In addition to their role in tumor progression, radiother-
apy and chemotherapy (especially TMZ) can reduce sei-
zure frequency in many patients, with the response rate 
being highest in DLGGs and IDH-mutated tumors.

10.5  |  Seizure persistence and prognosis

Persistent or recurring seizures after an initial seizure-free 
period often signal tumor progression and are associated 
with poorer survival.

10.6  |  Antiseizure medications

ASMs are commonly used in the treatment of TRE and are 
usually commenced after the first seizure. Prophylactic 
treatment in patients without a history of seizures is not 
recommended, and in any case is restricted to a brief 
postoperative period. Third-line ASMs are commonly 
preferred because of their better tolerability profile and 
lack of drug–drug interactions. Studies comparing the ef-
ficacy of individual drugs in TRE are not available, and the 
choice of ASMs mostly depends on individual patient fac-
tors and expert opinion, with levetiracetam being the most 
commonly used drug. Perampanel is a promising alterna-
tive due to its effects on glutamate transmission.

10.7  |  Management of SE

Although the treatment of SE in BT does not differ from 
that usually employed in non-BT patients with compara-
ble results, the management of SE in near-terminal condi-
tions (e.g., SE caused by long-standing glioblastoma) is a 
difficult issue, particularly in patients who have not yet 
expressed their end-of-life decisions, with the risk of futile 
treatments in ICU including IMV.

10.8  |  Multidisciplinary management

A cooperative, multidisciplinary approach is required, 
especially when seizures are linked to a progressing 
condition. Treatment options may include surgery, 

chemotherapy, radiotherapy, and ASMs. The value of 
each approach varies depending on the stage of disease 
evolution, and hence each patient should be evaluated by 
a team of specialists at tumor board meetings.

In conclusion, TRE presents significant challenges in 
the management of BT patients. To enhance patient out-
comes and quality of life, further prospective, multicentric 
studies including multiple outcomes and complementary 
treatment strategies are needed.
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