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Abstract
Background  Identifying the incidence and risk factors of Glioblastoma (GBM) and establishing effective predictive models 
will benefit the management of these patients.
Methods  Using GBM data from the Surveillance, Epidemiology, and End Results (SEER) database, we used Joinpoint 
software to assess trends in GBM incidence across populations of different age groups. Subsequently, we identified impor-
tant prognostic factors by stepwise regression and multivariate Cox regression analysis, and established a Nomogram 
mathematical model. COX regression model combined with restricted cubic splines (RCS) model was used to analyze 
the relationship between tumor size and prognosis of GBM patients.
Results  The incidence of GBM has been on the rise since 1978, especially in the age group of 65–84 years. 11498 patients 
with GBM were included in our study. The multivariate Cox analysis revealed that age, tumor size, sex, primary tumor site, 
laterality, number of primary tumors, surgery, chemotherapy, radiotherapy, systematic therapy, marital status, median 
household income, first malignant primary indicator were independent prognostic factors of overall survival (OS) for 
GBMs. For cancer-specific survival (CSS), race is also independent prognostic factors. Additionally, risk of poor prognosis 
increased significantly with tumor size in patients with tumors smaller than 49 mm. Moreover, our nomogram model 
showed favorable discriminative ability.
Conclusion  At the population level, the incidence of GBM is on the rise. The relationship between tumor size and patient 
prognosis is still worthy of further study. Moreover, the proposed nomogram with good performance was constructed 
and verified to predict the OS and CSS of patients with GBM.

Keywords  Glioblastoma · Prognostic nomogram · Overall survival · Cancer-specific survival · SEER

1  Introduction

GBM is the most prevalent and aggressive primary brain tumor, associated with poor prognosis [1]. According to the 
WHO classification, GBM is the highest grade in WHO classification, Grade IV [2]. The median survival time for GBM 
has been reported to be less than 15 months [3]. The annual incidence is about 5.26 per 100 000 people [4]. Cancer 
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incidence, mortality, and the burden of disability-adjusted life years (DALY) vary widely by country, region, and age [5]. 
The incidence of GBM has been reported to increase with age, with more than 50% of patients older than 65 years of age 
[6]. Understanding the epidemiology of GBM is essential for improving cancer prevention and management strategies. 
Despite advancements in cancer treatment, therapeutic outcomes for GBM remain unsatisfactory [7]. The usual treatment 
for glioblastoma includes surgery, chemotherapy and radiation [8]. However, the limited efficacy of current GBM treat-
ments is attributed to its highly invasive nature, high recurrence rate, and several anatomical and physiological barriers. 
The blood–brain barrier restricts drug delivery to the tumor site, and tumor localization in critical brain regions further 
complicates surgical and therapeutic interventions [9–14]. All these contribute to the poor prognosis of GBM. However, 
the understanding of prognostic factors for GBM is still incomplete.

The Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute (NCI) (https://​seer.​
cancer.​gov/) collects demographic, tumor location, morphology, treatment, and survival data for approximately 30% 
of cancer patients in the United States since 1973, serving as a valuable resource for oncology research [15, 16]. This 
study analyzed temporal trends in the incidence of GBM across various age groups from 1975 to 2019 using SEER data. 
Furthermore, prognostic factors for GBM were identified, and a personalized prognostic model was developed. Nom-
ogram-based prediction models have been increasingly utilized in oncology research [17–24]. These models integrate 
multiple prognostic factors, provide a visual representation of risk assessment, and support personalized medicine [25]. 
Furthermore, they offer an accessible tool for clinicians to estimate patient prognosis.

In this study, a large GBM cohort from the SEER database was analyzed to evaluate the incidence of GBM and develop 
a nomogram for prognostic prediction in GBM patients. This model was designed to estimate Overall Survival (OS) and 
Cancer-Specific Survival (CSS), thereby assisting in clinical decision-making.

2 � Materials and methods

2.1 � Patients selection

All patients in this study were recruited from the SEER database, which was established by the National Cancer Institute 
to conduct comprehensive national clinical investigations [16, 17]. The clinical variables of patients confirmed as GBM 
between 2006 and 2016 were retrieved by using SEER*Stat software (version 8.3.6). The inclusion criteria: (1) Glioblas-
toma, NOS (ICD-O-3/WHO 2009); (2) complete information on interested variables. The exclusion criteria were as follows: 
(1) surgery except no surgery, Local tumor destruction, partial resection of lobe of brain, radical resection of tumor, 
subtotal resection of tumor; (2) Laterality except paired site and only one side—side unspecified; (3) Radiation and 
surgery sequence except postoperative radiotherapy, directed surgery, preoperative and postoperative radiotherapy; 
(4) unknown tumor size, age, race, marital status, income, origin recode NHIA (Non-Hisp/ Hispanic) and total number 
of in situ/malignant tumors in patient; (5) Survival time unknown; (6) No histological findings. The study population 
determination protocol is shown in Fig. 1. All GBM patients included in the study were randomly divided into training 
and validation cohorts in a 7:3 ratio using RStudio software (Fig. 1).

2.2 � Study on variable selection

Specific information on tumor size (continuous variable), age (continuous variable), year of diagnosis (continuous 
variable), race (categorical variable), sex (binary variable), chemotherapy (binary variable), surgery (categorical vari-
able), radiotherapy (binary variable), surgery and radiotherapy sequence (categorical variable), systemic and surgery 
sequence (categorical variable), primary site (categorical variable), laterality (categorical variable), months from 
diagnosis to treatment (binary variable), marital status (categorical variable), median household income (categori-
cal variable), origin recode NHIA (binary variable), first malignant primary indicator (binary variable), total number 
of in situ/malignant tumors in patient (binary variable), causes of death (categorical variable), and survival time 
(continuous variable) were downloaded from the SEER database. In terms of clinical outcomes, OS was selected as 
the primary endpoint and CSS as the secondary endpoint.

https://seer.cancer.gov/
https://seer.cancer.gov/
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2.3 � Statistics

Categorical variables were presented as counts and percentages and compared using the chi-square test. Continuous 
variables were summarized as medians and interquartile ranges (IQRs) and compared using the Kruskal–Wallis test.

To identify independent prognostic factors, stepwise Cox regression was performed using the Akaike Information 
Criterion (AIC) minimum principle. The bidirectional selection method was used to select variables for inclusion in 
the final multivariate Cox model. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated for each factor. 
Variables with P < 0.05 in the stepwise selection were retained in the final model.

A nomogram was developed to predict overall survival (OS) and cancer-specific survival (CSS) in GBM patients. 
Model construction and validation were conducted using R software (version 4.1.3). The predictive performance of 
the nomogram was assessed using the calibration curve and concordance index (C-index). Calibration was performed 
to evaluate the agreement between the predicted and observed survival probabilities at 6 months, 1 year, 2 years, 
3 years, 5 years, and 8 years. The C-index, ranging from 0.5 (no discrimination) to 1 (perfect discrimination), was used 
to quantify the predictive accuracy, with higher values indicating better model performance.

Each patient’s total score was calculated based on the nomogram, and patients in both the training and valida-
tion cohorts were stratified into high-risk and low-risk groups using the optimal cut-off value. Kaplan–Meier survival 
analysis was used to estimate OS, and differences between groups were compared using the log-rank test. Cumula-
tive risk curves were plotted at 6 months, 1 year, 2 years, 3 years, 5 years, and 8 years in both cohorts. All evaluations 
were conducted using bootstrap resampling (n = 1000). A two-sided P < 0.05 was considered statistically significant.

Additionally, we assessed glioma mortality based on SEER cancer registry data and evaluated glioma incidence 
trends according to age and calendar year. Joinpoint regression analysis (Joinpoint software, version 4.7.0.0) was used 
to detect changes in incidence trends over time, modeling piecewise log-linear trends with normalized rates by year.

To explore the association between tumor size and prognosis in GBM patients, we employed a restricted cubic 
spline (RCS) model to analyze the relationship between tumor size and survival outcomes (OS/CSS). Multivariable 
Cox proportional hazards regression was performed to adjust for potential confounders. The optimal model was 
selected based on the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) minimum principle.

Fig. 1   Flowchart of the inclu-
sion and exclusion criteria for 
this study
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3 � Results

The analysis of the time trend of the global GBM incidence data from 1975 to 2019 showed that the incidence of GBM 
was higher in the 65–74 and 75–84 age groups. In the 65–74 age group, the incidence increased rapidly from 1978 to 
1992, and slowly increased from 1992 to 2019 without decreasing trend. In the 75–84 age bracket, the GBM morbidity 
increased rapidly from 1972 to 1998, exceeding the age group of 65–74 in 1004, becoming the age bracket with the 
highest morbidity of GBM, and then slowly increased and continued to occupy the age bracket with the highest morbid-
ity of GBM. The trend of incidence in the 85 + age bracket was generally consistent with those in the 75–84 age bracket, 
but the overall incidence was lower than that in the 75–84 age group. In general, since 1999, the incidence of GBM has 
remained high and is still slowly rising. (Fig. 2).

3.1 � Patient baseline characteristics

Finally, a total of 11498 patients diagnosed with GBM from 2000 to 2019 were enrolled and then randomly divided 
into the training set (8050 cases) and the validation set (3448 cases) (Fig. 1). Among all patients, 59.2% were male and 
40.8% were female. White 5.3%, black 5.1%; Unmarried 14.7%, married 67.8%; Surgery 78.5%; Chemotherapy accounted 
for 76.4%; Radiotherapy accounted for 83.1%; Systematic treatment accounted for 60.7%; The proportion of bilateral 
hemispheres was 44.7, and the left hemisphere was 42.6%. Only one primary tumor accounted for 89.5%; 71.3% started 
treatment within 1 month after diagnosis. Age and tumor size were continuous variables, median age was 63 [54–72] 
(median [IQR]), median tumor size was 45 [33–56]. The median follow-up time was 10 month [4–19]. Deaths accounted 

Fig. 2   Joinpoint analysis of the incidence rates of glioblastoma in the U.S. between 1975 and 2019. (*) Indicates the annual percent change 
(APC) that is significantly different from zero (P < 0.05)
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for 95.8 percent (Table 1). There were no significant differences in each of the included variables between the training 
and validation groups.

3.2 � Identification of independent factors of GBM in training cohort

The prognostic factors associated with OS and CSS in GBM patients were analyzed by stepwise regression and then mul-
tivariate Cox regression. Stepwise Cox regression analysis revealed that age, tumor size, sex, primary site and Laterality, 
number of primary tumors, surgery, chemotherapy, radiotherapy, systematic treatment, marital status, median household 
income, and first malignant primary indicator were the related factors of OS in GBM patients. Multivariate Cox regression 
analysis showed that all the above were independent risk factors for OS in GBM patients (Table 2).

For CSS, stepwise Cox regression analysis showed that demographic and clinicopathological factors associated with 
CSS added race compared with OS.All the above factors were included in multivariate Cox proportional hazards regres-
sion analysis, and all were independent prognostic factors for CSS except systematic treatment and race (Table 2). Thus, 
OS and CSS nomogram models for 0.5, 1-, 2-, 3-, 5 -, and 8-years were established respectively. (Fig. 3A and B).

3.3 � Development of a prognostic nomogram for OS and CSS

Prognostic nomogram were constructed based on multivariate Cox regression results. In the nomogram, each variable 
subtype corresponds to the value of a points scale, that was, the contribution to OS and CSS results. The total score of 
each GBM individual was obtained by adding the scores of each subtype corresponding to each variable. A line was 
drawn at the corresponding position of the total Points scale. The individual OS and CSS probabilities of 0.5, 1, 2, 3, 5, 
and 8 years were obtained. (Fig. 3A, B).

3.4 � Validation of the prognostic nomogram

The accuracy of the Nomogram was evaluated by internal and external validation of the C-index and calibration chart. 
In training cohort, the C index of Nomogram OS was 0.724 (95% CI 0.718–0.730) and that of CSS was 0.720 (95% CI 
0.714–0.726). In the validation cohort, the C index of the Nomogram OS and CSS was 0.718 (95% CI 0.708–0.728) and 
0.719 (95% CI 0.713–0.725), respectively. Calibration curves were also made to compare the nomogram prediction curve 
with the perfect curve. The results showed that the 0.5-, 1-, 2-, 3-, 5- and 8-year OS (Fig. 4A) and CSS (Fig. 4B) nomograms 
of the training cohort were in good agreement with the actual observation results, which was also reflected in the vali-
dation cohort. (Fig. 4C, D) The above results show that the predicted values of nomogram are in good agreement with 
the measured values on the training and validation cohorts.

In addition, we calculated the individual score (PI score) based on the Nomogram, and then used the score to predict 
the survival of patients at 0.5-, 1-, 2-, 3-, 5- and 8 years. ROC curves were drawn to evaluate the predictive performance 
of the Nomogram in different cohorts. The AUC value ranges from 0.5 (no predictive effect) to 1 (complete prediction), 
and the higher the value, the stronger the nomogram resolution will be. The results showed that PIscore had a good 
ability to distinguish the survival conditions of OS and CCS at different time points in both the training cohort and the 
validation cohort, and the AUC was greater than or equal to 0.75 (Fig. 5).

Moreover, KM survival curves were constructed to assess the associations between the PIscore and OS/CCS in training 
cohort and validation cohort, the cutoff points were used to divided patients in high-risk and low-risk subgroups, and 
the results indicated that the high-risk subgroup had a worse prognosis (All log-rank P < 0.001, Fig. 6 and Supplementary 
Fig. 1) and a heightened risk of mortality (All log-rank P < 0.001, Fig. 7 and Supplementary Fig. 2).

3.5 � Association between tumor size and prognosis in GBM patients

The relationship between tumor size and survival outcomes (OS/CSS) in GBM patients was analyzed using a RCS model. 
After adjusting for potential confounders with multivariable Cox regression, the resulting curve is shown in the Fig. 8. The 
optimal model was selected based on the minimum AIC and BIC values, and the final model included three knots. The 
overall association test (P < 0.001) and the non-linearity test (P < 0.001) indicated a significant non-linear dose–response 
relationship between tumor size and GBM survival outcomes. Compared to patients with tumor size > 49 mm, those with 
tumor size ≤ 49 mm exhibited a steeper increase in risk. The results demonstrated that when tumor size < 49 mm, the 
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Fig. 3   Establishment of 
overall survival (OS) and 
cancer-specific survival (CSS) 
nomograms. A Construction 
of OS nomogram; B construc-
tion of CSS nomogram
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risk of adverse clinical events increased rapidly with tumor size. However, when tumor size > 49 mm, the risk of all-cause 
mortality continued to rise but at a slower rate.

Fig. 4   Calibration plot of the nomogram for predicting 0.5-,1-, 2-, 3-, 5- and 8‐year overall survival (OS) and cancer-specific survival (CSS) in 
training cohort and validation cohort, respectively. A 0.5-,1-, 2-, 3-, 5- and 8‐year OS in training cohort; B 0.5-,1-, 2-, 3-, 5- and 8‐year CSS in 
training cohort; C 0.5-,1-, 2-, 3-, 5- and 8‐year OS in validation cohort; D 0.5-,1-, 2-, 3-, 5- and 8‐year CSS in validation cohort
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4 � Discussion

GBM is a highly malignant tumor with a poor prognosis. Using the latest data from the SEER database, we found that 
the incidence of GBM has been increasing since 1978, with a rapid rise before 1992, followed by a slower but continu-
ous increase, particularly among individuals aged 65–74 and 75–84 years. Early diagnosis of GBM remains challenging, 
and most patients already have a poor prognosis at the time of detection [26]. Additionally, the blood–brain barrier 
limits the efficacy of chemotherapy and targeted therapies, making treatment outcomes unsatisfactory [27]. Given 
these challenges, there is a pressing need to enhance GBM awareness, implement preventive strategies, accurately 

Fig. 5   Receiver operating characteristics curve (ROC) comparison of overall survival (OS) and cancer-specific survival (CSS) nomogram in 
training cohort and validation cohort, respectively. A 0.5-,1-, 2-, 3-, 5- and 8‐year ROC of OS nomogram using training cohort; B 0.5-,1-, 2-, 3-, 
5- and 8‐year ROC of CSS nomogram using training cohort; C 0.5-,1-, 2-, 3-, 5- and 8‐year ROC of OS nomogram using validation cohort; D 
0.5-,1-, 2-, 3-, 5- and 8‐year ROC of CSS nomogram using validation cohort
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Fig. 6   Kaplan–Meier survival curves for glioblastoma patients. A–F 0.5-A,1-b, 2-C, 3-D, 5-E and 8‐F year overall survival (OS) in training 
cohort; G–L 0.5-G,1-H, 2-I, 3-J, 5-K and 8‐L year cancer-specific survival (CSS) in training cohort
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Fig. 7   Cumulative risk curves for glioblastoma patients. A–F 0.5-A,1-B, 2-C, 3-D, 5-E and 8‐F year overall survival (OS) in training cohort; G–L 
0.5-G,1-H, 2-I, 3-J, 5-K and 8‐L year cancer-specific survival (CSS) in training cohort
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predict patient prognosis, and develop individualized treatment plans to improve disease management. Nomo-
grams serve as valuable statistical tools for prognostic assessment by integrating multiple risk factors, assigning 
weighted scores to each variable, and visualizing individualized survival probabilities, thereby aiding clinicians in 
decision-making [28, 29]. Previously, numerous studies have developed nomograms to predict survival in various 
cancers, including intrahepatic cholangiocarcinoma [30], invasive lung adenocarcinoma [31], colorectal cancer [32], 
and hepatocellular carcinoma with lung metastasis [33]. The SEER database, which collects high-quality data on 
approximately 450,000 cancer cases annually, provides a robust foundation for oncological research. In this study, 
leveraging the SEER database, we comprehensively analyzed the demographic and clinical characteristics of GBM, 
identified key prognostic factors, and developed a validated predictive model for individualized survival estimation.

By analyzing GBM data from the SEER database, our study found that male sex, lower median household income, 
brainstem involvement, and multiple tumor locations were associated with worse prognosis. In contrast, being married, 
undergoing chemotherapy, radiotherapy, and particularly tumor excision, were protective factors for GBM. The number 
and location of tumors significantly influence surgical feasibility and treatment decisions. For instance, tumors located in 
the brainstem are often challenging to resect due to their critical anatomical position, contributing to poorer prognosis. 
Our findings also indicate that the risk of death increases with age, aligning with previous research [34]. Statistically, 
older patients exhibit higher hazard ratios (HRs) and worse survival outcomes, with the mortality risk for GBM patients 
over 65 years old being approximately seven times higher than that of patients under 65 [35]. This may be attributed to 
age-related factors such as increased susceptibility to comorbidities and weakened immune function, which may accel-
erate tumor progression [36]. Moreover, tumor laterality emerged as a significant factor. Our study found that patients 
with right-sided tumors had significantly worse OS and CSS compared to those with left-sided tumors. Given the brain’s 
functional compartmentalization, clinicians may prioritize functional preservation during treatment planning, potentially 
impacting surgical and therapeutic choices. The prognostic impact of GBM laterality has also been reported in prior stud-
ies [37]. While some studies indicate longer progression-free survival (PFS) in patients with right-hemisphere tumors, no 
significant difference in OS has been observed between left- and right-sided GBM [38]. Furthermore, our analysis revealed 
a nonlinear relationship between tumor size and prognosis in GBM patients. Using RCS analysis, we identified three opti-
mal knots. The results demonstrated that for tumors ≤ 49 mm, the risk of adverse outcomes increased rapidly with tumor 
size. However, for tumors > 49 mm, the risk continued to rise but at a slower rate, suggesting a potential threshold effect. 
Survival analysis further confirmed a significant difference in OS and CSS between tumors ≤ 49 mm and those > 49 mm. 
We speculate that in larger tumors, extensive central hypoxia and necrosis may limit further malignant progression, 

Fig. 8   Adjusted cubic spline models showing association between tumor size and hazard ratio for overall survival (A) and cancer-specific 
survival (B). The solid line and red zone represent the estimated odds ratio and its 95% confidence interval
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potentially explaining the attenuated risk increase. These findings emphasize the importance of considering nonlinear 
effects when evaluating tumor size as a prognostic factor in GBM. Currently, maximal tumor resection, when feasible, 
remains the cornerstone of GBM treatment, followed by adjuvant radiotherapy and chemotherapy [39]. In our study, all 
these treatment modalities contributed to prolonged OS and CSS. Radiotherapy has been widely validated as a feasible 
treatment for GBM [40]. Temozolomide remains the first-line chemotherapy for malignant gliomas [41]. Since Stupp et al. 
introduced the combination of radiotherapy and adjuvant temozolomide in 2005, the prognosis of GBM patients has 
significantly improved [42]. Additionally, based on a cohort of 562 elderly patients with GBM, Perry et al. demonstrated 
that short-term radiotherapy plus temozolomide resulted in longer survival than short-term radiotherapy alone [43].

Based on our findings, we recommend that eligible GBM patients undergo maximal tumor resection, followed by 
adjuvant radiotherapy and chemotherapy to improve survival outcomes. Additionally, greater attention should be given 
to elderly patients, as they face a significantly higher risk of mortality. The relationship between tumor size and prognosis 
requires further investigation to better understand its clinical implications. Given the poor survival outcomes associated 
with GBM, continued research into effective therapeutic interventions remains a critical priority.

Our study has several limitations. First, as the SEER database is based on retrospective data, our findings only establish 
correlations rather than causal relationships, which require further validation through prospective studies. Additionally, 
while certain GBM tumor markers have been identified as prognostic indicators, our dataset lacks genetic information 
and detailed comorbidity data. A more comprehensive evaluation of individual patient prognosis would require integrat-
ing genetic profiles with clinical characteristics. Furthermore, the chemoradiotherapy data in SEER are incomplete—key 
details such as radiotherapy timing, dosage, and intervals, as well as chemotherapy drug types, dosages, and treatment 
courses, are unavailable. These factors are critical for predicting patient outcomes, and their absence may limit the accu-
racy of our prognostic model. Finally, although our model has been internally validated using SEER data, its generaliz-
ability requires further validation in external datasets to ensure its applicability across diverse populations.

5 � Conclusion

By analyzing the SEER database, we found that GBM incidence has been rising since 1975, particularly in the 65–74 and 
75–84 age groups. We developed and validated a nomogram to predict 0.5-, 1-, 2-, 3-, 5-, and 8-year OS and CSS, provid-
ing an objective prognostic tool for GBM patients. Additionally, our analysis revealed a nonlinear relationship between 
tumor size and prognosis, with mortality risk increasing sharply for tumors ≤ 49 mm. These findings underscore the need 
for early detection and individualized treatment strategies to improve GBM outcomes. Future studies incorporating 
genetic and molecular data will further refine risk assessment and management.
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