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Gliomas are aggressive brain tumors of glial origin accounting for about 80% of
the central nervous system (CNS) malignancies. Glioma cells are known to form a
highly immunosuppressive tumor microenvironment (TME) capable of inhibiting
T cell activation and protecting tumors from elimination by the immune system.
One of the predominant immune inhibitory mechanisms in the TME are immune
checkpoints: a complex system of membrane-bound ligands on tumor and
immune cells that interact with surface receptors on T lymphocytes and affect
their activation and cytotoxicity. There is mounting evidence regarding the role
of immune checkpoints expressed in gliomas, in particular, their most aggressive
form — glioblastoma multiforme (GBM). In this review, we discuss the immune
checkpoints with proven expression in gliomas, their ligands, related signaling
pathways, co-expression profiles, and the effects of immune cells on antitumor
activity. We collected data not only on the canonical immune checkpoints (e.g.
PD-1/PD-L1 or CTLA-4) but also on novel and alternative ones including soluble
mediators and enzymes. We review data describing the correlation of immune
checkpoint expression with patient survival as well as co-expression with other
molecules involved in glioma development. Where possible, we analyzed the
differences between immune checkpoints in low-grade (LGG) and high-grade
gliomas (HGG). Negative effects of several immune checkpoints on T cells could
be eliminated by therapeutic monoclonal antibodies that block the interaction
between checkpoint ligands and receptors. Therefore, alongside with traditional
approaches and T cell-based immunotherapy, the antibody-mediated blockade
of immune checkpoints could be considered as a potentially promising
therapeutic approach against gliomas.
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1 Introduction

Glioma is the most common type of primary CNS tumor.
Gliomas are classified into four grades based on both histological
features and molecular markers (1). Grade I and II gliomas are
defined as low-grade gliomas (LGG), while high-grade gliomas
(HGG) include grade III and IV gliomas. LGG patients show a
better prognosis and survival (up to 13 years) (2). However, LGGs
often develop into HGG (3). The 2-year survival rate of HGG
patients does not exceed 20% (4). Grade IV glioma is usually called
glioblastoma (GBM) and is characterized by its aggressiveness,
therapy resistance, and a very high risk of relapse (5). The 5-year
survival rate for GBM patients is only 5.6% (1). The incidence of
glioma and GBM is estimated at 5.89 and 3.26 cases per 100 000
people, respectively, depending on gender, age, and race (1).

The established gold standard of treatment for patients with
new cases of GBM is known as the Stupp protocol and includes
surgical resection, radiation therapy, and chemotherapy with the
alkylating agent temozolomide (TMZ) (6). The treatment of GBM
begins with a maximal surgical resection that removes the majority
of tumor cells and provides a material for proper histologic
diagnosis and molecular testing. Surgical resection is followed by
six weeks of radiation therapy (60 Gray [Gy] in 2-Gy fractions) and
concomitant daily TMZ (75 mg/m2), followed by six cycles of
adjuvant TMZ (150-200 mg/m2). The Stupp protocol has remained
unchanged for the past 18 years and typically provides patients with
an overall survival of less than two years. Despite these first-line
treatments, GBM almost always recurs (5).

GBM resistance to therapy and almost inevitable relapses can be
explained by its specific anatomic location (CNS) and high invasive
potential which makes its complete surgical resection almost
impossible (7). The blood-brain barrier is a hurdle for GBM drug
therapy with chemotherapeutics or monoclonal antibodies (8).
High heterogeneity of tumors from different patients and of GBM
cells within a single particular tumor makes the development of
efficient target drugs against GBM a compelling challenge (9).

Gliomas have been shown to possess a well-developed
immunosuppressive molecular machinery (reviewed in 10). They
are prone to infiltration by immune cells but, contrary to
expectations, this has an opposite effect promoting tumor
progression. The most viable explanation lies in the nature of
GBM-infiltrating cells, such as various macrophage subsets.
Gliomas have been demonstrated to release a set of molecules
that modulate immune responses (11). GBM secretes extracellular
vesicles and factors, such as ARGl or TGF-f, which recruit
macrophages and switch the polarization to protumor M2
phenotype, forming tumor-infiltrating macrophages (TAM) (11).
The enhanced regulatory T cells (Treg) infiltration and expansion in
TME was also detected. In contrast, effector cell infiltration is
remarkably reduced. The stimulation of the immunosuppressive
populations of immune cells, at the same time, inhibits, exhausts
and promotes apoptosis of tumor-reactive immune cells (11). In
this review, we briefly describe immune checkpoint molecules
found in glioma cells, glioma microenvironment or the in-
patients’ biological fluids. We focus on the role of each immune
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checkpoint molecule in glioma growth and immune escape. In
addition, we discuss the evidence in favor of the impact of immune
checkpoint expression levels on glioma patients’ survival, both in
case of LGG and HGG, where possible. Therefore, we would like to
emphasize that therapeutic approaches targeting the immune
checkpoints have to be carefully evaluated to avoid any potential
complications before transition from bench to bedside.

2 Immunoglobulin superfamily
immune checkpoints

2.1 PD-1 pathway

Immunoglobulin superfamily surface molecules are implicated
in the propagation of the stimulatory and inhibitory signals in the
immune cell lineages (Figure 1). The most widespread and
thoroughly described immune checkpoint involves the
Programmed cell death 1 (PD-1) and its ligand, Programmed cell
death 1 ligand 1 (PD-L1, B7-H1). The interaction between PD-1 on
the T cell surface and its ligand mediates multiple
immunosuppressive effects such as apoptosis and functional
exhaustion of conventional T cells (Tconv), reduced cytokine
secretion, and generation of Tregs and TAMs (12). PD-L1 is
expressed in numerous neoplasms, including brain tumors. PD-
L1 overexpression was observed in about 90% of GBM tumor cells
and GBM-associated macrophages (13). Moreover, GBM-
infiltrating CD4" and CD8" lymphocytes have been shown to
express both PD-1 and PD-L1, which indicates induction of Tregs
and reprogramming of Tconv to the self-inhibiting lymphocytes
(14). Tumor PD-L1 can be exposed on the surface of GBM-derived
extracellular vesicles and delivered to the distant sites by
bloodstream (15). The cytoplasmic region of PD-1 contains the
immunoreceptor tyrosine-based switch motif (ITSM), which
recruits Src homology region 2 domain-containing phosphatase-2
(SHP-2). Recruited SHP-2 mediates dephosphorylation of TCR-
associated CD3 and ZAP70 and inhibits CD28 co-stimulatory
signals. It leads to the deactivation of pathways such as PI3K/Akt
and NF-kB, which results in reduced transcriptional activity,
inactivation of the pathways downstream of the T-cell receptor
(TCR) and lower IL-2 production (16). Another mechanism of PD-
1/PD-L1 axis involves shielding the costimulatory molecules CD80
by PD-L1. PD-L1 has been shown to interact with CD80, thereby
preventing its binding to CD28, which is required for the
stimulation of T cells by antigen-presenting cells (APCs) (17).

The effects of PD-L2 (CD273), the second PD-1 ligand, on the
immune activation are similar to PD-L1, but still not the same.
However, unlike PD-L1, PD-L2 has only one receptor - PD-1. PD-
L2 is not as widespread in tumors, which indicates its secondary role in
forming the inhibitory TME (18). Nevertheless, PD-L2 overexpression
has been detected in HGG and is associated with the wild-type status of
isocitrate dehydrogenase 1 (IDHwt) and a highly invasive
mesenchymal GMB phenotype. To sum up, overexpression of PD-1
and both ligands correlate with a large count of GBM-induced Tregs
and a bad prognosis for patients (19-22).
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FIGURE 1

Receptor-ligand interactions (gray arrows) of immune checkpoints from the immunoglobulin superfamily between T cells and tumor cells or TAM
can mediate T cell responses. These interactions can activate co-stimulatory signals (green arrows) or deliver inhibitory signals (red square arrows).
The signaling pathways involved in activation or inhibition are indicated. Multiple effects on signaling pathways are shown by black arrows with green
(activation) or red (inhibition) circles. HVEM and Gal-3, which interact with BTLA and LAG-3, respectively (gray dotted arrows), belong to other

protein families and are not presented in this figure.

2.2 CTLA-4

Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) plays a
key role in tumor immune reactions with PD-1. CTLA-4 is
homologous to the costimulatory T cell receptor CD28 and binds
to the same ligands CD80 and CD86, but with a significantly higher
affinity (23). Thus, tumor-infiltrating lymphocytes (TILs) express
CTLA-4 to disrupt the costimulatory signaling by shielding CD80
and CD86 from CD28 in a manner similar to PD-L1 (23). At a
molecular level, CTLA-4 signaling inhibits AKT phosphorylation
and activation of the transcription factors, such as NF-kB, AP-1,
and NF-AT, induced by co-stimulatory CD28 (24). Blocking
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CTLA-4 by monoclonal antibodies protects T cells from negative
regulation and restores antitumor immune reactions. This makes
CTLA-4 inhibitors promising antitumor agents, since CTLA-4 is
involved in cancer development, including brain tumors (Table 1)
(35). Elevated CTLA-4 expression was detected in HGG patients
mostly characterized by the IDHwt status and mesenchymal cell
type. CTLA-4 overexpression leads to a lower survival of HGG and
LGG patients. There is a strong correlation of CTLA-4 levels and
enhanced tumor infiltration with Treg and inhibitory
macrophages. CTLA-4 expression also correlates with the
expression of other immune checkpoints such as PD-1, CD40,
ICOS, and TIGIT (36).
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TABLE 1 Clinical trials of immune checkpoint inhibitors for glioma therapy.

Median overall survival

Examples of clinical trials Tumor description Comments References
(mOS), months
NCT02667587: An Investigational Immunotherapy Study of
Temozolomide Plus Radiation Therapy With Nivolumab or Primary GBM, MGMT- 289 mOS was 32.1 months in placebo (25)
Placebo, for Newly Diagnosed Patients With Glioblastoma Methylated promoter ’ group; did not improve survival
(GBM, a Malignant Brain Cancer)
NCT02617589: An Investigational Immunotherapy Study of
§ N1vc-)1u-mab Compared to Temo%olomlde, Ea?h lee.n with Primary GBM, unmethylated TMZ + RT demonstrated a longer
Nivolumab PD-1 Radiation Therapy, for Newly-diagnosed Patients with MGMT promoter 13.4 mOS (14.9 months) (26)
Glioblastoma (GBM, a Malignant Brain Cancer) P :
(CheckMate 498)
N,CT02017717: A Study of the ]?,Eectweness and safety of First diagnosis of unmethylated mOS was 10.0 months for
Nivolumab Compared to Bevacizumab and of Nivolumab . .
X X . R i . MGMT GBM or first recurrence 9.8 bevacizumab (anti-VEGF) (27)
With or Without Ipilimumab in Glioblastoma Patients of GBM control erou
(CheckMate 143) group
NCT02054806: A Study of Pembrolizumab (MK-3475) in
Participants With Advanced Solid Tumors (MK-3475-028/ Recurrent PD-L1-positive GBM 13.1 - (28)
KEYNOTE-28)
Pembrolizumab PD-1
First d rel f GBM
NCT02337491: Pembrolizumab +/- Bevacizumab for 1-rs o SeCOI_l reap fer o mOS was 8.8 months for
Recurrent GBM gliosarcoma if the original tumor 10.3 combined thera (29)
histology was LGG or GBM Py
Pri BM with hyl 209 i i live with
NCT02336165: Phase 2 Study of Durvalumab (MEDI4736) rimary GBM with unmethylated 0% patients remained alive wit
Durvalumab PD-L1 . . . . MGMT promoter, first or second 15.1 ongoing survival ranging from 15.7 = (30)
in Patients With Glioblastoma
recurrence of GBM to 34.9 months
Newly diagnosed GBM or lower There was no apparent
Avelumab PD-L1 N.CT03047473'1: Avelumab in F"atients With Newly grade astrocytotTla that. has been 153 improve.ment ?n survival in G1)
Diagnosed Glioblastoma Multiforme (SEJ) upgraded to a histologically comparison with Stupp protocol
verified GBM (15 months)
NCT03367715.: Nivolumab‘, Ipilimumal.), and Short-course Newly Diagnosed MGMT
Radiotherapy in Adults With Newly Diagnosed, MGMT . 16.85 - (32)
i Unmethylated Glioblastoma
Unmethylated Glioblastoma
Ipilimumab CTLA-4
NCT02311920: Ipilimumab and/or Nivolumab in
Newly di d GBM aft
Combination With Temozolomide in Treating Patients With ewyt' 1agnose .a ?r 20.7 - (33)
R R . resection and chemoradiation
Newly Diagnosed Glioblastoma or Gliosarcoma
NCT02794883: Tremelimumab and Durvalumab in 7.246 (Tremelimumab)
Tremelimumab CTLA-4 Combination or Alone in Treating Patients With Recurrent Grade IIT or IV glioma 11.71 (Durvalumab) - (32)
Malignant Glioma 7.703 (Mix)
NCT02658981: Anti-LAG-3 Alone & in Combination w/ Primary progressive or recurrent 3 out ,Of 1,6 patients m- the
BMS-986016 LAG-3 ! . X X 8 combination therapy lived beyond (34)
Nivolumab Treating Patients w/Recurrent GBM GBM or gliosarcoma
20 months at the end of phase I

1e 19 enojesniy

T296£91'5202' nWwily/685¢ 0T
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2.3 ICOS/ICOSLG

ICOSLG (B7-H2, or CD275), the ligand of the inducible T cell
costimulatory protein (ICOS), is expressed on the surface of somatic
cells and APCs. Despite the positive costimulatory role of the ligand,
the outcome of ICOS/ICOSLG binding depends on TME. During
tumor development, ICOSLG can both promote and suppress tumor
progression, since it activates Tconv cells and, at the same time, induces
Tregs through NF-xB signaling (37). The TME is characterized by
increased expansion and infiltration of Tregs and suppression of Teff
functions (11), therefore, ICOSLG has a greater effect on Treg. ICOSLG
is expressed on GBM tumor cells, its upregulation being associated
with the presence of glioblastoma stem cells and IL-10-producing T
cells as well as the mesenchymal phenotype. As a result, patients with
ICOSLG overexpression have a lower overall survival (37). These data
are in line with evidence that ICOS is overexpressed in glioma-
infiltrating Tregs, as well as with the established link between high
ICOS levels and a bad prognosis (38). Nevertheless, protein
distribution in the body is also important. For instance, low ICOS
levels in the blood plasma of GBM patients was associated with a global
immunosuppression and the lower overall survival (39). ICOS/
ICOSLG was shown to be co-expressed with a number of inhibitory
immune checkpoints such as PD-1/PD-L1/PD-L2 (38).

2.4 B7-H3

B7 homolog 3 (B7-H3, CD276) is a type I transmembrane protein
which exerts immunosuppressive activity by triggering T cell
exhaustion. In healthy tissues, B7-H3 can be found on resting
fibroblasts and osteoclasts, endothelial cells, activated T cells, natural
killer cells (NK) and APCs. The inhibitory function of B7-H3 is widely
used by tumors, including gliomas. Patients with IDHwt HGG have
high levels of B7-H3 (40, 41). B7-H3 overexpression also correlates
with a lower survival in LGG patients (42). Duerinck et al. studied the
mutually exclusive expression profiles of B7-H3 and PD-L1 and
suggested B7-H3 to be the major factor responsible for the failure of
anti-PD-1 and anti-CTLA-4 HGG therapy (35).

The B7-H3 signaling cascade involves the activation of JAK2/
STATS3 survival pathway leading to tumor growth and epithelial-
mesenchymal transition in glioma cells. The exosomal transport of
B7-H3 can also enhance tumor aggressiveness and facilitate
immune escape in medulloblastoma (43) and neuroblastoma (44).
Nevertheless, the role of B7-H3 in the immune response against
GBM remains controversial. The receptor for B7-H3 has not been
identified yet, but it is mostly likely present on the surface of
activated CD4" and CD8" cells (45, 46). B7-H3 can have several
candidate receptors, since B7-H3 was shown to act not only as an
inhibitory molecule, but also as a stimulatory one (47).

2.5 B7-H4

B7 homolog 4 (B7-H4, VTCNI, B7x, B7S1) is a type I
transmembrane protein of B7 family. Normally, B7-H4 is
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expressed by dendritic cells (DCs) and APCs. Although the B7-
H4 overexpression was detected in several types of cancer, it is not
considered as a typical tumor marker (48). B7-H4 levels have been
shown to correlate positively with a tumor grade and a poor
prognosis in glioma patients (49). B7-H4 production in GBMs
has been shown to depend on IL-6 signaling via IL-6/JAK/STAT
pathway activation and is associated with an elevated number of
TAMs (50). B7-H4 levels does not correlate with expression of other
immune checkpoints. For instance, B7-H4 and B7-H3 co-
expression was observed only in 10% of GBM cases. Interestingly,
B7-H4 and PD-L1 were co-expressed only in 2% of gliomas, making
it most reasonable to assume a possible functional redundancy of
these molecules (51). Similar, to B7-H3, the receptor for B7-H4 is
still unknown.

2.6 VISTA

VISTA (V-domain Ig suppressor of T cell activation), also
known as B7-HS5, is highly expressed in myeloid cells and TILs.
VISTA acts as an activating ligand for APCs and an inactivating one
for T cells (41). VISTA suppresses T cell proliferation and cytokine
production by inhibiting NF-«B pathway (52). VISTA is commonly
expressed in tumors and positively correlates with the WHO tumor
grade and a poor prognosis for glioma patients (53). Moreover,
VISTA is often co-expressed along with other inhibitor immune
checkpoints such as B7-H3, PD-1, PD-L1, LAG-3, TIM-3 (54).

To date, two receptors for VISTA have been identified. VSIG-3
(IgSF11) is a member of the immunoglobulin superfamily which is
highly expressed in gliomas. VSIG-3 is usually associated with high-
grade malignancies and a worse outcome (55). The interaction
between VSIG-3 and VISTA inhibits T cell proliferation and
production of proinflammatory cytokines and chemokines (56).

PSGLI (selectin P ligand), also known as SELPLG or CD162, is
another receptor for VISTA. It has been suggested that PSGLI
stimulation may inhibit AKT and ERK signaling induced by TCR
stimulation in some tumors. PSGL1 was detected on HGG and is
co-expressed with VISTA (55). However, PSGL1 has not been
studied thoroughly in the context of brain tumors.

2.7 B7-H6

B7 homolog 6 (B7-H6), or NCR3LGI, is a B7 family immune
checkpoint protein which acts as an endogenous costimulatory
ligand. The extracellular domain of NKp30 on the surface of NK
cells is a receptor for the extracellular part of B7-H6 (57). B7-H6
binding to NKp30 induces NK cells activation. This protein is
almost absent in normal tissues and mononuclear cells from the
peripheral blood of healthy donors; however, it can be detected on
the surface of neutrophils and proinflammatory macrophages in the
presence of proinflammatory cytokines such as TNF- o, IL-1B, or
TLR ligands (58). B7-H6 is also selectively expressed on a range of
brain tumor cells such as human neuroblastoma (59), astrocytoma
(60), and glioma (61). B7-H6 overproduction positively correlates
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with tumor aggressiveness and a poor prognosis. In gliomas, B7-H6
regulates a spectrum of biological processes such as proliferation,
migration, invasion, survival, and cell cycle control by activating
the PI3K/Akt, ERK/MAPK, and c¢-Myc/RNMT signaling
pathways (62).

2.8 B7-H7

B7 homolog 7, also known as HHLA2, is not expressed in healthy
tissues, except for the placenta, gut, kidney, breast tissues, and
macrophages. HHLA2 is absent in the brain, even in glial cells and
neurons; however, it was detected in endothelial cells. HHLA2 is highly
expressed in tumors, and at low levels, it was found in LGGs and, less
frequently, in HGGs (63). HHLA2 expression is downregulated with
tumor progression. Moreover, HHLA2 overexpression is associated
with the prolonged overall survival in GBM patients (63). HHLA2 was
shown to interact with CD28H and stimulate T cell proliferation and
cytokine production via AKT phosphorylation (64). Nevertheless, there
is evidence indicating that high B7-H7 expression in other cancer types
is associated with a poor prognosis. For example, HHLA2 was found to
be highly expressed in osteosarcoma and colorectal carcinomas and
positively correlated with metastasis and a poor prognosis (65, 66). It is
assumed that HHLA2 has at least two ligands with opposing functions,
making it in a way similar to B7-H3. CD28H or TMIGD2 is the
confirmed HHLA?2 ligand with stimulatory activity, while the second
ligand with an inhibitory activity has not been identified yet (67).

2.9 LAG-3

LAG-3 (Lymphocyte-activation Gene-3, or CD223) is expressed
on microglial cells (68). LAG-3 is closely related to CD4 and can
bind to MHC II (69). LAG-3 triggers CD4" T cell exhaustion and
limits T cell proliferation by competing for Zn ions with Lck causing
its dissociation from complex with TCR. Cleavable by ADAM10/17
proteases cytoplasmic C-terminus of LAG-3 contains domains rich
in glutamic acid which are responsible for acidification and
withdrawal of Zn. LAG-3 presence in TME was associated with
an enhanced CD8" T cells infiltration, PD-1" TILs and PD-L17"
IDHwt glioma cells (70). LAG-3 overexpression correlated with a
poor prognosis in LGG patients (71). However, the role of LAG-3 in
HGG remains controversial. TILs in GBM TME were shown to
express higher LAG-3 levels compared to lymphocytes from healthy
donors (72). LAG-3 co-expression with CTLA-4, PD-1, and TIM-3
(73) is considered to be a risk factor in GBM patients based on
bioinformatics studies (74). The role of LAG-3 alone on survival
and prognosis in GBM patients is not clear.

The first described LAG-3 ligand is galectin-3 (Gal-3), a B-
galactose-binding lectin involved in proliferation, cell adhesion, and
apoptosis. Although galectin-3 is a proven immunomodulator, it is
also considered as a glioma-related marker. Gal-3 expression was
reported to correlate with the WHO grade of gliomas (75).
Fibrinogen-like protein 1 (FGL1) is another functional LAG-3
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ligand. Soluble FGL1 from the blood stream induces the surface
LAG-3 and transmits an inhibiting signal to T cells (76). However,
the role of FGL1 in glioma development is very complex and poorly
understood (77).

2.10 CD155/CD112 pathways

CD155, also known as the poliovirus receptor (PVR), is a
glycoprotein which belongs to the immunoglobulin superfamily.
Its expression is inherent in malignant cells and is rarely found in
normal tissues, except epithelial or endothelial cells. HGGs,
including GBMs, are typically associated with CD155
overexpression (78) and with a lower survival rate. The same
tendency was detected for LGG (79). CD155 has emerged as a
tumor promoting antigen, upregulated on GBM and related to
increased GBM aggressiveness and metastasis (80). The functions of
this receptor were shown to depend on engaging ligands. It can
activate NK cells by binding CD226 (T lineage specific activation
antigen 1, TLisA1) and CD96 (Tactile) and, on the contrary, inhibit
them by triggering TIGIT (81). In GBM, CD155 promotes TIGIT*
immune cell infiltration and the transition of the circulating NK
cells to TIGIT*/CD226  phenotype, while normally TIGIT® NK
cells are absent in the CNS and peripheral blood (82).

TIGIT is a co-inhibitory receptor which could bind both CD155
(with high affinity) and CD112 (nectin-2, with low affinity) (83). It is
expressed on the surface of immune cells such as memory and
activated T cells, Tregs, NK, and NKT cells. TIGIT binds CD155
with higher affinity compared to CD226, preventing NK cell
stimulation and function via the CD155/CD226 pathway (84).
CD112 is another co-inhibitory NK cell receptor, and its binding to
TIGIT also contributes to inhibiting NK cells. This prevents IFN-y
secretion and cytolytic granule release by NK-cells (85). TIGIT is
overexpressed in GBM TILs and peripheral blood T cells of patients
with GBM as compared to lymphocytes from healthy donors.
Nevertheless, in most patients, co-stimulating factor CD226 was also
overexpressed in GBM-infiltrating immune cells along with TIGIT
(82). It implies the possible competition for the ligand with prevalent
CD155/TIGIT binding and subsequent inhibition of NK cell function
(82). The co-expression of CD155 and PD-L1 was confirmed for
tumor cells and TAMs (85), while TIGIT and PD-1 were upregulated
on TILs and associated with poor overall survival (82, 86).

2.11 CD200

CD200, another member of the immunoglobulin superfamily,
has recently been recognized as an immune checkpoint. This protein
is expressed on various immune and stromal cells as well as tumor
cells. In gliomas, CD200 facilitates tumor growth both in vivo and in
vitro. Furthermore, the soluble form of this protein is carried to the
cervical lymph nodes through the cerebral spinal fluid contributing to
the suppression of lymphocytes (87). Soluble CD200 in the patient’s
bloodstream contributes to systemic immunosuppression. The main
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mechanism of CD200-mediated immunosuppression is likely to be
the switching of macrophage polarization toward the M2 phenotype
and inducing myeloid-derived suppressor cells (MDSC) in TME (88).
In GBM patients, a high plasma level of CD200 was associated with
an increased accumulation of MDSCs (88). The role of this protein in
GBM development is actively investigated, and to date, there are no
studies reporting the link between CD200 expression and the
prognosis in patients with brain tumors, further studies are
required for better understanding of diagnostic/therapeutic
potential of this molecule.

2.12 CD48

CD48 is an immune checkpoint, also known as the B-
lymphocyte activation marker (BLAST-1) or signaling
lymphocytic activation molecule 2 (SLAMF2). CD48 is expressed
on cells of hematopoietic origin, especially on APCs. CD48 is a key
molecule in immunological synapses and is essential for co-
stimulation. It binds to CD2 and promotes T cell activation, as
well as the function of granulocytes and NK cells (89). Despite the
ability to activate immune cells, CD48 binding with the high-affinity
receptor 2B4 (CD244, SLAMF4) results in NK cell dysfunction.
CD48 expression was shown for several oncologic pathologies,
particularly glioblastoma (90). CD48 upregulation in gliomas was
associated with enhanced macrophage and T cell infiltration, the
IDHwt status of mesenchymal subtype gliomas and a worse
outcome. CD48 has a strong association with most checkpoints
such as TIGIT, ICOS, TIM-3, but not with CTLA-4 and PD-L1 (91).

2.13 CD47

CD47, also known as integrin-associated protein (IAP), is a
transmembrane protein from the immunoglobulin superfamily.
Normally, CD47 regulates phagocytosis through the interaction
with SIRP-o receptors on macrophages (92). Several malignancies
including gliomas express CD47. CD47 signaling was associated
with AKT phosphorylation and PI3K/Akt pathway which resulted
in tumor maintenance and survival (93). CD47 was associated with
glioma stem-like cells and predicts a worse prognosis for
patients (94).

2.14 CD277

CD277 or BTN3A1 (Butyrophilin subfamily 3 member A1) is a
member of the immunoglobulin superfamily typically expressed on
T cells, B cells, NK, DCs, and tumor cells (95). The role of CD277 in
tumor progression is still poorly understood, but it can bind
particular variants of yd TCR causing their activation and
cytotoxicity. There is a study indicating a carcinogenic role of
CD277 in gliomas. According to (96), IDHwt glioblastomas
expressed higher CD277 levels compared to WHO grade II and
III astrocytomas and oligodendrogliomas. CD277 upregulation was
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associated with multiple effects on immune system including
increased macrophage, B cell, and T cell infiltration as well as
CD8" T cell exhaustion (96). Moreover, CD277 was co-expressed
with TIM-3, IL-10, and FoxP3 which correlated with a poor
prognosis. CD277-dependent activation of the IL-6/JAK/STAT3
pathway may explain its co-expression with TIM-3, which activates
the same pathway in cancer cells (96). However, unexpectedly,
CD277 in GBMs was reported to trigger the anti-tumor immune
responses in Y0 T cells (97).

3 TNF — TNFR superfamily
3.1 HVEM and HVEM-mediated signaling

HVEM, or TNFRSF14, belongs to the tumor necrosis factor
receptor (TNFR) family. HVEM is expressed on epithelial and
mesenchymal cells and on resting lymphocytes, Tregs, NK and
myeloid cells. HVEM was shown to activate as well as inactivate
immune responses depending on the ligand (98). HVEM has
several ligands: BTLA, CD160, gD, LIGHT, and LTa3 (98). The
interaction between HVEM and BTLA or CDI160 inhibits T cell
functions, whereas its binding to LTo. or LIGHT results in T cell
activation (99). The expression of HVEM, LIGHT and BTLA was
detected in gliomas (100). Aggressive subtypes of gliomas were
shown to upregulate HVEM. Using immunohistochemistry, HVEM
in gliomas was found predominantly in the microvascular
proliferation region and at the edges of the necrotic zone (100).
High HVEM levels predict a poor outcome (100). HVEM™&" GBM
tumors tend to contain larger numbers of immune and stromal cells
in glioma microenvironment compared to the tumors with a low
HVEM level. In glioblastoma samples, HVEM expression was
shown to coincide with TIM-3, PD-1, PD-L1, CTLA-4, LAG-3,
and VISTA (100).

HVEM is the only reliably identified BTLA receptor. BTLA
(also known as CD272) is a transmembrane glycoprotein and the
main inhibitory receptor on T cells. BTLA is found on the surface of
immune cells, such as B and T lymphocytes, NK and NKT cells,
myeloid cells. The interaction between BTLA and HVEM induces a
branching signal, which promotes a proinflammatory signal by
activating NF-xB (100), and, simultaneously, passes an inhibitory
signal by recruiting tyrosine phosphatases SHP-1 or SHP-2,
similarly to PD-1 (101). BTLA and HVEM molecules interact
when expressed in cis on the membrane of the same cell or in
trans on different cells (102). Interestingly, upon the cis-interaction
of BTLA and HVEM, the inhibitory function of BTLA prevails over
the activating function of HVEM (102). Moreover, BTLA/HVEM
cis-binding shields HVEM molecules from BTLA molecules in
trans as well as from the stimulation by other activating ligands
such as LIGHT (103). Currently, the role of BTLA in glioma
development is not well studied and requires future research.

LIGHT, also known as TNFSF14, is another TNF superfamily
member and a ligand for HVEM. As mentioned above, there is a
strong correlation between HVEM and LIGHT expression in
glioma microenvironment. LIGHT expression directly correlates
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with the glioma grade (104). Moreover, LIGHT overexpression has
been associated with a highly aggressive tumor phenotype (IDHwt
and mesenchymal subtype) (104). In GBM patients, it correlates
positively with poor survival. There is evidence that LIGHT
promotes tumor growth in gliomas in a HVEM-dependent
manner (105). The LIGHT/HVEM pathway, similarly to the
canonical TNF/TNFR pathway, activates NF-xB and PI3K
through the TNF receptor-associated factors, triggering survival
signaling and transcription of the inflammatory genes (Figure 2A)
(98). LIGHT was found to be co-expressed with PD-1/PD-L1, TIM-
3, B7-H3, and other inhibitory immune checkpoints (104).

3.2 CD70 - CD27

CD?70 is a well-studied TNF-like ligand that functions as a co-
stimulatory molecule for T and B cells. CD70 is usually not
expressed in a healthy tissue, except for peripheral blood

10.3389/fimmu.2025.1639521

leukocytes. It contributes to homeostatic signaling supporting
lymphocyte survival in the absence of signals from TCR (106).
CD?70 levels are increased in several malignancies including 10% of
primary LGGs and 35% of GBMs. GBMs and LGGs expressing
CD70 have similar molecular characteristics and patient survival
rates (107). Elevated CD70 has been linked to a poor prognosis in
LGG patients with IDHwt. Most GBMs expressing CD70 have a
mesenchymal phenotype, which negatively correlates with patients’
survival (107).

CD70 binds to the receptor CD27. CD27 is also a member of the
TNFR family and is often presented on naive and memory
lymphocytes, NK cells, and mature DCs (108). As a co-
stimulatory immune checkpoint, CD27 plays an essential role in
survival and activation of T cells. CD70 expression stimulates tumor
infiltration with immune cells, but it has no effect on CD27
expression. The possible explanation of this phenomenon lies in
the CD70-dependent infiltration with macrophages instead of T
cells (109) or the activation and generation of tumor Tregs triggered

FIGURE 2

Receptor-ligand interactions (gray arrows) of immune checkpoints from the TNF-TNFR superfamily (A) and other protein families (B) between T
cells or NK cells and tumor cells or TAM. In most cases, these interactions induce co-stimulatory signals (green arrows) predominantly via NF-«xB
pathway. Immune checkpoints from other families could influence TCR signaling (black arrows) or maintain functions of immunosuppressive cells
(green arrows). Multiple negative effects of kynurenine on APC functions are shown by black arrows with red circles. BTLA and LAG-3, which interact
with HVEM and Gal-3, respectively (gray dotted arrows), belong to IgSF and are presented in Figure 1.
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by CD27/CD70 (110). It is also possible that CD70 signaling can be
mediated by an unknown inhibitory receptor on the T cell
surface (107).

3.3 CD40 - CD40L

The CD40 glycoprotein and its ligand CD40L (CD154) are
members of the TNF and TNFR superfamilies. CD40L is primarily
expressed by the activated CD4" T cells. CD40 expression is
triggered by CD40L binding and is typical of B cells,
macrophages, and DCs. Still, the roles of both receptor and ligand
in tumor progression remain disputable. CD40 and its ligand were
shown to be co-expressed on the surface of GBM cells (111).
Interestingly, WHO grade III gliomas express higher CD40 and
CD40L levels compared to GBMs. It was noted that the
overexpression of both proteins could be associated with better
overall and progression-free survival of GBM patients after tumor
resection (112). However, high CD40 expression was detected in
glioma biopsy samples and correlated with lesions and an increased
vascularization (112). In another study, lower overall and
progression-free survival rates were detected in LGG patients as
well as patients with GBM expressing IDHwt and high levels of
CD40. CD40 was upregulated in secondary gliomas as contrasted
with primary gliomas. Werner and colleagues (113) did not find any
correlation between CD40L expression and the overall survival rate;
however, recent studies pointed out the negative correlation
between CD40L levels and the disease outcome (114).

4 Other immune checkpoints/immune
controlling molecules and
mechanisms

4.1 TIM-3

T cell immunoglobulin domain and mucin domain protein 3 or
TIM-3, also known as Hepatitis A virus cellular receptor 2
(HAVCR?2), is a surface receptor found in most lymphocytes and
cells of myeloid origin. TIM-3 promotes CD8" exhaustion and
apoptosis, reduces IL-2 and IFN-y production (115). TIM-3 is one
of the most upregulated co-inhibitory immune checkpoints in
cancer, especially in glioma. There is a proven positive correlation
between TIM-3 and the WHO grade, the mesenchymal phenotype,
and a worse prognosis (116). TIM-3 promotes tumor progression
by inducing the macrophage migration and tumor-promoting M2
polarization via the IL-6/NF-xB pathway (116). TIM-3 is co-
expressed with PD-1, LAG-3 (117), VISTA, PSGLI, and Galectin-
9 (Gal-9) (55).

Gal-9 is the member of the galectin protein family. Gal-9
expression is typical of glioma and depends on the WHO grade
and TIM-3 levels (118). Gal-9/TIM-3 interaction has been shown to
induce exhaustion and apoptosis of Thl, but not Th2 cells
(Figure 2B). Gal-9 also binds to PD-1 and shields it from PD-L1,
promoting the resistance of TIM-3-positive T cells to cell death
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(119). Gal-9 co-expression with PD-L1 and their co-localization in
some GBM cases serve as further evidence for the link between
TIM-3/Gal-9 and PD-1/PD-L1 pathways as supported by published
data (118). Gal-9 also was shown to correlate with the expansion of
M2 macrophages and MDSCs in GBM tissues (120, 121).

4.2 Adenosine pathway

A2AR, the immunosuppressive adenosine 2A receptor, is a
member of the G protein-coupled receptor family. A2AR is
expressed in the majority of immune cells, such as lymphocytes
and cells of myeloid origin. This receptor tightly regulates adaptive
immune responses via high affinity binding to adenosine. Their
interaction triggers the cAMP/PKA/CREB pathway resulting in a
reduced immune response (122). The adenosine/A2aR pathway was
hijacked by tumor cells to evade the immune system. Currently,
there is no evidence on the correlation between A2AR and a poor
prognosis for GBM patients. Nevertheless, A2AR expression was
reported to be a high-risk factor in the bioinformatics analysis of
glioma samples (72). A2AR was upregulated in CD4" and CD8"
glioma-infiltrating cells, its high levels being linked to the PD-1 and
CD39/CD73 axis (72).

Although CD39 and CD73 are not fully recognized as immune
checkpoints, they significantly contribute to tumorigenesis through
ecto-5'-nucleotidase activity, which metabolize ATP to adenosine,
and are commonly expressed on most B cells and monocytes and on
some T cells. Under normal conditions, ATP is localized in the
intracellular space, and its extracellular concentration grows during
neuron release or in response to ischemia or hypoxia, which induces
local inflammation (123). CD39 converts ATP to ADP and AMP,
while CD73 converts AMP to adenosine, thereby switching the
proinflammatory status of the microenvironment to the anti-
inflammatory state (124). These events contribute to tumor
growth, migration, and T cell function. CD73 expression was
typically observed in tumor macrophages and Tregs, which
directly inhibit the cytokine release and cytotoxic functions of
CD8" T cells (125). Importantly, according to the recent studies,
CD39 and CD73 are usually co-expressed in tumor cells and their
simultaneous action causes adenosine-dependent pro-tumor
immune suppression (126). Downregulation of both CD39 and
CD73 in TME correlated with a better prognosis for patients (127).

4.3 1DO1

Indoleamine-2,3-dioxygenase (IDO1) is an immune checkpoint
secreted molecule involved in tryptophane metabolism. IDO1 is
widely expressed in various healthy tissues, including lung and
gastrointestinal tract tissues, placenta, and immune cells. IDO1 can
suppress T cell function and help to maintain the immune
privileged status of some tissues like placenta and fetus (128). The
immunosuppressive IDO1 pathway is involved in converting
tryptophan into kynurenine. Tryptophan starvation activates
general control nonderepressible 2 (GCN2), a serine/threonine
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kinase that phosphorylates eukaryotic initiation factor 2ot kinase
(eIF20). These changes lead to decreased transcriptional activity
and reduced fatty acid production (129). Kynurenine, in turn,
activates the aryl hydrocarbon receptor and induces DC immune
tolerance (129). IDO1 upregulation is commonly observed in
cancer. In glioma, IDOL1 levels positively correlate with the WHO
tumor grade, IDHwt status, the mesenchymal subtype, and Treg
expansion (130). IDO1 expression depends on IFN-y release
creating a trap for tumor-infiltrating effector and cytotoxic T cells
(131). IDOL is co-expressed with PD-L1, PD-L2, PD-1, CTLA-4,
CD39, BTLA, and LAG-3. Taken together, these characteristics of
IDOI1 indicate a strong correlation between IDO1 expression and
lower overall survival of GBM patients (130).

5 Glioma immunotherapy: limitations
and perspectives

As described above, immune checkpoints regulate immune
responses, creating immunosuppressive TME and maintaining
glioma development. Nevertheless, blocking co-inhibitory
immune checkpoints can restore antitumor immune activity of
the effector cells. PD-1/PD-L1 blockers demonstrated clinical
benefits in various neoplasms (132).

As PD-1/PD-L1 monotherapy has not been successful in case of
glioma, the combinations of blockers are created with anti-PD-1 as
the first component (Table 1). Co-expression of PD-1 and CTLA-4
has been demonstrated for many tumors, which formed the basis
for combination target therapy. Dual PD-1 and CTLA-4 inhibition
demonstrated high efficiency for several tumors (133). Co-
expression profiles of PD-1 and CTLA-4 in glioblastoma gave rise
to the clinical trials of the corresponding blockers. The antibodies
were proven to be safe, but didn’t improve the survival of patients
(Table 1). As a result, an intensive development and testing of new
blockers of the alternative immune checkpoints is currently
underway. The novel blockers of LAG-3, TIM3, IDO1 and TIGIT
are emerging and under testing in clinical trials (134).

Brain tumor therapy faces several challenges which the scientific
community is focused on. Due to the high proportion of
immunosuppressive macrophages from the tumor mass,
antibodies targeting TAM receptors (such as CSF-1R) or the
chemokine recruitment system are under development (135). To
overcome the problem of BBB crossing, local chemotherapy is
preferable to systemic therapy (136). TMZ and corticosteroids
was shown to act depressively on the weakened immune system
of the patient (137). Neoadjuvant therapy could help protect the
effector cells against the negative side effects of chemotherapy.
Several groups indicated greater effectiveness of neoadjuvant
therapy compared to adjuvant one. Therapies with neoadjuvant
nivolumab (138) or pembrolizumab (139) are being actively
developed, showing promising results.

The expression of an alternative immune checkpoints and
tumor heterogeneity in expression profiles are proposed to be
treated with combined methods or multivalent inhibitors (140).
The problem of tumor heterogeneity is increasingly proposed to be
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solved by personalized treatment based on the individual
transcriptomic, metabolomic, and proteomic profiles (141). It will
allow selecting an individual combination of targeted therapies for
each patient. In addition, more and more alternative checkpoints
are involved in targeted therapy. Mutually exclusive expression of
PD-1 with B7-H3 and B7-H4 make them appealing markers and
targets for combined therapy with anti-PD-1. Evaluation of this
molecules in diagnostics may help to identify and better understand
biology of cells non-sensitive to anti-PD-1 treatment. T cells with
chimeric antigen receptors (CAR T) targeting B7-H3 in GBM are
currently in phase I trials (NCT05241392, NCT04385173,
NCT04077866, NCT05366179) (142). The antibodies to CD39
(IPH5201, NCT05742607) and CD73 (IPH5301, NCT05143970)
are in phase I trials and may also be feasible for GBM (143). The
clinical relevance of other immune checkpoints in GBM is
still disputable.

6 Conclusion

GBM is the most aggressive glioma subtype with high resistance
to therapy and an extremely low median patient survival. Low
susceptibility to treatment is caused by the formation of TME with a
remarkably complex molecular and cellular network. Along with
tumor cells, TME comprises stromal cells, epithelial cells, and,
importantly, tumor-infiltrating immune cells that fail to eliminate
the tumor. Glioma cells, TILs, and TAMs express a variety of
inhibiting molecules that contribute to the tumor immune escape
(Table 2). It is interesting that immunomodulatory proteins are
commonly present on the tumor parenchyma surface and in TME
cells. Apparently, these molecules activate the immunosuppressive
subtypes of immune cells mostly due to their preferential
infiltration or/and generation. Nevertheless, the tumor origin and
the molecular expression profile of the surrounding non-immune
cells should also be taken into account, as some protein markers
could serve as predictors of both good and bad disease outcomes,
depending on the tumor type (48, 66, 67). Thus, most of the
expressed immune checkpoints on GBM cells and their
environment are associated with a poor prognosis. LGG is
characterized by a smaller range of expressed immune
checkpoints compared to HGG. The majority of detected proteins
in LGG such as CTLA-4, B7-H3, LAG3, CD155, CD70 and CD40
were associated with worse outcomes of the disease as in HGG. The
only exception established is B7-H7 or HHLA2, whose expression is
more typical for LGG and is associated with a better prognosis.

Since the majority of the regulatory molecules described above
are co-expressed, they seem to be involved in the same complex
regulatory cascade, or even a suppressive signaling network. The
activation of this “network” triggers multiple immunosuppressive
effects causing a gradual amplification of inhibitory signals. This
affects a wide range of cell types: from healthy brain tissues and
glioma cells to cytotoxic lymphocytes in the TME and the
peripheral blood. Moreover, most molecules were associated with
the end-stage glioma, mesenchymal glioblastoma with wild-type
IDHI1. However, the mechanisms of immune checkpoints synergy
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TABLE 2 Immune checkpoint molecules involved in glioma development. Information not included in the main text is provided as references.

Co-expression

Molecule Protein family Cells expressing Pathways profiles Association and prognosis
PD-1 IgSF, CD28 family Activated T cells and B cells
. Recruiting SHP-2 followed by - . Co-expressed with majority of GBM-induced Tregs, worse
PD-L1 I - Tregs, activated Tconv, - s onali Apoptosis and exhaustion of inhibiting immune checkpoints | disease outcome
- gSF, B7 family dephosphorylation of signaling .
macrophages, tumors . Tconv, generation Tregs
molecules, sequestering CD80 and TAMs
away from CD28 by PD-L1 IDHwt hymal GBM, conf
PD-12 IgSF, B7 family DCs, macrophages, tumors PD-1, PD-L1 mesen'c ymal GBM, conferred
poor prognosis
Inhibits AKT phosphorylation, L IDHwt status and mesenchymal cell type
X X Lower Tconv activation, i
CTLA-4 IgSF, CD28 family Tregs, activated Tconv blocks CD80 and CD86 . PD-1, CD40, ICOS and TIGIT of HGG, higher Treg and TAM
X K R Treg expansion . . . -
interaction with CD28 infiltration, lower survival probabilities
IDH wild type, and mesenchymal
subtype of gliomas with higher grade
PDI, PD-L1, PD-L2, CTLA-4, i f 1 in TME
1ICOS IgSF, CD28 family Activated T cells ¢ Overexpression o COS m and
A ICOSLG and IDO1 lower ICOS expression in blood plasma
L . i Activation of both Tconv
Activation of NF-kB signaling of patients was associated with
and Tregs
lower survival
i . ICOS, PD-1, PD-L1, CTLA-4, GBM stem cells, mesenchymal phenotype
I L IgSF, B7 famil: APC, 1ls,
COSLG ¢Sk, B7 family C, somatic cells, monocytes IDO1, TIM-3 (144) and IL-10-producing T cells
Endothelial cells, fibroblasts,
Activati f JAK2/STAT3 T i 3 IDHwt and high de gli s
B7-H3 IgSF, B7 family osteoclasts, stromal cells, APC, ¢ “,’a on of ] / um-or immune escape Low correlation with B7-H4 X an '1g er grace gloma
. survival pathway survival and growth associated with lower survival
NK, activated T cells, tumor
Activation of JAK/STAT Elevated number of TAMs, positively
B7-H4 IgSF, B7 family APC, tumor pathway in IL-6- Tumor immune escape Low correlation with B7-H3 correlate with tumor grade and
dependent manner poor prognosis
B7-H3, PD-1, PD-LI, LAG-3,
VISTA IgSF, B7 family Myeloid cells, TILs TIM-3. PSGLI
> Correlates with WHO glioma grade and
VSIG3 TgSF Tumors Iflhibi.ts NF-xB Redu<.:ed proliferz?tion and VISTA, no other co-expression poor prognosis
signaling pathway cytokine production by Tconv data for GBM
ISTA, h - i
PSGL1 Selectins Myeloid cells, activated T cells Zatsa for rgB(I)\;[ CF COTEXPIESSION ' N6 data for glioma
Control of i f
Activates PISK/AkL, ERK/ bizrllon')ca(l) art:?ersl:z : ch as Positively correlates with tumor
i it Vi wi
B7-Hé IgSF, B7 family Tumors MAPK and c-Myc/RNMT OBlca processes ¢ PD-L1 (61) >y ,
N proliferation, migration, aggressiveness and poor prognosis
signaling pathways . ) .
invasion, survival etc
P t Enhanced T cell proliferati Correlated with I de gli d
B7-H7 IgSF, B7 family Endothelial cells, tumors romores . fanced & el proueration No data for glioma orrerated witlh 'ower grace glioma an
AKT phosphorylation and cytokine production prolonged overall survival
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TABLE 2 Continued

Molecule

Protein family

Cells expressing

Epithelial cells, mesenchymal

Pathways

Effects

Stimulation and proliferation of

Co-expression
profiles

TIM-3, PD-1, PD-L1, CTLA-4,

Association and prognosis

Indicates higher-grade glioma with

HVEM TNEFRSF Activates NF-xB path i d i d stromal cells i
cells, majority of immune cells ctivates K pathway HVEM-expressing cells LAG-3 and VISTA inerease u‘nmune and stromat cefls In
TME, predicts poor outcome
Recruits
SHP-1 or SHP-2 followed by Inhibition of function of
nhibition of function o!
BTLA IgSF, CD28 family Majority of immune cells dephosphorylation of signaling X HVEM, LAG-3, TIM-3 (145) No data for glioma
o BTLA-expressing cells
molecules, shielding HVEM
molecules from LIGHT
Stimulate survival and
Activates NF-xB and PI3K HVEM, PD-1, PD-L1, TIM-3,
LIGHT TNFSF T cells, macrophages ctivates KB an proliferation while interacts IDHwt and mesenchymal glioma subtype
through TNF receptor R B7-H3
with HVEM
Interrupts TCR sienaling b Associated with PD-L1" IDHwt glioma
LAG-3 IgSF Activated T cells, myeloid cells P L § 8 Y CTLA-4, PD-1 and TIM-3 cells and PD-1" TILs, considered as risk
MHCII binding (146) K
factor in GBM
Tri T cell exhausti
Gal-3 Galectins Macrophages, tumors Triggers surface LAG-3 and riggers & cef exhaustion Correlates with WHO grade of gliomas
. ' Soluble protein produced by transmits inhibiting signal in No data for glioma .
FGL1 Fibrinogen family L T cells No data for glioma
hepatocytes in liver (147)
cD70 TNESE Ma.hgnanmes, less often — IDHwt -
activated T cells and NK - mesenchymal GBM and lower survival
i Enhances activation of TAMs .
Activates NF-kB pathway . . No data for glioma
Naive and memory and T cells including Tregs
CD27 TNERSF Not widely represented in glioma TME
lymphocytes, NK, mature DCs
CDAoL th i Data is controversial, CD40 could be
, N0 other co-expression
CD40 TNFRSF B cells, macrophages and DCs P both positive (111) and negative factor
data for GBM
(112, 113).
Acti NE-«B vath Enhanced adhesion and
ctivates NF-xB pathway cytokine production Data is controversial, CD40L could show
CDAoL TNESE Activated T cells CD40, no other co-expression good prognosis (111?, bad' prognosis
data for GBM (114), or no correlation with overall
survival (113)
Related to increased metastasis of GBM,
Mali Ils, rarely epitheli
CD155 IgSE alignant cells, rarely epithelial PD-LL, PD-1 promotes TIGIT* immune
or endothelial cells . X
Shielding CD155 and CD112 cell infiltration
Macrophages, monocytes, some from CD226 by TIGIT, Depletion of T and NK cells No data for glioma, probably the same
\ \ a for glioma, pr a
CD112 IgSF P X 5 e suppressing PI3K, MAPK, and = and less cytokine production CD155 5 P v
healthy tissues role as for CD155
NF-kB pathways (148)
i 3 -L1, PD-1, 149), . . .
TIGIT IgSF, CD28 family Memory and activated T cells PD-LL, PD-1, CD47 (149) Associated with poor overall survival

Tregs, NK cells, NKT cells

CD226 (82)
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TABLE 2 Continued

Molecule

Protein family

Cells expressing

Majority of lymphoid cells,

Pathways

Inhibits Ras and downstream

Effects

Induction of M2-macrophages

Co-expression
profiles

Association and prognosis

Increased accumulation of MDSC in

DCs, tumors

STAT3 pathway

cell exhaustion

CD200 IgSF No data f i li TME, iati
8 stromal cells, tumors ERK activation (150) and MDSC o data for glioma 8 Aloma Ano association
with prognosis
Recruits Induce T cell activation and TAM and TILs infiltration, IDHwt status
CD48 IgSF APC, NK, tumors SHP-1 or SHP-2 as an inhibit TIGIT, ICOS, TIM-3 of mesenchymal subtype glioma and
inhibitor or SAP as an activator = NK cell functions worse outcome
Iransmembrane , Majority of immune cells, Releases BAT3 which activates o PD-1, LAG-3, VISTA, psGL1  _orrelates with WHO grade,
TIM-3 immunoglobulin and munin . L Multiple immune effects such mesenchymal phenotype and worse
. . especially T cells tyrosine kinase LCK and : + | and Gal-9. . ;
domain (TIM) proteins S - as apoptosis of Thl cells, CD8 prognosis for patients
inhibits TCR signaling, . .
activates IL-6/NF-kB pathwa exhaustion, apoptosis, reduced
Gal-9 Galectins Tumors', bgne marrow and in macrophages P Y cytokine production TIM-3, PD-1, PD-L1 Correlates Wiﬂ"l M2 macrophage and
lymphoid tissues MDSC expansion
G tei led " Activates cAMP/PKA/CREB
rotein-coupled receptor
A2AR P . P P Majority of immune cells pathway during PD-1, CD39, CD73 High-risk factor in glioma
(GPCR) family . .
binding adenosine
Reduced adapti
. B cells, monocytes, T cells Converses ATP to ADP . ecuced adaptive
CD39 Ectonucleotidases . immune responses CD73, IDO1
(especially Tregs) and AMP
Both are associated with worse prognosis
B cells, , T cell CD39, CD155 (151),
CD73 Ectonucleotidases e S, monocytes, 1 cells Converses AMP to adenosine (151)
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underlying glioma development are still far from being fully
understood. Most studies reported PD-1/PD-L1 and CTLA-4
signaling to be a key to further suppression of the immune
system (153). Nevertheless, anti-CTLA-4 and anti-PD-1 therapy
appear not to be as effective as was anticipated (35, 154). This fact
points to the possible existence of another “switch” molecule that
initiates the disease terminal stage. The promising candidates for
glioma therapy include some interleukins, such as IL-6 (155), IL-17
(156) or IL-20 (157), or chemokines (158).
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Glossary
APC
CNS
DC
GBM
HGG
IgSF
ITSM
LGG
MDSC
mOS
NK

Antigen-presenting cells

Central Nervous System

Dendritic cells

Glioblastoma multiforme

High-grade gliomas

Immunoglobulin superfamily
Immunoreceptor tyrosine-based switch motif
Low-grade gliomas

Myeloid-derived suppressor cells

Median overall survival

Natural killer cell
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RT
SHP-2
TAM
Tconv
TCR
TIL
TME
T™Z
TNF
TNFR

Treg

10.3389/fimmu.2025.1639521

Radiation Therapy

Src homology region 2 domain-containing phosphatase-2

Tumor-infiltrating macrophages
Conventional T cells

T-cell receptor
Tumor-infiltrating lymphocytes
Tumor microenvironment
Temozolomide

Tumor necrosis factor

Tumor necrosis factor receptor

Regulatory T cell

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1639521
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Immune checkpoints in immune response to glioma: two sides of the same coin
	1 Introduction
	2 Immunoglobulin superfamily immune checkpoints
	2.1 PD-1 pathway
	2.2 CTLA-4
	2.3 ICOS/ICOSLG
	2.4 B7-H3
	2.5 B7-H4
	2.6 VISTA
	2.7 B7-H6
	2.8 B7-H7
	2.9 LAG-3
	2.10 CD155/CD112 pathways
	2.11 CD200
	2.12 CD48
	2.13 CD47
	2.14 CD277

	3 TNF – TNFR superfamily
	3.1 HVEM and HVEM-mediated signaling
	3.2 CD70 – CD27
	3.3 CD40 – CD40L

	4 Other immune checkpoints/immune controlling molecules and mechanisms
	4.1 TIM-3
	4.2 Adenosine pathway
	4.3 IDO1

	5 Glioma immunotherapy: limitations and perspectives
	6 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References
	Glossary




