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Gliomas are aggressive brain tumors of glial origin accounting for about 80% of

the central nervous system (CNS) malignancies. Glioma cells are known to form a

highly immunosuppressive tumor microenvironment (TME) capable of inhibiting

T cell activation and protecting tumors from elimination by the immune system.

One of the predominant immune inhibitory mechanisms in the TME are immune

checkpoints: a complex system of membrane-bound ligands on tumor and

immune cells that interact with surface receptors on T lymphocytes and affect

their activation and cytotoxicity. There is mounting evidence regarding the role

of immune checkpoints expressed in gliomas, in particular, their most aggressive

form – glioblastoma multiforme (GBM). In this review, we discuss the immune

checkpoints with proven expression in gliomas, their ligands, related signaling

pathways, co-expression profiles, and the effects of immune cells on antitumor

activity. We collected data not only on the canonical immune checkpoints (e.g.

PD-1/PD-L1 or CTLA-4) but also on novel and alternative ones including soluble

mediators and enzymes. We review data describing the correlation of immune

checkpoint expression with patient survival as well as co-expression with other

molecules involved in glioma development. Where possible, we analyzed the

differences between immune checkpoints in low-grade (LGG) and high-grade

gliomas (HGG). Negative effects of several immune checkpoints on T cells could

be eliminated by therapeutic monoclonal antibodies that block the interaction

between checkpoint ligands and receptors. Therefore, alongside with traditional

approaches and T cell-based immunotherapy, the antibody-mediated blockade

of immune checkpoints could be considered as a potentially promising

therapeutic approach against gliomas.
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1 Introduction

Glioma is the most common type of primary CNS tumor.

Gliomas are classified into four grades based on both histological

features and molecular markers (1). Grade I and II gliomas are

defined as low-grade gliomas (LGG), while high-grade gliomas

(HGG) include grade III and IV gliomas. LGG patients show a

better prognosis and survival (up to 13 years) (2). However, LGGs

often develop into HGG (3). The 2-year survival rate of HGG

patients does not exceed 20% (4). Grade IV glioma is usually called

glioblastoma (GBM) and is characterized by its aggressiveness,

therapy resistance, and a very high risk of relapse (5). The 5-year

survival rate for GBM patients is only 5.6% (1). The incidence of

glioma and GBM is estimated at 5.89 and 3.26 cases per 100 000

people, respectively, depending on gender, age, and race (1).

The established gold standard of treatment for patients with

new cases of GBM is known as the Stupp protocol and includes

surgical resection, radiation therapy, and chemotherapy with the

alkylating agent temozolomide (TMZ) (6). The treatment of GBM

begins with a maximal surgical resection that removes the majority

of tumor cells and provides a material for proper histologic

diagnosis and molecular testing. Surgical resection is followed by

six weeks of radiation therapy (60 Gray [Gy] in 2-Gy fractions) and

concomitant daily TMZ (75 mg/m2), followed by six cycles of

adjuvant TMZ (150–200 mg/m2). The Stupp protocol has remained

unchanged for the past 18 years and typically provides patients with

an overall survival of less than two years. Despite these first-line

treatments, GBM almost always recurs (5).

GBM resistance to therapy and almost inevitable relapses can be

explained by its specific anatomic location (CNS) and high invasive

potential which makes its complete surgical resection almost

impossible (7). The blood-brain barrier is a hurdle for GBM drug

therapy with chemotherapeutics or monoclonal antibodies (8).

High heterogeneity of tumors from different patients and of GBM

cells within a single particular tumor makes the development of

efficient target drugs against GBM a compelling challenge (9).

Gliomas have been shown to possess a well-developed

immunosuppressive molecular machinery (reviewed in 10). They

are prone to infiltration by immune cells but, contrary to

expectations, this has an opposite effect promoting tumor

progression. The most viable explanation lies in the nature of

GBM-infiltrating cells, such as various macrophage subsets.

Gliomas have been demonstrated to release a set of molecules

that modulate immune responses (11). GBM secretes extracellular

vesicles and factors, such as ARG1 or TGF-b, which recruit

macrophages and switch the polarization to protumor M2

phenotype, forming tumor-infiltrating macrophages (TAM) (11).

The enhanced regulatory T cells (Treg) infiltration and expansion in

TME was also detected. In contrast, effector cell infiltration is

remarkably reduced. The stimulation of the immunosuppressive

populations of immune cells, at the same time, inhibits, exhausts

and promotes apoptosis of tumor-reactive immune cells (11). In

this review, we briefly describe immune checkpoint molecules

found in glioma cells, glioma microenvironment or the in-

patients’ biological fluids. We focus on the role of each immune
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checkpoint molecule in glioma growth and immune escape. In

addition, we discuss the evidence in favor of the impact of immune

checkpoint expression levels on glioma patients’ survival, both in

case of LGG and HGG, where possible. Therefore, we would like to

emphasize that therapeutic approaches targeting the immune

checkpoints have to be carefully evaluated to avoid any potential

complications before transition from bench to bedside.
2 Immunoglobulin superfamily
immune checkpoints

2.1 PD-1 pathway

Immunoglobulin superfamily surface molecules are implicated

in the propagation of the stimulatory and inhibitory signals in the

immune cell lineages (Figure 1). The most widespread and

thoroughly described immune checkpoint involves the

Programmed cell death 1 (PD-1) and its ligand, Programmed cell

death 1 ligand 1 (PD-L1, B7-H1). The interaction between PD-1 on

the T cel l surface and its l igand mediates mult ip le

immunosuppressive effects such as apoptosis and functional

exhaustion of conventional T cells (Tconv), reduced cytokine

secretion, and generation of Tregs and TAMs (12). PD-L1 is

expressed in numerous neoplasms, including brain tumors. PD-

L1 overexpression was observed in about 90% of GBM tumor cells

and GBM-associated macrophages (13). Moreover, GBM-

infiltrating CD4+ and CD8+ lymphocytes have been shown to

express both PD-1 and PD-L1, which indicates induction of Tregs

and reprogramming of Tconv to the self-inhibiting lymphocytes

(14). Tumor PD-L1 can be exposed on the surface of GBM-derived

extracellular vesicles and delivered to the distant sites by

bloodstream (15). The cytoplasmic region of PD-1 contains the

immunoreceptor tyrosine-based switch motif (ITSM), which

recruits Src homology region 2 domain-containing phosphatase-2

(SHP-2). Recruited SHP-2 mediates dephosphorylation of TCR-

associated CD3 and ZAP70 and inhibits CD28 co-stimulatory

signals. It leads to the deactivation of pathways such as PI3K/Akt

and NF-kB, which results in reduced transcriptional activity,

inactivation of the pathways downstream of the T-cell receptor

(TCR) and lower IL-2 production (16). Another mechanism of PD-

1/PD-L1 axis involves shielding the costimulatory molecules CD80

by PD-L1. PD-L1 has been shown to interact with CD80, thereby

preventing its binding to CD28, which is required for the

stimulation of T cells by antigen-presenting cells (APCs) (17).

The effects of PD-L2 (CD273), the second PD-1 ligand, on the

immune activation are similar to PD-L1, but still not the same.

However, unlike PD-L1, PD-L2 has only one receptor – PD-1. PD-

L2 is not as widespread in tumors, which indicates its secondary role in

forming the inhibitory TME (18). Nevertheless, PD-L2 overexpression

has been detected in HGG and is associated with the wild-type status of

isocitrate dehydrogenase 1 (IDHwt) and a highly invasive

mesenchymal GMB phenotype. To sum up, overexpression of PD-1

and both ligands correlate with a large count of GBM-induced Tregs

and a bad prognosis for patients (19–22).
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2.2 CTLA-4

Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) plays a

key role in tumor immune reactions with PD-1. CTLA-4 is

homologous to the costimulatory T cell receptor CD28 and binds

to the same ligands CD80 and CD86, but with a significantly higher

affinity (23). Thus, tumor-infiltrating lymphocytes (TILs) express

CTLA-4 to disrupt the costimulatory signaling by shielding CD80

and CD86 from CD28 in a manner similar to PD-L1 (23). At a

molecular level, CTLA-4 signaling inhibits AKT phosphorylation

and activation of the transcription factors, such as NF-kB, AP-1,
and NF-AT, induced by co-stimulatory CD28 (24). Blocking
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CTLA-4 by monoclonal antibodies protects T cells from negative

regulation and restores antitumor immune reactions. This makes

CTLA-4 inhibitors promising antitumor agents, since CTLA-4 is

involved in cancer development, including brain tumors (Table 1)

(35). Elevated CTLA-4 expression was detected in HGG patients

mostly characterized by the IDHwt status and mesenchymal cell

type. CTLA-4 overexpression leads to a lower survival of HGG and

LGG patients. There is a strong correlation of CTLA-4 levels and

enhanced tumor infi ltration with Treg and inhibitory

macrophages. CTLA-4 expression also correlates with the

expression of other immune checkpoints such as PD-1, CD40,

ICOS, and TIGIT (36).
FIGURE 1

Receptor–ligand interactions (gray arrows) of immune checkpoints from the immunoglobulin superfamily between T cells and tumor cells or TAM
can mediate T cell responses. These interactions can activate co-stimulatory signals (green arrows) or deliver inhibitory signals (red square arrows).
The signaling pathways involved in activation or inhibition are indicated. Multiple effects on signaling pathways are shown by black arrows with green
(activation) or red (inhibition) circles. HVEM and Gal-3, which interact with BTLA and LAG-3, respectively (gray dotted arrows), belong to other
protein families and are not presented in this figure.
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TABLE 1 Clinical trials of immune checkpoint inhibitors for glioma therapy.

Median overall survival
ths

Comments References

mOS was 32.1 months in placebo
group; did not improve survival

(25)

TMZ + RT demonstrated a longer
mOS (14.9 months)

(26)

mOS was 10.0 months for
bevacizumab (anti-VEGF)
control group

(27)

– (28)

mOS was 8.8 months for
combined therapy

(29)

20% patients remained alive with
ongoing survival ranging from 15.7
to 34.9 months

(30)

There was no apparent
improvement in survival in
comparison with Stupp protocol
(15 months)
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Name Target Examples of clinical trials Tumor description
(mOS), mon

Nivolumab PD-1

NCT02667587: An Investigational Immunotherapy Study of
Temozolomide Plus Radiation Therapy With Nivolumab or
Placebo, for Newly Diagnosed Patients With Glioblastoma
(GBM, a Malignant Brain Cancer)

Primary GBM, MGMT-
Methylated promoter

28.9

NCT02617589: An Investigational Immunotherapy Study of
Nivolumab Compared to Temozolomide, Each Given with
Radiation Therapy, for Newly-diagnosed Patients with
Glioblastoma (GBM, a Malignant Brain Cancer)
(CheckMate 498)

Primary GBM, unmethylated
MGMT promoter

13.4

NCT02017717: A Study of the Effectiveness and Safety of
Nivolumab Compared to Bevacizumab and of Nivolumab
With or Without Ipilimumab in Glioblastoma Patients
(CheckMate 143)

First diagnosis of unmethylated
MGMT GBM or first recurrence
of GBM

9.8

Pembrolizumab PD-1

NCT02054806: A Study of Pembrolizumab (MK-3475) in
Participants With Advanced Solid Tumors (MK-3475-028/
KEYNOTE-28)

Recurrent PD-L1-positive GBM 13.1

NCT02337491: Pembrolizumab +/- Bevacizumab for
Recurrent GBM

First or second relapse of GBM or
gliosarcoma if the original tumor
histology was LGG or GBM

10.3

Durvalumab PD-L1
NCT02336165: Phase 2 Study of Durvalumab (MEDI4736)
in Patients With Glioblastoma

Primary GBM with unmethylated
MGMT promoter, first or second
recurrence of GBM

15.1

Avelumab PD-L1
NCT03047473: Avelumab in Patients With Newly
Diagnosed Glioblastoma Multiforme (SEJ)

Newly diagnosed GBM or lower
grade astrocytoma that has been
upgraded to a histologically
verified GBM

15.3

Ipilimumab CTLA-4

NCT03367715: Nivolumab, Ipilimumab, and Short-course
Radiotherapy in Adults With Newly Diagnosed, MGMT
Unmethylated Glioblastoma

Newly Diagnosed MGMT
Unmethylated Glioblastoma

16.85

NCT02311920: Ipilimumab and/or Nivolumab in
Combination With Temozolomide in Treating Patients With
Newly Diagnosed Glioblastoma or Gliosarcoma

Newly diagnosed GBM after
resection and chemoradiation

20.7

Tremelimumab CTLA-4
NCT02794883: Tremelimumab and Durvalumab in
Combination or Alone in Treating Patients With Recurrent
Malignant Glioma

Grade III or IV glioma
7.246 (Tremelim
11.71 (Durvalum
7.703 (Mix)

BMS-986016 LAG-3
NCT02658981: Anti-LAG-3 Alone & in Combination w/
Nivolumab Treating Patients w/Recurrent GBM

Primary progressive or recurrent
GBM or gliosarcoma
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2.3 ICOS/ICOSLG

ICOSLG (B7-H2, or CD275), the ligand of the inducible T cell

costimulatory protein (ICOS), is expressed on the surface of somatic

cells and APCs. Despite the positive costimulatory role of the ligand,

the outcome of ICOS/ICOSLG binding depends on TME. During

tumor development, ICOSLG can both promote and suppress tumor

progression, since it activates Tconv cells and, at the same time, induces

Tregs through NF-kB signaling (37). The TME is characterized by

increased expansion and infiltration of Tregs and suppression of Teff

functions (11), therefore, ICOSLG has a greater effect on Treg. ICOSLG

is expressed on GBM tumor cells, its upregulation being associated

with the presence of glioblastoma stem cells and IL-10-producing T

cells as well as the mesenchymal phenotype. As a result, patients with

ICOSLG overexpression have a lower overall survival (37). These data

are in line with evidence that ICOS is overexpressed in glioma-

infiltrating Tregs, as well as with the established link between high

ICOS levels and a bad prognosis (38). Nevertheless, protein

distribution in the body is also important. For instance, low ICOS

levels in the blood plasma of GBMpatients was associated with a global

immunosuppression and the lower overall survival (39). ICOS/

ICOSLG was shown to be co-expressed with a number of inhibitory

immune checkpoints such as PD-1/PD-L1/PD-L2 (38).
2.4 B7-H3

B7 homolog 3 (B7-H3, CD276) is a type I transmembrane protein

which exerts immunosuppressive activity by triggering T cell

exhaustion. In healthy tissues, B7-H3 can be found on resting

fibroblasts and osteoclasts, endothelial cells, activated T cells, natural

killer cells (NK) and APCs. The inhibitory function of B7-H3 is widely

used by tumors, including gliomas. Patients with IDHwt HGG have

high levels of B7-H3 (40, 41). B7-H3 overexpression also correlates

with a lower survival in LGG patients (42). Duerinck et al. studied the

mutually exclusive expression profiles of B7-H3 and PD-L1 and

suggested B7-H3 to be the major factor responsible for the failure of

anti-PD-1 and anti-CTLA-4 HGG therapy (35).

The B7-H3 signaling cascade involves the activation of JAK2/

STAT3 survival pathway leading to tumor growth and epithelial–

mesenchymal transition in glioma cells. The exosomal transport of

B7-H3 can also enhance tumor aggressiveness and facilitate

immune escape in medulloblastoma (43) and neuroblastoma (44).

Nevertheless, the role of B7-H3 in the immune response against

GBM remains controversial. The receptor for B7-H3 has not been

identified yet, but it is mostly likely present on the surface of

activated CD4+ and CD8+ cells (45, 46). B7-H3 can have several

candidate receptors, since B7-H3 was shown to act not only as an

inhibitory molecule, but also as a stimulatory one (47).
2.5 B7-H4

B7 homolog 4 (B7-H4, VTCN1, B7x, B7S1) is a type I

transmembrane protein of B7 family. Normally, B7-H4 is
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expressed by dendritic cells (DCs) and APCs. Although the B7-

H4 overexpression was detected in several types of cancer, it is not

considered as a typical tumor marker (48). B7-H4 levels have been

shown to correlate positively with a tumor grade and a poor

prognosis in glioma patients (49). B7-H4 production in GBMs

has been shown to depend on IL-6 signaling via IL-6/JAK/STAT

pathway activation and is associated with an elevated number of

TAMs (50). B7-H4 levels does not correlate with expression of other

immune checkpoints. For instance, B7-H4 and B7-H3 co-

expression was observed only in 10% of GBM cases. Interestingly,

B7-H4 and PD-L1 were co-expressed only in 2% of gliomas, making

it most reasonable to assume a possible functional redundancy of

these molecules (51). Similar, to B7-H3, the receptor for B7-H4 is

still unknown.
2.6 VISTA

VISTA (V-domain Ig suppressor of T cell activation), also

known as B7-H5, is highly expressed in myeloid cells and TILs.

VISTA acts as an activating ligand for APCs and an inactivating one

for T cells (41). VISTA suppresses T cell proliferation and cytokine

production by inhibiting NF-kB pathway (52). VISTA is commonly

expressed in tumors and positively correlates with the WHO tumor

grade and a poor prognosis for glioma patients (53). Moreover,

VISTA is often co-expressed along with other inhibitor immune

checkpoints such as B7-H3, PD-1, PD-L1, LAG-3, TIM-3 (54).

To date, two receptors for VISTA have been identified. VSIG-3

(IgSF11) is a member of the immunoglobulin superfamily which is

highly expressed in gliomas. VSIG-3 is usually associated with high-

grade malignancies and a worse outcome (55). The interaction

between VSIG-3 and VISTA inhibits T cell proliferation and

production of proinflammatory cytokines and chemokines (56).

PSGL1 (selectin P ligand), also known as SELPLG or CD162, is

another receptor for VISTA. It has been suggested that PSGL1

stimulation may inhibit AKT and ERK signaling induced by TCR

stimulation in some tumors. PSGL1 was detected on HGG and is

co-expressed with VISTA (55). However, PSGL1 has not been

studied thoroughly in the context of brain tumors.
2.7 B7-H6

B7 homolog 6 (B7-H6), or NCR3LG1, is a B7 family immune

checkpoint protein which acts as an endogenous costimulatory

ligand. The extracellular domain of NKp30 on the surface of NK

cells is a receptor for the extracellular part of B7-H6 (57). B7-H6

binding to NKp30 induces NK cells activation. This protein is

almost absent in normal tissues and mononuclear cells from the

peripheral blood of healthy donors; however, it can be detected on

the surface of neutrophils and proinflammatory macrophages in the

presence of proinflammatory cytokines such as TNF- a, IL-1b, or
TLR ligands (58). B7-H6 is also selectively expressed on a range of

brain tumor cells such as human neuroblastoma (59), astrocytoma

(60), and glioma (61). B7-H6 overproduction positively correlates
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with tumor aggressiveness and a poor prognosis. In gliomas, B7-H6

regulates a spectrum of biological processes such as proliferation,

migration, invasion, survival, and cell cycle control by activating

the PI3K/Akt, ERK/MAPK, and c-Myc/RNMT signaling

pathways (62).
2.8 B7-H7

B7 homolog 7, also known as HHLA2, is not expressed in healthy

tissues, except for the placenta, gut, kidney, breast tissues, and

macrophages. HHLA2 is absent in the brain, even in glial cells and

neurons; however, it was detected in endothelial cells. HHLA2 is highly

expressed in tumors, and at low levels, it was found in LGGs and, less

frequently, in HGGs (63). HHLA2 expression is downregulated with

tumor progression. Moreover, HHLA2 overexpression is associated

with the prolonged overall survival in GBM patients (63). HHLA2 was

shown to interact with CD28H and stimulate T cell proliferation and

cytokine production via AKT phosphorylation (64). Nevertheless, there

is evidence indicating that high B7-H7 expression in other cancer types

is associated with a poor prognosis. For example, HHLA2 was found to

be highly expressed in osteosarcoma and colorectal carcinomas and

positively correlated with metastasis and a poor prognosis (65, 66). It is

assumed that HHLA2 has at least two ligands with opposing functions,

making it in a way similar to B7-H3. CD28H or TMIGD2 is the

confirmed HHLA2 ligand with stimulatory activity, while the second

ligand with an inhibitory activity has not been identified yet (67).
2.9 LAG-3

LAG-3 (Lymphocyte-activation Gene-3, or CD223) is expressed

on microglial cells (68). LAG-3 is closely related to CD4 and can

bind to MHC II (69). LAG-3 triggers CD4+ T cell exhaustion and

limits T cell proliferation by competing for Zn ions with Lck causing

its dissociation from complex with TCR. Cleavable by ADAM10/17

proteases cytoplasmic C-terminus of LAG-3 contains domains rich

in glutamic acid which are responsible for acidification and

withdrawal of Zn. LAG-3 presence in TME was associated with

an enhanced CD8+ T cells infiltration, PD-1+ TILs and PD-L1+

IDHwt glioma cells (70). LAG-3 overexpression correlated with a

poor prognosis in LGG patients (71). However, the role of LAG-3 in

HGG remains controversial. TILs in GBM TME were shown to

express higher LAG-3 levels compared to lymphocytes from healthy

donors (72). LAG-3 co-expression with CTLA-4, PD-1, and TIM-3

(73) is considered to be a risk factor in GBM patients based on

bioinformatics studies (74). The role of LAG-3 alone on survival

and prognosis in GBM patients is not clear.

The first described LAG-3 ligand is galectin-3 (Gal-3), a b-
galactose-binding lectin involved in proliferation, cell adhesion, and

apoptosis. Although galectin-3 is a proven immunomodulator, it is

also considered as a glioma-related marker. Gal-3 expression was

reported to correlate with the WHO grade of gliomas (75).

Fibrinogen-like protein 1 (FGL1) is another functional LAG-3
Frontiers in Immunology 06
ligand. Soluble FGL1 from the blood stream induces the surface

LAG-3 and transmits an inhibiting signal to T cells (76). However,

the role of FGL1 in glioma development is very complex and poorly

understood (77).
2.10 CD155/CD112 pathways

CD155, also known as the poliovirus receptor (PVR), is a

glycoprotein which belongs to the immunoglobulin superfamily.

Its expression is inherent in malignant cells and is rarely found in

normal tissues, except epithelial or endothelial cells. HGGs,

including GBMs, are typically associated with CD155

overexpression (78) and with a lower survival rate. The same

tendency was detected for LGG (79). CD155 has emerged as a

tumor promoting antigen, upregulated on GBM and related to

increased GBM aggressiveness and metastasis (80). The functions of

this receptor were shown to depend on engaging ligands. It can

activate NK cells by binding CD226 (T lineage specific activation

antigen 1, TLisA1) and CD96 (Tactile) and, on the contrary, inhibit

them by triggering TIGIT (81). In GBM, CD155 promotes TIGIT+

immune cell infiltration and the transition of the circulating NK

cells to TIGIT+/CD226- phenotype, while normally TIGIT+ NK

cells are absent in the CNS and peripheral blood (82).

TIGIT is a co-inhibitory receptor which could bind both CD155

(with high affinity) and CD112 (nectin-2, with low affinity) (83). It is

expressed on the surface of immune cells such as memory and

activated T cells, Tregs, NK, and NKT cells. TIGIT binds CD155

with higher affinity compared to CD226, preventing NK cell

stimulation and function via the CD155/CD226 pathway (84).

CD112 is another co-inhibitory NK cell receptor, and its binding to

TIGIT also contributes to inhibiting NK cells. This prevents IFN-g
secretion and cytolytic granule release by NK-cells (85). TIGIT is

overexpressed in GBM TILs and peripheral blood T cells of patients

with GBM as compared to lymphocytes from healthy donors.

Nevertheless, in most patients, co-stimulating factor CD226 was also

overexpressed in GBM-infiltrating immune cells along with TIGIT

(82). It implies the possible competition for the ligand with prevalent

CD155/TIGIT binding and subsequent inhibition of NK cell function

(82). The co-expression of CD155 and PD-L1 was confirmed for

tumor cells and TAMs (85), while TIGIT and PD-1 were upregulated

on TILs and associated with poor overall survival (82, 86).
2.11 CD200

CD200, another member of the immunoglobulin superfamily,

has recently been recognized as an immune checkpoint. This protein

is expressed on various immune and stromal cells as well as tumor

cells. In gliomas, CD200 facilitates tumor growth both in vivo and in

vitro. Furthermore, the soluble form of this protein is carried to the

cervical lymph nodes through the cerebral spinal fluid contributing to

the suppression of lymphocytes (87). Soluble CD200 in the patient’s

bloodstream contributes to systemic immunosuppression. The main
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mechanism of CD200-mediated immunosuppression is likely to be

the switching of macrophage polarization toward the M2 phenotype

and inducing myeloid-derived suppressor cells (MDSC) in TME (88).

In GBM patients, a high plasma level of CD200 was associated with

an increased accumulation of MDSCs (88). The role of this protein in

GBM development is actively investigated, and to date, there are no

studies reporting the link between CD200 expression and the

prognosis in patients with brain tumors, further studies are

required for better understanding of diagnostic/therapeutic

potential of this molecule.
2.12 CD48

CD48 is an immune checkpoint, also known as the B-

lymphocyte activation marker (BLAST-1) or signaling

lymphocytic activation molecule 2 (SLAMF2). CD48 is expressed

on cells of hematopoietic origin, especially on APCs. CD48 is a key

molecule in immunological synapses and is essential for co-

stimulation. It binds to CD2 and promotes T cell activation, as

well as the function of granulocytes and NK cells (89). Despite the

ability to activate immune cells, CD48 binding with the high-affinity

receptor 2B4 (CD244, SLAMF4) results in NK cell dysfunction.

CD48 expression was shown for several oncologic pathologies,

particularly glioblastoma (90). CD48 upregulation in gliomas was

associated with enhanced macrophage and T cell infiltration, the

IDHwt status of mesenchymal subtype gliomas and a worse

outcome. CD48 has a strong association with most checkpoints

such as TIGIT, ICOS, TIM-3, but not with CTLA-4 and PD-L1 (91).
2.13 CD47

CD47, also known as integrin-associated protein (IAP), is a

transmembrane protein from the immunoglobulin superfamily.

Normally, CD47 regulates phagocytosis through the interaction

with SIRP-a receptors on macrophages (92). Several malignancies

including gliomas express CD47. CD47 signaling was associated

with AKT phosphorylation and PI3K/Akt pathway which resulted

in tumor maintenance and survival (93). CD47 was associated with

glioma stem-like cells and predicts a worse prognosis for

patients (94).
2.14 CD277

CD277 or BTN3A1 (Butyrophilin subfamily 3 member A1) is a

member of the immunoglobulin superfamily typically expressed on

T cells, B cells, NK, DCs, and tumor cells (95). The role of CD277 in

tumor progression is still poorly understood, but it can bind

particular variants of gd TCR causing their activation and

cytotoxicity. There is a study indicating a carcinogenic role of

CD277 in gliomas. According to (96), IDHwt glioblastomas

expressed higher CD277 levels compared to WHO grade II and

III astrocytomas and oligodendrogliomas. CD277 upregulation was
Frontiers in Immunology 07
associated with multiple effects on immune system including

increased macrophage, B cell, and T cell infiltration as well as

CD8+ T cell exhaustion (96). Moreover, CD277 was co-expressed

with TIM-3, IL-10, and FoxP3 which correlated with a poor

prognosis. CD277-dependent activation of the IL-6/JAK/STAT3

pathway may explain its co-expression with TIM-3, which activates

the same pathway in cancer cells (96). However, unexpectedly,

CD277 in GBMs was reported to trigger the anti-tumor immune

responses in gd T cells (97).
3 TNF – TNFR superfamily

3.1 HVEM and HVEM-mediated signaling

HVEM, or TNFRSF14, belongs to the tumor necrosis factor

receptor (TNFR) family. HVEM is expressed on epithelial and

mesenchymal cells and on resting lymphocytes, Tregs, NK and

myeloid cells. HVEM was shown to activate as well as inactivate

immune responses depending on the ligand (98). HVEM has

several ligands: BTLA, CD160, gD, LIGHT, and LTa3 (98). The

interaction between HVEM and BTLA or CD160 inhibits T cell

functions, whereas its binding to LTa or LIGHT results in T cell

activation (99). The expression of HVEM, LIGHT and BTLA was

detected in gliomas (100). Aggressive subtypes of gliomas were

shown to upregulate HVEM. Using immunohistochemistry, HVEM

in gliomas was found predominantly in the microvascular

proliferation region and at the edges of the necrotic zone (100).

High HVEM levels predict a poor outcome (100). HVEMhigh GBM

tumors tend to contain larger numbers of immune and stromal cells

in glioma microenvironment compared to the tumors with a low

HVEM level. In glioblastoma samples, HVEM expression was

shown to coincide with TIM-3, PD-1, PD-L1, CTLA-4, LAG-3,

and VISTA (100).

HVEM is the only reliably identified BTLA receptor. BTLA

(also known as CD272) is a transmembrane glycoprotein and the

main inhibitory receptor on T cells. BTLA is found on the surface of

immune cells, such as B and T lymphocytes, NK and NKT cells,

myeloid cells. The interaction between BTLA and HVEM induces a

branching signal, which promotes a proinflammatory signal by

activating NF-kB (100), and, simultaneously, passes an inhibitory

signal by recruiting tyrosine phosphatases SHP-1 or SHP-2,

similarly to PD-1 (101). BTLA and HVEM molecules interact

when expressed in cis on the membrane of the same cell or in

trans on different cells (102). Interestingly, upon the cis-interaction

of BTLA and HVEM, the inhibitory function of BTLA prevails over

the activating function of HVEM (102). Moreover, BTLA/HVEM

cis-binding shields HVEM molecules from BTLA molecules in

trans as well as from the stimulation by other activating ligands

such as LIGHT (103). Currently, the role of BTLA in glioma

development is not well studied and requires future research.

LIGHT, also known as TNFSF14, is another TNF superfamily

member and a ligand for HVEM. As mentioned above, there is a

strong correlation between HVEM and LIGHT expression in

glioma microenvironment. LIGHT expression directly correlates
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with the glioma grade (104). Moreover, LIGHT overexpression has

been associated with a highly aggressive tumor phenotype (IDHwt

and mesenchymal subtype) (104). In GBM patients, it correlates

positively with poor survival. There is evidence that LIGHT

promotes tumor growth in gliomas in a HVEM-dependent

manner (105). The LIGHT/HVEM pathway, similarly to the

canonical TNF/TNFR pathway, activates NF-kB and PI3K

through the TNF receptor-associated factors, triggering survival

signaling and transcription of the inflammatory genes (Figure 2A)

(98). LIGHT was found to be co-expressed with PD-1/PD-L1, TIM-

3, B7-H3, and other inhibitory immune checkpoints (104).
3.2 CD70 – CD27

CD70 is a well-studied TNF-like ligand that functions as a co-

stimulatory molecule for T and B cells. CD70 is usually not

expressed in a healthy tissue, except for peripheral blood
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leukocytes. It contributes to homeostatic signaling supporting

lymphocyte survival in the absence of signals from TCR (106).

CD70 levels are increased in several malignancies including 10% of

primary LGGs and 35% of GBMs. GBMs and LGGs expressing

CD70 have similar molecular characteristics and patient survival

rates (107). Elevated CD70 has been linked to a poor prognosis in

LGG patients with IDHwt. Most GBMs expressing CD70 have a

mesenchymal phenotype, which negatively correlates with patients’

survival (107).

CD70 binds to the receptor CD27. CD27 is also a member of the

TNFR family and is often presented on naïve and memory

lymphocytes, NK cells, and mature DCs (108). As a co-

stimulatory immune checkpoint, CD27 plays an essential role in

survival and activation of T cells. CD70 expression stimulates tumor

infiltration with immune cells, but it has no effect on CD27

expression. The possible explanation of this phenomenon lies in

the CD70-dependent infiltration with macrophages instead of T

cells (109) or the activation and generation of tumor Tregs triggered
FIGURE 2

Receptor–ligand interactions (gray arrows) of immune checkpoints from the TNF-TNFR superfamily (A) and other protein families (B) between T
cells or NK cells and tumor cells or TAM. In most cases, these interactions induce co-stimulatory signals (green arrows) predominantly via NF-kB
pathway. Immune checkpoints from other families could influence TCR signaling (black arrows) or maintain functions of immunosuppressive cells
(green arrows). Multiple negative effects of kynurenine on APC functions are shown by black arrows with red circles. BTLA and LAG-3, which interact
with HVEM and Gal-3, respectively (gray dotted arrows), belong to IgSF and are presented in Figure 1.
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by CD27/CD70 (110). It is also possible that CD70 signaling can be

mediated by an unknown inhibitory receptor on the T cell

surface (107).
3.3 CD40 – CD40L

The CD40 glycoprotein and its ligand CD40L (CD154) are

members of the TNF and TNFR superfamilies. CD40L is primarily

expressed by the activated CD4+ T cells. CD40 expression is

triggered by CD40L binding and is typical of B cells,

macrophages, and DCs. Still, the roles of both receptor and ligand

in tumor progression remain disputable. CD40 and its ligand were

shown to be co-expressed on the surface of GBM cells (111).

Interestingly, WHO grade III gliomas express higher CD40 and

CD40L levels compared to GBMs. It was noted that the

overexpression of both proteins could be associated with better

overall and progression-free survival of GBM patients after tumor

resection (112). However, high CD40 expression was detected in

glioma biopsy samples and correlated with lesions and an increased

vascularization (112). In another study, lower overall and

progression-free survival rates were detected in LGG patients as

well as patients with GBM expressing IDHwt and high levels of

CD40. CD40 was upregulated in secondary gliomas as contrasted

with primary gliomas. Werner and colleagues (113) did not find any

correlation between CD40L expression and the overall survival rate;

however, recent studies pointed out the negative correlation

between CD40L levels and the disease outcome (114).
4 Other immune checkpoints/immune
controlling molecules and
mechanisms

4.1 TIM-3

T cell immunoglobulin domain and mucin domain protein 3 or

TIM-3, also known as Hepatitis A virus cellular receptor 2

(HAVCR2), is a surface receptor found in most lymphocytes and

cells of myeloid origin. TIM-3 promotes CD8+ exhaustion and

apoptosis, reduces IL-2 and IFN-ɣ production (115). TIM-3 is one

of the most upregulated co-inhibitory immune checkpoints in

cancer, especially in glioma. There is a proven positive correlation

between TIM-3 and the WHO grade, the mesenchymal phenotype,

and a worse prognosis (116). TIM-3 promotes tumor progression

by inducing the macrophage migration and tumor-promoting M2

polarization via the IL-6/NF-kB pathway (116). TIM-3 is co-

expressed with PD-1, LAG-3 (117), VISTA, PSGL1, and Galectin-

9 (Gal-9) (55).

Gal-9 is the member of the galectin protein family. Gal-9

expression is typical of glioma and depends on the WHO grade

and TIM-3 levels (118). Gal-9/TIM-3 interaction has been shown to

induce exhaustion and apoptosis of Th1, but not Th2 cells

(Figure 2B). Gal-9 also binds to PD-1 and shields it from PD-L1,

promoting the resistance of TIM-3-positive T cells to cell death
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(119). Gal-9 co-expression with PD-L1 and their co-localization in

some GBM cases serve as further evidence for the link between

TIM-3/Gal-9 and PD-1/PD-L1 pathways as supported by published

data (118). Gal-9 also was shown to correlate with the expansion of

M2 macrophages and MDSCs in GBM tissues (120, 121).
4.2 Adenosine pathway

A2AR, the immunosuppressive adenosine 2A receptor, is a

member of the G protein-coupled receptor family. A2AR is

expressed in the majority of immune cells, such as lymphocytes

and cells of myeloid origin. This receptor tightly regulates adaptive

immune responses via high affinity binding to adenosine. Their

interaction triggers the cAMP/PKA/CREB pathway resulting in a

reduced immune response (122). The adenosine/A2aR pathway was

hijacked by tumor cells to evade the immune system. Currently,

there is no evidence on the correlation between A2AR and a poor

prognosis for GBM patients. Nevertheless, A2AR expression was

reported to be a high-risk factor in the bioinformatics analysis of

glioma samples (72). A2AR was upregulated in CD4+ and CD8+

glioma-infiltrating cells, its high levels being linked to the PD-1 and

CD39/CD73 axis (72).

Although CD39 and CD73 are not fully recognized as immune

checkpoints, they significantly contribute to tumorigenesis through

ecto-5′-nucleotidase activity, which metabolize ATP to adenosine,

and are commonly expressed on most B cells and monocytes and on

some T cells. Under normal conditions, ATP is localized in the

intracellular space, and its extracellular concentration grows during

neuron release or in response to ischemia or hypoxia, which induces

local inflammation (123). CD39 converts ATP to ADP and AMP,

while CD73 converts AMP to adenosine, thereby switching the

proinflammatory status of the microenvironment to the anti-

inflammatory state (124). These events contribute to tumor

growth, migration, and T cell function. CD73 expression was

typically observed in tumor macrophages and Tregs, which

directly inhibit the cytokine release and cytotoxic functions of

CD8+ T cells (125). Importantly, according to the recent studies,

CD39 and CD73 are usually co-expressed in tumor cells and their

simultaneous action causes adenosine-dependent pro-tumor

immune suppression (126). Downregulation of both CD39 and

CD73 in TME correlated with a better prognosis for patients (127).
4.3 IDO1

Indoleamine-2,3-dioxygenase (IDO1) is an immune checkpoint

secreted molecule involved in tryptophane metabolism. IDO1 is

widely expressed in various healthy tissues, including lung and

gastrointestinal tract tissues, placenta, and immune cells. IDO1 can

suppress T cell function and help to maintain the immune

privileged status of some tissues like placenta and fetus (128). The

immunosuppressive IDO1 pathway is involved in converting

tryptophan into kynurenine. Tryptophan starvation activates

general control nonderepressible 2 (GCN2), a serine/threonine
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kinase that phosphorylates eukaryotic initiation factor 2a kinase

(eIF2a). These changes lead to decreased transcriptional activity

and reduced fatty acid production (129). Kynurenine, in turn,

activates the aryl hydrocarbon receptor and induces DC immune

tolerance (129). IDO1 upregulation is commonly observed in

cancer. In glioma, IDO1 levels positively correlate with the WHO

tumor grade, IDHwt status, the mesenchymal subtype, and Treg

expansion (130). IDO1 expression depends on IFN-ɣ release

creating a trap for tumor-infiltrating effector and cytotoxic T cells

(131). IDO1 is co-expressed with PD-L1, PD-L2, PD-1, CTLA-4,

CD39, BTLA, and LAG-3. Taken together, these characteristics of

IDO1 indicate a strong correlation between IDO1 expression and

lower overall survival of GBM patients (130).
5 Glioma immunotherapy: limitations
and perspectives

As described above, immune checkpoints regulate immune

responses, creating immunosuppressive TME and maintaining

glioma development. Nevertheless, blocking co-inhibitory

immune checkpoints can restore antitumor immune activity of

the effector cells. PD-1/PD-L1 blockers demonstrated clinical

benefits in various neoplasms (132).

As PD-1/PD-L1 monotherapy has not been successful in case of

glioma, the combinations of blockers are created with anti-PD-1 as

the first component (Table 1). Co-expression of PD-1 and CTLA-4

has been demonstrated for many tumors, which formed the basis

for combination target therapy. Dual PD-1 and CTLA-4 inhibition

demonstrated high efficiency for several tumors (133). Co-

expression profiles of PD-1 and CTLA-4 in glioblastoma gave rise

to the clinical trials of the corresponding blockers. The antibodies

were proven to be safe, but didn’t improve the survival of patients

(Table 1). As a result, an intensive development and testing of new

blockers of the alternative immune checkpoints is currently

underway. The novel blockers of LAG-3, TIM3, IDO1 and TIGIT

are emerging and under testing in clinical trials (134).

Brain tumor therapy faces several challenges which the scientific

community is focused on. Due to the high proportion of

immunosuppressive macrophages from the tumor mass,

antibodies targeting TAM receptors (such as CSF-1R) or the

chemokine recruitment system are under development (135). To

overcome the problem of BBB crossing, local chemotherapy is

preferable to systemic therapy (136). TMZ and corticosteroids

was shown to act depressively on the weakened immune system

of the patient (137). Neoadjuvant therapy could help protect the

effector cells against the negative side effects of chemotherapy.

Several groups indicated greater effectiveness of neoadjuvant

therapy compared to adjuvant one. Therapies with neoadjuvant

nivolumab (138) or pembrolizumab (139) are being actively

developed, showing promising results.

The expression of an alternative immune checkpoints and

tumor heterogeneity in expression profiles are proposed to be

treated with combined methods or multivalent inhibitors (140).

The problem of tumor heterogeneity is increasingly proposed to be
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transcriptomic, metabolomic, and proteomic profiles (141). It will

allow selecting an individual combination of targeted therapies for

each patient. In addition, more and more alternative checkpoints

are involved in targeted therapy. Mutually exclusive expression of

PD-1 with B7-H3 and B7-H4 make them appealing markers and

targets for combined therapy with anti-PD-1. Evaluation of this

molecules in diagnostics may help to identify and better understand

biology of cells non-sensitive to anti-PD-1 treatment. T cells with

chimeric antigen receptors (CAR T) targeting B7-H3 in GBM are

currently in phase I trials (NCT05241392, NCT04385173,

NCT04077866, NCT05366179) (142). The antibodies to CD39

(IPH5201, NCT05742607) and CD73 (IPH5301, NCT05143970)

are in phase I trials and may also be feasible for GBM (143). The

clinical relevance of other immune checkpoints in GBM is

still disputable.
6 Conclusion

GBM is the most aggressive glioma subtype with high resistance

to therapy and an extremely low median patient survival. Low

susceptibility to treatment is caused by the formation of TME with a

remarkably complex molecular and cellular network. Along with

tumor cells, TME comprises stromal cells, epithelial cells, and,

importantly, tumor-infiltrating immune cells that fail to eliminate

the tumor. Glioma cells, TILs, and TAMs express a variety of

inhibiting molecules that contribute to the tumor immune escape

(Table 2). It is interesting that immunomodulatory proteins are

commonly present on the tumor parenchyma surface and in TME

cells. Apparently, these molecules activate the immunosuppressive

subtypes of immune cells mostly due to their preferential

infiltration or/and generation. Nevertheless, the tumor origin and

the molecular expression profile of the surrounding non-immune

cells should also be taken into account, as some protein markers

could serve as predictors of both good and bad disease outcomes,

depending on the tumor type (48, 66, 67). Thus, most of the

expressed immune checkpoints on GBM cells and their

environment are associated with a poor prognosis. LGG is

characterized by a smaller range of expressed immune

checkpoints compared to HGG. The majority of detected proteins

in LGG such as CTLA-4, B7-H3, LAG3, CD155, CD70 and CD40

were associated with worse outcomes of the disease as in HGG. The

only exception established is B7-H7 or HHLA2, whose expression is

more typical for LGG and is associated with a better prognosis.

Since the majority of the regulatory molecules described above

are co-expressed, they seem to be involved in the same complex

regulatory cascade, or even a suppressive signaling network. The

activation of this “network” triggers multiple immunosuppressive

effects causing a gradual amplification of inhibitory signals. This

affects a wide range of cell types: from healthy brain tissues and

glioma cells to cytotoxic lymphocytes in the TME and the

peripheral blood. Moreover, most molecules were associated with

the end-stage glioma, mesenchymal glioblastoma with wild-type

IDH1. However, the mechanisms of immune checkpoints synergy
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TABLE 2 Immune checkpoint molecules involved in glioma development. Information not included in the main text is provided as references.

Co-expression
profiles

Association and prognosis

Co-expressed with majority of
inhibiting immune checkpoints

GBM-induced Tregs, worse
disease outcome

PD-1, PD-L1
IDHwt mesenchymal GBM, conferred
poor prognosis

PD-1, CD40, ICOS and TIGIT
IDHwt status and mesenchymal cell type
of HGG, higher Treg and TAM
infiltration, lower survival probabilities

PD1, PD-L1, PD-L2, CTLA-4,
ICOSLG and IDO1

IDH wild type, and mesenchymal
subtype of gliomas with higher grade
Overexpression of ICOS in TME and
lower ICOS expression in blood plasma
of patients was associated with
lower survival

ICOS, PD-1, PD-L1, CTLA-4,
IDO1, TIM-3 (144)

GBM stem cells, mesenchymal phenotype
and IL-10-producing T cells

Low correlation with B7-H4
IDHwt and higher grade glioma,
associated with lower survival

Low correlation with B7-H3
Elevated number of TAMs, positively
correlate with tumor grade and
poor prognosis

B7-H3, PD-1, PD-L1, LAG-3,
TIM-3, PSGL1 Correlates with WHO glioma grade and

poor prognosisVISTA, no other co-expression
data for GBM

VISTA, no other co-expression
data for GBM

No data for glioma

PD-L1 (61)
Positively correlates with tumor
aggressiveness and poor prognosis

No data for glioma
Correlated with lower grade glioma and
prolonged overall survival
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Molecule Protein family Cells expressing Pathways Effects

PD-1 IgSF, CD28 family Activated T cells and B cells

Recruiting SHP-2 followed by
dephosphorylation of signaling
molecules, sequestering CD80
away from CD28 by PD-L1

Apoptosis and exhaustion of
Tconv, generation Tregs
and TAMs

PD-L1 IgSF, B7 family
Tregs, activated Tconv,
macrophages, tumors

PD-L2 IgSF, B7 family DCs, macrophages, tumors

CTLA-4 IgSF, CD28 family Tregs, activated Tconv
Inhibits AKT phosphorylation,
blocks CD80 and CD86
interaction with CD28

Lower Tconv activation,
Treg expansion

ICOS IgSF, CD28 family Activated T cells

Activation of NF-kB signaling
Activation of both Tconv
and Tregs

ICOSLG IgSF, B7 family APC, somatic cells, monocytes

B7-H3 IgSF, B7 family
Endothelial cells, fibroblasts,
osteoclasts, stromal cells, APC,
NK, activated T cells, tumor

Activation of JAK2/STAT3
survival pathway

Tumor immune escape,
survival and growth

B7-H4 IgSF, B7 family APC, tumor
Activation of JAK/STAT
pathway in IL-6-
dependent manner

Tumor immune escape

VISTA IgSF, B7 family Myeloid cells, TILs

Inhibits NF-kB
signaling pathway

Reduced proliferation and
cytokine production by Tconv

VSIG3 IgSF Tumors

PSGL1 Selectins Myeloid cells, activated T cells

B7-H6 IgSF, B7 family Tumors
Activates PI3K/Akt, ERK/
MAPK and c-Myc/RNMT
signaling pathways

Control of a variety of
biological processes such as
proliferation, migration,
invasion, survival etс

B7-H7 IgSF, B7 family Endothelial cells, tumors
Promotes
AKT phosphorylation

Enhanced T cell proliferation
and cytokine production
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TABLE 2 Continued

Co-expression
profiles

Association and prognosis

TIM-3, PD-1, PD-L1, CTLA-4,
LAG-3 and VISTA

Indicates higher-grade glioma with
increased immune and stromal cells in
TME, predicts poor outcome

HVEM, LAG-3, TIM-3 (145) No data for glioma

HVEM, PD-1, PD-L1, TIM-3,
B7-H3

IDHwt and mesenchymal glioma subtype

CTLA-4, PD-1 and TIM-3
Associated with PD-L1+ IDHwt glioma
cells and PD-1+ TILs, considered as risk
factor in GBM

No data for glioma

Correlates with WHO grade of gliomas

No data for glioma

No data for glioma

IDHwt
mesenchymal GBM and lower survival

Not widely represented in glioma TME

CD40L, no other co-expression
data for GBM

Data is controversial, CD40 could be
both positive (111) and negative factor
(112, 113).

CD40, no other co-expression
data for GBM

Data is controversial, CD40L could show
good prognosis (111), bad prognosis
(114), or no correlation with overall
survival (113)

PD-L1, PD-1
Related to increased metastasis of GBM,
promotes TIGIT+ immune
cell infiltration

CD155
No data for glioma, probably the same
role as for CD155

PD-L1, PD-1, CD47 (149),
CD226 (82)

Associated with poor overall survival
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Molecule Protein family Cells expressing Pathways Effects

HVEM TNFRSF
Epithelial cells, mesenchymal
cells, majority of immune cells

Activates NF-kB pathway
Stimulation and proliferation of
HVEM-expressing cells

BTLA IgSF, CD28 family Majority of immune cells

Recruits
SHP-1 or SHP-2 followed by
dephosphorylation of signaling
molecules, shielding HVEM
molecules from LIGHT

Inhibition of function of
BTLA-expressing cells

LIGHT TNFSF T cells, macrophages
Activates NF-kB and PI3K
through TNF receptor

Stimulate survival and
proliferation while interacts
with HVEM

LAG-3 IgSF Activated T cells, myeloid cells
Interrupts TCR signaling by
MHCII binding (146)

Triggers T cell exhaustion
Gal-3 Galectins Macrophages, tumors Triggers surface LAG-3 and

transmits inhibiting signal in
T cellsFGL1 Fibrinogen family

Soluble protein produced by
hepatocytes in liver (147)

CD70 TNFSF
Malignancies, less often –

activated T cells and NK
Activates NF-kB pathway

Enhances activation of TAMs
and T cells including Tregs

CD27 TNFRSF
Naïve and memory
lymphocytes, NK, mature DCs

CD40 TNFRSF B cells, macrophages and DCs

Activates NF-kB pathway
Enhanced adhesion and
cytokine production

CD40L TNFSF Activated T cells

CD155 IgSF
Malignant cells, rarely epithelial
or endothelial cells

Shielding CD155 and CD112
from CD226 by TIGIT,
suppressing PI3K, MAPK, and
NF-kB pathways (148)

Depletion of T and NK cells
and less cytokine productionCD112 IgSF

Macrophages, monocytes, some
healthy tissues

TIGIT IgSF, CD28 family
Memory and activated T cells,
Tregs, NK cells, NKT cells

https://doi.org/10.3389/fimmu.2025.1639521
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 2 Continued

Effects
Co-expression
profiles

Association and prognosis

Induction of M2-macrophages
and MDSC

No data for glioma
Increased accumulation of MDSC in
glioma TME, no association
with prognosis

r

Induce T cell activation and
inhibit
NK cell functions

TIGIT, ICOS, TIM-3
TAM and TILs infiltration, IDHwt status
of mesenchymal subtype glioma and
worse outcome

Multiple immune effects such
as apoptosis of Th1 cells, CD8+
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PD-1, LAG-3, VISTA, PSGL1
and Gal-9.

Correlates with WHO grade,
mesenchymal phenotype and worse
prognosis for patients

TIM-3, PD-1, PD-L1
Correlates with M2 macrophage and
MDSC expansion

Reduced adaptive
immune responses

PD-1, CD39, CD73 High-risk factor in glioma

CD73, IDO1

Both are associated with worse prognosis
CD39, CD155 (151),
A2AR (152)

Makes DCs inactive
PD-L1, PD-L2, PD-1, CTLA-4,
CD39, BTLA, LAG-3

Positively correlates with WHO tumor
grade, IDHwt, mesenchymal subtype and
Treg expansion

Reduced phagocytosis of APC
and immune escape of tumor

TIGIT
Associated with glioma stem-like cells
and predicts worse prognosis for patients

Increased infiltration of
immune cells and CD8+ T
cell exhaustion

TIM-3
IDHwt glioblastoma with high
Treg infiltration

M
u
sato

va
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.16

3
9
5
2
1

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

13
Molecule Protein family Cells expressing Pathways

CD200 IgSF
Majority of lymphoid cells,
stromal cells, tumors

Inhibits Ras and downstream
ERK activation (150)

CD48 IgSF APC, NK, tumors
Recruits
SHP-1 or SHP-2 as an
inhibitor or SAP as an activato

TIM-3
Transmembrane
immunoglobulin and munin
domain (TIM) proteins

Majority of immune cells,
especially T cells

Releases BAT3 which activates
tyrosine kinase LCK and
inhibits TCR signaling,
activates IL-6/NF-kB pathway
in macrophagesGal-9 Galectins

Tumors, bone marrow and
lymphoid tissues

A2AR
G protein-coupled receptor
(GPCR) family

Majority of immune cells
Activates cAMP/PKA/CREB
pathway during
binding adenosine

CD39 Ectonucleotidases
B cells, monocytes, T cells
(especially Tregs)

Converses ATP to ADP
and AMP

CD73 Ectonucleotidases
B cells, monocytes, T cells
(especially Tregs)

Converses AMP to adenosine

IDO1 Oxidoreductases
Immune privileged tissues
and malignancies

Breaking down tryptophan
into kynurenine

CD47 IgSF T cells, NK, DCs, tumors
Recruits SHP-1 and SHP-2 in
APC or activates PI3K/Akt
pathway in CD47+ cells

CD277 IgSF, butyrophilin family
T cells, B cells, NK,
DCs, tumors

Activation of IL-6/JAK/
STAT3 pathway
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underlying glioma development are still far from being fully

understood. Most studies reported PD-1/PD-L1 and CTLA-4

signaling to be a key to further suppression of the immune

system (153). Nevertheless, anti-CTLA-4 and anti-PD-1 therapy

appear not to be as effective as was anticipated (35, 154). This fact

points to the possible existence of another “switch” molecule that

initiates the disease terminal stage. The promising candidates for

glioma therapy include some interleukins, such as IL-6 (155), IL-17

(156) or IL-20 (157), or chemokines (158).
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APC Antigen-presenting cells
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CNS Central Nervous System
DC Dendritic cells
GBM Glioblastoma multiforme
HGG High-grade gliomas
IgSF Immunoglobulin superfamily
ITSM Immunoreceptor tyrosine-based switch motif
LGG Low-grade gliomas
MDSC Myeloid-derived suppressor cells
mOS Median overall survival
NK Natural killer cell
ogy 18
RT Radiation Therapy
SHP-2 Src homology region 2 domain-containing phosphatase-2
TAM Tumor-infiltrating macrophages
Tconv Conventional T cells
TCR T-cell receptor
TIL Tumor-infiltrating lymphocytes
TME Tumor microenvironment
TMZ Temozolomide
TNF Tumor necrosis factor
TNFR Tumor necrosis factor receptor
Treg Regulatory T cell
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