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Abstract: The development of novel therapeutics in neuro-oncology faces significant chal-
lenges, often marked by high costs and low success rates. Despite advances in molecular
biology and genomics, targeted therapies have had limited impact on improving patient out-
comes in brain tumors, particularly gliomas, due to the complex, multigenic nature of these
malignancies. While significant efforts have been made to design drugs that target specific
signaling pathways and genetic mutations, the clinical success of these rational approaches
remains sparse. This review critically examines the landscape of neuro-oncology drug dis-
covery, highlighting instances where serendipity has led to significant breakthroughs, such
as the unexpected efficacy of repurposed drugs and off-target effects that proved beneficial.
By exploring historical and contemporary cases, we underscore the role of chance in the
discovery of impactful therapies, arguing that embracing serendipity alongside rational
drug design may enhance future success in neuro-oncology drug development.

Keywords: serendipitous drug discovery; Chemotherapy in CNS tumors; drug repurposing
in oncology

1. Introduction
Neuro-oncology is a complex field focused on the diagnosis and treatment of brain

tumors and neoplasms originating from the nervous system. Despite years of extensive
research, neurological cancers remain difficult to treat due to the tumors’ locations; the
body’s natural defense system, which inhibits the delivery of medications; and the inherent
complexities of these tumors [1]. One of the most significant obstacles when treating
these neoplasms is the blood–brain barrier (BBB), preventing many chemotherapy drugs
from reaching the tumor [2]. Generally, compounds that are able to cross the BBB are
small, lipophilic molecules that are able to passively diffuse across the membrane [3].
However, the tumors themselves are heterogenous and therefore are affected by these
drugs differently, making the treatment more challenging [4]. As a result, neuro-oncology
heavily relies on a multidisciplinary approach to the treatment of malignancies, including
immunotherapy, radiation, surgery, and chemotherapy [5].

Prior to the use of medications as a therapeutic option, conventional treatments
focused on surgical resection and radiation. The discovery of chemotherapy came from the
unfortunate events of World War II, when a German cargo carrying mustard gas canisters
exploded, and autopsies of exposed military soldiers showed damage in rapidly dividing
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white blood cells [6]. This led researchers to speculate that this concept could be applied
to cancer cells, which are also able to proliferate rapidly [6]. This accidental discovery
opened new avenues for cancer treatment. In the complex world of medical research,
serendipity has played an important role in some of the most groundbreaking discoveries.
Many medications have been used for centuries prior to their discovery as chemotherapy
and were even originally developed for other uses. Since then, they have proven to
be unexpectedly effective in targeting and treating malignancies. These serendipitous
discoveries not only highlight the unpredictable nature of medical research but also lay
the groundwork for future innovations in the treatment of neurological cancers. Here, we
discuss clinically noteworthy, serendipitous discoveries in neuro-oncology. The timeline of
FDA approvals for the conventional chemotherapeutic agents is summarized in Figure 1.
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2. Serendipitous Discovery of Conventional Therapies
2.1. Methotrexate

Methotrexate is a folate inhibitor widely used in autoimmune diseases and cancers [7].
Folate is necessary for cell growth. It supports deoxyribonucleic acid (DNA) synthesis,
repair, and methylation, which are essential for proliferation and survival of rapidly divid-
ing cells like cancer cells [8–10]. Methotrexate was first discovered by Dr. Sidney Farber,
who believed that inhibiting folate would slow the rapid division of cancer cells. When
methotrexate was administered to patients with acute lymphoblastic leukemia (ALL) in
1948, it elicited an improvement of symptoms and temporary remission [11]. This sparked
more studies into its therapeutic effects in cancer. Dr. Roy Hertz and Dr. Min Li showed
methotrexate’s efficacy in treating gestational choriocarcinoma. Dr. Hertz was studying
the effects of folate inhibition on dividing female reproductive cells when he heard of
Dr. Li using methotrexate to treat metastatic melanoma. Dr. Li was not successful in
treating melanoma but found significant decreases in beta-human chorionic gonadotropin
(B-HCG) in his patients. This was promising to Dr. Hertz, who tried and found success
in treating gestational choriocarcinoma with methotrexate. This was the first time a solid
tumor responded to chemotherapy [12–15].
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After methotrexate was unexpectedly found to be effective in cancer treatment, its
application was extended to central nervous system (CNS) malignancies, uncovering a
new and valuable therapeutic use. Until this point, treatments of primary CNS lymphoma
had been ineffective because of failure of drug to cross the blood–brain barrier [16–18].
Methotrexate was the first chemotherapy drug to penetrate it and offer improvement in
survival [19–22]. Treatment for primary CNS lymphoma remains imperfect, as there is no
regimen that offers consistent resolution or therapeutic benefit across all populations. How-
ever, methotrexate remains a standard drug in the different regimens tried and has offered
response rates of up to 70%, meaning that up to 70% of patients experience a reduction
in tumor size or complete elimination of cancer. Additionally, it has led to improvements
in 2-year progression-free survival rates, with up to 50% of patients remaining free from
disease progression over that period. Since the malignancy is complex in nature, treatment
continues to be refined.

Most recently, methotrexate was tried with rituximab and cytarabine, which was
found to have an even greater therapeutic benefit than methotrexate alone [23–27]. The
current treatment of primary CNS lymphoma includes combination chemotherapy with
methotrexate, surgery, and radiation, offering successful long-term disease control in half of
newly diagnosed patients [27,28]. The discovery of methotrexate’s success in the treatment
of primary CNS lymphoma launched the development of regimens that have allowed for
control of a malignancy that was previously uncontrollable.

2.2. Vinblastine

Vinblastine, known commercially as Velban, is naturally derived from a plant from
Madagascar known as the pink periwinkle (Catharanthus roseus) [29,30]. Physician–scientist
Robert Noble and organic chemist Charles Beer discovered vinblastine, the first of the
“vinca alkaloid” family of chemotherapy [29]. While today we commonly acknowledge
vinblastine to be a staple drug in our arsenal of chemotherapeutic agents, it was not
originally utilized for its anticancer properties; vinblastine was first thought to be useful
in treating diabetes [30]. It has been historically noted that Dr. Robert Noble’s brother,
Clark Noble, was seeing a patient that had recently visited Jamaica and brought him back
C. roseus leaves, and she described how the natives in Jamaica had used this plant to treat
diabetes for generations [30]. Dr. Noble’s intellectual curiosity took hold after learning
from his brother about the potential medical use of the pink periwinkle plant, and he began
to test vinblastine’s effect on the blood glucose levels in rats [30]. However, its initial tests
yielded low effects on blood glucose levels.

Vinblastine was then tested to see if it had any antibiotic potential in rats infected with
Pseudomonas [31]. The experiments yielded serendipitous results in that no antibacterial
properties were observed, but rather, the rats injected with vinblastine died at a similar rate
to those injected with cortisone, a known immunosuppressive agent [31]. The similarity of
vinblastine’s immunosuppressive effects to those of corticosteroids led to the discovery of
vinca alkaloid’s ability to induce lymphocytopenia and was thus the origin of its anticancer
potential [31].

The heart of vinblastine’s anticancer properties lies within its unique mechanism of
action: vinblastine as well as the rest of the vinca alkaloid family halts cell division and
growth by specifically targeting mitotic spindle formation during the mitosis phase of the
cell cycle [5,31,32]. During the metaphase of the active dividing stages of the cell cycle,
microtubules begin to elongate from the centrosome and connect to sister chromatids at
the metaphase plate; it is at this step of spindle elongation in which vinblastine exhibits its
inhibitory properties [32]. Vinblastine has extremely high affinity for the beta subunit of the
tubulin dimers that compose the finalized microtubule; thus, it acts as a physical blockade
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for these tubulin dimers to connect to each other and form organized microtubules and
rather promotes the formation of unorganized dimer aggregates [5,32]. The buildup of
these aggregates, known as paracrystalline tubulin dimer aggregates, ultimately leads to
the destruction of already-formed microtubules and the inhibition of future microtubule
elongation [5]. Interestingly, while vinblastine and other vinca alkaloids are extremely
potent killers of rapidly dividing cells, some resistant cancer cells have developed vinca al-
kaloid resistance in the form of upregulating a gene responsible for creating P-glycoprotein,
a well-known cell membrane transporter [32]. Upregulation of this gene leads to increased
efflux of the vinca alkaloid concentration out of cancer cells, thus limiting efficacy [32].

In the clinical setting, vinblastine and its cousins vincristine and vinorelbine are used
in the treatment of many cancers, including acute leukemia, lymphoma, Wilms tumors,
neuroblastoma, testicular carcinoma, Kaposi sarcoma, non-small-cell lung cancer, and
breast cancer [32]. While vinblastine, vincristine, and vinorelbine all operate within the
same mechanism of action, patients may be able to tolerate one more than the others
based on the drugs’ side effect profiles. The vinca alkaloids are often associated with
immunosuppression, opportunistic infections, severe gastrointestinal upset, constipation,
neurotoxicity, alopecia, and syndrome of inappropriate antidiuretic hormone secretion
(SIADH) [32,33].

In the realm of neuro-oncology, vinblastine possesses the ability to cross the blood–
brain barrier, further increasing its potential as a neuro-oncology therapeutic agent. Addi-
tionally, vinblastine’s cousin, vincristine, has been a standard-of-care treatment for many
cancers affecting both the central and peripheral nervous systems [5]. Specifically, it is
used in the combination treatment of procarbazine, lomustine, and vincristine in order to
minimize resistance development in cancers [5]. Some examples include IDH (isocitrate
dehydrogenase)-mutant oligodendrogliomas and IDH-mutant astrocytomas [5]. However,
as stated previously, the vinca alkaloids must be dosed properly due to their potential
neurotoxic side effects [5]. Vinca alkaloids are known to induce peripheral neuropathies
and inhibit neurite outgrowth [34,35].

Vinblastine’s journey to becoming a standard chemotherapy in the oncologist’s medical
toolbox has been a uniquely winding one, from starting as a diabetes medication and failing
as an antibiotic to fully realizing its potential as an anticancer agent.

2.3. Procarbazine

The initial synthesis of the prodrug procarbazine prompted the idea of its original
function being that of a monoamine oxidase inhibitor (MAOI); after all, procarbazine’s
structure largely resembles other members of the MAOI family [36]. The purpose of MAOIs
is to prevent reuptake of neurotransmitters after they are released into the synaptic cleft
between neighboring neurons [37]. This family of drugs is known to be the first class of
antidepressants, though today they are seldom used as the standard of care due to dietary
restrictions and a lengthy side effect profile [37]. Since procarbazine does share a similar
chemical structure to other MAOIs, it does have limited MAOI activity, though it is weaker
than many of its family members. Its weak MAOI activity is important clinically, however,
because its MAOI activity must be considered in patients that may be taking complex
medical regimens; procarbazine has been shown to act synergistically with other MAOIs,
leading to neurotoxic levels of neurotransmitter release [36]. In high doses, along with
neurotoxicity, it has been shown that procarbazine can also lead to myelosuppression [36,38].
In trial experiments conducted by Bollag and Grunberg testing various hydrazines on cancer
lines, it was serendipitously discovered that a potent hydrazine derivative, 1-ethyl-2-benzyl-
hydrazine, had potent antitumor activity [39]. This discovery inspired Mathe et al. to test
related hydrazine derivatives for enhanced antitumor activity, in which benzyl-hydrazine
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chlorhydrate (also known as Natulan or procarbazine) was discovered specifically in the
context of treating patients with Hodgkin lymphoma [39].

Procarbazine was also shown to cross the BBB and alter the CNS environment [38].
Merging these discoveries and observing its alkylating myelosuppressive effects led clin-
icians to explore it as a potential CNS tumor chemotherapy drug [36,38]. While it is
known that procarbazine contains a potent anticancer effect via DNA alkylation, its exact
mechanism of action is still being investigated [7]. Procarbazine has been shown to be a
cross-linker between guanine nitrogenous bases, and cross-linkers have been shown to
inhibit DNA strand separation [40]. In addition to alkylating DNA, procarbazine has been
shown to have other negative effects toward rapidly dividing cells, such as inhibiting the
transmethylation of methionine onto loading transfer ribonucleic acid (tRNA), prolonging
interphase of the cell cycle, and inducing fatal chromosome breakages [40]. Since pro-
carbazine is also given as a prodrug and must undergo first-pass metabolism, a critical
downstream metabolite is produced: hydrogen peroxide [40,41]. Hydrogen peroxide is
a free oxygen radical, a family of highly reactive oxygen species that can wreak havoc
on DNA and induce mutagenesis [40,41]. Having this arsenal of cell-killing mechanisms
allows procarbazine to be a potent chemotherapeutic agent against malignancies such as
gliomas, Hodgkin lymphoma, and non-Hodgkin lymphoma [40].

Clinically, procarbazine is used in combination therapy alongside other chemothera-
peutic agents to minimize resistance development. In the realm of neuro-oncology, pro-
carbazine is utilized with vinblastine and lomustine in PCV to treat recurrent high-grade
glioma [5,42]. In a study comparing an alternative treatment option for recurrent high-
grade glioma, i.e., temozolomide (TMZ), PCV was not found to be better or worse than
TMZ, meaning that either option could be considered by clinicians [42]. In another study
comparing PCV to TMZ, the toxicity profile, overall survival (OS), and time-to-progression
were determined in both treatment arms [43]. However, it was observed that TMZ did
elicit a slight increase in quality of life and patient performance compared to PCV [43]. A
separate phase II trial tested the efficacy of procarbazine and Tamoxifen as a second-line
post-surgery and -radiation regimen in patients with glioblastoma or anaplastic astro-
cytoma, which was preceded by initial treatment with a nitrosourea [44]. Additionally,
a separate group was tested with pre-treatment of procarbazine ahead of a nitrosourea
versus a nitrosourea alone [42]. In all the groups containing procarbazine, it was found
that there was an increased response rate in quality of life and patient performance in
both glioblastoma and anaplastic astrocytoma patients; however, there were no changes in
median survival time or time to progression [44].

As can be seen, procarbazine has the potential to be a useful chemotherapeutic agent
against specific CNS tumors. While its benefits for patients have been observed in numerous
trials, so have its downsides in the form of its side effects. Procarbazine has been associated
with increased secondary white blood cell (WBC) cancer development, bone marrow
suppression, central nervous system and peripheral nervous system toxicity, nausea and
vomiting, and hemorrhage [36,40].

2.4. Lomustine

Lomustine, commonly known as CCNU, is a chemotherapeutic agent used in the
treatment of various brain tumors. The development of lomustine as a therapeutic option
was significantly influenced by the insights gained from the observation of mustard gas’s
effect on WBC counts. Blister agents were widely used in chemical warfare due to their
cytotoxic alkylating effects [45]. One of these blister-causing agents, sulfur gas, commonly
known as mustard gas, was first used in World War I in 1917. It became one of the deadliest
chemical weapons deployed due to its ability to spread through droplets, causing severe
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lung damage through inhalation and painful blisters upon skin contact through absorption.
In 1919, a study by Krumbhaar et al. examined bone marrow tissues from autopsies
on mustard gas victims and concluded that mustard gas plays a role in suppressing the
development and maturation of hematopoietic cells and bone marrow tissues, leading
to leukopenia. Nitrogen mustards were developed years later as a potential chemical
weapon [46]. Although they were never used as weapons, nitrogen mustards surprisingly
elicited similar results in Hodgkin lymphoma, lymphosarcoma, and leukemia [47].

This discovery led to the use of nitrogen mustards as one of the first successful
chemotherapy agents. This pushed towards the exploration of other alkylating agents, such
as nitrosoureas. Lomustine, which belongs to the class of nitrosourea agents, is rapidly
absorbed in the gastrointestinal tract and activated in the liver. The active metabolites
can then cross the BBB and exert their effects by cross-linking the purine bases within
the DNA of rapidly dividing cells, preventing synthesis of DNA, RNA, and protein and,
ultimately, promoting cell death [48]. It was approved as a chemotherapy treatment in 1977
and is currently used as second-line treatment for patients with Hodgkin lymphoma and
non-Hodgkin lymphoma as well as for childhood gliomas [49].

2.5. Etoposide

Etoposide, derived mainly from the plant Podophyllum peltatum, is a widely used
treatment for various cancers. However, before the discovery of its effectiveness as a
chemotherapy drug, extracts of Podophyllum were used by various cultures, including
Native Americans in the United States, and various groups across the Himalayan region
and Western China as a laxative and a remedy for tuberculosis, psoriasis, syphilis, and
warts [50,51]. This led to studies that investigated the antiviral effect of these extracts.
It was found that the purified podophyllotoxin component of the extract inhibits the
replication of various viruses, including measles, herpes simplex type I, cytomegalovirus,
Sindhbis, and human papilloma viruses [52]. These early studies then led to the discovery
of podophyllotoxin’s antimitotic effect on cells and an unexpected shift in its use as a
therapeutic agent in cancer therapy.

Between the years 1947 and 1949, the cytotoxic effects of the podophyllotoxin were
accidentally discovered, and it was later confirmed that podophyllin was lethal to mouse
sarcomata and to lung tumors in in vitro experiments [53]. In 1949, a study by Sullivan
et al. was the first to use podophyllin resin, a less purified and more stable form of
podophyllotoxin, to treat skin carcinomas. Similar cell-damaging effects were observed by
earlier researchers, and results showed that locally applied podophyllin was a treatment
for human basal-cell carcinoma [54]. In 1966, etoposide was synthesized from Podophyllum.
It showed effectiveness in inhibiting topoisomerase II, leading to DNA strand breakage
and arresting of cells in the late S/G2 phases of the cell cycle [55]. These discoveries and
developments underscore the significant contributions of Podophyllum and its derivatives
in advancing cancer treatment, demonstrating their lasting impact on the field of oncology.

Clinical trials of etoposide’s use began in 1971 as it demonstrated its effectiveness in
treating cancers including small cell lung cancer, leukemias, lymphomas, ovarian cancer,
and Kaposi’s sarcoma [56]. In 1983, etoposide was approved by the FDA to treat testicular
cancer [57]. To date, multiple studies have shown etoposide as a potential treatment for
patients with malignant brain tumors including glioblastoma multiforme (GBM) due to
its ability to enhance the permeability of the BBB and exert its effects [58–60]. In a series
of studies by Chamberlain, oral etoposide was shown to have a response rate of 50% to
63% in children and young adults who have relapsed or recurrent medulloblastoma and
glioma [61]. Currently, etoposide has only gained U.S. Food and Drug Administration
(FDA) approval for refractory testicular tumors and small cell lung cancer. Although the
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use of etoposide has shown much promise in combination therapies against brain cancers,
more research is needed to push approval for etoposide as a primary treatment.

2.6. Avastin

Avastin, or bevacizumab, is a monoclonal antibody directed against vascular endothe-
lial growth factor (VEGF). It is used in the treatment of various cancers, including colorectal,
hepatocellular, cervical, renal cell cancers, and glioblastoma [62]. Napoleone Ferrera and his
team at Genentech first set out to explore VEGF after it was isolated in his lab in 1989 [63].
Over the next few years, the properties of VEGF in molecular biology and biochemistry
were researched, including its receptors, regulations, and genetic isoforms [64–67]. When it
came time to assess VEGF’s function in mice, its crucial role in vasculogenesis and develop-
ment was discovered. VEGF has well-described roles in bone formation, corpus luteum
maintenance, ovarian maintenance, pancreatic development, and retinopathy [68–73].

Discovering that VEGF drives many developmental processes, inducing endothelial
cells to produce survival factors and promote growth, led to hypotheses about creating
agonists to use protectively in diseased tissue and antagonists to slow undesirable tissue
growth. It was believed that by inhibiting VEGF in patients with tumors, slowed angiogen-
esis would delay tumor growth. In vivo trials showed that anti-VEGF antibodies had an
inhibitory effect on glioblastoma multiforme-, leiomyosarcoma-, and rhabdomyosarcoma-
bearing mice. This was surprising at the time, considering it did not have a similar effect
in tumor cell lines in vitro [74,75]. As in vivo tumor trials for ovarian, colon, breast, and
prostate cancers became successful, further studies confirmed that tumor blood vessel
density was significantly decreased in mice treated with anti-VEGF antibodies [74,76–80].
This supported the hypothesis that slowed angiogenesis delays tumor growth. Once human
tumor cell lines implanted in mice were shown to be treatable with anti-VEGF antibod-
ies, bevacizumab was developed [81,82]. After bevacizumab was developed and found
effective in vivo, it advanced to clinical trials [81]. Phase 1 trials showed the antibody to be
non-toxic, and phase 2 trials showed effective treatment in metastatic colorectal cancer, non-
small-cell lung cancer, and renal cell cancer [83–87]. The drug was approved by the FDA in
2004 for metastatic colorectal cancer, and its approval for other cancers followed. Avastin’s
arrival to neuro-oncology was planned rather than serendipitous after it was discovered
that glioblastoma is a tumor that secretes high amounts of VEGF. Since bevacizumab had
success in other malignancies with high VEGF profiles, including metastatic brain cancers,
trials in glioblastoma followed soon after its approval [88].

Once Avastin arrived on the scene, glioblastoma treatment would never be the same.
VEGF is a glioblastoma-associated biomarker, and its level has a direct correlation with
patient survival [89]. This led to the hypothesis that bevacizumab could slow tumor growth
and improve survival in glioblastoma patients by inhibiting VEGF. When tried in recurrent
glioblastoma patients, bevacizumab was safe and had strong blood–brain penetration; when
tried in progressive glioblastoma patients, it improved progression-free survival [90,91]. In
newly diagnosed patients, adding bevacizumab to radiotherapy and temozolomide did
not improve survival but had a significant effect in progression-free survival and quality
of life [92,93]. As GBM treatment advances, Avastin’s efficacy has remained constant. It
has been used in trials alongside epidermal growth factor receptor (EGFR) inhibitors and
other immune checkpoint inhibitors, with some success in treating glioblastoma [93–97].
Additionally, epidemiologic data have shown that since the approval of bevacizumab,
overall survival and median survival have all significantly improved in glioblastoma
patients [98,99]. By inhibiting VEGF, Avastin has had a large impact in limiting tumor
growth and has allowed many patients to continue enjoying their lives. This highlights the
drug’s practicality in treatment and foreshadows a new era in glioblastoma treatment.
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Avastin’s success demonstrates the impact of the molecular era of targeted antibody
treatments. Continued research of unique molecular targets in various malignancies has
led to the development of different antibodies targeting markers like CD20, EGFR, and
more [93]. Alongside the identification of these markers is the development of nanobodies
to improve delivery of these antibodies and further revolutionize the landscape of neuro-
oncology. As our understanding and discoveries of molecular markers and checkpoints for
tumors increase, specific treatments like Avastin will become available to target these and
effectively treat previously difficult-to-treat malignancies [93].

2.7. Temozolomide

Temozolomide was first invented in the 1970s as researchers aimed to synthesize
compounds with antitumor effects. Temozolomide did not stand out at first, but as it was
continuously developed and tried, it was later found to have a unique ability to safely pene-
trate the blood–brain barrier [100]. Before temozolomide became approved for treatment of
glioblastoma in 2005, the disease had an abysmal prognosis. Currently, treatment options
for glioblastoma include radiotherapy, surgical resection, and temozolomide chemother-
apy [101]. There was some past success in improving survival using other alkylating agents.
However, due to the high doses needed to penetrate the BBB, these regimens were too
toxic to be beneficial. They left a high rate of recurrence, and most patients were unable to
tolerate repeat therapy due to initial toxicities [102].

Temozolomide revolutionized the treatment of glioblastoma because, as an alkylating
agent, it can rapidly penetrate the cerebrospinal fluid, does not require hepatic metabolism,
and has 100% bioavailability with linear pharmacokinetics [103]. This has allowed for
non-toxic treatment of glioblastoma [104]. Before temozolomide was approved, patients
treated with surgery and radiation had a median survival of 12 months; since the temo-
zolomide era, median survival has improved to 19 months. Notably, younger patients
aged 20–29 had an overall survival up to 32 months [101,105,106]. Temozolomide has im-
proved the outcome for GBM patients significantly, but it is not perfect, and research into
advancing treatment is ongoing. One issue is resistance, which develops in nearly half of
patients. This occurs when mutations in the tumor cause it to evade the suppressive effects
of the drug. These mutations include those that encode histone demethylase, epidermal
growth factor receptors, and DNA repair mechanisms like mismatch repair pathway or
base excision repair [106–111]. Efforts in improving treatment aim to find a regimen to
synergistically suppress GBM tumors and the various cellular pathways that drive their
growth and resistance. At the center of these regimens is temozolomide.

3. Out of the Box
In neuro-oncology, several unconventional and unlikely treatments have shown

promising antitumor effects. A few of these include the use of Boswellia, thalidomide,
high-dose tamoxifen, Celebrex, Viagra, Accutane (cis-retinoic acid), Tarceva, and Gleevec
combined with hydroxyurea. Although these drugs provide insight to potential mecha-
nisms of treating brain malignancies, they lack the clinical significance and results to be of
use in practice. Other drugs in this category that are not mentioned in this review include
proton pump inhibitors, disulfram, rapamycin, metformin, lonidamine, chloroquine, and
chloropromazine (Table 1).

3.1. Accutane

Since its FDA approval in 1982, Accutane, also known as isotretinoin, is a synthetic
derivative of vitamin A that remains the most effective treatment for severe acne due its
ability to reduce sebum production, promote anti-inflammatory effects, and also lower
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levels of Propionibacterium acnes [112]. Beyond dermatological applications, isotretinoin has
been repurposed for neuro-oncology, particularly as an off-label treatment for high-risk
neuroblastoma (NB) [113]. Surprisingly, in vitro studies have demonstrated isotretinoin’s
chemotherapeutic effects, sustained growth arrest, and ability to induce differentiation in
neuroblastoma cell lines [113]. Additionally, due to its lipophilic properties, Accutane has
the ability to cross the BBB [114]. However, its effectiveness is limited to preventing the
progression of NB, and it has not been shown effective in treating the tumor itself [115]. As
a result, studies demonstrating its effectiveness in treating tumors may be needed before
Accutane can become a standard treatment for neuroblastoma.

3.2. Sildenafil

Sildenafil, most commonly known as brand-name Viagra, is a phosphodiesterase5
inhibitor (PDE5-I) most well known for its use for erectile dysfunction. Sildenafil was
originally designed for treatment of angina pectoris. In a 1992 study, some participants re-
ported penile erections as a side effect of the drug [116]. With this discovery, clinical studies
began for sildenafil as treatment for erectile dysfunction [116]. In vitro and in vivo studies
discovered sildenafil’s surprising ability to enhance the efficacy of other chemotherapy
agents to treat various cancers by inducing apoptotic effects, arresting the cell cycle, and
increasing production of reactive oxygen species [117]. As a selective PDE5-1, sildenafil
can exert its apoptotic effects in GBM by preventing the degradation of cyclic guanosine
monophosphate (cGMP) and activating protein kinase G (PKG), which in turn downregu-
lates anti-apoptotic proteins such as B-cell lymphoma 2 [118]. Furthermore, sildenafil is a
moderately lipophilic drug, and studies have shown its ability to cross the BBB and interact
with PDE5 expressed in brain cells [119,120].

Additionally, an ongoing phase 2 clinical study that combined sildenafil with sorafenib
tosylate and valproic acid for treatment of patients with recurrent high-grade glioma has
shown promise for sildenafil as an adjunctive therapy [121]. Therefore, further studies are
needed to confirm sildenafil as a possible treatment in gliomas.

3.3. Thalidomide

Thalidomide, a racemic derivative of glutamic acid, initially gained popularity in 1956
for its use as a sedative without the associated side effects of dependency or a hangover.
Soon, thalidomide was prescribed as an antiemetic for women suffering with nausea and
vomiting during the first trimester of pregnancy [122]. However, in 1961, Dr. William
McBride and Dr. Widukind Lenz independently discovered that thalidomide used in
pregnancy can result in congenital malformations [123,124]. Soon after the teratogenic
properties were reported, research focusing on antitumor properties of thalidomide began.

In 1994, a study by D’Amato et al. discovered that thalidomide can inhibit the for-
mation of new blood vessels, which spurred research into its use as an anti-angiogenic
agent [125]. It was found that thalidomide may have potential as a treatment for hemato-
logic malignancies including plasma cell myeloma, myelodysplastic syndromes, myelofi-
brosis, and macroglobulinemia [126]. In neuro-oncology, studies have also been undertaken
to utilize thalidomide’s anti-angiogenic effect in patients with high-grade gliomas [127].
Additionally, with thalidomide’s small structure and its ability to diffuse passively through
tight junctions, it is able to readily cross the BBB, making thalidomide a potential treatment
in brain cancer [128]. However, at present, thalidomide has not been shown useful as a
monotherapy for high-grade gliomas.

3.4. High-Dose Tamoxifen

Tamoxifen is a selective estrogen receptor modulator (SERM) indicated for breast
cancer treatment [129]. It can block 17-beta-estradiol (E2) at the receptor site but also
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cause carcinogenesis [130]. A study by Lien et al. was the first to report that tamoxifen
accumulates in normal brain tissue at surprising levels of up to 46-fold higher than those
found in serum. This high tissue concentration is attributed to tamoxifen’s low molecular
weight and lipophilicity, which enables it to efficiently cross the BBB [131].

In addition, studies have demonstrated that activation of protein kinase C (PKC)
can play a role in the growth of high-grade gliomas [132]. It was also shown that the
inhibition of PKC can increase the effect of radiation therapy [133]. In a phase 2 trial
by Robins et al., a high dose of tamoxifen was administered during and after radiation.
It compared the overall survival of 1457 patients from the Radiation Therapy Oncology
Group (RTOG) database of past GBM studies. The median survival time was 11.3 months,
which did not significantly differ from previous studies (p = 0.94) [133]. Thus, further
studies of tamoxifen are needed to show improved survival outcomes in patients with
neurological malignancies.

3.5. Celebrex

Celebrex, also known as celecoxib, is a nonsteroidal anti-inflammatory drug (NSAID)
that was designed to selectively inhibit the cyclooxygenase-2 (COX-2) isomer of the cy-
clooxygenase (COX) enzyme [134]. In particular, COX-2 is activated by cytokines and
mitogens to form prostaglandins, promoting inflammation. Additionally, overexpression of
COX-2 has been found to lead to tumorgenesis [135]. In 1998, celecoxib was the only COX-2
inhibitor approved by the FDA for rheumatoid arthritis and osteoarthritis. Clinical trials
began soon thereafter, examining celecoxib as a potential chemo-preventative agent [136]. A
study by Reddy et al. showed with statistical significance that celecoxib can both inhibit the
incidence of adenocarcinoma of the colon and decrease its multiplicity in a dose-dependent
manner [137]. However, investigations into the side effects of COX-2 inhibitors began when
the drugs were linked to an increased risk of cardiovascular diseases such as myocardial
infarction, stroke, and heart failure [138].

In the context of neuro-oncology, a study by Kang et al. showed that celecoxib was
surprisingly able to decrease cell viability of malignant GBM cells [139]. Additionally, a
study by Novakova et al. showed that due to celecoxib’s ability to passively diffuse across
the BBB, it is able to accumulate in the brain [140]. More recently, a study by Yin et al.
demonstrated that when administered with TMZ, the combination therapy can inhibit cell
proliferation of TMZ-resistant GBM cell lines [141]. Despite these advancements, further
studies evaluating the efficacy and safety of celecoxib should be conducted before it may
be used as treatment for cancer.

3.6. Gleevec and Hydroxyurea

Gleevec, the brand name of imatinib, is a tyrosine kinase inhibitor that was initially
FDA-approved in 2001 to treat Philadelphia chromosome-positive chronic myelogenous
leukemia (Ph+ CML) [142]. Tyrosine kinases are involved in the signaling cascade and,
when activated by ATP, catalyze the protein tyrosine phosphorylation on its substrates [143].
Gleevec acts by binding near the ATP binding site, ultimately inhibiting the enzymatic ac-
tivity of tyrosine kinase [143]. Additionally, while imatinib does not easily cross the BBB, in
areas where the BBB is disrupted, it can accumulate at intratumoral levels comparable to or
even exceeding those found in plasma [144]. In contrast, hydroxyurea is an antimetabolite,
diffusing into cells, where it blocks the active site of ribonucleotide reductase, inhibiting
its activity [145]. Currently, it is approved for treatment of sickle cell anemia, CML, and
certain types of head and neck cancers [146].

In neuro-oncology, a study by Raymond et al. showed what they termed “pseudo-
improvements”, as patients with glioma who received imatinib showed a decrease in
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contrast enhancement on magnetic resonance imaging (MRI) [147]. While it may suggest
an increase in efficacy for the drug, further testing showed that there was no change in the
tumor size. Instead, this reduction in contrast enhancement was attributed to imatinib’s
ability to normalize tumor vasculature, reducing blood vessel leakiness [147]. Though
initially viewed as a misleading treatment response, this finding highlighted imatinib’s role
in stabilizing the tumor microenvironment. This insight has since increased research into
vascular normalization as a potential therapeutic approach for gliomas.

Additionally, a clinical study by Dresemman showed that in 57% of treatment-
refractory GBM patients, an imatinib and hydroxyurea combination treatment produced a
partial or complete response or resulted in stable disease lasting at least three months [148].
However, use of hydroxyurea has been limited due to its toxic side effects and low ther-
apeutic index. Hydroxyurea has been reported to cause anemia, leukemia, skin cancers,
and gastrointestinal conditions, to name a few [149]. At present, the combination treatment
lacks clinical evidence demonstrating its effectiveness in treating cancers, including GBM.
Consequently, it has not become a standard treatment in neuro-oncology.

3.7. Tarceva

Tarceva, a small-molecule inhibitor also known as erlotinib, was first developed by
OSI Pharmaceuticals and Genentech in 2004 for treatment of metastatic non-small-cell lung
cancer (NSCLC), pancreatic cancer, colorectal cancer, and head and neck cancer [150–152]. It
was serendipitously accepted into the exclusive FDA’s Pilot 1 Program, an extension of Fast
Track, allowing for drug developers to send segments of their drug acceptance applications
as completed to the FDA with the goal of speeding up the approval process [150,151].
This program is specifically reserved for promising novel pharmaceuticals that fulfill
an unmet clinical problem [150,151]. Tarceva first exhibited its therapeutic potential in
its phase III trial for patients with NSCLC and elicited improvement in the metrics of
overall survival, progression-free survival, and response rate [153]. Tarceva is a reversible,
highly selective small-molecule inhibitor for cells expressing epidermal growth factor
(HER1) tyrosine kinase receptors and possesses the capability of crossing the BBB [150–152].
Specifically, Tarceva fits in a notch within the receptor that physically blocks ATP from
entering, therefore blocking the signal transduction pathway at the receptor level, resulting
in mitigated cellular growth and proliferation [151,153,154]. Despite the efficacy shown
in Tarceva’s phase III trial, resistance in a variety of cancers has been elicited in multiple
instances, especially in NSCLC [154]. In patients with NSCLC being treated with Tarceva,
resistance is typically observed after eight months. Genetic studies have found that the
most common epidermal growth factor receptor (EGFR) mutation is T790M, a threonine-to-
methionine substitution at position 790, of the EGFR gene, which leads to looser binding of
Tarceva within the ATP notch [154].

In addition to the malignancies listed above, Tarceva has been tested in other EGFR+
malignancies, specifically within the realm of neurological malignancies. However, little
clinical efficacy has been observed. In a phase II trial testing, Tarceva in combination with
carboplatin was tested for patients with less than two relapsed glioblastoma multiforme,
and no correlation was observed in the Tarceva + carboplatin arm for progression-free
survival or overall survival compared to the placebo [155]. In another phase I/II trial
testing Tarceva and temsirolimus in patients with glioblastoma or anaplastic glioma, little
therapeutic efficacy was observed in comparison to the non-treatment arm; it was hypothe-
sized that the lack of clinical significance could be due to too-low drug concentrations due
to the toxicities observed or because the signaling pathways targeted were too repetitive,
driving mutagenesis and resulting in drug resistance [156].
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3.8. Boswellia

Boswellia, most known as frankincense, is an herbal extract of the resin made from the
bark of the Boswellia serrata tree. Typically, the gum resins of the Boswellia species have
been used as adhesives, incense, and cosmetics [157]. However, the natural compounds
present have also been shown to have antimicrobial, antiviral, and anti-inflammatory
effects. Additionally, isolated boswellic acids, extracted from Boswellia, have also been
shown to have potential as anticancer treatments [158]. In a study by Glaser et al., boswellic
acids were shown to induce apoptosis in patients with malignant glioma [159]. Acetyl-
11-keto-beta-boswellic acid (AKBA) specifically enhances CD95, a cell-surface protein, to
induce apoptosis in human glioma cells. Additionally, due to its high lipophilic property,
Boswellia can readily cross the BBB, making it a potential treatment in neuro-oncology.

Table 1. Out-of-the-Box Therapies not described.

Drug
(Year of Discovery) General Mechanism of Action Mechanism in Neuro-Oncology

Proton Pump
Inhibitors (1980)

Blocks the gastric H+/K+-ATPase to
decrease acid secretion

May disrupt tumor pH regulation—by
inhibiting vacuolar-type H+-ATPases in

cancer cells—which can alter drug
uptake/resistance and potentially sensitize

tumors (e.g., gliomas) [160,161]

Disulfiram (1881)
Inhibits aldehyde dehydrogenase and
modulates cellular redox balance; also

affects proteasome and NF-κB signaling

Repurposed to target cancer stem cells
(including in glioblastoma) via ALDH

inhibition and copper complex formation that
increases oxidative stress in

tumor cells [162,163]

Rapamycin (1975)
Binds FKBP12 to inhibit mTOR signaling,

thereby reducing cell growth and
inducing autophagy

Inhibits mTOR—a pathway often hyperactive
in gliomas—to suppress tumor cell

proliferation, reduce angiogenesis, and
modulate autophagy in brain tumors [164]

Metformin (1922)
Activates AMP-activated protein kinase

(AMPK) to lower hepatic gluconeogenesis
and modulate cellular energy metabolism

In neuro-oncology, AMPK activation leads to
indirect mTOR inhibition and decreased
tumor cell proliferation, with preclinical

studies suggesting antiglioma effects [165]

Lonidamine (1970s)
Inhibits aerobic glycolysis and disrupts

mitochondrial energy metabolism in
cancer cells

Alters the energy metabolism of tumor
cells—including glioma cells—potentially
enhancing sensitivity to chemotherapy by

targeting the glycolytic pathway [166]

Chloroquine (1934)
Raises lysosomal pH and blocks

autophagy, with additional
immunomodulatory actions

By inhibiting autophagy, it can compromise
tumor cell survival and may be used to

enhance the effects of chemo- and
radiotherapy in brain tumors such as

glioblastoma [167]

Chlorpromazine (1950)
Antagonizes dopamine receptors (with

additional effects on multiple
neurotransmitter systems)

Has been reported to induce apoptosis and
interfere with signaling pathways in glioma

cells—suggesting potential repurposing as an
adjuvant agent in neuro-oncology [168]

4. Conclusions
The future of neuro-oncology lies in continuing to overcome many obstacles, such

as the blood–brain barrier, through newer, more innovative drug delivery mechanisms,
perhaps using combination therapies as a way to treat a tumor from multiple angles.
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It is important to recognize that the history of neuro-oncology drug development is full
of serendipitous discoveries. Given the challenges of developing new drugs, repurposing
existing drugs may improve survival rates and the quality of life of patients with CNS
tumors. Research studying unexpected side effects of medications initially intended for
other uses has led to advances in neuro-oncology treatments, and navigating through
the history and development of these medications highlights the serendipitous nature of
medical science.
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