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Abstract: Background and Objective: The discovery of novel molecular biomarkers via
next-generation sequencing technologies has revolutionized how glioblastomas (GBMs) are
classified nowadays. This has resulted in more precise diagnostic, prognostic, and thera-
peutic approaches to address this malignancy. The present work examines the applications
of single-cell RNA sequencing (scRNA-seq) in GBM, focusing on its potential to address
tumor complexity and therapeutic resistance and improve patient outcomes. Methods: A
scoping review of original studies published between 2009 and 2024 was conducted using
the PUBMED and EMBASE databases. Studies in English or Spanish related to single-cell
analysis and GBM were included. Key Findings: The database search yielded 453 publica-
tions. Themes related to scRNA-seq applied for the diagnosis, prognosis, treatment, and
understanding of the cancer biology of GBM were used as criteria for article selection. Of
the 24 studies that were included in the review, 11 focused on the tumor microenvironment
and cell subpopulations in GBM samples, 5 investigated the use of sequencing to elucidate
the GBM cancer biology, 3 examined disease prognosis using sequencing models, 3 applied
translational research through scRNA-seq, and 2 addressed treatment-related problems
in GBM elucidated by scRNA-seq. Conclusions: This scoping review explored the vari-
ous clinical applications of scRNA-seq technologies in approaching GBM. The findings
highlight the utility of this technology in unraveling the complex cellular and immune land-
scapes of GBM, paving the way for improved diagnosis and personalized treatments. This
cutting-edge approach might strengthen treatment strategies against tumor progression
and recurrence, setting the stage for multi-targeted interventions that could significantly
improve outcomes for patients with aggressive, treatment-resistant GBMs.
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1. Introduction
Integrating molecular biomarkers into diagnosing and classifying central nervous

system (CNS) tumors has significantly advanced our understanding of these diseases by
revealing unique molecular characteristics that underscore tumor diversity. This progress
has enabled a more precise diagnosis, treatment, and prognosis. Traditionally, CNS tumor
classification depended solely on histologic analyses of tissue samples [1]. However,
the complexity and aggressive behavior of many CNS tumors have necessitated new
classification methods that address the high mortality and recurrence rates often seen in
malignant cases [2]. Glioblastoma (GBM) is a prime example. While relatively rare, with an
incidence rate of 0.58 per 100,000 from 2016 to 2020, as documented by the Central Brain
Tumor Registry of the United States, GBM remains the most frequently diagnosed malignant
brain tumor [3]. Despite multimodal treatments, including maximal safe resection followed
by adjuvant chemoradiotherapy, GBM has a poor prognosis, with a median overall survival
of approximately 14 months and a 5-year survival rate of only 5% [4].

With the advancements in sequencing technologies, detailed tumor characterization based
on individual genetic composition is now possible. Multi-omics analyses—encompassing
genomics, transcriptomics, and epigenomics—have become increasingly valuable for clas-
sifying and identifying molecular subtypes of CNS tumors. Part of the complexity of
these tumors, and especially GBM, falls on the intrinsic biological complexity of cancer.
Tumor heterogeneity plays a fundamental role in the progression and resistance of the
disease by enabling malignant cells to morph into different cellular states in response to
the determined stimuli [5], such as the tumor microenvironment (TME) [6]. Therefore,
applying novel sequencing technologies, such as single-cell RNA sequencing (scRNA-seq),
which features the analysis of the transcriptome of individual cells, opens new avenues
for addressing diverse, aggressive, and highly resistant tumors like GBMs. In this scoping
review, we examine the applications of scRNA-seq regarding the diagnosis, treatment, and
prognosis of GBM.

2. Materials and Methods
A scoping review was conducted to gather the most up-to-date information for this

current review. Emphasis was placed on literature that examined the various applications
of scRNA-seq analysis in GBM. Specifically, the focus was on articles exploring scRNA-seq
applications in the diagnostic, prognostic, and therapeutic contexts of GBM. Additional
attention was given to articles involving the translational applications of scRNA-seq in
GBM using in vivo and in vitro models for an improved understanding of cancer biology.
Original studies written in English or Spanish and indexed in PUBMED and EMBASE from
2009 to 2024 were included. A total of 453 articles were screened, which resulted from the
following search terms: ((“Single-Cell Gene Expression Analysis” [MAJR]) OR “Single-Cell
Analysis” [MeSH]) OR “Sequence Analysis, RNA” [MeSH] OR “RNA-Seq” [MeSH] OR
“Gene Expression Profiling” [MAJR] AND (glioblastoma [MeSH Terms]). Articles were
selected and filtered based on their abstracts. Articles not related to scRNA-seq applications
in GBM were excluded. Twenty-four articles were summarized, and the main findings (cell
populations and relevant genes) were reported in Table 1. The current roles of scRNA-seq
in glioblastomas are summarized in Table 2.
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Table 1. Characteristics of studies about microenvironmental determinants in GBM through scRNA-seq.

Author and Year Cells Identified Most Important Genes Identified Conclusions

Wu et al. [7] 2023

10,144 cells from primary GBM and
19,982 from recurrent GBM lesions.

Tumor cells. Endothelial cells.
Immune cells.

TOP2A, MKI67, UBE2C, CENPF,
PBK, VEGF.

Identified three separate cell types, from GBM
lesions, from which 22 clusters were retrieved.

Identified malignant cells in single-cell
analysis using copy number variations.

Identified high expression of
proliferation-related genes in cell clusters.
Detected VEGFA overexpression in almost

all clusters.

Jain et al. [8] 2023

Serial trypsinization of 4385 GBM cells.
Cancer-associated fibroblasts,

epithelial cells, endothelial cells, and
pericytes, immune cells.

ACTA2. COL1A1. TNC, S100A4.
PDPN. PDGFRB.

Identified cancer-associated fibroblasts in
GBM samples, and identified proximity to

mesenchymal glioblastoma stem cells,
endothelial cells, and M2 macrophages.

Zheng et al. [9]
2023

Fibroblasts. Chondrocytes Astrocytes.
T_cells. Tissue_stem_cells. Monocyte.

571 genes related to necroptosis.
ADORA2A. KDR. LAG3. EEF1B2.

NDUFB2. RPL13. PTEN. EGFR.
TTN.

A risk model was constructed using a Cox
regression model with least absolute shrinkage

and selection operator analysis, which
included ten necroptosis-related genes.

LeBlanc et al.
[10] 2022

>8000 single-cell genome, and >75,000
single-cell transcriptome profiles from

10 primary tumors and 2 recurrent
tumors.

NRCAM. NCAM2. SHISA9
ACTA2. PDGFRB. VWF.

MOG. MAG. ACTA2. PDGFRB.

Patient-derived explants (PDEs) can serve as a
more accurate model for studying the complex

heterogeneity of GBMs.

Yeo et al. [11]
2022

de novo mouse-made cells: 27,633
CD45- and 36,304 CD45+ cells.

Dendritic cells (i.e., conventional or
plasmacytoid), macrophages, T cells

and natural killer cells, microglia,
neutrophils, B cells, and mast cells.

Distinct populations of
EGFR+ cancer cells.

Upregulated pathways
INFα/β/γ, cell migration,

angiogenesis, oligodendrocyte
differentiation, myelination and

cell adhesion, and overexpression.
Csfr3, Ccr1, Cxcr2, and Cxcr4

highly expressed in PMN-MDSCs.

Demonstrated relevant changes in the innate
immune cell composition of the GBM

microenvironment, with accumulation of
myeloid-derived suppressor cells that

promote immunosuppression.

Yesudhas et al.
[12] 2022 3389 cells from four primary GBMs.

94 differentially expressed genes
(DEGs) between tumor and

periphery cells.

CX3CR1, GAPDH, FN1, PDGFRA,
HTRA1, ANXA2 THBS1, GFAP,

PTN, TNC, VIM.

Insights into the heterogeneity of GBM and
identifies novel disease-specific biomarkers,

presenting potential avenues for the
development of targeted therapies in

GBM management.

Meng et al. [13]
2021 3589 cells from 4 cases.

DLL3. NEFL. NKX2-2. GABRA1.
SOX2. SYT1. OLIG2. SLC12A5.
FGFR3. ILR4. PDGFA. TRADD.

EGFR. RELB. AKT2.
CHI3L1(YKL40). NES. MET.

Reveals critical insights into intratumoral
heterogeneity. This approach holds promise
for improving the oncological management

and outcomes of GBMs.

Chen et al. [14]
2021

17,132 cells from 50 cases.

CD14 macrophages, CD3 T cells.
SOX2 neuroglial cells.

499 genes in total.

CSF1. CSF2. HGF. MCP-1. SDF-1.
MFGE8. PDC001. PW039-705.
PW035-710All. PJ052. PJ053.

MARCO macrophages found in GBMs
correlate with worse prognosis.

MARCO expression changes with anti-PD1
therapy. This indicates its potential as a

biomarker for treatment response in GBM.

Xie et al. [15]
2021

Endothelial cells. Macrophages.
Microglia. Neutrophils. T cells. B cells.
Neuroglial cells. Vascular mural cells.

KLF2. TIMP3. SLC2A1. SLCO1A2.
ABCG2. ABCB1. SLCO1A2.

NET1. ATP10A. MYO1B. SPARC.
ITGA5. PGF. NOTCH4. CD93.

FABP1A. GNG11. SELE. VACM1.
IL1B.

BBB transporters, including SLC2A1, ABCG2,
ABCB1, SLCO1A2, and ATP10A, were

elevated in endothelial cells, which impacts
drug penetration and efficacy in brain tissue.

Mathewson et al.
[16] 2021

8252 cells
from 31 cases.

T cells: CD8 T cells—CD4
conventional T cells—CD4 regulatory

T cells—cycling T cells.

PRF1. GZMB. GZMA, GZMH.
CLEC2D. NKG7. GNLY. KLRD1.

FGFBP2. FCGR3A. S1PR5.
KLRC1. KLRC3. KLRB1. KLRC2.

CLEC2D–CD161 pathway inhibition can
enhance anti-tumor immune

microenvironmental.

NK-like receptor expression in
GBM-infiltrating T cells implies that targeting

these receptors could strengthen
T-cell-based therapies.

Couturier et al.
[17] 2020

53,586 glioblastoma cells.

Glioblastoma stem cells.

TOP2A. FOXM1. USP1. APOD,
OLIG2. SOX11. S100A10. HLA-4.

APOE. HSPA1B.

Discovered a conserved trilineage hierarchy in
glioblastoma centered around glial

progenitor-like cells.
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Table 1. Cont.

Author and Year Cells Identified Most Important Genes Identified Conclusions

Liu et al. [18]
2020

3589 cells from 154 GBM patients in
the TCGAGBM dataset and 155 GBM

patients in the GSE16011 dataset.

FERMT1. COL22A1. LOXL1.
PCDHB3. TCAF2. HOXB2.
HOXD11, PTPRN. TSHZ2.

Prognostic model that incorporated factors
such as radiotherapy status, and age to predict

survival probabilities, suggesting that these
genes could serve as potential prognostic

biomarkers.

Neftel et al. [19]
2019

7930 cells from 28 cases.

Macrophages. Oligodendrocytes. T
cells. Astrocytes

5730 genes in total.

HILPDA. DDIT3. ENO2 and
LDHA. MGH125. MGH102.

EGFR. PDGFRA. CDK4.

High-level amplifications of EGFR, PDGFRA,
and CDK4 influence cellular states within the

GBM microenvironment.

PDGFRA and CDK4 amplifications correlate
with the expansion of NPC and OPC,

respectively.

Darmanis et al.
[20] 2017

3589 cells from 4 cases.

Tumor cells. Vascular cells.
Oligodendrocytes. OPCs. Neurons.

Astrocytes.

MBP. OPALIN. GPR17. L1CAM.
ALDH1L1. WIF1. NTSR2.
PECAM-1. NFIB. SOX9.

Higher expression of hypoxia and
adhesion-related genes in the

tumor core.

Identified infiltrating neoplastic cells in
peripheral regions of the core lesions,
representing intratumor heterogeneity.

Identified consistent gene signature between
patients.

Identified myeloid cell populations in the
tumor core and surrounding peritumoral

space.

Patel et al. [21]
2013

430 cells from 5 cases.

NPC. Neurons. Mesenchymal cells.

EGFR. PDGFRA. PDFGA. FGFR1.
FGF1. NOTCH2. JAG1.

Identified intratumor heterogeneity by
identifying different GBM subtypes within the

tumors. High tumor heterogeneity was
associated with poor prognosis.

Müller et al. [22]
2017

672 cells identified.

Tumor-associated macrophages
(TAMs) from 5 GBMs.

Upregulated genes in
blood-derived TAMs include
those of immunosuppressive
cytokines (specific genes not

mentioned).

Blood-derived TAMs infiltrate pretreatment
GBMs and exhibit immunosuppressive
characteristics, presenting a barrier to

immunotherapy.

Little et al. [23]
2012

41,997 cells were counted across 190
distinct loci.

EGFR (upregulated), PDGFRA
(upregulated).

Intratumoral heterogeneity in glioblastoma
complicates treatment strategies, as different

cell populations with distinct gene
amplifications may contribute variably to

disease progression and response to therapies.

Lai et al. [24]
2022 2305 cancer cells from tumor cores.

LITAF (Downregulated),
MTHFD2 (Upregulated), NRXN3

(Upregulated), OSMR
(Upregulated), RUFY2.

Novel prognostic model for predicting
survival in GBM patients by integrating
scRNA-seq and bulk RNA-seq datasets.

Yu et al. [25] 2020 6148 cells identified (from 7928
single-cell transcriptomes).

EGFR (Upregulated) cells,
PTPRZ1 (Upregulated), SOX2

(Upregulated), MKI67 (Marker for
proliferation), HYDIN, FOXJ1.

scRNA-seq can uncover distinct cellular states
and gene expression profiles that are critical
for understanding tumor progression and
therapeutic resistance in GBM. Emphasis
made on the importance of multi-sector
biopsies to capture the heterogeneity of

gliomas effectively.

Lemée et al. [26]
2015 Not specified.

Genes related to stem cell
phenotype: CD133, Sox2, nestin,

musashi 1 (upregulated).

Invasion-related genes: Galectin-1,
Rac1, Rac3, RhoA GTPases, p27,

avb3 integrin (upregulated).

Cell adhesion-related genes:
CDH20, PCDH19 (upregulated).

Migration-related genes: SNAI2,
NANOG, USP6, DISC1

(upregulated).

Immune response: TLR4
(upregulated).

Angiogenesis: HEG1, VEGFR2
(upregulated).

Emphasis made on the importance of
understanding the peritumoral brain zone
(PBZ) in GBM, highlighting that it contains

tumor and stromal cells that promote growth
and invasion.
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Table 1. Cont.

Author and Year Cells Identified Most Important Genes Identified Conclusions

Lee et al. [27]
2017

305 single cells from 7 samples of 3
patients. EGFR, PIK3CA.

Different single cells exhibited various EGFR
alterations, indicating late events in tumor
evolution. The presence of transcriptional

heterogeneity suggests that 5-ALA (-) tumors
can still harbor aggressive tumor markers

despite being perceived as being less
aggressive.

Pine et al. [28]
2020

62,885 cells identified.

Neural progenitor-like cells
(NPC-like), Oligodendrocyte

progenitor-like cells (OPC-like),
Astrocyte-like cells (AC-like),

Mesenchymal-like cells (MES-like).

SOX4 (upregulated), BCAN
(upregulated and associated with

invasiveness), DLL3
(upregulated), KPNA2

(upregulated and promotes
metabolic reprogramming).

Compared scRNA-seq across four
patient-derived glioblastoma stem cell models,

including glioma spheres, brain organoids,
glioblastoma cerebral organoids, and

patient-derived xenografts. Successfully
recapitulated cellular states commonly found

in primary tumors.

Sullivan et al.
[29] 2014 Not specified.

SERPINE1, TGFB1, TGFBR2, and
VIM (all upregulated). ASCL1,
GFAP, NCAM1, and SOX9 (all
downregulated), TWIST1, and

NF-kB. EGFR amplification.

Circulating tumor cells exhibit higher
mesenchymal and lower neural differentiation,

contributing to invasiveness and possibly
rare metastases.

Jacob et al. [30]
2020

scRNA-seq data from organoids
derived from 53 patient cases and

established 70 glioblastoma organoid
(GBO) samples.

EGFR (including variant
III—EGFRvIII), SOX2, and

NESTIN.

Organoids retained transcriptomic signatures,
cell-type diversity, and molecular properties of

parental tumors.

NPC = neural progenitor cell; OPC = oligodendrocyte progenitor cells; MARCO = macrophage marker in GBM;
and GBO = glioblastoma organoid.

Table 2. Current roles of scRNA-seq in glioblastomas.

Potential Diagnostic

- Genetic factors of tumor cells, endothelial cells, fibroblasts, and various immune cells;
- Single-cell genetic factors that shape the composition of GBM neoplastic cells;
- Characterize the coexistence of GBM different genetic tumoral cells;
- Cells from the same tumor tissue can exhibit different mutations, leading to various phenotypic and

epigenetic changes;
- Characterize the spatiotemporal cellular genomic architecture of GBM;
- Novel tumor antigens based on single-cell genetics;
- Understand and target genetic drivers of tumor recurrence;
- Define the genetics of immunosuppressive cell populations;
- Describe the genetic tumor mechanisms of immune escape in GBM;
- Mitochondrial subtype with therapeutic vulnerabilities.

Therapeutic

- Modulate drug delivery based on BBB cellular genetic phenotype;
- Use differentiation therapy towards stem-like cells to arrest tumor growth;
- Target the immunosuppressive TAMs;
- Combinatorial therapeutic strategies to target all tumor areas and cells;
- Withdrawal of ineffective treatments to prevent side effects and toxicity;
- Oncological cell treatments that target pro-tumoral factors;
- Design second-line immunotherapy drugs.

Prognostic role of scRNA-seq in GBM

- Immunotherapy-resistant oncological cell subsets;
- Identify and target drivers of tumor recurrence;
- Novel tumor mechanisms of immune escape.

GBM = glioblastoma; TAM = tumor-associated macrophages; scRNA-seq = single-cell RNA sequencing;
BBB = blood–brain barrier.

3. Review
3.1. General Aspects of scRNA-seq

Medicine is undergoing a profound transformation as it embraces the molecular
era, which has become particularly relevant in recent years, especially within oncology.
This shift aims to deepen our understanding of the cellular makeup of diseases and their
interactions with their microenvironment, enabling a more precise approach to identifying
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the origin of disease. Such advancements facilitate more accurate, less invasive diagnostics
and open the door to identifying new therapeutic targets, ultimately paving the way
for more tailored and effective treatments [31]. In this scoping review, 453 articles were
screened, of which 24 were selected and summarized in Table 1. The major subtopics
identified were as follows: the tumor microenvironment (n = 11), the cancer biology of
GBM (n = 5), prognosis through scRNA-seq models (n = 3), translational research (n = 3),
and treatment in GBM (n = 2).

Analyzing individual cells through comprehensive molecular approaches has become
crucial for moving forward our understanding of disease and improving our insights
into whole tissues and organs, particularly through detailed information on intrinsic
and microenvironmental interactions [32]. The transcriptome, in particular, is integral
to cell identity, correlating with specific cellular phenotypes and changes. Therefore,
a single-cell transcriptomic analysis via scRNA-seq provides unique insights into the
cell-to-cell variation.

The scRNA-seq technique begins with the precise isolation of individual cells from
sources such as tissue samples, dissociated cell suspensions, or cultures. The RNA from
the cells is then isolated, converted into complementary DNA (cDNA), and subsequently
subjected to the high-throughput sequencing of cDNA libraries [33]. With the sequencing
data and gene expression profiling, scRNA-seq reveals previously unrecognized transcrip-
tional similarities and differences within bulk populations once thought to be molecularly
uniform (Figures 1–3). This level of precision has greatly enhanced our understanding and
characterization of complex diseases, such as CNS tumors, allowing for a more accurate
and nuanced classification. Through scRNA-seq, researchers can now identify rare cell
types and subpopulations, providing critical insights that were previously out of reach [32].

The plasticity of GBM cells further complicates treatment strategies. Single-cell-
derived clones from the same patient can exhibit vastly different proliferative, differ-
entiative, and drug-response profiles, emphasizing the need for multi-region biopsies to
capture the full spectrum of tumor heterogeneity. For example, recent scRNA-seq analyses
of patients with multifocal GBM (arises from a common precursor and undergoes parallel
evolution) have identified a natural evolution signature (NES) characterized by the activity
of genes such as HIF1A, FOSL2, and ANXA1, which increases throughout tumor evolution.
This NES provides a framework for understanding the molecular drivers of heterogeneity
and could inform the development of targeted therapies [34].

The integration of the scRNA-seq and phylogenetic analyses has significantly ad-
vanced our understanding of GBM heterogeneity, evolution, and therapeutic resistance.
These findings underscore the need for personalized, multi-targeted approaches that ac-
count for the dynamic and diverse nature of GBM. By identifying universal markers, shared
invasion pathways, and novel therapeutic targets, recent research has paved the way for
more effective treatments and improved patient outcomes in this devastating disease which
will be discussed further in this review.
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highlight key features of GBM, such as intratumoral heterogeneity and the tumor microenvironment.
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3.2. In Vitro and In Vivo Applications of scRNA-seq in GBM

ScRNA-seq has been widely employed in both in vitro and in vivo studies of GBM. As
has been stated, using this technology addresses disease understanding with fundamental
tools such as gene expression profiling. Recently, the implementation of three-dimensional
cell culture systems, such as brain organoids (Figure 3), has gained popularity, given
their higher architectural resemblance with in vivo tissues compared to monolayer or
2D cultures [35]. Three-dimensional cell cultures are advantageous tools as they can
recapitulate the cellular heterogeneity found in GBM [10,30,36]. Similarly, patient-derived
explants have been shown to mimic primary tumors by retaining similar transcriptomic
profiles to that of the primary tumor [10]. A study by LeBlanc et al. analyzed bulk
exome and single-cell genomes and transcriptomes from primary GBMs with matched
patient-derived explants and gliomasphere lines. A transcriptomic analysis by scRNA-
seq demonstrated the similarity of patient-derived explants in retaining similar genetic
characteristics and transcriptional heterogeneity to that of primary tumors [10].

The use of scRNA-seq in in vivo studies also provides valuable information regarding
the immune response toward tumor growth. Identifying the responses and the cellular com-
ponents present in GBM is critical for establishing pivotal mechanisms of the disease. For
example, a mouse model of GBM examined the immune landscape of GBMs by performing
scRNA-seq on both newly diagnosed GBM patient samples and orthotopic GL261 tumors
in mice [37]. The use of this technology identified a diverse immune population in the
different subsets of cells found, such as dendritic cells and tumor-associated macrophages
(TAMs) [37]. A transcriptomic analysis of individual cells highlights the importance of these
technologies for the understanding of the behavior and response of GBM to its immune
microenvironment [38]. scRNA-seq provides information on how similar or different the
immune landscapes of patients and mice tumors are, enhancing the potential information
extracted from scRNA-seq in mouse studies of GBM.
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3.3. TME Dynamics in GBM and scRNA-seq Applications

The TME of GBM is a complex and dynamic ecosystem that plays a critical role in
tumor progression, therapy resistance, and immune evasion. It can be broadly divided, as
described by Hambardzumyan et al. [39], into three distinct regions: the hypoxic tumor
region at the core, the perivascular tumor region, and the vascular-invasive tumor region,
each characterized by unique cellular and molecular composition. The advent of scRNA-seq
has revolutionized our understanding of the TME by enabling the detailed characterization
of its diverse cell populations and their functional states. These insights are required to
better understand the multiple cellular interactions that are particularly relevant in the
context of immunotherapy, where more understanding is required to further delineate the
multiple immunosuppressive mechanisms of GBM that lead to the limited efficacy of the
immune checkpoint blockade not seen in other cancer types [39,40].

The GBM TME is characterized by a highly immunosuppressive landscape, primarily
driven by the abundance of myeloid cells and regulatory T cells. Myeloid cells constitute
approximately 45% of the total TME and encompass a diverse array of cell types, including
macrophages, microglia, granulocytes, monocytes, and myeloid-derived suppressor cells
(MDSCs). Notably, sex-specific differences have been observed in the myeloid compart-
ment, with female GBM patients exhibiting a higher proportion of myeloid cells compared
to males [41,42]. This finding highlights the potential influence of sex on the TME composi-
tion and therapeutic responses, also highlighting the interpatient heterogeneity of GBM.
Another key component of the GBM TME are TAMs, which exhibit remarkable interindivid-
ual differences. While in vitro studies classify macrophages into pro-inflammatory M1 and
immunosuppressive M2 subtypes, in vivo TAMs often co-express markers of both states.
scRNA-seq has revealed diverse TAM subpopulations, including SPP1-expressing, IFN-
activated, proliferating, inflammatory, and MHCII-high macrophages. SPP1-expressing
TAMs have been particularly implicated in promoting glioma cell survival and angio-
genesis, making them another potential therapeutic target [43]. Additionally, GBM cells
can induce the expression of surface markers on TAMs such as CD78 that lead to their
conversion into immunosuppressive participants by producing adenosine that further
inhibits CD8+ T-cell activity. Another immunosuppressive TAM subset has been shown to
express the MARCO receptor, which is associated with poor clinical outcomes [37,40,44].

In addition to macrophages, both MDSCs and T cells play an important role in the
TME of GBM, having important immunosuppressive functions and contributing to tumor
progression. MDSCs support glioma cells, by creating an immunosuppressive environment
within the tumor microenvironment, inhibiting T-cell proliferation and exhibiting increased
epigenetic immunoediting, hence facilitating immune evasion [45]. A particular polymor-
phonuclear subtype of MDSCs, which is absent in normal brain tissue is more prevalent
in IDH1 wild-type tumors. This specific subtype is involved in epigenetic reprogram-
ming, hence explaining the poorer prognosis of these patients compared to IDH1 mutant
cases [16]. Despite their importance, distinguishing MDSCs in scRNA-seq datasets remains
challenging due to the overlapping marker expression with other myeloid populations.
Advances in scRNA-seq resolution and complementary techniques are needed to better
characterize MDSCs and develop targeted therapies.

scRNA-seq has allowed the identification of four main T-cell populations: CD8+ T cells,
CD4+ conventional T cells, CD4+ regulatory T cells (Tregs), and cycling T cells [11]. Tregs
and exhausted T cells are abundant in the GBM TME and contribute to immunosuppression
through IL-10 secretion [46]. In addition to this, the myeloid cell interplay with T cells
has been shown to be an important mechanism via the IL-10 secretion from macrophages,
involved in further T-cell exhaustion [47].
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Even though B cells are relatively scarce in GBM, they have proven to play a role in
tumor progression and immune regulation. GBM cells can convert B cells into immuno-
suppressive regulatory B cells [48]. Other important participants of TME in GBM are
cancer-associated fibroblasts (that promote tumor progression) and endothelial cells that ac-
tively modify the blood–brain barrier (BBB). scRNA-seq has identified distinct endothelial
cell clusters in GBM that could potentially become therapeutic targets and further improve
the significant obstacle of drug delivery in GBM [15].

The application of scRNA-seq has provided insights into the cellular and molecular
complexity of the GBM TME. By delineating the heterogeneity of immune and stromal cell
populations, studies have identified key players in tumor progression, immune evasion,
and therapy resistance. As scRNA-seq technologies continue to advance, they will further
illuminate the intricate interactions within the GBM TME, paving the way for more effective
and personalized treatments.

3.4. Potential Diagnostic Applications of scRNA-seq in GBM

GBM is an exceptionally heterogeneous tumor, presenting significant challenges for
characterization. This complexity stems from the diverse range of cell types coexisting
within the TME, including malignant cells, endothelial cells, fibroblasts, and a variety
of immune cells. Each of these cellular components contributes uniquely to the tumor’s
behavior, progression, and resistance to treatment, highlighting the need for advanced
techniques to fully understand GBM’s intricate cellular landscape [12]. Genetic, epigenetic,
and TME factors profoundly influence the composition and behavior of neoplastic cells in
GBM. Single-cell genomics, especially scRNA-seq, has become invaluable for dissecting
the complex transcriptomic dynamics within the TME, revolutionizing our understanding
of GBM [28,49,50]. This precision enables researchers to identify key genes that define
cancer cell subtypes and drive tumor behavior, providing critical insights for targeted
therapies [51].

Tumor heterogeneity in GBM is pronounced not only across different stages of tumor
development but also between genders and age groups. The invasive and metastatic
potential of GBM cells further amplifies this variability. Even within a single tumor, cells
may harbor unique mutations, leading to diverse phenotypic and epigenetic landscapes.
Despite shared genetic characteristics between tumoral cells, including the amplification of
chromosome 7 and deletion of chromosome 10, individual patients with GBM demonstrate
a diverse array of genomic aberrations. This variability contributes to the distinctiveness
of each tumor [21,52]. This complexity poses diagnostic challenges that scRNA-seq is
well-equipped to address, providing a precise cellular and genetic diagnosis tailored to the
individual characteristics of each case [49,53,54].

Recent advances in scRNA-seq have provided insights into the cellular and molecular
diversity of GBM. For example, SOX2 has emerged as a potential marker for transformed
glioma cells, as its high expression is consistently observed in high-grade glioma cells [55].
Additionally, studies mapping the phylogenetic evolution of GBM have revealed that muta-
tions in EGFR tend to accumulate at later stages of tumor development, while alterations in
PI3KCA occur earlier [27]. These findings highlight the dynamic nature of GBM evolution
and suggest that therapeutic efficacy may depend on the genetic similarity between the
tumor and the targeted intervention [56]. In this way, an accurate diagnosis throughout the
evolution of GBM in time (embracing all spatiotemporal genomic architecture) would also
give hope for a perfect timing in specific targeting [27]. However, there is scarce information
regarding the GBM spatiotemporal genomic information acquired from scRNA-seq.

Understanding the geographical distribution of tumors is essential for elucidating
GBM propagation behavior regarding dissemination and immune infiltration [27]. It is
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paramount to analyze biopsies from various locations and time points to characterize the
spatiotemporal genomic architecture of GBM. Some findings have revealed that multifocal
tumors exhibited a greater genetic diversity than adjacent tumors, highlighting significant
spatial genetic heterogeneity [27]. Similarly, Yu et al. demonstrated that a single biopsy
and RNA-seq of bulk tissue failed to capture the intratumoral and TME heterogeneity, as
individual GBM cells displayed distinct subtypes that varied dramatically across different
regions of the same tumor [25].

The diffuse nature of GBM has led to the hypothesis that the recurrence of the disease
following tumor resection may be attributed to the presence of residual long-distance
migratory oncological cells [57,58]. Darmanis et al. performed separate biopsies of the
tumor core and periphery, followed by scRNA-seq [20]. Their analysis revealed that the
tumor core exhibited a higher expression of adhesion- and hypoxia-related genes compared
to the tumor margin. They also found a smaller percentage of proliferating cancer cells
in the infiltrating fraction, with a greater abundance of these cells in the tumor core [20].
This finding supports previous studies, indicating that hypoxia enhances glioma stem cell
expansion through HIF-1α expression [52]. Notably, infiltrating tumoral cells obtained
from tumor periphery samples exhibited a converging mechanism of dissemination [20].

Single-cell genomics from patient-derived tumor specimens resected during routine
disease management or research biopsies holds great promise for advancing discoveries
and improving therapy deployment in GBM [19,54]. While the underlying mechanisms
of the epithelial-to-mesenchymal transition in recurrent GBM remain unclear, several fac-
tors related to standard therapies may contribute. These include variations in cellular
division rates within mesenchymal and non-mesenchymal populations, individual cells
transitioning to a mesenchymal phenotype, quiescent mesenchymal cells demonstrating
preferential resistance to standard treatments, and genetic alterations favoring the mes-
enchymal state [59,60]. Although RNA velocity analyses indicate that the contribution
of phenotypic shifts is modest, the timing of the sample collection complicates this as-
sessment. Samples taken months after treatment pressure has been removed suggest that
treatment-induced phenotypic shifts may significantly influence the later prevalence of
mesenchymal cells [61]. The findings of Wang et al., along with prior studies, support the
existence of quiescent, stem-like cells with mesenchymal characteristics that are resistant
to ionizing radiation and temozolomide [62]. These cells can re-enter the cell cycle after
therapy, potentially driving disease recurrence [62]. scRNA-seq has been invaluable in
revealing these dynamic changes, enhancing our understanding of cellular heterogeneity
and the transcriptional profiles of individual cells, thereby informing targeted therapies
and improving prognostic strategies for GBM patients [62].

Other potential diagnostic roles of scRNA-seq are to identify different GBM metabolic
subtypes. Garofano et al. were able to use scRNA-seq to identify a potential GBM subtype
with therapeutic vulnerabilities [63]. The mitochondrial subtype of GBM stands out for
its dependence on oxidative phosphorylation for energy production, in contrast to the
glycolytic/plurimetabolic subtype, which relies on aerobic glycolysis as well as amino acid
and lipid metabolism [63]. Clinically, the mitochondrial subtype is linked to a more favor-
able prognosis and demonstrates a heightened sensitivity to oxidative phosphorylation
inhibitors. A defining genetic feature of this subtype is the deletion of the glucose-proton
symporter SLC45A1 [63]. Its reintroduction induces cellular acidification and diminishes
the fitness of mitochondrial glioma cells.

Many of the networks inferred to be derived from scRNA-seq represent well-
characterized pathways associated with GBM, including those involved in the inflam-
matory response (e.g., type II interferon, and interleukin-1 to -4) [62,64], immune cell
chemotaxis (e.g., CCL/CXCL, and colony-stimulating factors) [65], and angiogenesis (e.g.,
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platelet-derived growth factor and vascular endothelial growth factor (VEGF)) [66,67].
These pathways remain active from the initial stages of the disease to recurrence. However,
specific ones were notably upregulated in recurrent tumors, particularly within mesenchy-
mal cells. Importantly, during recurrence, mesenchymal cells exhibited the expression
of receptors associated with the WNT, NRG, NGF, and IGF signaling pathways, thereby
providing a novel set of markers for classifying the more aggressive recurrent forms of
GBM [62].

As the number of studies employing scRNA-seq to analyze GBM patient samples
increases, the clearer the transcriptomic landscape of GBM in different contexts will become.
This will result in additional defined tumor markers for a more accurate staging and
diagnosis of GBM.

3.5. Prognostic Applications of scRNA-seq in GBM

Several studies have examined the possibility of implementing scRNA-seq for estab-
lishing prognostic models in GBM. For example, Lai et al. [24] constructed a prognostic
model for survival prediction in patients with GBM, utilizing two public datasets contain-
ing scRNA-seq and bulk RNA-sequencing data. In this study, based on 43 differentially
expressed genes that were correlated with overall survival among both datasets, a “five-
gene-based risk score prognostic model” was built [24]. This model, which was externally
validated, demonstrated significance in the overall survival between high- and low-risk
groups, showing a worse prognosis in the high-risk group [24].

Similarly, a study carried out by Wu et al. analyzed six tumor tissue samples from
six patients with GBM using scRNA-seq (three were catalogued as primary and three
as recurrent). In this study, the single-cell transcriptomes were retrieved and used from
30,126 cells for unbiased clustering, resulting in the identification of 11 major cell types and
16 subclusters present in the tumor population [7]. The analysis of each subcluster by a
differential gene expression analysis identified markers of poor prognosis, such as certain
enriched-signaling pathways and cells with a high expression of proliferation-related
proteins, all associated with a poor prognosis in patients with GBM [7,68–70].

The use of scRNA-seq technologies enables the identification of novel biomarkers
useful for predicting disease aggressiveness. By examining key molecular processes, such
as cancer cell resistance to programmed cell death, a more accurate prognosis can be estab-
lished. For example, Zheng et al. utilized scRNA-seq for the identification of necroptotic
genes in 169 GBM patients [9]. The use of this technology established a prognosis risk
model involving relevant necroptosis-related genes, such as NDUFB2, which might be
correlated with poor outcomes in GBM [9].

Understanding the biological mechanisms that give rise to GBM is fundamental for
advancing the comprehension of this disease. Utilizing scRNA-seq technologies makes it
possible to understand the molecular characteristics of cancer cells that contribute to a poor
prognosis by highlighting the essential steps and processes that contribute to the formation
and aggressiveness of GBM.

3.6. Therapeutic Applications of scRNA-seq in GBM
3.6.1. Precision Medicine

After The Cancer Genome Atlas Consortium (TCGA) provided the numbers for recur-
rent genomic aberrations in GBM, data analysis efforts by Verhaak et al. in 2010 allowed for
the classification of GBM into neural, pro-neural, classical, and mesenchymal [71]. While
this clustering proved to encompass all the data collected, the intratumoral diversity of
GBM remained to be addressed until single-cell next-generation sequencing techniques
were developed.
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Averaging data from tumor samples obscures individual cells’ unique characteristics
and biomarkers that may dictate the therapeutic response. Recently, cancer therapy has
shifted from traditional systemic treatments on population-founded evidence to rather more
personalized approaches [52]. Precision medicine aims to identify diagnostic, potentially
therapeutic, and prognostic molecular features in tumors, which is particularly challenging
in GBM due to its inherent heterogeneity. Addressing the cellular diversity in GBM, Wang
et al. employed scRNA-seq data to classify cells as single glioma cells or tumor-associated
host cells and identified genes unique to the single glioma cells. Additionally, higher levels
of M2 macrophages and a poor response to ionizing radiotherapy were correlated, and so
were the frequency of CD8+ lymphocytes and hypermutations. Adequate TME individual
cell characterization promises to be key in developing precise medicine for patient care.

Intratumoral cell classification has also been reported by Neftel et al., who developed a
model for GBM portrayal based on cell lineage tracing, genetics, and the microenvironment
by integrating the scRNA-seq of 28 tumor samples with a bulk RNA-seq analysis of TCGA
data and experimental models [19]. Four main cellular states were identified within
the different malignant tumor cells, neural-progenitor-like, oligodendrocyte-progenitor-
like, astrocyte-like, and mesenchymal-like, which exist in different proportions in each
tumor and are characterized by genetic aberrations in CDK4, PDGFRA, EGFR, and NF1.
scRNA-seq has allowed for GBM characterization at a resolution that traditional bulk tissue
molecular analysis cannot achieve.

Recent studies employing scRNA-seq have also offered profound insights into the
cellular and molecular alterations of the BBB in GBM. For example, Xie et al. identified
distinct endothelial cell phenotypes within GBM, each exhibiting varying degrees of BBB
disruption and correlating with specific tumor regions [15]. This endothelial heterogeneity
suggests that BBB permeability could be strategically modulated by targeting key molecular
pathways, potentially improving drug delivery to the tumor [15].

Single-cell characterization has increasingly become more important in cancer research,
particularly in cancers with profound intratumoral heterogeneity, such as GBM. This
heterogeneity impedes adequate diagnosis and staging and has hindered drug discovery
efforts, as exemplified by Rindopepimut, a vaccine designed to target the EGFRvIII mutant
that failed to prove effective in phase III of clinical trials. Despite its initial promise in
recognizing and targeting the mutant EGFR protein, the vaccine’s inability to achieve
significant clinical benefits underscores the complexity of GBM biology and the limitations
of single-target approaches [72]. The heterogeneity of GBM is reflected in the diverse copy
number alterations in key genes that drive the emergence of distinct cell lineages within
the same TME, as well as the coexistence of multiple subtypes within a single tumor [72].

3.6.2. Chemotherapy

The use of molecular markers to predict the response of GBM to chemotherapy is
a relevant research topic. In clinical practice, the identification of markers using various
techniques is well-documented, including the MGMT methylation status, detection of
IDH-1 and IDH-2 mutations, Ki67 labeling index, EGFR amplification, and PTEN deletion,
among others [73].

The role of scRNA-seq in GBM sample analysis can be regarded as an additional value
as it is possible to adequately identify a plethora of biomarkers and provide more specific
information than conventional diagnostic methods. For example, Wu et al. described
the overall VEGF overexpression across nearly all clusters in recurrent GBM [7]. The
reshaping of the TME in recurrent GBM leads to increased levels of the VEGFA isoform,
which stimulates angiogenesis and tumor growth [7]. Previous studies have shown a
negative correlation between serum VEGFA levels and the effectiveness of bevacizumab
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treatment, a VEGF inhibitor [74]. As a result of recurrent GBM samples via scRNA-
seq, VEGFA may be categorized as a biomarker of recurrent GBM that shows a poor
response to bevacizumab. Additionally, higher levels of genes associated with the MGMT
signaling pathway correlated with a poor prognosis in recurrent GBM [7]. This aligns with
MGMT being a well-established biomarker of an inadequate response to temozolomide,
demonstrating the applicability of scRNA-seq in providing a detailed analysis of biomarkers
of response to chemotherapy.

3.6.3. Immunotherapy

While common immunotherapy-success indicator biomarkers in cancer include mu-
tational burden and checkpoint ligand expression, there is a significant lack of validated
biomarkers characterized for GBM. scRNA-seq offers the potential to discover new biomark-
ers and inform GBM immunotherapy by providing detailed transcriptomic outlines of
the immune microenvironment. A promising direction for future research is proposed
by Muller et al. through targeting immunosuppression-associated TAMs derived from
peripheral blood rather than brain-resident microglia to enhance the host immune response
against GBM [22]. By elucidating this heterogeneity, scRNA-seq can help identify tumor
antigens expressed by the majority of clones within a tumor, thereby guiding the selection
of appropriate immunotherapies [75–77].

3.6.4. Radiotherapy

It is well-established that numerous recurrent cases of GBM originate from regions lo-
cated beyond the resected contrast-enhancing portion of the tumor [26,78]. This recurrence,
which persists despite adjuvant radiation and chemotherapy, underscores the necessity of
re-evaluating our understanding of single cells within the peritumoral brain zone. Research
has shown that GBMs contain stem cells with a marked resistance to radiation [79]. Some of
them evade or escape radiotherapy-induced cellular senescence [80]. Although the insights
from these studies are not yet clinically actionable, a more profound understanding of
single-cell dynamics at the tumor margins could ultimately pave the way for more effective
and targeted radiotherapy strategies in this challenging clinical context.

3.6.5. Mechanisms of Resistance

The application of scRNA-seq has also shed light on relapse mechanisms in GBM. For
example, mutations in the RAS/GEF GTP-dependent signaling pathway have been iden-
tified in relapsed GBM but not in primary tumors, providing insights into the molecular
changes underlying treatment resistance. Additionally, studies on H3K27m-glioma have
revealed that these tumors are predominantly composed of oligodendrocyte precursor
cell (OPC)-like populations, which exhibit a high proliferative capacity and depend on
PDGFRA signaling. Targeting these populations could offer a novel therapeutic strategy
for this aggressive subtype [81]. Furthermore, scRNA-seq studies have identified key
metabolic pathways, such as those involving ELOVL2, which promote GBM tumorigenicity.
Knockdown of ELOVL2 has been shown to inhibit tumor growth, highlighting its potential
as a therapeutic target [82]. Similarly, as also stated by Wang et al. [81], the discovery of
RAD51AP1 as an oncogene in EGFRvIII-driven GBM opens new avenues for combina-
tion therapies, such as temozolomide with RAD51AP1 inhibition, which could enhance
treatment efficacy and improve patient outcomes.

3.6.6. Technical Limitations and Challenges of scRNA-seq in GBM Research

scRNA-seq has undeniably transformed our understanding of GBM heterogeneity and
TME dynamics. However, its application is not without significant technical and analytical
challenges that must be critically addressed to ensure robust and reproducible findings.
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A primary concern lies in the pervasive issue of batch effects that can lead to biological
signal confounding, impeding accurate conclusions about cellular states, gene expression
patterns, and cellular interactions. Differences in experimental conditions (e.g., sequencing
platforms, and sample processing times) can introduce systematic variations in data. This
issue is especially critical in GBM, where distinguishing subtle differences between tumor
subclones or immune cell states is essential. Such variations may overestimate or distort
the true biological behavior [83,84]. Another major limitation is the inherent technical noise
in scRNA-seq data from amplification biases and dropout events, where mRNA molecules
fail to be captured or amplified. These dropout events, especially seen in low-abundance
transcripts, potentially mask rare but functionally critical cell populations and further
complicate the interpretation of gene expression profiles. This is especially relevant in GBM,
where diverse tumor cells and immune infiltrates in the TME, along with amplification
biases, hinder the identification of reliable biomarkers and therapeutic targets [85].

Integrating data from multiple sources can be computationally demanding and can
potentially lead to a loss of information if not handled properly. Additionally, integrating
scRNA-seq findings across different studies is hampered by differences in cell isolation
methods, sequencing depth, or platform-specific biases [86]. These challenges are particu-
larly critical in GBM research where multimodal research approaches are required to further
comprehend the TME. Beyond technical limitations, practical and ethical considerations
also loom large. The high cost of scRNA-seq and the expertise required for data analysis
restrict its accessibility, particularly in low-income settings.

Overcoming these challenges will demand innovations in both the experimental and
computational domains. By confronting these technical and ethical hurdles, the field can
potentially unlock the full potential of scRNA-seq to dissect GBM’s complexity, identify
novel therapeutic susceptibilities, and, ultimately, improve outcomes for patients by posing
new opportunities for personalized treatments.

3.7. Future Perspectives

By investigating cells at the single-cell level, we can explore the intricate interactions
between intrinsic GBM cellular processes and external factors. To date, most scRNA-seq
has been performed on freshly isolated samples, but advancements now enable the study
of transcriptomics in fixed or cryopreserved tissue samples [87]. Emerging technologies
aim to minimize transcriptome perturbations caused by cellular dissociation techniques,
which will enhance the accuracy of these analyses. Additionally, improvements in cost-
effectiveness will make scRNA-seq more affordable on a per-cell basis, allowing researchers
to study not only hundreds but also millions or even billions of cells, thereby facilitating
its application in clinical settings. By creating more extensive cDNA libraries, scRNA-
seq datasets can be constructed and analyzed to provide deeper insights into cellular
behavior, interactions, and lineages. Bioinformatics will undoubtedly face challenges in
developing user-friendly interfaces to organize and extract biological information from
these vast datasets [31]. In the coming years, scRNA-seq could become a valuable tool
for identifying rare malignant and chemotherapy-resistant GBM cells, ultimately guiding
treatment decisions and uncovering new therapeutic targets.

With the rise of immunotherapy in cancer treatment, scRNA-seq has the potential
to provide valuable insights into the immunologic response. Furthermore, in today’s era
of molecular clinical diagnostics, where liquid biopsies are gaining prominence, scRNA-
seq holds great promise for diagnosing tumors and monitoring disease progression and
treatment response [88]. As scRNA-seq technologies continue to evolve and become more
accessible, this powerful technique is well-positioned to move from specialized research
laboratories into standard use by both basic scientists and clinicians.
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4. Limitations
A particular limitation of this study is related to the current definition of GBM. Accord-

ing to the 2021 classification of CNS tumors, GBM is characterized as an adult-type glioma
presenting as an IDH wild-type tumor. However, this scoping review included studies
published before 2021, which have previously classified GBMs as grade 4 astrocytomas
(IDH-mutant). Although the scope of this article is not intended to draw any conclusions,
we find it relevant to clarify this aspect.

5. Conclusions
scRNA-seq has revolutionized GBM diagnostics by identifying diverse tumor cell pop-

ulations, mapping spatiotemporal genomic architecture, and uncovering immune escape
mechanisms. Additionally, scRNA-seq facilitates more accurate diagnoses and innova-
tive therapeutic strategies, enabling tailored treatments that address tumor progression,
treatment resistance, and recurrence while enhancing prognostic precision. Ultimately,
scRNA-seq paves the way for personalized, multi-targeted interventions that improve
management and outcomes for patients with GBMs.
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