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Background: Liquid biopsy using circulating tumor DNA (ctDNA) has emerged as
a promising tool for molecular characterization and monitoring in gliomas. This
systematic review and meta-analysis evaluated the diagnostic and prognostic
value of ctDNA in cerebrospinal fluid (CSF), compared to plasma, as well as
factors influencing its detection.

Methods: We systematically reviewed studies published between 2015 and 2025
reporting on ctDNA detection in CSF from adult glioma patients. Pooled analyses
compared detection rates between CSF and plasma, CSF collection routes, assay
types (targeted vs. bespoke), and IDH mutation status. Molecular concordance
with tumor tissue and clinical correlations were also assessed.

Results: Twelve studies comprising 388 patients with WHO grade II-IV gliomas
were included. ctDNA detection in CSF was achieved in 82% of patients,
compared with only 16% in plasma. Tumor—CSF molecular concordance was
90% (95% CI 86-93). Detection was significantly higher in CSF than in plasma (OR
0.05, 95% C1 0.01-0.24). No significant differences were observed between IDH-
wildtype and IDH-mutant gliomas (OR 0.72, 95% CI 0.26-2.02) or between
intracranial and lumbar CSF collection techniques (p > 0.9).

Conclusions: CSF outperforms plasma for ctDNA-based molecular profiling in
gliomas, offering both diagnostic and prognostic applications. Detection is
numerically higher in IDH-wildtype gliomas, underscoring its potential role as a
biomarker in this subgroup. While no significant differences were observed
between collection routes in the pooled analysis, single-study evidence
suggests a possible advantage of intracranial sampling, which requires further
prospective evaluation. Its integration into clinical workflows may aid in cases
where tissue biopsy is not feasible. Standardized methodologies and prospective
multicenter validation are needed to enable routine clinical implementation.
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Introduction

Gliomas are the most common primary malignant brain tumors
in adults, with glioblastoma (GBM) being the most aggressive
subtype and associated with a poor prognosis despite surgery,
radiotherapy, and chemotherapy. Molecular profiling has become
essential for accurate diagnosis, classification, and therapeutic
decision-making, particularly following the 2021 WHO
classification update (1).

Traditionally, molecular characterization relies on tissue
biopsies. However, this approach presents several limitations.
Surgical access to deep-seated or eloquent brain regions may be
contraindicated or high-risk, and even when feasible, sampling may
yield insufficient or non-representative material (2). Moreover, the
intrinsic spatial heterogeneity of gliomas means that a single biopsy
may not fully capture the tumor’s molecular landscape. This can
lead to underrepresentation of critical subclonal alterations that
may have diagnostic or therapeutic significance (3).

In this context, liquid biopsy has emerged as a promising and
minimally invasive strategy to overcome some of the limitations of
conventional tissue sampling. Circulating tumor DNA (ctDNA),
particularly when obtained from cerebrospinal fluid (CSF), offers
higher sensitivity than plasma-based assays for detecting tumor-
specific alterations in brain tumors. This is likely due to the limited
permeability of the blood-brain barrier, which restricts the release
of tumor DNA into the systemic circulation (4). CSF-based ctDNA
analysis has shown potential in identifying key mutations such as
IDH1 or IDH2, TERT promoter variants, and EGFR alterations,
using platforms including digital PCR and next-generation
sequencing (5). Nevertheless, substantial heterogeneity exists
across published studies. Variations in analytical platforms,
sequencing coverage, tumor subtypes included, and clinical
timing of sampling all contribute to inconsistent results.
Additionally, preanalytical factors such as the method of CSF
collection, whether by lumbar puncture or alternative techniques
such as subarachnoid, intracisternal, or intraventricular access, may
influence the concentration of ctDNA recovered and affect
detection sensitivity (6).

To address these gaps, we conducted a systematic review and
meta-analysis of ctDNA detection in glioma patients, focusing on
studies analyzing CSF and plasma samples. Our primary objectives
were to compare detection rates across four clinically and
methodologically relevant variables: biospecimen type, specifically
CSF versus blood; CSF collection route, comparing lumbar
puncture to cranial approaches such as subarachnoid, cisternal, or
intraventricular sampling; the type of molecular assay,
distinguishing targeted panels aimed at known alterations from
broader, bespoke approaches, including differences in sequencing
platforms such as next-generation sequencing or digital PCR; and
IDH mutation status, comparing IDH-wildtype versus IDH-
mutant gliomas.

This work aims to clarify the current evidence, identify
methodological limitations, and support the development of more
standardized and clinically useful liquid biopsy strategies in glioma.

Frontiers in Oncology

10.3389/fonc.2025.1714287

Methods
Study design and objectives

This systematic review and meta-analysis aimed to evaluate the
diagnostic and prognostic utility of circulating tumor DNA
(ctDNA) in the cerebrospinal fluid (CSF) of patients with
histologically confirmed gliomas. Specifically, we assessed whether
CSF-derived ctDNA reliably reflects the molecular profile of the
primary tumor (diagnostic value) and whether its presence
correlates with clinical features such as progression-free survival
(PFS) and overall survival (OS), tumor grade, or tumor burden
(prognostic value). We also examined detection rates across
biospecimen types (CSF vs. plasma), CSF collection routes, and
molecular techniques, including targeted versus bespoke assays and
different sequencing platforms. This study was conducted in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) 2020 guidelines.

Search strategy

A comprehensive literature search was conducted across
Pubmed and Embase databases to identify studies investigating
liquid biopsy for genomic profiling in glioma patients. The search
spanned from January 1, 2015 to June 30, 2025. Multiple keyword
combinations were used to ensure broad coverage. The following
search strategies were employed:

+ (“glioma” OR “glioblastoma” OR “astrocytoma” OR
“oligodendroglioma”) AND (“liquid biopsy” OR “ctDNA”
OR “circulating tumor DNA”) AND (“plasma” OR “blood”)
AND (“cerebrospinal fluid” OR “CSF’) AND (“mutation”
OR “genomic profiling” OR “molecular analysis”)

* (“glioma” OR “glioblastoma”) AND (“cerebrospinal fluid”
OR “CSF”) AND (“lumbar puncture” OR “intracranial
sampling” OR “ventricular drainage” OR “cisternal
puncture”) AND (“liquid biopsy” OR “ctDNA”)

* (“glioma” OR “glioblastoma”) AND (“liquid biopsy” OR
“ctDNA”) AND (“targeted sequencing” OR “bespoke
panel” OR “custom panel”)

* (“glioma” OR “glioblastoma”) AND (“liquid biopsy” OR
“ctDNA”) AND (“next-generation sequencing” OR “NGS”)
AND (“digital PCR” OR “droplet digital PCR”
OR “ddPCR”)

* (“glioma” OR “glioblastoma”) AND (“liquid biopsy” OR
“ctDNA”) AND (“IDH” OR “IDH1” OR “IDH2”) AND
(“wild-type” OR “mutant”)

All identified references were imported into a reference
manager and de-duplicated. Two independent reviewers screened
titles and abstracts, followed by full-text evaluation of potentially
eligible studies. The selection process followed PRISMA 2020
guidelines and is summarized in Figure 1.
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PRISMA 2020 flow diagram of study selection. Flow diagram summarizing identification, screening, and inclusion of studies. A total of 84 records
were identified, 15 duplicates were removed, 69 records were screened, and 15 full-text articles were assessed. Twelve studies met eligibility criteria

and were included in the qualitative and quantitative analyses.

Eligibility criteria

Studies were included if they met the following criteria: involved
adult patients with glioma of any histologic or molecular subtype,
used CSF as a biospecimen for liquid biopsy, and presented original
clinical data from case series, cohort studies, or clinical trials. To be
eligible, studies had to report on the diagnostic or prognostic role of
CSF-derived biomarkers, including ctDNA detection rates,
concordance with tumor tissue, or associations with clinical
outcomes. No restrictions were applied based on whether
sensitivity, specificity, area under the curve (AUC), or hazard
ratios (HRs) were reported. Only studies published in English
between January 1, 2015 and June 30, 2025 were considered.

Exclusion criteria included: review articles, editorials, or
conference abstracts without original data; single case reports;
preclinical studies based solely on cell lines or animal models;
studies focusing on non-glioma brain tumors or mixed cohorts
including metastases; duplicate reports or secondary analyses of
previously published datasets; unclear or non-relevant liquid biopsy
methodologies; studies focusing on pediatric patients (under 18
years of age); and studies with known cases of leptomeningeal
carcinomatosis, given its confounding impact on ctDNA levels
in CSF.

All studies meeting inclusion criteria were subjected to full-text
screening for final data extraction and risk-of-bias assessment.

Frontiers in Oncology

Data extraction

A standardized form was used to extract data from each eligible
study. Variables collected included: first author, year of publication,
country, study design (prospective or retrospective), sample size,
glioma classification per WHO 2021, and characteristics of the liquid
biopsy approach. Technical variables included biospecimen type
(CSF, plasma), ctDNA target genes, method of fluid collection (e.g.,
lumbar puncture, Omaya reservoir, intraoperative subarachnoid,
cisternal, or intraventricular access), and detection platform (e.g.,
targeted next-generation sequencing, droplet digital PCR, BEAMing,
whole-exome sequencing). Reported diagnostic and prognostic
outcomes were also collected, including sensitivity, specificity,
AUC, and HRs. When relevant outcomes were mentioned but not
clearly tabulated, data were cross-checked in Supplementary
Materials or extracted manually from the text or figures.

For subgroup analyses, ‘intracranial access’ was defined as CSF
collection obtained directly from the cranial compartment,
including intraoperative subarachnoid, cisternal, or ventricular
sampling performed either through direct puncture or via
indwelling devices such as ventricular catheters or Ommaya
reservoirs. These approaches were grouped together due to their
shared anatomical proximity to the tumor and ventricular system.

For the purposes of pooled analysis, the study by Orzan et al. (7)
was split into two independent cohorts (intracranial vs. lumbar
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puncture CSF collection) to enable comparison of collection routes.
In addition, in the study by Cabezas-Camarero et al. (3) a single
IDH-mutant case obtained by lumbar puncture was excluded, so
that the remaining cohort could be consistently integrated into the
intracranial CSF group.

Risk of bias assessment and statistical
analysis

The methodological quality of included studies was assessed
using the Newcastle-Ottawa Scale (NOS), suitable for observational
studies. The NOS evaluates study quality across three domains:
selection of participants, comparability of groups, and outcome
ascertainment. Each study was scored independently by two
reviewers, with a maximum score of 9 points. Studies were
categorized as low risk of bias (=7), moderate risk (5-6), or high
risk (<5). Discrepancies were resolved by discussion and consensus.

Statistical analysis

A meta-analysis of proportions was conducted using R version
4.3.2 with the meta and metafor packages. Studies reporting
proportions of liquid biopsy detection in gliomas were included,
and results were summarized descriptively without formal
hypothesis testing (i.e., no p-values). Overall pooled proportions
were estimated and displayed as forest plots with 95% confidence
intervals. The choice between fixed- and random-effects models was
guided by the assessment of heterogeneity, using Cochran’s Q test
and the I” statistic. When heterogeneity was low and not statistically
significant, fixed-effect models were applied; otherwise, random-
effects models were used. Specifically, pooled estimates were
obtained for IDH-mutant and IDH-wildtype detection in CSF,
overall CSF detection rates, plasma detection rates, and tumor—
CSF concordance. Comparative analyses using Mantel-Haenszel
weighting were performed to calculate odds ratios for CSF detection
in IDH-wildtype versus IDH-mutant gliomas, and for positivity in
plasma versus CSF. Subgroup analyses were additionally carried out
to evaluate the effect of CSF collection method (intracranial vs.
lumbar puncture) on detection rates. For this subgroup analysis, a
meta-regression model was fitted with the collection method
included as a categorical moderator. The between-study variance
component was estimated using the restricted maximum likelihood
(REML) approach, and the Knapp-Hartung adjustment was
applied to obtain more robust standard errors and confidence
intervals for the moderator effect.

To evaluate the robustness of pooled estimates, we conducted
leave-one-out (LOO) case-deletion analyses for all meta-analyses. In
each iteration, one study was omitted and the model was re-estimated
using the same parameters as in the primary analysis. The resulting
pooled estimate, its 95% confidence interval, and heterogeneity
metrics were compared with those from the full model. For sparse
or zero-event data, standard continuity-correction procedures
recommended for dichotomous outcomes were applied to ensure

Frontiers in Oncology

10.3389/fonc.2025.1714287

stable estimation. Robustness was judged based on the magnitude
and direction of changes and the stability of statistical inference.

Results

Following the application of PRISMA 2020 guidelines
(Figure 1), twelve studies (3, 4, 7-16) were selected for inclusion
in this meta-analysis, comprising a total of 388 adult patients with
histologically confirmed gliomas. The primary reasons for exclusion
of other articles were studies conducted in pediatric populations
(patients <18 years) (6, 17-30) a focus on non-ctDNA biomarkers
such as cell-free DNA (cfDNA) or circulating tumor cells (CTCs)
(2, 31-42), the study of non-glioma or metastatic brain tumors (43)
(44), evaluate of spinal pathology (45, 46), single-case clinical
reports (47, 48), or being review articles and meta-analyses
without original patient data (18, 49-64). All selected studies
analyzed cerebrospinal fluid (CSF) for ctDNA detection, and all
also included primary tumor tissue analysis, with some additionally
incorporating plasma samples. Despite methodological differences
in CSF sampling routes and molecular platforms, all studies shared
the common objective of evaluating the diagnostic or prognostic
utility of CSF-derived ctDNA in gliomas. A full list of included and
excluded studies, along with reasons for exclusion, is provided in
Supplementary Material 1 (Supplementary Tables 1, 2). Risk of bias
assessment using the Newcastle-Ottawa Scale (NOS) showed scores
ranging from 5 to 8, with 9 studies rated as low risk and 3 as
moderate risk; no study was judged to be at high risk of bias
(Supplementary 1, Table 3).

The twelve included cohorts encompassed WHO grades II-IV.
Primary tumor tissue was analyzed in all 12 studies, CSF in 12, and
plasma in 6; several studies included more than one specimen type.
CSF was obtained through intracranial routes in 8 studies and by
lumbar puncture in 7. The most common detection method was NGS
(11 studies), followed by ddPCR (5 studies). Regarding sequencing
strategy, 11 studies employed targeted panels, while only 1 used a
bespoke design. The most frequently analyzed biomarkers included
ATRX, IDH1/2, TP53, PTEN, FUBPI, CIC, and TERT, along with
alterations such as EGFR, NF1, NOTCHI1, PDGFRA, CDKN2A/B,
and PIK3CA. Two studies reported diagnostic accuracy in CSF, with
sensitivities of 92.1% and 100%, and one reported specificity of 100%.
Five studies compared ctDNA findings with MRI, all 12 reported
tumor-CSF molecular concordance, 5 reported OS, 1 reported PFS,
and 3 provided hazard ratios (HRs). A summary of study
characteristics is presented in Table 1.

Across the included studies, the pooled CSF detection rate was
82% (95% CI 66-91; I* = 65%), with individual series ranging from
49% to 100% and most clustering above 70% (Figure 2A). When
considering all 472 CSF samples analyzed across the included
studies, the overall CSF positivity rate remained virtually
unchanged at 82% (95% CI 68-90; 1°=70%), confirming the
robustness of this estimate despite inter-study variability
(Figure 2B). Molecular concordance between CSF ctDNA and
matched tumor tissue was also high, with a pooled rate of 90%
(95% CI 86-93; 1°=23%), and while a few studies reported lower
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FIGURE 2

Proportion with 95% CI

CSF ctDNA detection and tumor—CSF concordance across studies. (A) Pooled CSF ctDNA detection rate (82%; 95% Cl, 66-91; I> = 65%). (B) Pooled
CSF positivity rate (82%:; 95% Cl, 68-90; |2 = 70%). (C) Tumor—CSF molecular concordance (90%; 95% Cl, 86-93; |12 = 23%).

glioma, while also underscoring methodological challenges that
require further standardization.

Leave-one-out sensitivity analyses confirmed that no single
study disproportionately influenced the pooled results, supporting
the overall robustness of our conclusions across all meta-analyses.
The moderate heterogeneity observed across analyses likely reflects
a combination of pre-analytical/analytical and clinical/biological
factors. In our dataset, variability was primarily methodological,
including differences in sequencing platforms and analytic
sensitivity, panel design and breadth, and definitions of ctDNA
positivity, while clinical contributors such as sampling timing
(diagnosis vs. recurrence or post-treatment), tumor burden and
location, and histologic or molecular subtype may add secondary
variability. Together, these elements can influence detection
sensitivity and concordance across studies, underscoring the need
for standardized pre-analytical workflows and reporting, as
highlighted in prior recommendations (5, 64).

Superiority of CSF over plasma

The most consistent result across studies is the clear superiority
of CSF over plasma as a source of ctDNA in gliomas. In our pooled
analysis, ctDNA detection rates in CSF reached 82%, compared
with only 16% in plasma, with a pooled odds ratio of 0.05 (95% CI
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0.01-0.24), confirming the markedly lower sensitivity of plasma.
Tumor-CSF concordance was also high at 90% (95% CI 86-93).
Although heterogeneity across studies was moderate to substantial
(I* > 65%), this was largely driven by a minority of cohorts reporting
lower concordance, while most series individually showed values
near 100%. From a clinical perspective, this variability does not
challenge the overall conclusion that CSF is the most reliable fluid
for glioma-derived molecular information.

These findings align with the biological rationale that CSF directly
bathes the central nervous system and provides a microenvironmental
snapshot of tumor biology. Even when the blood-brain barrier is
disrupted, as frequently occurs in glioblastoma, ctDNA concentrations
in peripheral blood may remain below detection thresholds, whereas
CSF, sampled in close anatomical proximity to the tumor, consistently
contains tumor-derived nucleic acids. Prior studies (4, 65), highlighted
these differences, while others (66) confirmed that plasma-based
approaches remain insensitive in gliomas. Overall, the available data
converge on the conclusion that CSF is the optimal biofluid for ctDNA
analysis in gliomas (64). While lumbar puncture is more invasive than
ablood draw, its diagnostic yield is substantially higher. The correlation
between ctDNA detected in plasma and CSF is low, as plasma rarely
captures the full genomic heterogeneity of gliomas due to the restrictive
blood brain barrier (7, 13). Timing also influences detection, with
perioperative or pretreatment CSF sampling showing the highest
sensitivity and better concordance with tumor tissue.
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Plasma ctDNA detection and comparison with CSF. (A) Pooled plasma ctDNA detection rate across five studies (16%; 95% Cl, 9-25; 12 = 0%). (B)
Odds ratio comparing detection in plasma versus CSF (OR = 0.05; 95% Cl, 0.01-0.24; 12 = 72%).

Factors influencing ctDNA detection in CSF

Several biological and technical factors may affect ctDNA yield
in CSF. One of the most discussed is the molecular subtype,
particularly IDH status. In our analysis, pooled detection rates
were 76% in IDH-mutant gliomas and 84% in IDH-wildtype
tumors, with a non-significant trend toward higher detection in
the latter (OR 0.72, 95% CI 0.26-2.02; I* = 50.5%)The literature
does not consistently demonstrate a robust difference. Orzan et al.
(7) reported that ctDNA detection was feasible in both subtypes
without significant differences, and other studies reached similar
conclusions. Importantly, prospective work such as Fujita 2022 (9)
showed that IDH1 mutations and the metabolite D-2-
hydroxyglutarate can be reliably detected in CSF, but this
association was limited to specific biomarkers rather than overall
ctDNA levels. Similarly, Tuna et al. (67) demonstrated that IDH1
mutation status can be identified in CSF and plasma, but did not
find that IDH status determined ctDNA yield. In plasma, Crucitta
et al. (68) confirmed detectability and prognostic relevance of IDH1
mutations, without evidence that IDH status influences cfDNA
concentration. Collectively, these results indicate that while IDH
alterations can be detected, IDH status itself is not a major
determinant of overall ctDNA detectability.

Another factor is the route of CSF collection. Orzan et al. (7)
demonstrated higher detection when samples were obtained via
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ventricular routes compared with lumbar puncture, particularly
with targeted panels. In contrast, our meta-analysis found no
significant difference between intracranial (87%) and lumbar
puncture (73%) routes, with moderate heterogeneity. Importantly,
recent longitudinal studies such as the work published by Riviere-
Cazaux et al. (34) have shown that intracranial access can enable
repeated sampling, supporting its potential role in experimental or
high-risk settings.

Sequencing strategy also plays a role. Eleven of twelve included
studies used targeted panels, while only one employed a bespoke
design. Evidence indicates that targeted assays, and complementary
methods such as ddPCR, improve sensitivity compared with
untargeted approaches. Martinez-Ricarte et al/ (13) and Guo
et al, 2022 (69) confirmed their value in detecting clinically
relevant alterations. Bespoke designs remain anecdotal, but
targeted approaches currently provide the strongest evidence for
clinical translation.

Molecular concordance

A key question is whether ctDNA faithfully reflects tumor
genomics. In our analysis, concordance between CSF ctDNA and
matched tumor tissue was 90% (95% CI 86-93) Most cohorts
reported values near 100%, while a few contributed lower
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FIGURE 4

CSF ctDNA detection stratified by IDH mutational status. (A) Detection in IDH-mutant gliomas (76%; 95% Cl, 67-84; 1> = 0%). (B) Detection in IDH-
wildtype gliomas (84%; 95% Cl, 62-94; |> = 51.5%). (C) Odds ratio comparing IDH-wildtype versus IDH-mutant tumors (OR = 0.72; 95% Cl, 0.26—

2.02; 1> = 50.5%).

estimates (as low as 48%). These outliers explain statistical
heterogeneity but do not undermine the conclusion that CSF
reliably mirrors the glioma mutational landscape. Moreover,
several reports identified mutations in CSF not found in tumor
tissue, suggesting that liquid biopsy can capture intratumoral
heterogeneity and subclonal dynamics missed in surgical
specimens (7, 13, 69) These findings are aligned with current
evidence on key molecular biomarkers in glioblastoma, including
MGMT promoter methylation, IDH1/2 mutations, EGFR
amplification, and TERT promoter mutations, which define
distinct prognostic and therapeutic subgroups (70). Thus, CSF
ctDNA is not simply a surrogate of tissue testing but a
complementary tool that may provide broader genomic insight.

Prognostic value

Whether ctDNA carries prognostic implications is a critical
question. As summarized in Table 1, only five of the twelve included
studies reported overall survival and one reported progression-free
survival data. Given this limited and heterogeneous reporting, a
pooled meta-analysis of prognostic outcomes was not feasible.
Nevertheless, across all studies that assessed survival, ctDNA
positivity in CSF was consistently associated with shorter OS and/
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or PES, supporting its potential prognostic value despite the scarcity
of quantitative data. In our previous prospective multicenter study
(3) ctDNA positivity in CSF was consistently associated with worse
outcomes. Patients with positive ctDNA and a variant allele fraction
(VAF) at or above the median had significantly shorter progression-
free survival (HR 3.2) compared with those below the median, and
both PES and OS were reduced in ctDNA-positive patients.

Other studies provide supporting evidence. Hickman et al (71),
in a clinical cohort of patients with CNS tumors, found ctDNA
positivity correlated with poor outcomes, while Juratli et al. (11)
linked promoter mutations in CSF to aggressive glioblastoma.
Collectively, these findings reinforce the potential of CSF ctDNA
as a prognostic biomarker, although larger prospective cohorts with
harmonized endpoints are needed for validation.

Clinical timing, tumor characteristics, and
integration with other biomarkers

Most studies collected CSF perioperatively, and evidence on
longitudinal monitoring remains limited. Sampling time varied
across studies, most commonly performed perioperatively or at
recurrence. Some reports described ctDNA dynamics in CSF that
paralleled or anticipated radiographic changes, supporting its
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FIGURE 5

CSF collection route in IDH-wildtype gliomas. (A) Detection with intracranial CSF sampling (87%; 95% CI, 55-97; I1> = 71.4%). (B) Detection with

lumbar puncture (73%; 95% Cl, 64-79; 12 =
0.03; 95% Cl, -1.9t0 2.0; p > 0.9).

potential role for early progression detection (13, 34, 67). Recent
data demonstrate feasibility (34). et al. observed dynamic ctDNA
fluctuations with treatment and progression, often preceding MRI
changes, even in pseudo-progression contexts. The correlation
between ctDNA and imaging is encouraging but imperfect.
Declines after surgery or chemoradiotherapy typically paralleled
tumor shrinkage on MRI, while rises often preceded radiological
progression. However, mismatches occur, and optimal thresholds
and timing remain undefined. Still, ctDNA can reveal molecular
alterations when imaging is equivocal, aiding the distinction
between true progression and treatment effects (3, 16).

Regarding tumor characteristics, our previous prospective study
(3) found no significant association between ctDNA detectability in
CSF and tumor size or distance to ventricular reservoirs. Earlier
studies such as Orzan et al. (7) and Martinez-Ricarte et al. (13) had
suggested these variables might influence shedding, but current
evidence indicates they remain unproven hypotheses. As such, they
should be considered biologically plausible but not validated
determinants, pending larger prospective confirmation (14).
Recent studies have highlighted the relevance of ligand-gated ion
channels (LGICs) in glioma biology. Alterations in purinergic,
glutamatergic, and Cys-loop receptor families have been linked to
tumor progression and neurological dysfunction, supporting their
potential as biomarkers and therapeutic targets (72). Although these
mechanisms fall outside the scope of ctDNA analysis, integrating
molecular and electrophysiological biomarkers could further refine
glioma characterization.

Plasma ctDNA and circulating tumor cells, by contrast, continue
to show poor performance, reinforcing CSF as the biofluid of choice
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42.5%). (C) Meta-regression evaluating the association between sampling route and detection rate (B =

for glioma molecular profiling (3, 71). From a procedural standpoint,
CSF collection is not risk-free. Lumbar puncture is generally safe
when mass effect or obstructive hydrocephalus are excluded, with
post-puncture headache occurring in up to 11% (4.2% with
atraumatic needles) and serious complications such as infection
(<0.1%) or herniation (<1%) being rare (73). Intracranial
reservoirs allow repeated sampling but carry infection rates of 2-
10% and occasional mechanical or hemorrhagic complications (74).
These risks should be balanced against the potential diagnostic
benefit in each case. Regional differences in access to molecular
testing, sequencing platforms, and feasibility of CSF sampling may
influence how liquid biopsy is implemented across centers,
underscoring the need for harmonized, evidence-based algorithms
to guide clinical decision-making.

Finally, the integration of CSF ctDNA with advanced imaging and
other biomarkers represents a promising frontier. Combined
approaches may improve sensitivity and specificity for progression
detection and therapeutic monitoring. Recent work illustrates this shift:
Dwarshuis el al (75). highlighted the utility of liquid biopsy alongside
imaging in gliomas and metastases and Zheng et al. (76)demonstrated
that CSF ctDNA could stratify prognosis and guide therapy in CNS
metastases. This body of evidence supports the role of CSF ctDNA
within a broader diagnostic ecosystem rather than as an isolated tool.

Limitations

This study has limitations. The modest number of included
studies and patients restricts generalizability. Substantial

frontiersin.org


https://doi.org/10.3389/fonc.2025.1714287
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Pérez-Alfayate et al.

heterogeneity in collection techniques, detection platforms, and
endpoints precluded pooled analyses for some outcomes,
particularly survival and longitudinal monitoring. Risk of bias was
low to moderate, but common limitations included small sample
size, variable follow-up, and incomplete adjustment for
confounders. Differences in mutational panels and reporting
thresholds further complicate comparisons. Standardized
methodologies are urgently needed.

Conclusions and future perspectives

This systematic review and meta-analysis confirms that CSF is
the most informative biofluid for ctDNA detection in gliomas, with
higher sensitivity than plasma and strong concordance with tumor
tissue. The effect of IDH status appears weaker than previously
suggested, and CSF collection route did not significantly influence
detection in pooled analyses. Importantly, ctDNA positivity is
associated with worse prognosis, underscoring its potential as a
biomarker for prognostic stratification.

Overall, while factors such as IDH status, CSF collection route,
and sequencing platform may influence detection rates, none
consistently determines ctDNA positivity across studies. This
emphasizes the need for large-scale prospective investigations to
identify robust predictors and standardize methodologies for
clinical translation.

Future research should prioritize the standardization of CSF
sampling and analytical methods, as highlighted by the RANO group
(5), to ensure reproducibility and clinical applicability. Multicenter
prospective studies are required to validate the prognostic and
predictive role of CSF ctDNA, and emerging ultra-sensitive
sequencing and point-of-care technologies may enable real-time
molecular monitoring and integration with imaging and clinical
data for precision-guided management of gliomas.
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