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ABSTRACT
Glioblastoma (GBM) remains highly lethal due to intrinsic and extrinsic mechanisms, of which the immunosuppressive tumour 
microenvironment (TME) collectively limits treatment efficacy. This review synthesises recent advances in understanding how 
metabolic reprogramming, epigenetic remodelling and immune cell dysfunction converge to establish a stable immunosuppres-
sive network dominated by tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T 
cells and exhausted T cells. We further summarise emerging therapeutic strategies, including myeloid-targeting agents, epi-
genetic modulators, metabolic inhibitors and combination immunotherapy, and discuss their clinical potential in overcoming 
GBM immune resistance. These insights provide a mechanistic and translational framework for developing next-generation 
multimodal treatment approaches.

1   |   Introduction

In the central nervous system (CNS), adult-type diffuse glio-
mas are categorised into three groups: astrocytoma (isocitrate 
dehydrogenase [IDH]-mutant, Grades 2–4), oligodendroglioma 
(IDH-mutant with 1p/19q co-deletion, Grades 2–3) and glio-
blastoma (GBM, IDH-wildtype, Grade 4) [1], of which GBM is 
characterised by rapid progression, genetic heterogeneity and 
resistance to conventional therapies. GBM accounts for approx-
imately 46.6% of CNS malignancies, with an annual incidence 
of 3.19 per 100 000 population [2]. Intertumoral heterogeneity 
of GBM can be broadly classified into three major molecular 
subtypes: proneural, classical, and mesenchymal according to 
their distinct biological properties  [3]. The proneural subtype 
is characterised by platelet-derived growth factor receptor-
alpha (PDGFRA) alterations, isocitrate dehydrogenase (IDH) 

mutations in a subset and a more differentiated neural-like tran-
scriptional programme. The classical subtype is characterised 
by epidermal growth factor receptor (EGFR) amplification and 
chromosome 7 gain/10 loss, displaying a highly proliferative 
phenotype. In contrast, the mesenchymal subtype is marked as 
neurofibromin 1 (NF1) loss, robust inflammatory and stromal 
signatures and the most immunosuppressive tumour microen-
vironment (TME) enriched in tumour-associated macrophages 
(TAMs) and myeloid-derived suppressor cells (MDSCs).

Standard treatment of GBM involves maximal surgical resec-
tion followed by chemoradiotherapy, such as the Stupp regi-
men, which combines temozolomide (TMZ) with radiotherapy. 
During the concurrent phase, TMZ is administered at 75 mg/
m2/day for 42 days, followed by a 4-week interval before tran-
sitioning to the adjuvant phase. In the adjuvant phase, TMZ 
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is given orally at 150–200 mg/m2/day for 5 days per 28-day 
cycle, repeated for six cycles [4]. However, TMZ resistance is a 
major limitation, affecting approximately 50% of patients and 
significantly compromising therapeutic efficacy. Despite this 
multimodal approach, patient prognosis remains dismal, with 
a median survival of 12–15 months, a high recurrence rate (ap-
proximately 75% of patients relapse within 6.9 months), and only 
25% surviving beyond 2 years [2].

GBM resistance to TMZ arises from a multilayered molecular 
regulatory network. In intrinsic GBM cells, recurrent stud-
ies have demonstrated that endoplasmic reticulum stress ac-
tivates the PKR-like endoplasmic reticulum kinase (PERK)/
PERK-eukaryotic translation initiation factor 2α (eIF2α)/ac-
tivating transcription factor 4 (ATF4) signalling axis and in-
creases sphingosine kinase 1 (SPHK1) expression to promote 
epithelial–mesenchymal transition and invasive phenotypes, 
resulting in TMZ resistance [5]. Inositol 1,4,5-triphosphate 
(IP3) kinase B (ITPKB) undergoes reduce TRIM25-mediated 
ubiquitination to suppress reactive oxygen species (ROS) gen-
eration and enhance drug resistance [6]. Additionally, eukary-
otic translation initiation factor 4A3 (EIF4A3)-driven circular 
RNA circASAP1 exacerbates TMZ resistance by sponging miR-
502-5p [7], thereby relieving its suppression of neuroblastoma 
Ras (NRAS), and silencing circASAP1 significantly enhances 
therapeutic efficacy in  vivo. Another intrinsic mechanism 
relates to TMZ pharmacodynamics; TMZ has been shown to 
increase the protein expression of the drug efflux transporter 
ABCC1 and ABCA1 [8, 9]. Furthermore, polymerase I and 
transcript release factor (PTRF)/Cavin-1 accelerates TMZ 
clearance by promoting extracellular vesicle (EV)-mediated 
drug efflux [10].

Glioblastoma stem cells (GSCs), characterised by enhanced 
DNA damage tolerance, efficient activation of DNA repair 
pathways and a predominantly quiescent state, also repre-
sent a major driver of TMZ resistance and tumour relapse. 
GSCs exhibit metabolic and epigenetic plasticity, maintain 
high expression of stemness-associated transcription factors 
(e.g., SOX2, OCT4), and resist apoptosis through upregula-
tion of anti-apoptotic signalling [9]. These properties enable 
GSCs to survive chemoradiation, repopulate the tumour mass, 
and contribute to the inevitable recurrence observed in GBM 
patients.

Besides, increasing studies have illustrated that a highly 
TME enriched with tumour-associated macrophages (TAMs), 
myeloid-derived suppressor cells (MDSCs), regulatory T cells 
(Tregs) and exhausted T cells is another vital factor in GBM 
resistance. For instance, immunosuppressive molecules in the 
TME prevent the activated T cells from crossing the blood–brain 
barrier (BBB). Therefore, this review specifically highlights two 
emerging and under-recognised themes: (i) the epigenetic–met-
abolic crosstalk that stabilises immunosuppressive transcrip-
tional programmes across TAMs, MDSCs and Treg populations, 
and (ii) the spatial heterogeneity of immunosuppression shaped 
by uneven metabolic stress, differential vascular permeability 
and localised cytokine gradients within the tumour mass. These 
concepts, taken together, provide a more coherent explanation 
of how GBM maintains a highly resistant and self-reinforcing 

immune ecosystem, offering a refined lens for understanding 
therapeutic failure and guiding future treatment strategies.

2   |   Immunosuppressive Mechanisms in the 
Glioblastoma TME: Metabolism–Epigenetic–
Immune Network

The TME of GBM maintains an immunosuppressive state 
through multidimensional mechanisms including the following 
key aspects (Figure 1, Table 1).

2.1   |   Molecular Subtype–Driven Immune 
Heterogeneity in GBM

Glioblastoma subtypes exhibit profoundly different immune 
landscapes, which have important implications for targeted im-
munotherapies. The seminal transcriptional classification by 
Verhaak et al. defined GBM as proneural, classical and mesen-
chymal, each displaying unique patterns of immune infiltration 
and cytokine signalling [3]. Subsequent work from Wang et al. 
and Mao et al. further demonstrated that the mesenchymal sub-
type is enriched in inflammatory and myeloid signatures, in-
cluding high TAM/MDSC abundance and robust NF-κB–driven 
immune suppression [18, 19]. In contrast, the proneural subtype 
typically shows a more limited immune infiltrate and lower 
baseline inflammation, while the classical subtype exhibits 
intermediate immune activity dominated by EGFR-associated 
pathways.

These subtype-specific immune ecosystems critically affect 
therapeutic vulnerabilities. Mesenchymal tumours show the 
most significant resistance to immune checkpoint blockade due 
to myeloid suppression [20]. In contrast, proneural tumours may 
be more amenable to T-cell-based strategies in combination with 
microenvironmental modulation. Recognising and integrating 
these differences are essential for designing rational, subtype-
tailored immunotherapies in GBM.

2.2   |   Metabolic Reprogramming as 
the Driving Layer

TAMs, MDSCs and Tregs reprogramme their energy metabo-
lism pathways within the TME—including glycolysis, lactate 
accumulation, and fatty acid metabolism—to adapt to hypoxic 
and nutrient-restricted conditions [21, 22]. For instance, accu-
mulated lactate promotes the M2 polarisation of TAMs, results 
in enhanced secretion of IL-10 and TGF-β, and reinforces im-
munosuppressive phenotypes [11, 12]. MDSCs in IDH-mutant 
GBM enhance glycolysis and produce excessive IL1β, thereby 
reinforcing the inhibitory effects on M2-macrophages and 
myeloid-derived suppressor cells [13]. Moreover, Kloosterman 
et al. demonstrated that metabolically rewired TAMs, special-
ised as  lipid-laden macrophages, directly transfered  myelin-
derived lipids to tumour cells and promoted GBM progression 
[23]. Specifically, Freitas-Cortez et al. revealed the fatty acid-
binding protein 7 (Fabp7) reprogrammes lipid metabolism of 
CD8+ T cells to promote immunotherapy resistance [16].
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2.3   |   Epigenetic and Non-Coding RNA Regulation 
as the Amplification Layer

Epigenetic dysregulation represents a central driver of GBM 
evolution and the formation of an immunosuppressive niche. 
Histone deacetylases (HDAC) are profoundly deregulated 
across nearly all GBM subtypes, with multiple HDAC isoforms 
overexpressed, contributing to chromatin condensation, the 
repression of immune-stimulatory genes and the promotion 
of TAM/MDSC-supportive cytokine programmes. Wu et  al. 
demonstrated that activation of the HDAC6/RBP/LINC00461 
axis promoted GBM resistance [24]. Yang et  al. further il-
lustrated that HDAC1/2/6 promoted  self-renewal of malig-
nancy by regulating DNA repair transcription [25]. Similarly, 
Hanisch et al. revealed that HDAC1/2/3 enhanced the expres-
sion of the E3 ubiquitin ligase RAD18 to promote the bypass of 
O6-methylguanine DNA lesions [26]. Moreover, HDAC7 dys-
regulation in the H3K27ac-SOX8/JUN-LGALS3-ITGB1 axis 

facilitated the transformation of the mesenchymal phenotype 
of GBM and the M2 polarisation of monocyte-driven macro-
phages [27].

Beyond HDAC activity, DNA methylation, chromatin remod-
elling complexes, histone methylation and non-coding RNAs 
collectively orchestrate wide-ranging transcriptional repro-
gramming in glioma cells and infiltrating immune cells. These 
epigenetic alterations support stemness, enhance metabolic 
adaptability and promote immune evasion [28]. Dong et  al. 
demonstrated that transcriptional condensation enhanced the 
activity of protein arginine methyltransferases (PRMT2) during 
GBM progression [29]. CircNEIL3 is transferred via exosomes 
to TAMs, where it stabilises IGF2BP3 protein and drives the ex-
pression of immunosuppressive genes [30]. Similarly, Yin et al. 
demonstrated the tumour-suppressor-like activity of microglia 
specialised by shifting cytosolic DNA sensing via the cGAS-
STING-dependent pathway [31].

FIGURE 1    |    Immune activation and suppression within the GBM microenvironment. Glioma tumour cells orchestrate a dynamic balance be-
tween immune activation and suppression. Interactions between glioma cells and immune populations—including TAMs, MDSCs, exhausted CD8+ 
T cells, Tregs, DCs and natural killer (NK) cells—are bidirectional. On the activation side, dendritic cells (DCs) and neutrophils can promote anti-
tumour responses through antigen presentation and the formation of neutrophil extracellular traps (NETs), while NK cells contribute to immune-
mediated cytotoxicity. Conversely, glioma cells exploit multiple immunosuppressive mechanisms: TAMs undergo glycolytic reprogramming and 
secrete IL-10/TGF-β; MDSCs enhance PD-L1–mediated signalling; regulatory CD4+ T cells suppress effector responses; CD8+ T cells become ex-
hausted despite recognising tumour-specific antigens and B cells can both boost local immunity and facilitate immune evasion through tertiary 
lymphoid structures (TLS).
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2.4   |   Dynamic Crosstalk Among 
Immunosuppressive Cell Population

Except for TAMs, MDSCs and Tregs, other immune cell pop-
ulations, including Dendritic cells (DCs), natural killer (NK) 
cells, and B cells, contribute to the immunological landscape 
of GBM.

DCs, specialised by antigens, exert the initiation and regu-
latory effects in GBM. DCs are commonly grouped into con-
ventional DCs (cDCs) and plasmacytoid DCs (pDCs). cDCs 
generally prime neoantigen-specific CD8+ T-cell responses 
against GBM [32], whereas pDCs often remain in an imma-
ture or tolerogenic state due to tumour-derived IL-10, CCL21, 
and metabolic suppression, resulting in suppressed CD8+ T-
cell priming ability [33]. NK cells can mediate cytotoxicity, 
which are frequently functionally inhibited in the GBM mi-
croenvironment through metabolic suppression, cytokine sig-
nalling (e.g., IL-10, TGF-β), and downregulation of activating 
ligands. However, Mathewson et  al. demonstrated that NK 
cells exhibited context-dependent functions in GBM. Their 
study revealed that tumour-infiltrating T cells induced CD161 
expression on NK cells, thereby suppressing T-cell-mediated 
killing of GBM cells [34].

Although neutrophil extracellular traps (NETs) are tradition-
ally associated with antimicrobial immune activation and pro-
mote DCs recruitment or antigen exposure in inflammatory 
settings, their role in GBM is largely immunosuppressive. Jain 

et al. revealed that NETs released by intertumoral neutrophils 
enhance angiogenesis, remodeled the extracellular matrix and 
suppressed T-cell cytotoxicity through ROS production and pro-
tease release [17].

B cells exhibit double-edged-sword functions in GBM. Within 
tertiary lymphoid structures (TLS), B cells can participate in 
antigen presentation, antibody generation and local priming of 
T cells, thereby contributing to anti-tumour immune response 
(ATIR) surveillance [35, 36]. However, evidence suggests that 
TGF-β secreted from various cells in the TME mediates B-cell 
suppression of CD8+ T-cell responses [37]. Thus, B cells in 
GBM should be understood as a heterogeneous compartment 
with both immunostimulatory and immunosuppressive ef-
fects, depending on local cytokine landscapes, metabolic re-
striction, and tumour-driven phenotypic reprogramming.

Within this metabolism–epigenetic framework, TAMs, MDSCs, 
and Tregs engage in continuous molecular and cellular interac-
tions that maintain a highly suppressive milieu: metabolic sig-
nals serve not only as sources of inhibitory factors but also as 
signalling molecules that regulate immune cell fate, establishing 
a metabolism-driven foundation for immunosuppression. IL-
10, TGF-β, and ROS can induce the overexpression of immune 
checkpoint molecules including PD-1 and CTLA-4 on T cells, 
leading to T-cell exhaustion and significantly weakening ATIR 
[14, 38–40]. Additionally, IL-8, secreted by tumour cells, MDSCs, 
and CD8+ T cells, recruits MDSCs via the CXCR1/CXCR2 axis to 
induce angiogenesis and upregulate PD-1 and TIM-3 [41].

TABLE 1    |    Key immune cells in the glioblastoma microenvironment.

Immune cell type Main function Immune mechanism

TAMs Promote immunosuppression and angiogenesis Secrete IL-10 and TGF-β to inhibit immune 
response; promote M2 polarisation to 

enhance tumour growth [11, 12]

MDSCs Inhibit immune Release IL-1β to reinforce the inhibitory 
effects on M2-macrophages and myeloid-

derived suppressor cells [13]

Tregs Suppress immune response and 
maintain immune tolerance

Release inhibitory cytokines (IL-10, TGF-
β); directly suppress effector T cells; recruit 

other immunosuppressive cells [14]

Exhausted T cells Reduce anti-tumour activity Express inhibitory receptors (PD-1, 
CTLA-4); impaire cytokine production 

and cytotoxicity functions [15]

CD8+ T lymphocytes Eliminate cancer cells through the recognition 
and destruction of infected or malignant cells

Recognise tumour-specific antigens presented 
on MHC class I molecules, leading to the 
activation and cytotoxic response against 
cancer cells, though their function can be 

inhibited by immune checkpoints such as PD-1 
within the tumour microenvironment [16]

Neutrophils Tumour-promoting or tumour-suppressing 
roles depending on microenvironment signals

Release exosomes containing enzymes 
and cytokines; induce oxidative stress 

to suppress T-cell function [17]

Abbreviations: MDSCs, myeloid-derived suppressor cells; TAMs, tumour-associated macrophages; Tregs, regulatory T cells.
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2.5   |   Other Mechanisms

Stem cell-related mechanisms represent a critical layer of GBM 
resistance, in which glioblastoma stem cells (GSCs) undergo 
profound transcriptional and epigenetic reprogramming in 
response to inflammatory cues, hypoxia, therapeutic stress, 
and immune cells. This reprogrammed state—characterised 
by enhanced DNA repair, metabolic plasticity, and upregula-
tion of immunomodulatory mediators—enables GSCs to resist 
cytotoxicity and shape an immune-tolerant niche [28, 42, 43]. 
Intrinsically, pathways including YBX1-SOX2, PRMT6-RCC1, 
and IGFBP5-ROR1-CREB induce GSCs proliferation and in-
vasion [44–46]; VASN, CLOCK-BMAL1, and PHGDH promote 
self-renewal [47–49], while KAT5 and synapsin III accelerate the 
neural-like transdifferentiation of GSCs [50, 51]. Extrinsically, 
GSCs are well investigated for their interaction with TAMs, mi-
croglia, T cells, NK cells, and endothelial cells. On one hand, 
LGALS3 from GSCs and monocyte-derived macrophages me-
diated crosstalk among them to stimulate a mesenchymal-like 
state of GBM [27]. CXCL8, TNFAIP6, LOXL2, and TGF-β prefer-
entially secreted by mesenchymal GSCs bound to the receptors, 
including CXCR2 and EGFR in TAMs to induce M2-like TAM 
phenotype [52–55]. Except for TAM, overexpression of ICAM1 
in GSCs stimulated PD-L1/PD-1 interaction to induce cytotoxic 
CD8+ T-cell population [56]. Secretion of GAL3 by GSCs bound 
to LAG3 to drive T-cell exhaustion [57]. Furthermore, Shaim 
et  al. demonstrated that GSCs suppressed NK cell immune 
evasion through the αV integrin/TGF-β axis [58]. Chen et  al. 
revealed that GSCs secreted histamine to activate endothelial 
cells [59]. While, Wang et  al. and Pang et  al. illustrated that 
POSTN and TFPI2 secreted by GSCs recruited microglia via 
CD70 or CD51 to induce an immunosuppressive tumour mi-
croenvironment [60, 61]. On the other hand, TGF-β, secreted 
by TAMs, promote the maintenance of GSCs via the αVβ5-Src-
Stat3 axis [62]. TAM-secreted GPNMB interacted with CD44 on 
GSCs to promote their glycolytic and self-renewal abilities [63]. 
The literature supports the bidirectional interaction between 
GSCs and TME in GBM resistance (Figure 2).

Beyond GSCs, other stem cell populations also contribute to 
the IME. Haematopoietic stem cells (HSCs) can infiltrate the 
tumour bed and differentiate into immunoregulatory my-
eloid subsets, reinforcing TAM and MDSC dominance [64]. 
Mesenchymal stem/stromal cells (MSCs) recruited from pe-
ripheral tissues or the bone marrow induce PD-L1 upregula-
tion in glioma cells and neovascularization to support tumour 
progression [65]. Together, these stem cell-driven processes 
amplify immune evasion by promoting a long-lived, therapy-
resistant cellular reservoir and sustaining an immunosup-
pressive TME that limits effective antitumor immunity.

Recent transcriptomic analyses in immunocompetent mouse 
models have further expanded the understanding of immunosup-
pressive programmes active in GBM. Garcia-Vicente et al. identi-
fied robust upregulation of myeloid-associated suppressive genes 
(e.g., Arg1, Il-10, and Tgfb1), attenuation of interferon-response, 
enhanced expression of T-cell exhaustion markers (Pdcd1, Lag3, 
and Havcr2), and cytokine/chemokine circuits (CCL2, CXCL1, 
and IL-8) that amplify neutrophil recruitment and myeloid dom-
inance [66]. Other studies have demonstrated that GBM cells can 
evade immune recognition by downregulating MHC molecule 

expression, thereby reducing antigen presentation and limiting 
T-cell activation [67]. Moreover, the gut microbiota may influence 
the immune status of TME through systemic immune modula-
tion, though its role in GBM remains to be further explored [68]. 
Exosomes and extracellular vesicles may also contribute to im-
munosuppression by transferring immunosuppressive signalling 
molecules, such as PD-L1, to immune cells, thereby enhancing 
immune evasion within the TME [69]. Integrating this preclini-
cal evidence with human GBM data helps refine target selection 
for immunotherapy development.

3   |   Clinical Challenges in Treating Glioblastoma

Current GBM treatment strategies involve maximal safe surgi-
cal resection, followed by radiotherapy and TMZ chemotherapy. 
Despite aggressive treatment, the median survival remains only 
12–15 months due to high recurrence rates and treatment resis-
tance [70].

Immunotherapy approaches, including PD-1/PD-L1 inhibitors 
and CAR-T cell therapy, have shown limited efficacy due to 
multiple factors. On one hand, the BBB impedes immune cell 
infiltration, further hampering immunotherapy efforts [71, 72]. 
On the other hand, regulatory immune populations—partic-
ularly TAMs, MDSCs, and Tregs—collectively dominate the 
GBM microenvironment and suppress cytotoxic T-cell activity 
through cytokine-mediated inhibition, metabolic competition, 
and checkpoint ligand expression [73].

To overwhelm BBB, several approaches, including focused ul-
trasound combined with microbubbles, osmotic opening with 
mannitol, radiotherapy- or chemotherapy-induced endothelial 
modulation and vascular-targeted agents, are being explored to 
transiently increase BBB permeability and thereby enhance im-
mune cell trafficking [74, 75]. These strategies can facilitate the 
entry of cytotoxic lymphocytes, monoclonal antibodies, and cel-
lular therapies into the tumour bed. However, BBB disruption is a 
double-edged sword: excessive or prolonged opening may lead to 
vasogenic edema, intracranial haemorrhage, neurocognitive tox-
icity and treatment-related pseudoprogression, all of which com-
plicate clinical management and response assessment. Therefore, 
emerging concepts emphasise controlled and reversible BBB mod-
ulation, coupled with real-time imaging, careful dosing schedules 
and the use of ‘vascular normalisation’ rather than indiscriminate 
barrier breakdown. Such balanced strategies aim to widen the 
therapeutic window—allowing sufficient immune and drug infil-
tration to achieve anti-tumour effects, while minimising neurolog-
ical complications and preserving critical neurovascular function.

Furthermore, recent clinical trials targeting TAMs or immune 
checkpoints in GBM have shown promising results. The phase 
II/III NRG-BN007 trial compared radiotherapy with TMZ 
versus radiotherapy with immunotherapy in newly diagnosed 
MGMT-unmethylated GBM, aiming to determine whether dual 
immune checkpoint blockade could improve outcomes com-
pared with standard therapy. Notably, NCT04396860 is evalu-
ating whether the CSF-1R inhibitor could reprogramme TAMs, 
while NCT03493932 is investigating the combinational effect 
of PD-1 and LAG-3 blockade in recurrent GBM. These trials 
highlight a growing clinical shift towards modulating myeloid 
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and checkpoint pathways to overcome immune resistance. In 
addition, biomarker-guided treatment is becoming increasingly 
important in GBM. Established markers, such as MGMT pro-
moter methylation, IDH mutation status, and emerging TME-
based immune signatures, are applied to stratify patients and 
predict responsiveness to immunotherapy or myeloid-targeting 
approaches. Such stratification may enhance the translational 
impact of future GBM immunotherapies.

4   |   Future Therapeutic Strategies

Future therapeutic strategies for GBM focus on overcoming the 
tumour's highly IME to improve treatment efficacy. Targeting key 

mechanisms such as immune checkpoint pathways, metabolic 
and epigenetic modulation, and cytokine signalling is a prom-
ising strategy to reprogramme the tumour microenvironment, 
enhance immune cell activation, and restore ATIR (Figure  3, 
Table 2) [82].

4.1   |   Checkpoint Inhibitors for PD-1 and CTLA-4 
on Exhausted T Cells

Checkpoint inhibitors targeting PD-1 and CTLA-4 on exhausted 
T cells offer a valuable tactic to reactivate immune responses 
in the GBM microenvironment. Anti-PD-1 antibodies, such as 
pembrolizumab and nivolumab, can restore T-cell activity and 

FIGURE 2    |    Immune activation and suppression on glioblastoma stem cells (GSCs). GSCs undergo profound transcriptional and epigenetic re-
programming in response to inflammatory cues, hypoxia, therapeutic stress, and immune cells to resist cytotoxicity and shape an immune-tolerant 
niche.
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enhance ATIR. Additionally, the combination of CTLA-4 (e.g., 
ipilimumab) and PD-1 inhibitors boosts immune activation by 
countering multiple immune suppression mechanisms within 
the TME [83, 84]. This dual-targeted strategy is possible for 
overcoming the immunosuppressive barriers in GBM and re-
energising exhausted T cells.

4.2   |   Targeting Glycolysis and Epigenetic 
Regulation in TAMs and MDSCs

In peripheral blood, granulocytic MDSCs directly suppress T-
cell proliferation, whereas tumour-infiltrating MDSCs upreg-
ulate PD-L1, thereby inducing PD-1 expression on T cells and 
indirectly leading to T-cell exhaustion [85]. Additionally, gly-
colysis is a critical pathway supporting the immunosuppressive 
functions of TAMs and MDSCs. Therefore, targeting glycolysis 
in TAMs and MDSCs offers a potential approach to mitigate 
immunosuppression in the GBM microenvironment. As it is 
mentioned in Zarychta's study, applying glycolysis inhibitors 
like 2-deoxy-D-glucose (2-DG) to GBM therapy significantly 
decreased the ATP production and G0/G1 cell cycle arrest, 
thereby creating a more favourable environment for effective 
immune responses against tumour [86]. Similarly, histone 
deacetylase inhibitors (HDACi), including vorinostat and ro-
midepsin, reduced ATP production and relieved immunosup-
pressive pressure [87].

4.3   |   Targeting DNA Methylation in TAMs

Direct targeting of DNA methylation in TAMs is another strat-
egy to reduce their immunosuppressive activities in the TME 
of GBM [88]. DNA methyltransferase inhibitors (DNMTi), 
such as decitabine, have been reported to inhibit immune 
responses. This reduction in TAM-mediated inhibition helps 
to restore T-cell activity and promote immune surveillance, 
creating a more favourable environment for ATIR within the 
TME [89].

4.4   |   Targeting Cytokine-Receptor Pathway

IL-10 and TGF-β are the two key immunosuppressive cytokines 
that help counteract the immune suppression commonly ob-
served in the GBM microenvironment [14, 40]. Monoclonal anti-
bodies, such as anti-IL-10 and anti-TGF-β antibodies, neutralise 
these cytokines to block their suppressive effects on T-cell ac-
tivity and promote a more favourable immune response against 
the tumour. Small molecule inhibitors, such as SB431542, spe-
cifically inhibit TGF-β signalling by blocking TGF-β receptor 
activity in immune cells. This could reverse immune suppres-
sion and enhance ATIR within the tumour microenvironment 
[90]. Additionally, IL-8, secreted by tumour cells, MDSCs and 
CD8+ T cells, recruits MDSCs via the CXCR1/CXCR2 axis, in-
duces angiogenesis, and upregulates PD-1 and TIM-3. Liu et al. 

FIGURE 3    |    Current therapeutic strategies for GBM. To overcome the tumour's highly IME is a potential strategy to improve treatment efficacy 
through targeting key mechanisms such as immune checkpoint pathways, metabolic and epigenetic modulation, and cytokine signalling. Those 
treatments include oncolytic viral therapy with engineered viruses, chemotherapy and immune checkpoint blockade.
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TABLE 2    |    Potential therapeutic targets and mechanisms for immunosuppression in GBM.

Target cell/
pathway

Targeting 
mechanism Potential therapy Clinical trials Status

TAMs Inhibit survival or 
reprogramme to 
M1 phenotype

CSF-1R inhibitors; 
CD47 blockade

BLZ945 (NCT02829723)
Cabiralizumab (NCT02526017)

Magrolimab (NCT05169944)

Terminated 
(2024-01)

Completed 
(2022-03)

Completed 
(2025-07)

MDSCs Block recruitment 
to the tumour site

CXCR2 inhibitors; 
arginine depletion

ADI-PEG (NCT04587830)
BCT-100 (NCT03455140) [76]

Active 
(2025-08)

Completed 
(2022-09)

Tregs Block suppressive 
cytokine signalling

ALK5 (TGF-β inhibitors); 
TGF-β inhibitor + PD-

L1 antibody

Galunisertib (NCT02423343) [77]
Bintrafusp alfa (NCT02517398) [78]a

Completed 
(2021-09)

Completed 
(2022-05)

Checkpoint 
pathways 
(PD-L1/
PD-1)

Block immune 
checkpoint 
interaction

TGF-β inhibitor + PD-L1 
antibody; CTLA-4 inhibitors

Bintrafusp alfa (NCT02517398) [78]a

Nivolumab ± ipilimumab ± bevacizumab 
(NCT02017717) [79]

Tremelimumab ± durvalumab 
(NCT02794883)

Completed 
(2022-05)

Completed 
(2024-06)

Completed 
(2022-06)

CAR-T Enhance T-cell 
infiltration and 

persistence in GBM

Combined with 
oncolytic viruses, 

cytokine modulation
EGFRvIII CAR-T cells

Combination with 
TGF-β inhibitors

EGFRvIII CAR-T (NCT01454596) [80]
IL-8R-CD70- CAR-T (NCT05353530)

Completed 
(2019-01)

Recruiting 
(2025-10)

Metabolic 
pathways

Target the increased 
dependency 

on glucose and 
glutamine, as well 
as the altered lipid 

metabolism observed 
in GBM cells

Caloric restriction ketogenic 
diet (KD-R), inhibition of 
glutaminase, cholesterol 
depletion, inhibition of 

fatty acid synthesis

Atorvastatin (NCT06327451)
Ketogenic diet (NCT05708352)
Telaglenastat (NCT03872427)

Recruiting 
(2024-03)

Recruiting 
(2025-06)

Active (2025-11)

Epigenetic 
targets

DNMTi; HDACi; 
EZH2; BET-BRD; 

H3K27M

5-Aza-CdR (DNMTi); 
Vorinostat, Romidepsin 
(HDACi); Tazemetostat 

(EZH2); JQ1, I-BET 
(BET-BRD)

Decitabine/vaccine (NCT02332889)
Vorinostat (NCT00555399)

Tazemetostat (NCT05023655)
BMS-986158 or BMS-986378 

(NCT03936465)
ONC201 (NCT05580562)

Terminated 
(2016-07)

Terminated 
(2024-08)

Recruiting 
(2025-07)
2024-10 

Completed
2025-08 

Recruiting

Oncolytic 
viruses

Infect and kill 
tumour cells, 

releasing antigens to 
stimulate immunity

Improve virus 
efficacy in TME 

through enhanced 
immune activation

Engineered oncolytic 
viruses

Combination with 
checkpoint inhibitors

PVSRIPO (NCT01491893) [81]
VBI-1901 (NCT03382977)

2023-09 
Completed

2025-03 
Recruiting

Abbreviations: BET-BRD: bromodomain and extra-terminal domain–bromodomain inhibitors; DNMTi, DNA methyltransferase inhibitors; EZH2, enhancer of zeste 
homologue 2; HDACi, histone deacetylases inhibitors.
aBintrafusp alfa is a bifunctional fusion protein that targets PD-L1 and TGF.
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revealed that neutralising IL-8 unlashed anti-PD-1-mediated 
antitumor immunity [41].

4.5   |   Combination Strategies

Combination strategies that simultaneously target multiple im-
munosuppressive mechanisms hold great potential to enhance 
immune responses in the TME of GBM. Jiang et al. demonstrated 
that combining checkpoint inhibitor (anti-CD47) with glycolysis 
inhibitor (etomoxir) mitigated the suppressive metabolic effects 
imposed by TAMs and MDSCs [91]. Similarly, combining PD-1/
CTLA-4 inhibitors helps to reduce the overall immunosuppres-
sive environment, enhancing T-cell activation [92]. Additionally, 
CAR-T cell therapy combined with TGF-β inhibitors could im-
prove CAR-T cell persistence and function by blocking TGF-β's 
suppressive effects, thereby enhancing CAR-T efficacy in the 
TME [93, 94]. These combination strategies leverage synergistic 
effects to counteract GBM's immune resistance, creating a more 
supportive setting for anti-tumour immunity. Besides, NK cells 
engineered to express IL-21 or HER2 enhanced anti-tumour ef-
ficacy against GBM [95, 96]. What is important is that the com-
bination strategy needs to be well considered.

4.6   |   Oncolytic Viral Therapy and Stimulation 
of Tertiary Lymphoid Structure in GBM

Oncolytic viral therapy has emerged as a promising approach 
for GBM by combining direct tumour cell lysis with secondary 
activation of ATIR. Engineered viruses can selectively replicate 
in glioma cells, induce immunogenic cell death and release tu-
mour antigens that are subsequently taken up by DCs and con-
vert an immunologically ‘cold’ tumour into a more inflamed 
microenvironment. However, several challenges currently limit 
the efficacy of oncolytic viruses in GBM, including restricted in-
tratumoral spread, the physical and functional barriers imposed 
by the BBB, pre-existing or rapidly induced antiviral immunity 
and safety concerns such as neurotoxicity and treatment-related 
edema. To overcome these obstacles, multiple strategies are 
under investigation: optimising delivery routes (e.g., intratu-
moral injection or convection-enhanced delivery), combining 
oncolytic viruses with immune checkpoint blockade or myeloid-
targeting agents to counteract the immunosuppressive TME and 
engineering viral backbones to express cytokines or costimula-
tory ligands that further enhance local T-cell and NK-cell ac-
tivity [97]. Moreover, tertiary lymphoid structures formed with 
T-cell zones containing antigen-presenting dendritic cells and 
B-cell zones with germinal centres showed immune-permissive 
TME and improved overall survival [35].

5   |   Conclusion

In summary, the immunosuppressive TME enriched with 
TAMs, MDSCs, Tregs, exhausted T cells, and stromal elements 
is particularly involved in GBM resistance. These TME show a 
dynamic interplay in a multilayered metabolism–epigenetic–
immune network, which implicates the design of personalised, 
multimodal immunotherapeutic strategies to suppress GBM via 
reprogramming the immune microenvironment.
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