

REVIEW

The Immunosuppressive Microenvironment of Glioblastoma: Mechanisms, Clinical Challenges and Future Directions

Changming Pang¹ | Yan Wang^{1,2}

¹Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China | ²Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China

Correspondence: Yan Wang (wangyankuaile2@163.com)

Received: 13 September 2025 | **Revised:** 3 December 2025 | **Accepted:** 10 December 2025

Keywords: glioblastoma | immunosuppressive microenvironment | resistance

ABSTRACT

Glioblastoma (GBM) remains highly lethal due to intrinsic and extrinsic mechanisms, of which the immunosuppressive tumour microenvironment (TME) collectively limits treatment efficacy. This review synthesises recent advances in understanding how metabolic reprogramming, epigenetic remodelling and immune cell dysfunction converge to establish a stable immunosuppressive network dominated by tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T cells and exhausted T cells. We further summarise emerging therapeutic strategies, including myeloid-targeting agents, epigenetic modulators, metabolic inhibitors and combination immunotherapy, and discuss their clinical potential in overcoming GBM immune resistance. These insights provide a mechanistic and translational framework for developing next-generation multimodal treatment approaches.

1 | Introduction

In the central nervous system (CNS), adult-type diffuse gliomas are categorised into three groups: astrocytoma (isocitrate dehydrogenase [IDH]-mutant, Grades 2–4), oligodendrogloma (IDH-mutant with 1p/19q co-deletion, Grades 2–3) and glioblastoma (GBM, IDH-wildtype, Grade 4) [1], of which GBM is characterised by rapid progression, genetic heterogeneity and resistance to conventional therapies. GBM accounts for approximately 46.6% of CNS malignancies, with an annual incidence of 3.19 per 100 000 population [2]. Intertumoral heterogeneity of GBM can be broadly classified into three major molecular subtypes: proneural, classical, and mesenchymal according to their distinct biological properties [3]. The proneural subtype is characterised by platelet-derived growth factor receptor-alpha (PDGFRA) alterations, isocitrate dehydrogenase (IDH)

mutations in a subset and a more differentiated neural-like transcriptional programme. The classical subtype is characterised by epidermal growth factor receptor (EGFR) amplification and chromosome 7 gain/10 loss, displaying a highly proliferative phenotype. In contrast, the mesenchymal subtype is marked as neurofibromin 1 (NF1) loss, robust inflammatory and stromal signatures and the most immunosuppressive tumour microenvironment (TME) enriched in tumour-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs).

Standard treatment of GBM involves maximal surgical resection followed by chemoradiotherapy, such as the Stupp regimen, which combines temozolomide (TMZ) with radiotherapy. During the concurrent phase, TMZ is administered at 75 mg/m²/day for 42 days, followed by a 4-week interval before transitioning to the adjuvant phase. In the adjuvant phase, TMZ

is given orally at 150–200 mg/m²/day for 5 days per 28-day cycle, repeated for six cycles [4]. However, TMZ resistance is a major limitation, affecting approximately 50% of patients and significantly compromising therapeutic efficacy. Despite this multimodal approach, patient prognosis remains dismal, with a median survival of 12–15 months, a high recurrence rate (approximately 75% of patients relapse within 6.9 months), and only 25% surviving beyond 2 years [2].

GBM resistance to TMZ arises from a multilayered molecular regulatory network. In intrinsic GBM cells, recurrent studies have demonstrated that endoplasmic reticulum stress activates the PKR-like endoplasmic reticulum kinase (PERK)/PERK-eukaryotic translation initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4) signalling axis and increases sphingosine kinase 1 (SPHK1) expression to promote epithelial–mesenchymal transition and invasive phenotypes, resulting in TMZ resistance [5]. Inositol 1,4,5-triphosphate (IP3) kinase B (ITPKB) undergoes reduce TRIM25-mediated ubiquitination to suppress reactive oxygen species (ROS) generation and enhance drug resistance [6]. Additionally, eukaryotic translation initiation factor 4A3 (EIF4A3)-driven circular RNA circASAP1 exacerbates TMZ resistance by sponging miR-502-5p [7], thereby relieving its suppression of neuroblastoma Ras (NRAS), and silencing circASAP1 significantly enhances therapeutic efficacy *in vivo*. Another intrinsic mechanism relates to TMZ pharmacodynamics; TMZ has been shown to increase the protein expression of the drug efflux transporter ABCC1 and ABCA1 [8, 9]. Furthermore, polymerase I and transcript release factor (PTRF)/Cavin-1 accelerates TMZ clearance by promoting extracellular vesicle (EV)-mediated drug efflux [10].

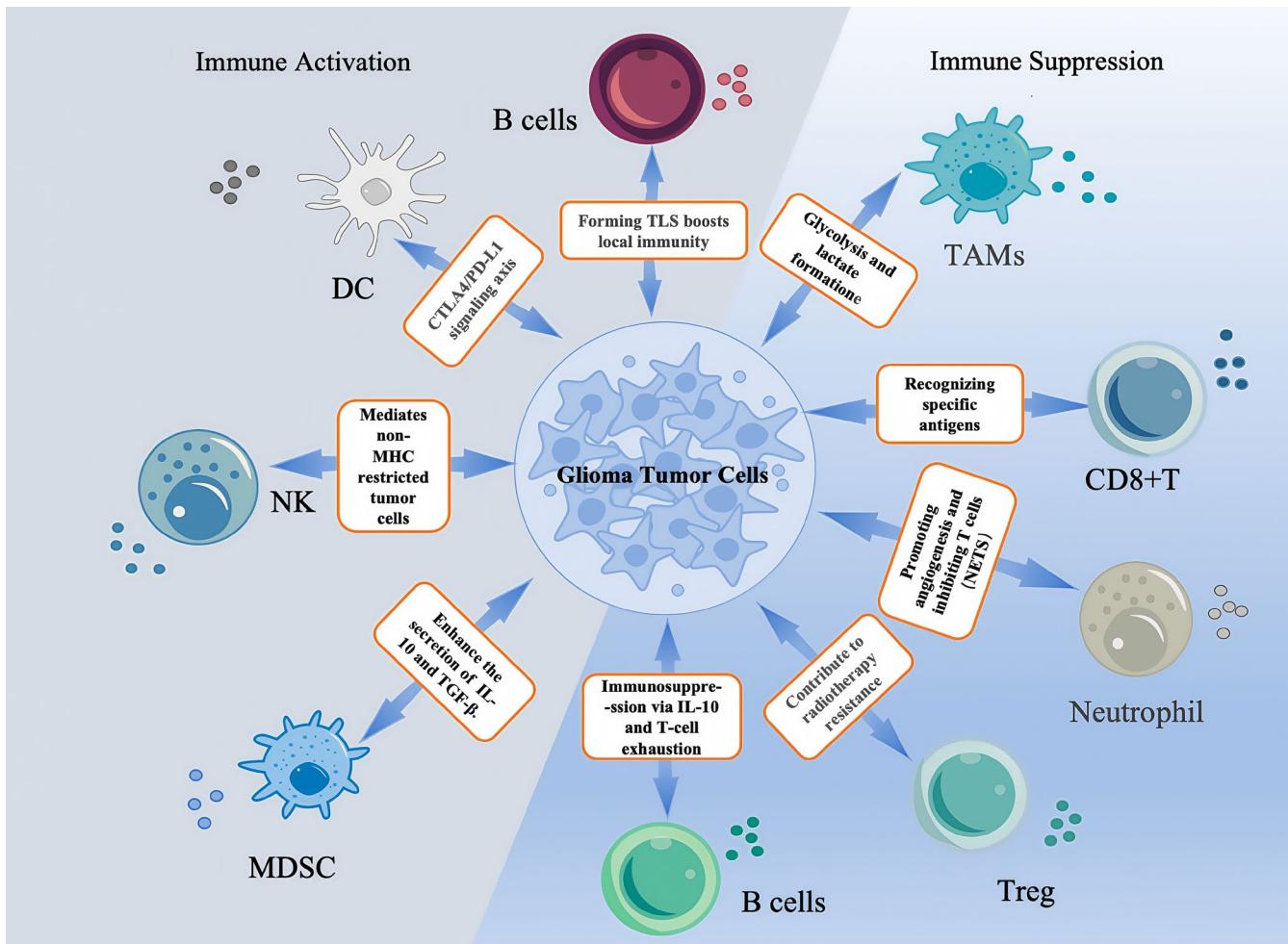
Glioblastoma stem cells (GSCs), characterised by enhanced DNA damage tolerance, efficient activation of DNA repair pathways and a predominantly quiescent state, also represent a major driver of TMZ resistance and tumour relapse. GSCs exhibit metabolic and epigenetic plasticity, maintain high expression of stemness-associated transcription factors (e.g., SOX2, OCT4), and resist apoptosis through upregulation of anti-apoptotic signalling [9]. These properties enable GSCs to survive chemoradiation, repopulate the tumour mass, and contribute to the inevitable recurrence observed in GBM patients.

Besides, increasing studies have illustrated that a highly TME enriched with tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and exhausted T cells is another vital factor in GBM resistance. For instance, immunosuppressive molecules in the TME prevent the activated T cells from crossing the blood–brain barrier (BBB). Therefore, this review specifically highlights two emerging and under-recognised themes: (i) the epigenetic–metabolic crosstalk that stabilises immunosuppressive transcriptional programmes across TAMs, MDSCs and Treg populations, and (ii) the spatial heterogeneity of immunosuppression shaped by uneven metabolic stress, differential vascular permeability and localised cytokine gradients within the tumour mass. These concepts, taken together, provide a more coherent explanation of how GBM maintains a highly resistant and self-reinforcing

immune ecosystem, offering a refined lens for understanding therapeutic failure and guiding future treatment strategies.

2 | Immunosuppressive Mechanisms in the Glioblastoma TME: Metabolism–Epigenetic–Immune Network

The TME of GBM maintains an immunosuppressive state through multidimensional mechanisms including the following key aspects (Figure 1, Table 1).


2.1 | Molecular Subtype–Driven Immune Heterogeneity in GBM

Glioblastoma subtypes exhibit profoundly different immune landscapes, which have important implications for targeted immunotherapies. The seminal transcriptional classification by Verhaak et al. defined GBM as proneural, classical and mesenchymal, each displaying unique patterns of immune infiltration and cytokine signalling [3]. Subsequent work from Wang et al. and Mao et al. further demonstrated that the mesenchymal subtype is enriched in inflammatory and myeloid signatures, including high TAM/MDSC abundance and robust NF-κB–driven immune suppression [18, 19]. In contrast, the proneural subtype typically shows a more limited immune infiltrate and lower baseline inflammation, while the classical subtype exhibits intermediate immune activity dominated by EGFR-associated pathways.

These subtype-specific immune ecosystems critically affect therapeutic vulnerabilities. Mesenchymal tumours show the most significant resistance to immune checkpoint blockade due to myeloid suppression [20]. In contrast, proneural tumours may be more amenable to T-cell-based strategies in combination with microenvironmental modulation. Recognising and integrating these differences are essential for designing rational, subtype-tailored immunotherapies in GBM.

2.2 | Metabolic Reprogramming as the Driving Layer

TAMs, MDSCs and Tregs reprogramme their energy metabolism pathways within the TME—including glycolysis, lactate accumulation, and fatty acid metabolism—to adapt to hypoxic and nutrient-restricted conditions [21, 22]. For instance, accumulated lactate promotes the M2 polarisation of TAMs, results in enhanced secretion of IL-10 and TGF-β, and reinforces immunosuppressive phenotypes [11, 12]. MDSCs in IDH-mutant GBM enhance glycolysis and produce excessive IL1β, thereby reinforcing the inhibitory effects on M2-macrophages and myeloid-derived suppressor cells [13]. Moreover, Kloosterman et al. demonstrated that metabolically rewired TAMs, specialised as lipid-laden macrophages, directly transferred myelin-derived lipids to tumour cells and promoted GBM progression [23]. Specifically, Freitas-Cortez et al. revealed the fatty acid-binding protein 7 (Fabp7) reprogrammes lipid metabolism of CD8⁺ T cells to promote immunotherapy resistance [16].

FIGURE 1 | Immune activation and suppression within the GBM microenvironment. Glioma tumour cells orchestrate a dynamic balance between immune activation and suppression. Interactions between glioma cells and immune populations—including TAMs, MDSCs, exhausted CD8⁺ T cells, Tregs, DCs and natural killer (NK) cells—are bidirectional. On the activation side, dendritic cells (DCs) and neutrophils can promote anti-tumour responses through antigen presentation and the formation of neutrophil extracellular traps (NETs), while NK cells contribute to immune-mediated cytotoxicity. Conversely, glioma cells exploit multiple immunosuppressive mechanisms: TAMs undergo glycolytic reprogramming and secrete IL-10/TGF- β ; MDSCs enhance PD-L1-mediated signalling; regulatory CD4⁺ T cells suppress effector responses; CD8⁺ T cells become exhausted despite recognising tumour-specific antigens and B cells can both boost local immunity and facilitate immune evasion through tertiary lymphoid structures (TLS).

2.3 | Epigenetic and Non-Coding RNA Regulation as the Amplification Layer

Epigenetic dysregulation represents a central driver of GBM evolution and the formation of an immunosuppressive niche. Histone deacetylases (HDAC) are profoundly deregulated across nearly all GBM subtypes, with multiple HDAC isoforms overexpressed, contributing to chromatin condensation, the repression of immune-stimulatory genes and the promotion of TAM/MDSC-supportive cytokine programmes. Wu et al. demonstrated that activation of the HDAC6/RBP/LINC00461 axis promoted GBM resistance [24]. Yang et al. further illustrated that HDAC1/2/6 promoted self-renewal of malignancy by regulating DNA repair transcription [25]. Similarly, Hanisch et al. revealed that HDAC1/2/3 enhanced the expression of the E3 ubiquitin ligase RAD18 to promote the bypass of O6-methylguanine DNA lesions [26]. Moreover, HDAC7 dysregulation in the H3K27ac-SOX8/JUN-LGALS3-ITGB1 axis

facilitated the transformation of the mesenchymal phenotype of GBM and the M2 polarisation of monocyte-driven macrophages [27].

Beyond HDAC activity, DNA methylation, chromatin remodelling complexes, histone methylation and non-coding RNAs collectively orchestrate wide-ranging transcriptional reprogramming in glioma cells and infiltrating immune cells. These epigenetic alterations support stemness, enhance metabolic adaptability and promote immune evasion [28]. Dong et al. demonstrated that transcriptional condensation enhanced the activity of protein arginine methyltransferases (PRMT2) during GBM progression [29]. CircNEIL3 is transferred via exosomes to TAMs, where it stabilises IGF2BP3 protein and drives the expression of immunosuppressive genes [30]. Similarly, Yin et al. demonstrated the tumour-suppressor-like activity of microglia specialised by shifting cytosolic DNA sensing via the cGAS-STING-dependent pathway [31].

TABLE 1 | Key immune cells in the glioblastoma microenvironment.

Immune cell type	Main function	Immune mechanism
TAMs	Promote immunosuppression and angiogenesis	Secret IL-10 and TGF- β to inhibit immune response; promote M2 polarisation to enhance tumour growth [11, 12]
MDSCs	Inhibit immune	Release IL-1 β to reinforce the inhibitory effects on M2-macrophages and myeloid-derived suppressor cells [13]
Tregs	Suppress immune response and maintain immune tolerance	Release inhibitory cytokines (IL-10, TGF- β); directly suppress effector T cells; recruit other immunosuppressive cells [14]
Exhausted T cells	Reduce anti-tumour activity	Express inhibitory receptors (PD-1, CTLA-4); impaire cytokine production and cytotoxicity functions [15]
CD8 $^{+}$ T lymphocytes	Eliminate cancer cells through the recognition and destruction of infected or malignant cells	Recognise tumour-specific antigens presented on MHC class I molecules, leading to the activation and cytotoxic response against cancer cells, though their function can be inhibited by immune checkpoints such as PD-1 within the tumour microenvironment [16]
Neutrophils	Tumour-promoting or tumour-suppressing roles depending on microenvironment signals	Release exosomes containing enzymes and cytokines; induce oxidative stress to suppress T-cell function [17]

Abbreviations: MDSCs, myeloid-derived suppressor cells; TAMs, tumour-associated macrophages; Tregs, regulatory T cells.

2.4 | Dynamic Crosstalk Among Immunosuppressive Cell Population

Except for TAMs, MDSCs and Tregs, other immune cell populations, including Dendritic cells (DCs), natural killer (NK) cells, and B cells, contribute to the immunological landscape of GBM.

DCs, specialised by antigens, exert the initiation and regulatory effects in GBM. DCs are commonly grouped into conventional DCs (cDCs) and plasmacytoid DCs (pDCs). cDCs generally prime neoantigen-specific CD8 $^{+}$ T-cell responses against GBM [32], whereas pDCs often remain in an immature or tolerogenic state due to tumour-derived IL-10, CCL21, and metabolic suppression, resulting in suppressed CD8 $^{+}$ T-cell priming ability [33]. NK cells can mediate cytotoxicity, which are frequently functionally inhibited in the GBM microenvironment through metabolic suppression, cytokine signalling (e.g., IL-10, TGF- β), and downregulation of activating ligands. However, Mathewson et al. demonstrated that NK cells exhibited context-dependent functions in GBM. Their study revealed that tumour-infiltrating T cells induced CD161 expression on NK cells, thereby suppressing T-cell-mediated killing of GBM cells [34].

Although neutrophil extracellular traps (NETs) are traditionally associated with antimicrobial immune activation and promote DCs recruitment or antigen exposure in inflammatory settings, their role in GBM is largely immunosuppressive. Jain

et al. revealed that NETs released by intertumoral neutrophils enhance angiogenesis, remodeled the extracellular matrix and suppressed T-cell cytotoxicity through ROS production and protease release [17].

B cells exhibit double-edged-sword functions in GBM. Within tertiary lymphoid structures (TLS), B cells can participate in antigen presentation, antibody generation and local priming of T cells, thereby contributing to anti-tumour immune response (ATIR) surveillance [35, 36]. However, evidence suggests that TGF- β secreted from various cells in the TME mediates B-cell suppression of CD8 $^{+}$ T-cell responses [37]. Thus, B cells in GBM should be understood as a heterogeneous compartment with both immunostimulatory and immunosuppressive effects, depending on local cytokine landscapes, metabolic restriction, and tumour-driven phenotypic reprogramming.

Within this metabolism-epigenetic framework, TAMs, MDSCs, and Tregs engage in continuous molecular and cellular interactions that maintain a highly suppressive milieu: metabolic signals serve not only as sources of inhibitory factors but also as signalling molecules that regulate immune cell fate, establishing a metabolism-driven foundation for immunosuppression. IL-10, TGF- β , and ROS can induce the overexpression of immune checkpoint molecules including PD-1 and CTLA-4 on T cells, leading to T-cell exhaustion and significantly weakening ATIR [14, 38–40]. Additionally, IL-8, secreted by tumour cells, MDSCs, and CD8 $^{+}$ T cells, recruits MDSCs via the CXCR1/CXCR2 axis to induce angiogenesis and upregulate PD-1 and TIM-3 [41].

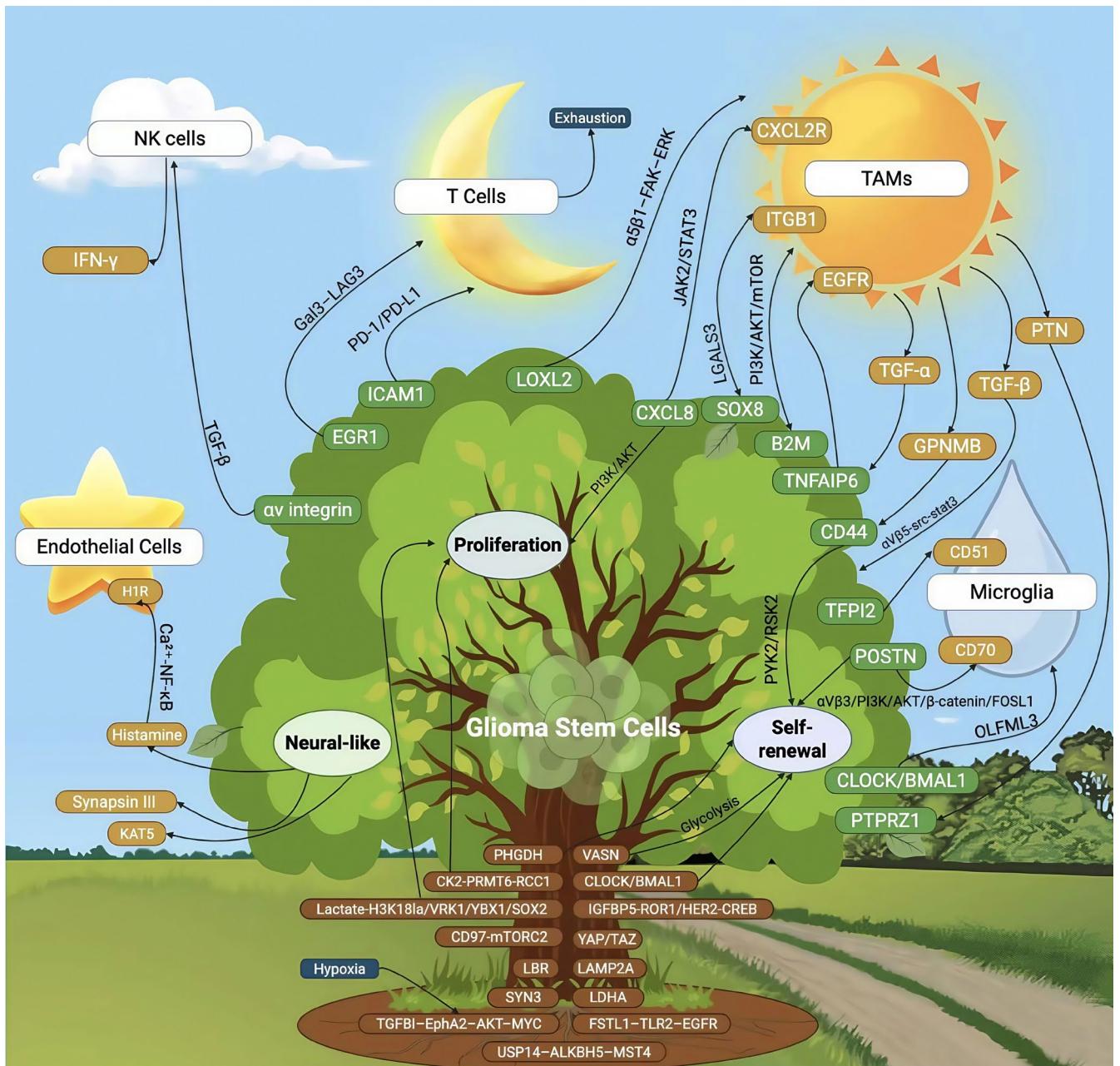
2.5 | Other Mechanisms

Stem cell-related mechanisms represent a critical layer of GBM resistance, in which glioblastoma stem cells (GSCs) undergo profound transcriptional and epigenetic reprogramming in response to inflammatory cues, hypoxia, therapeutic stress, and immune cells. This reprogrammed state—characterised by enhanced DNA repair, metabolic plasticity, and upregulation of immunomodulatory mediators—enables GSCs to resist cytotoxicity and shape an immune-tolerant niche [28, 42, 43]. Intrinsically, pathways including YBX1-SOX2, PRMT6-RCC1, and IGFBP5-ROR1-CREB induce GSCs proliferation and invasion [44–46]; VASN, CLOCK-BMAL1, and PHGDH promote self-renewal [47–49], while KAT5 and synapsin III accelerate the neural-like transdifferentiation of GSCs [50, 51]. Externally, GSCs are well investigated for their interaction with TAMs, microglia, T cells, NK cells, and endothelial cells. On one hand, LGALS3 from GSCs and monocyte-derived macrophages mediated crosstalk among them to stimulate a mesenchymal-like state of GBM [27]. CXCL8, TNFAIP6, LOXL2, and TGF- β preferentially secreted by mesenchymal GSCs bound to the receptors, including CXCR2 and EGFR in TAMs to induce M2-like TAM phenotype [52–55]. Except for TAM, overexpression of ICAM1 in GSCs stimulated PD-L1/PD-1 interaction to induce cytotoxic CD8 $^{+}$ T-cell population [56]. Secretion of GAL3 by GSCs bound to LAG3 to drive T-cell exhaustion [57]. Furthermore, Shaim et al. demonstrated that GSCs suppressed NK cell immune evasion through the α V integrin/TGF- β axis [58]. Chen et al. revealed that GSCs secreted histamine to activate endothelial cells [59]. While, Wang et al. and Pang et al. illustrated that POSTN and TFPI2 secreted by GSCs recruited microglia via CD70 or CD51 to induce an immunosuppressive tumour microenvironment [60, 61]. On the other hand, TGF- β , secreted by TAMs, promote the maintenance of GSCs via the α V β 5-Src-Stat3 axis [62]. TAM-secreted GPNMB interacted with CD44 on GSCs to promote their glycolytic and self-renewal abilities [63]. The literature supports the bidirectional interaction between GSCs and TME in GBM resistance (Figure 2).

Beyond GSCs, other stem cell populations also contribute to the IME. Haematopoietic stem cells (HSCs) can infiltrate the tumour bed and differentiate into immunoregulatory myeloid subsets, reinforcing TAM and MDSC dominance [64]. Mesenchymal stem/stromal cells (MSCs) recruited from peripheral tissues or the bone marrow induce PD-L1 upregulation in glioma cells and neovascularization to support tumour progression [65]. Together, these stem cell-driven processes amplify immune evasion by promoting a long-lived, therapy-resistant cellular reservoir and sustaining an immunosuppressive TME that limits effective antitumor immunity.

Recent transcriptomic analyses in immunocompetent mouse models have further expanded the understanding of immunosuppressive programmes active in GBM. Garcia-Vicente et al. identified robust upregulation of myeloid-associated suppressive genes (e.g., *Arg1*, *Il-10*, and *Tgfb1*), attenuation of interferon-response, enhanced expression of T-cell exhaustion markers (*Pdcd1*, *Lag3*, and *Havcr2*), and cytokine/chemokine circuits (*CCL2*, *CXCL1*, and *IL-8*) that amplify neutrophil recruitment and myeloid dominance [66]. Other studies have demonstrated that GBM cells can evade immune recognition by downregulating MHC molecule

expression, thereby reducing antigen presentation and limiting T-cell activation [67]. Moreover, the gut microbiota may influence the immune status of TME through systemic immune modulation, though its role in GBM remains to be further explored [68]. Exosomes and extracellular vesicles may also contribute to immunosuppression by transferring immunosuppressive signalling molecules, such as PD-L1, to immune cells, thereby enhancing immune evasion within the TME [69]. Integrating this preclinical evidence with human GBM data helps refine target selection for immunotherapy development.


3 | Clinical Challenges in Treating Glioblastoma

Current GBM treatment strategies involve maximal safe surgical resection, followed by radiotherapy and TMZ chemotherapy. Despite aggressive treatment, the median survival remains only 12–15 months due to high recurrence rates and treatment resistance [70].

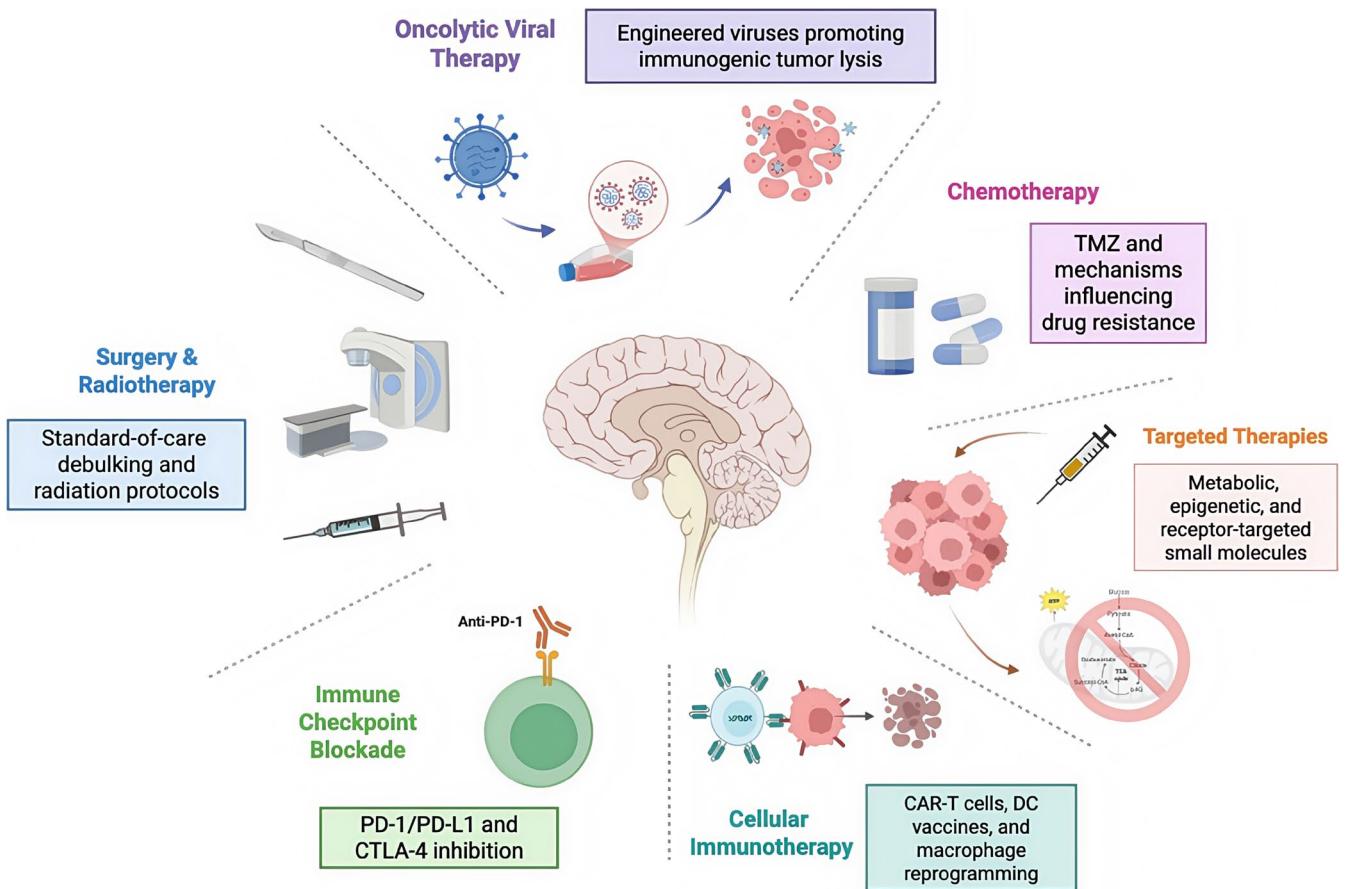
Immunotherapy approaches, including PD-1/PD-L1 inhibitors and CAR-T cell therapy, have shown limited efficacy due to multiple factors. On one hand, the BBB impedes immune cell infiltration, further hampering immunotherapy efforts [71, 72]. On the other hand, regulatory immune populations—particularly TAMs, MDSCs, and Tregs—collectively dominate the GBM microenvironment and suppress cytotoxic T-cell activity through cytokine-mediated inhibition, metabolic competition, and checkpoint ligand expression [73].

To overwhelm BBB, several approaches, including focused ultrasound combined with microbubbles, osmotic opening with mannitol, radiotherapy- or chemotherapy-induced endothelial modulation and vascular-targeted agents, are being explored to transiently increase BBB permeability and thereby enhance immune cell trafficking [74, 75]. These strategies can facilitate the entry of cytotoxic lymphocytes, monoclonal antibodies, and cellular therapies into the tumour bed. However, BBB disruption is a double-edged sword: excessive or prolonged opening may lead to vasogenic edema, intracranial haemorrhage, neurocognitive toxicity and treatment-related pseudoprogression, all of which complicate clinical management and response assessment. Therefore, emerging concepts emphasise controlled and reversible BBB modulation, coupled with real-time imaging, careful dosing schedules and the use of ‘vascular normalisation’ rather than indiscriminate barrier breakdown. Such balanced strategies aim to widen the therapeutic window—allowing sufficient immune and drug infiltration to achieve anti-tumour effects, while minimising neurological complications and preserving critical neurovascular function.

Furthermore, recent clinical trials targeting TAMs or immune checkpoints in GBM have shown promising results. The phase II/III NRG-BN007 trial compared radiotherapy with TMZ versus radiotherapy with immunotherapy in newly diagnosed MGMT-unmethylated GBM, aiming to determine whether dual immune checkpoint blockade could improve outcomes compared with standard therapy. Notably, NCT04396860 is evaluating whether the CSF-1R inhibitor could reprogramme TAMs, while NCT03493932 is investigating the combinational effect of PD-1 and LAG-3 blockade in recurrent GBM. These trials highlight a growing clinical shift towards modulating myeloid

FIGURE 2 | Immune activation and suppression on glioblastoma stem cells (GSCs). GSCs undergo profound transcriptional and epigenetic re-programming in response to inflammatory cues, hypoxia, therapeutic stress, and immune cells to resist cytotoxicity and shape an immune-tolerant niche.

and checkpoint pathways to overcome immune resistance. In addition, biomarker-guided treatment is becoming increasingly important in GBM. Established markers, such as MGMT promoter methylation, IDH mutation status, and emerging TME-based immune signatures, are applied to stratify patients and predict responsiveness to immunotherapy or myeloid-targeting approaches. Such stratification may enhance the translational impact of future GBM immunotherapies.


4 | Future Therapeutic Strategies

Future therapeutic strategies for GBM focus on overcoming the tumour's highly IME to improve treatment efficacy. Targeting key

mechanisms such as immune checkpoint pathways, metabolic and epigenetic modulation, and cytokine signalling is a promising strategy to reprogramme the tumour microenvironment, enhance immune cell activation, and restore ATIR (Figure 3, Table 2) [82].

4.1 | Checkpoint Inhibitors for PD-1 and CTLA-4 on Exhausted T Cells

Checkpoint inhibitors targeting PD-1 and CTLA-4 on exhausted T cells offer a valuable tactic to reactivate immune responses in the GBM microenvironment. Anti-PD-1 antibodies, such as pembrolizumab and nivolumab, can restore T-cell activity and

FIGURE 3 | Current therapeutic strategies for GBM. To overcome the tumour's highly IME is a potential strategy to improve treatment efficacy through targeting key mechanisms such as immune checkpoint pathways, metabolic and epigenetic modulation, and cytokine signalling. Those treatments include oncolytic viral therapy with engineered viruses, chemotherapy and immune checkpoint blockade.

enhance ATIR. Additionally, the combination of CTLA-4 (e.g., ipilimumab) and PD-1 inhibitors boosts immune activation by countering multiple immune suppression mechanisms within the TME [83, 84]. This dual-targeted strategy is possible for overcoming the immunosuppressive barriers in GBM and re-energising exhausted T cells.

4.2 | Targeting Glycolysis and Epigenetic Regulation in TAMs and MDSCs

In peripheral blood, granulocytic MDSCs directly suppress T-cell proliferation, whereas tumour-infiltrating MDSCs upregulate PD-L1, thereby inducing PD-1 expression on T cells and indirectly leading to T-cell exhaustion [85]. Additionally, glycolysis is a critical pathway supporting the immunosuppressive functions of TAMs and MDSCs. Therefore, targeting glycolysis in TAMs and MDSCs offers a potential approach to mitigate immunosuppression in the GBM microenvironment. As it is mentioned in Zarychta's study, applying glycolysis inhibitors like 2-deoxy-D-glucose (2-DG) to GBM therapy significantly decreased the ATP production and G0/G1 cell cycle arrest, thereby creating a more favourable environment for effective immune responses against tumour [86]. Similarly, histone deacetylase inhibitors (HDACi), including vorinostat and romidepsin, reduced ATP production and relieved immunosuppressive pressure [87].

4.3 | Targeting DNA Methylation in TAMs

Direct targeting of DNA methylation in TAMs is another strategy to reduce their immunosuppressive activities in the TME of GBM [88]. DNA methyltransferase inhibitors (DNMTi), such as decitabine, have been reported to inhibit immune responses. This reduction in TAM-mediated inhibition helps to restore T-cell activity and promote immune surveillance, creating a more favourable environment for ATIR within the TME [89].

4.4 | Targeting Cytokine-Receptor Pathway

IL-10 and TGF- β are the two key immunosuppressive cytokines that help counteract the immune suppression commonly observed in the GBM microenvironment [14, 40]. Monoclonal antibodies, such as anti-IL-10 and anti-TGF- β antibodies, neutralise these cytokines to block their suppressive effects on T-cell activity and promote a more favourable immune response against the tumour. Small molecule inhibitors, such as SB431542, specifically inhibit TGF- β signalling by blocking TGF- β receptor activity in immune cells. This could reverse immune suppression and enhance ATIR within the tumour microenvironment [90]. Additionally, IL-8, secreted by tumour cells, MDSCs and CD8 $^+$ T cells, recruits MDSCs via the CXCR1/CXCR2 axis, induces angiogenesis, and upregulates PD-1 and TIM-3. Liu et al.

TABLE 2 | Potential therapeutic targets and mechanisms for immunosuppression in GBM.

Target cell/ pathway	Targeting mechanism	Potential therapy	Clinical trials	Status
TAMs	Inhibit survival or reprogramme to M1 phenotype	CSF-1R inhibitors; CD47 blockade	BLZ945 (NCT02829723) Cabiralizumab (NCT02526017) Magrolimab (NCT05169944)	Terminated (2024-01) Completed (2022-03) Completed (2025-07)
MDSCs	Block recruitment to the tumour site	CXCR2 inhibitors; arginine depletion	ADI-PEG (NCT04587830) BCT-100 (NCT03455140) [76]	Active (2025-08) Completed (2022-09)
Tregs	Block suppressive cytokine signalling	ALK5 (TGF- β inhibitors); TGF- β inhibitor + PD-L1 antibody	Galunisertib (NCT02423343) [77] Bintralusp alfa (NCT02517398) [78] ^a	Completed (2021-09) Completed (2022-05)
Checkpoint pathways (PD-L1/ PD-1)	Block immune checkpoint interaction	TGF- β inhibitor + PD-L1 antibody; CTLA-4 inhibitors	Bintralusp alfa (NCT02517398) [78] ^a Nivolumab \pm ipilimumab \pm bevacizumab (NCT02017717) [79] Tremelimumab \pm durvalumab (NCT02794883)	Completed (2022-05) Completed (2024-06) Completed (2022-06)
CAR-T	Enhance T-cell infiltration and persistence in GBM	Combined with oncolytic viruses, cytokine modulation EGFRvIII CAR-T cells Combination with TGF- β inhibitors	EGFRvIII CAR-T (NCT01454596) [80] IL-8R-CD70- CAR-T (NCT05353530)	Completed (2019-01) Recruiting (2025-10)
Metabolic pathways	Target the increased dependency on glucose and glutamine, as well as the altered lipid metabolism observed in GBM cells	Caloric restriction ketogenic diet (KD-R), inhibition of glutaminase, cholesterol depletion, inhibition of fatty acid synthesis	Atorvastatin (NCT06327451) Ketogenic diet (NCT05708352) Telaglenastat (NCT03872427)	Recruiting (2024-03) Recruiting (2025-06) Active (2025-11)
Epigenetic targets	DNMTi; HDACi; EZH2; BET-BRD; H3K27M	5-Aza-CdR (DNMTi); Vorinostat, Romidepsin (HDACi); Tazemetostat (EZH2); JQ1, I-BET (BET-BRD)	Decitabine/vaccine (NCT02332889) Vorinostat (NCT00555399) Tazemetostat (NCT05023655) BMS-986158 or BMS-986378 (NCT03936465) ONC201 (NCT05580562)	Terminated (2016-07) Terminated (2024-08) Recruiting (2025-07) 2024-10 Completed 2025-08 Recruiting
Oncolytic viruses	Infect and kill tumour cells, releasing antigens to stimulate immunity Improve virus efficacy in TME through enhanced immune activation	Engineered oncolytic viruses Combination with checkpoint inhibitors	PVSRIPO (NCT01491893) [81] VBI-1901 (NCT03382977)	2023-09 Completed 2025-03 Recruiting

Abbreviations: BET-BRD: bromodomain and extra-terminal domain–bromodomain inhibitors; DNMTi, DNA methyltransferase inhibitors; EZH2, enhancer of zeste homologue 2; HDACi, histone deacetylases inhibitors.

^aBintralusp alfa is a bifunctional fusion protein that targets PD-L1 and TGF-

revealed that neutralising IL-8 unleashed anti-PD-1-mediated antitumor immunity [41].

4.5 | Combination Strategies

Combination strategies that simultaneously target multiple immunosuppressive mechanisms hold great potential to enhance immune responses in the TME of GBM. Jiang et al. demonstrated that combining checkpoint inhibitor (anti-CD47) with glycolysis inhibitor (etomoxir) mitigated the suppressive metabolic effects imposed by TAMs and MDSCs [91]. Similarly, combining PD-1/CTLA-4 inhibitors helps to reduce the overall immunosuppressive environment, enhancing T-cell activation [92]. Additionally, CAR-T cell therapy combined with TGF- β inhibitors could improve CAR-T cell persistence and function by blocking TGF- β 's suppressive effects, thereby enhancing CAR-T efficacy in the TME [93, 94]. These combination strategies leverage synergistic effects to counteract GBM's immune resistance, creating a more supportive setting for anti-tumour immunity. Besides, NK cells engineered to express IL-21 or HER2 enhanced anti-tumour efficacy against GBM [95, 96]. What is important is that the combination strategy needs to be well considered.

4.6 | Oncolytic Viral Therapy and Stimulation of Tertiary Lymphoid Structure in GBM

Oncolytic viral therapy has emerged as a promising approach for GBM by combining direct tumour cell lysis with secondary activation of ATIR. Engineered viruses can selectively replicate in glioma cells, induce immunogenic cell death and release tumour antigens that are subsequently taken up by DCs and convert an immunologically 'cold' tumour into a more inflamed microenvironment. However, several challenges currently limit the efficacy of oncolytic viruses in GBM, including restricted intratumoral spread, the physical and functional barriers imposed by the BBB, pre-existing or rapidly induced antiviral immunity and safety concerns such as neurotoxicity and treatment-related edema. To overcome these obstacles, multiple strategies are under investigation: optimising delivery routes (e.g., intratumoral injection or convection-enhanced delivery), combining oncolytic viruses with immune checkpoint blockade or myeloid-targeting agents to counteract the immunosuppressive TME and engineering viral backbones to express cytokines or costimulatory ligands that further enhance local T-cell and NK-cell activity [97]. Moreover, tertiary lymphoid structures formed with T-cell zones containing antigen-presenting dendritic cells and B-cell zones with germinal centres showed immune-permissive TME and improved overall survival [35].

5 | Conclusion

In summary, the immunosuppressive TME enriched with TAMs, MDSCs, Tregs, exhausted T cells, and stromal elements is particularly involved in GBM resistance. These TME show a dynamic interplay in a multilayered metabolism-epigenetic-immune network, which implicates the design of personalised, multimodal immunotherapeutic strategies to suppress GBM via reprogramming the immune microenvironment.

Author Contributions

Changming Pang: researched the literature, drafted the manuscript in detail, and drew figures. **Yan Wang:** critically revised the article for important intellectual content.

Funding

This work was supported by grants from Hainan Province Science and Technology Special Fund (Hainan Provincial Key Research and Development Program, ZDYF2025SHFZ044), the Academic Enhancement Support Program of Hainan Medical University (XSTS2025183), and the National Innovation and Entrepreneurship Training Program for Undergraduate (202411810014).

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

1. D. N. Louis, A. Perry, P. Wesseling, et al., "The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary," *Neuro-Oncology* 23, no. 8 (2021): 1231–1251.
2. Q. T. Ostrom, H. Gittleman, J. Xu, et al., "CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009–2013," *Neuro-Oncology* 18, no. 5 (2016): 1–75.
3. R. G. Verhaak, K. A. Hoadley, E. Purdom, et al., "Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1," *Cancer Cell* 17, no. 1 (2010): 98–110.
4. R. Stupp, S. Taillibert, A. Kanner, et al., "Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs. Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial," *JAMA* 318, no. 23 (2017): 2306–2316.
5. B. Lan, Z. Zhuang, J. Zhang, et al., "Triggering of Endoplasmic Reticulum Stress via ATF4-SPHK1 Signaling Promotes Glioblastoma Invasion and Chemoresistance," *Cell Death & Disease* 15, no. 8 (2024): 552.
6. Y. Yan, S. Zhou, X. Chen, et al., "Suppression of ITPKB Degradation by Trim25 Confers TMZ Resistance in Glioblastoma Through ROS Homeostasis," *Signal Transduction and Targeted Therapy* 9, no. 1 (2024): 58.
7. Y. Wei, C. Lu, P. Zhou, et al., "EIF4A3-Induced Circular RNA ASAP1 Promotes Tumorigenesis and Temozolomide Resistance of Glioblastoma via NRAS/MEK1/ERK1-2 Signaling," *Neuro-Oncology* 23, no. 4 (2021): 611–624.
8. Y. Li, Y. Liu, J. Ren, et al., "miR-1268a Regulates ABCC1 Expression to Mediate Temozolomide Resistance in Glioblastoma," *Journal of Neuro-Oncology* 138, no. 3 (2018): 499–508.
9. S. M. Wang, W. C. Lin, H. Y. Lin, Y. L. Chen, C. Y. Ko, and J. M. Wang, "CCAAT/Enhancer-Binding Protein Delta Mediates Glioma Stem-Like Cell Enrichment and ATP-Binding Cassette Transporter ABCA1 Activation for Temozolomide Resistance in Glioblastoma," *Cell Death Discovery* 7, no. 1 (2021): 8.
10. E. Yang, L. Wang, W. Jin, et al., "PTRF/Cavin-1 Enhances Chemo-Resistance and Promotes Temozolomide Efflux Through

Extracellular Vesicles in Glioblastoma," *Theranostics* 12, no. 9 (2022): 4330–4347.

11. W. Xuan, W. H. Hsu, F. Khan, et al., "Circadian Regulator CLOCK Drives Immunosuppression in Glioblastoma," *Cancer Immunology Research* 10, no. 6 (2022): 770–784.

12. H. Li, C. Yang, Y. Wei, et al., "Ferritin Light Chain Promotes the Reprogramming of Glioma Immune Microenvironment and Facilitates Glioma Progression," *Theranostics* 13, no. 11 (2023): 3794–3813.

13. E. P. Grewal, L. G. K. Richardson, J. Sun, et al., "Mutant IDH Modulates Suppressive Myeloid Populations in Malignant Glioma," *Clinical Cancer Research* 30, no. 18 (2024): 4068–4076.

14. X. Wang, Y. Ge, Y. Hou, et al., "Single-Cell Atlas Reveals the Immunosuppressive Microenvironment and Treg Cells Landscapes in Recurrent Glioblastoma," *Cancer Gene Therapy* 31, no. 5 (2024): 790–801.

15. J. Park, M. Kwon, K. H. Kim, et al., "Immune Checkpoint Inhibitor-Induced Reinvigoration of Tumor-Infiltrating CD8(+) T Cells Is Determined by Their Differentiation Status in Glioblastoma," *Clinical Cancer Research* 25, no. 8 (2019): 2549–2559.

16. M. A. Freitas-Cortez, F. Masrourpour, H. Jiang, et al., "Cancer Cells Avoid Ferroptosis Induced by Immune Cells via Fatty Acid Binding Proteins," *Molecular Cancer* 24, no. 1 (2025): 40.

17. S. Jain, J. W. Rick, R. S. Joshi, et al., "Single-Cell RNA Sequencing and Spatial Transcriptomics Reveal Cancer-Associated Fibroblasts in Glioblastoma With Protumoral Effects," *Journal of Clinical Investigation* 133, no. 5 (2023): e147087.

18. S. Darmanis, S. A. Sloan, D. Croote, et al., "Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma," *Cell Reports* 21, no. 5 (2017): 1399–1410.

19. J. Mao, J. Li, J. Chen, et al., "CXCL10 and Nrf2-Upregulated Mesenchymal Stem Cells Reinvigorate T Lymphocytes for Combating Glioblastoma," *Journal for Immunotherapy of Cancer* 11, no. 12 (2023): e007481.

20. R. Zhao, Z. Pan, J. Qiu, et al., "Blocking ITGA5 Potentiates the Efficacy of Anti-PD-1 Therapy on Glioblastoma by Remodeling Tumor-Associated Macrophages," *Cancer Commun (Lond)* 45, no. 6 (2025): 677–701.

21. E. Roda and M. G. Bottone, "Editorial: Brain Cancers: New Perspectives and Therapies," *Frontiers in Neuroscience* 16 (2022): 857408.

22. T. Liu, D. Jin, S. B. le, et al., "Machine Learning-Directed Conversion of Glioblastoma Cells to Dendritic Cell-Like Antigen-Presenting Cells as Cancer Immunotherapy," *Cancer Immunology Research* 12, no. 10 (2024): 1340–1360.

23. D. J. Kloosterman, J. Erbani, M. Boon, et al., "Macrophage-Mediated Myelin Recycling Fuels Brain Cancer Malignancy," *Cell* 187, no. 19 (2024): 5336–5356.

24. A. C. Wu, W. B. Yang, K. Y. Chang, et al., "HDAC6 Involves in Regulating the lncRNA-microRNA-mRNA Network to Promote the Proliferation of Glioblastoma Cells," *Journal of Experimental & Clinical Cancer Research* 41, no. 1 (2022): 47.

25. W. B. Yang, C. C. Hsu, T. I. Hsu, et al., "Increased Activation of HDAC1/2/6 and Sp1 Underlies Therapeutic Resistance and Tumor Growth in Glioblastoma," *Neuro-Oncology* 22, no. 10 (2020): 1439–1451.

26. D. Hanisch, A. Krumm, T. Diehl, et al., "Class I HDAC Overexpression Promotes Temozolomide Resistance in Glioma Cells by Regulating RAD18 Expression," *Cell Death & Disease* 13, no. 4 (2022): 293.

27. S. Zhao, R. Zhao, C. Wang, et al., "HDAC7 Drives Glioblastoma to a Mesenchymal-Like State via LGALS3-Mediated Crosstalk Between Cancer Cells and Macrophages," *Theranostics* 14, no. 18 (2024): 7072–7087.

28. E. Gangoso, B. Southgate, L. Bradley, et al., "Glioblastomas Acquire Myeloid-Affiliated Transcriptional Programs via Epigenetic Immunoediting to Elicit Immune Evasion," *Cell* 184, no. 9 (2021): 2454–2470.

29. F. Dong, X. Cheng, J. Wan, et al., "Transcriptional Condensates Enrich Phosphorylated PRMT2 to Stimulate H3R8me2a Deposition and Hypoxic Response in Glioblastoma," *Science China. Life Sciences* (2025): 1–15, <https://doi.org/10.1007/s11427-025-2959-xsss>.

30. Z. Pan, R. Zhao, B. Li, et al., "EWSR1-Induced circNEIL3 Promotes Glioma Progression and Exosome-Mediated Macrophage Immunosuppressive Polarization via Stabilizing IGF2BP3," *Molecular Cancer* 21, no. 1 (2022): 16.

31. A. A. Yin, Y. Yao, Y. F. Liu, et al., "DNA Methylation Variations of DNA Damage Response in Glioblastoma: NSUN5 Modulates Tumor-Intrinsic Cytosolic DNA-Sensing and Microglial Behavior," *Journal of Translational Medicine* 23, no. 1 (2025): 907.

32. J. A. Bowman-Kirigin, R. Desai, B. T. Saunders, et al., "The Conventional Dendritic Cell 1 Subset Primes CD8⁺ T Cells and Traffics Tumor Antigen to Drive Antitumor Immunity in the Brain," *Cancer Immunology Research* 11, no. 1 (2023): 20–37.

33. L. Zhao, J. Shireman, S. Probelsky, et al., "CCL21 Induces Plasmacytoid Dendritic Cell Migration and Activation in a Mouse Model of Glioblastoma," *Cancers* 16, no. 20 (2024): 3459.

34. N. D. Mathewson, O. Ashenberg, I. Tirosh, et al., "Inhibitory CD161 Receptor Identified in Glioma-Infiltrating T Cells by Single-Cell Analysis," *Cell* 184, no. 5 (2021): 1281–1298.

35. P. Cakmak, J. H. Lun, A. Singh, et al., "Spatial Immune Profiling Defines a Subset of Human Gliomas With Functional Tertiary Lymphoid Structures," *Immunity* 58, no. 11 (2025): 2847–2863.

36. Z. Wu, J. Zhou, Y. Xiao, et al., "CD20(+)CD22(+)ADAM28(+) B Cells in Tertiary Lymphoid Structures Promote Immunotherapy Response," *Frontiers in Immunology* 13 (2022): 865596.

37. D. Hou, S. Wang, B. A. Castro, et al., "Dual aVss8 Integrin and PD-1 Blockade Overcomes TGFbeta-Mediated B-Cell Suppression to Enhance Anti-Tumor Immunity," *Neuro-Oncology* 27, no. 9 (2025): 2355–2369.

38. D. Wang, B. C. Prager, R. C. Gimple, et al., "CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies," *Cancer Discovery* 11, no. 5 (2021): 1192–1211.

39. M. Montoya, M. Gallus, S. Phy, J. Haegelin, J. de Groot, and H. Okada, "A Roadmap of CAR-T-Cell Therapy in Glioblastoma: Challenges and Future Perspectives," *Cells* 13, no. 9 (2024): 726.

40. V. M. Ravi, N. Neidert, P. Will, et al., "T-Cell Dysfunction in the Glioblastoma Microenvironment Is Mediated by Myeloid Cells Releasing Interleukin-10," *Nature Communications* 13, no. 1 (2022): 925.

41. H. Liu, Q. Zhao, L. Tan, et al., "Neutralizing IL-8 Potentiates Immune Checkpoint Blockade Efficacy for Glioma," *Cancer Cell* 41, no. 4 (2023): 693–710.

42. B. Zhang, H. Peng, M. Zhou, et al., "Targeting BCAT1 Combined With Alpha-Ketoglutarate Triggers Metabolic Synthetic Lethality in Glioblastoma," *Cancer Research* 82, no. 13 (2022): 2388–2402.

43. L. Zeng, W. Zheng, X. Liu, et al., "SDC1-TGM2-FLOT1-BHMT Complex Determines Radiosensitivity of Glioblastoma by Influencing the Fusion of Autophagosomes With Lysosomes," *Theranostics* 13, no. 11 (2023): 3725–3743.

44. W. Lin, R. Niu, S. M. Park, et al., "IGFBP5 Is an ROR1 Ligand Promoting Glioblastoma Invasion via ROR1/HER2-CREB Signaling Axis," *Nature Communications* 14, no. 1 (2023): 1578.

45. T. Huang, Y. Yang, X. Song, et al., "PRMT6 Methylation of RCC1 Regulates Mitosis, Tumorigenicity, and Radiation Response of Glioblastoma Stem Cells," *Molecular Cell* 81, no. 6 (2021): 1276–1291.

46. J. Li, C. Tang, X. Zhang, R. Xing, and Q. Guo, "Histone Lactylation-Driven Upregulation of VRK1 Expression Promotes Stemness and

Proliferation of Glioma Stem Cells," *Advanced Science* 12 (2025): e03897.

47. Y. Zhang, T. Kang, Y. Wang, et al., "A Low Level of Tumor Necrosis Factor Alpha in Tumor Microenvironment Maintains the Self-Renewal of Glioma Stem Cells by Vasoconin-Mediated Glycolysis," *Neuro-Oncology* 26, no. 12 (2024): 2256–2271.

48. P. Chen, W. H. Hsu, A. Chang, et al., "Circadian Regulator CLOCK Recruits Immune-Suppressive Microglia Into the GBM Tumor Microenvironment," *Cancer Discovery* 10, no. 3 (2020): 371–381.

49. X. Liu, B. Liu, J. Wang, et al., "PHGDH Activation Fuels Glioblastoma Progression and Radioresistance via Serine Synthesis Pathway," *Journal of Experimental & Clinical Cancer Research* 44, no. 1 (2025): 99.

50. Y. Deng, Z. Yuan, X. Jin, et al., "Synapsin III Promotes Neuronal-Like Transdifferentiation of Glioblastoma Stem Cells by Disrupting JAG1-Notch1 Interaction," *Neuro-Oncology* 27, no. 7 (2025): 1686–1701.

51. A. B. Mihalas, S. Arora, S. A. O'Connor, et al., "KAT5 Regulates Neurodevelopmental States Associated With G0-Like Populations in Glioblastoma," *Nature Communications* 16, no. 1 (2025): 4327.

52. W. Yuan, Q. Zhang, D. Gu, et al., "Dual Role of CXCL8 in Maintaining the Mesenchymal State of Glioblastoma Stem Cells and M2-Like Tumor-Associated Macrophages," *Clinical Cancer Research* 29, no. 18 (2023): 3779–3792.

53. D. Gu, L. Hu, K. Yang, et al., "Stress-Induced Pro-Inflammatory Glioblastoma Stem Cells Secrete TNFAIP6 to Enhance Tumor Growth and Induce Suppressive Macrophages," *Developmental Cell* 60, no. 19 (2025): 2558–2575.

54. D. Li, Q. Zhang, L. Li, et al., "β2-Microglobulin Maintains Glioblastoma Stem Cells and Induces M2-Like Polarization of Tumor-Associated Macrophages," *Cancer Research* 82, no. 18 (2022): 3321–3334.

55. J. Qiu, R. Zhao, C. Ma, et al., "O-GlcNAcylation Stabilized WTAP Promotes GBM Malignant Progression in an N6-Methyladenosine-Dependent Manner," *Neuro-Oncology* 27, no. 4 (2025): 900–915.

56. M. Guo, Z. Yuan, X. Jin, et al., "Inhibition of ICAM1 Diminishes Stemness and Enhances Antitumor Immunity in Glioblastoma via Beta-Catenin/PD-L1 Signaling," *Nature Communications* 16, no. 1 (2025): 8642.

57. H. Huang, C. Li, H. You, et al., "Radiation-Induced Glioblastoma Stem Cell-Mediated T Cell Exhaustion via EGR1-Gal3-LAG3 Axis in Glioblastoma," *Cancer Letters* 636 (2025): 218125.

58. H. Shaim, M. Shanley, R. Basar, et al., "Targeting the Alphav Integrin/TGF-Beta Axis Improves Natural Killer Cell Function Against Glioblastoma Stem Cells," *Journal of Clinical Investigation* 131, no. 14 (2021): e142116.

59. J. Chen, G. Liu, X. Wang, et al., "Glioblastoma Stem Cell-Specific Histamine Secretion Drives Pro-Angiogenic Tumor Microenvironment Remodeling," *Cell Stem Cell* 29, no. 11 (2022): 1531–1546.

60. H. Wang, L. Yao, J. Chen, et al., "The Dual Role of POSTN in Maintaining Glioblastoma Stem Cells and the Immunosuppressive Phenotype of Microglia in Glioblastoma," *Journal of Experimental & Clinical Cancer Research* 43, no. 1 (2024): 252.

61. L. Pang, M. Dunterman, S. Guo, et al., "Kunitz-Type Protease Inhibitor TFPI2 Remodels Stemness and Immunosuppressive Tumor Microenvironment in Glioblastoma," *Nature Immunology* 24, no. 10 (2023): 1654–1670.

62. P. Peng, H. Zhu, D. Liu, et al., "TGFBI Secreted by Tumor-Associated Macrophages Promotes Glioblastoma Stem Cell-Driven Tumor Growth via Integrin αvβ5-Src-Stat3 Signaling," *Theranostics* 12, no. 9 (2022): 4221–4236.

63. Y. Liu, L. Pang, F. Khan, et al., "Glycoprotein NMB Mediates Bidirectional GSC-TAM Interactions to Promote Tumor Progression," *JCI Insight* 10, no. 13 (2025): e187684.

64. Z. Zhang, X. Li, F. Yang, et al., "DHHC9-Mediated GLUT1 S-Palmitoylation Promotes Glioblastoma Glycolysis and Tumorigenesis," *Nature Communications* 12, no. 1 (2021): 5872.

65. Q. Zhang, J. Zhang, P. Wang, G. Zhu, G. Jin, and F. Liu, "Glioma-Associated Mesenchymal Stem Cells-Mediated PD-L1 Expression Is Attenuated by Ad5-Ki67/IL-15 in GBM Treatment," *Stem Cell Research & Therapy* 13, no. 1 (2022): 284.

66. Z. Huang, M. Wang, Y. Chen, et al., "Glioblastoma-Derived Microsomes Promote Migration and Invasion by Releasing PAK4 and LAMA4," *Communications Biology* 8, no. 1 (2025): 91.

67. D. Zagzag, K. Salnikow, L. Chiriboga, et al., "Downregulation of Major Histocompatibility Complex Antigens in Invading Glioma Cells: Stealth Invasion of the Brain," *Laboratory Investigation* 85, no. 3 (2005): 328–341.

68. G. D'Alessandro, F. Antonangeli, F. Marrocco, et al., "Gut Microbiota Alterations Affect Glioma Growth and Innate Immune Cells Involved in Tumor Immunosurveillance in Mice," *European Journal of Immunology* 50, no. 5 (2020): 705–711.

69. F. L. Ricklefs, Q. Alayo, H. Krenzlin, et al., "Immune Evasion Mediated by PD-L1 on Glioblastoma-Derived Extracellular Vesicles," *Science Advances* 4, no. 3 (2018): eaar2766.

70. L. R. Schaff and I. K. Mellinghoff, "Glioblastoma and Other Primary Brain Malignancies in Adults: A Review," *JAMA* 329, no. 7 (2023): 574–587.

71. Y. Xie, L. He, R. Lugano, et al., "Key Molecular Alterations in Endothelial Cells in Human Glioblastoma Uncovered Through Single-Cell RNA Sequencing," *JCI Insight* 6, no. 15 (2021): e150861.

72. Y. Xie, F. Yang, L. He, et al., "Single-Cell Dissection of the Human Blood-Brain Barrier and Glioma Blood-Tumor Barrier," *Neuron* 112, no. 18 (2024): 3089–3105.

73. A. H. Lee, L. Sun, A. Y. Mochizuki, et al., "Neoadjuvant PD-1 Blockade Induces T Cell and cDC1 Activation but Fails to Overcome the Immunosuppressive Tumor Associated Macrophages in Recurrent Glioblastoma," *Nature Communications* 12, no. 1 (2021): 6938.

74. H. You, S. Zhang, Y. Zhang, et al., "Engineered Bacterial Outer Membrane Vesicles-Based Doxorubicin and CD47-siRNA co-Delivery Nanoplatform Overcomes Immune Resistance to Potentiate the Immunotherapy of Glioblastoma," *Advanced Materials* 37, no. 15 (2025): e2418053.

75. T. Yu, K. Wang, J. Wang, et al., "M-MDSCs Mediated Trans-BBB Drug Delivery for Suppression of Glioblastoma Recurrence Post-Standard Treatment," *Journal of Controlled Release* 369 (2024): 199–214.

76. N. Fenwick, R. Weston, K. Wheatley, et al., "PARC: A Phase I/II Study Evaluating the Safety and Activity of Pegylated Recombinant Human Arginase BCT-100 in Relapsed/Refractory Cancers of Children and Young Adults," *Frontiers in Oncology* 14 (2024): 1296576.

77. E. Nadal, M. Saleh, S. P. Aix, et al., "A Phase Ib/II Study of Galunisertib in Combination With Nivolumab in Solid Tumors and Non-Small Cell Lung Cancer," *BMC Cancer* 23, no. 1 (2023): 708.

78. M. Khasraw, M. Weller, D. Lorente, et al., "Bintrafusp Alfa (M7824), a Bifunctional Fusion Protein Targeting TGF-Beta and PD-L1: Results From a Phase I Expansion Cohort in Patients With Recurrent Glioblastoma," *Neuro-Oncology Advances* 3, no. 1 (2021): vdab058.

79. D. A. Reardon, A. A. Brandes, A. Omuro, et al., "Effect of Nivolumab vs. Bevacizumab in Patients With Recurrent Glioblastoma: The Check-Mate 143 Phase 3 Randomized Clinical Trial," *JAMA Oncology* 6, no. 7 (2020): 1003–1010.

80. R. A. Morgan, L. A. Johnson, J. L. Davis, et al., "Recognition of Glioma Stem Cells by Genetically Modified T Cells Targeting EGFRvIII and Development of Adoptive Cell Therapy for Glioma," *Human Gene Therapy* 23, no. 10 (2012): 1043–1053.

81. A. Desjardins, M. Gromeier, J. E. Herndon, II, et al., "Recurrent Glioblastoma Treated With Recombinant Poliovirus," *New England Journal of Medicine* 379, no. 2 (2018): 150–161.

82. Y. Xiong, C. He, J. Qi, et al., "Black Phosphorus Nanosheets Activate Tumor Immunity of Glioblastoma by Modulating the Expression of the Immunosuppressive Molecule PD-L1," *Biomaterials* 317 (2024): 123062.

83. J. Chen, T. Zhu, G. Jiang, Q. Zeng, Z. Li, and X. Huang, "Target Delivery of a PD-1-TREM2 scFv by CAR-T Cells Enhances Anti-Tumor Efficacy in Colorectal Cancer," *Molecular Cancer* 22, no. 1 (2023): 131.

84. P. Dai, Y. Sun, Z. Huang, et al., "USP2 Inhibition Unleashes CD47-Restrained Phagocytosis and Enhances Anti-Tumor Immunity," *Nature Communications* 16, no. 1 (2025): 4564.

85. D. Dubinski, J. Wölfer, M. Hasselblatt, et al., "CD4⁺ T Effector Memory Cell Dysfunction Is Associated With the Accumulation of Granulocytic Myeloid-Derived Suppressor Cells in Glioblastoma Patients," *Neuro-Oncology* 18, no. 6 (2016): 807–818.

86. S. Yang, J. Zhao, X. Cui, et al., "TCA-Phospholipid-Glycolysis Targeted Triple Therapy Effectively Suppresses ATP Production and Tumor Growth in Glioblastoma," *Theranostics* 12, no. 16 (2022): 7032–7050.

87. T. T. T. Nguyen, Y. Zhang, E. Shang, et al., "HDAC Inhibitors Elicit Metabolic Reprogramming by Targeting Super-Enhancers in Glioblastoma Models," *Journal of Clinical Investigation* 130, no. 7 (2020): 3699–3716.

88. X. Luo, X. Zhong, T. Zeng, et al., "Isovalerylspiramycin I Reprograms the Immunosuppressive and Temozolomide-Resistant Microenvironment by Inhibiting the Frizzled-5/Wnt/Beta-Catenin Pathway in Glioblastoma," *Research* 8 (2025): 0828.

89. R. Ma, M. Rei, I. Woodhouse, et al., "Decitabine Increases Neoantigen and Cancer Testis Antigen Expression to Enhance T-Cell-Mediated Toxicity Against Glioblastoma," *Neuro-Oncology* 24, no. 12 (2022): 2093–2106.

90. S. H. Choi, J. Jang, Y. Kim, et al., "ID1(High)/Activin A(High) Glioblastoma Cells Contribute to Resistance to Anti-Angiogenesis Therapy Through Malformed Vasculature," *Cell Death & Disease* 15, no. 4 (2024): 292.

91. N. Jiang, B. Xie, W. Xiao, et al., "Fatty Acid Oxidation Fuels Glioblastoma Radioresistance With CD47-Mediated Immune Evasion," *Nature Communications* 13, no. 1 (2022): 1511.

92. A. E. Sloan, K. Winter, M. R. Gilbert, et al., "NRG-BN002: Phase I Study of Ipilimumab, Nivolumab, and the Combination in Patients With Newly Diagnosed Glioblastoma," *Neuro-Oncology* 26, no. 9 (2024): 1628–1637.

93. N. Li, J. L. Rodriguez, Y. Yin, et al., "Armored Bicistronic CAR T Cells With Dominant-Negative TGF-Beta Receptor II to Overcome Resistance in Glioblastoma," *Molecular Therapy* 32, no. 10 (2024): 3522–3538.

94. A. J. Hou, R. M. Shih, B. R. Uy, et al., "IL-13R α 2/TGF-Beta Bispecific CAR-T Cells Counter TGF- β -Mediated Immune Suppression and Potentiate Anti-Tumor Responses in Glioblastoma," *Neuro-Oncology* 26, no. 10 (2024): 1850–1866.

95. M. Shanley, M. Daher, J. Dou, et al., "Interleukin-21 Engineering Enhances NK Cell Activity Against Glioblastoma via CEBPD," *Cancer Cell* 42, no. 8 (2024): 1450–1466.

96. M. C. Burger, M. T. Forster, A. Romanski, et al., "Intracranial Injection of Natural Killer Cells Engineered With a HER2-Targeted Chimeric Antigen Receptor in Patients With Recurrent Glioblastoma," *Neuro-Oncology* 25, no. 11 (2023): 2058–2071.

97. F. Ju, Y. Luo, C. Lin, et al., "Oncolytic Virus Expressing PD-1 Inhibitors Activates a Collaborative Intratumoral Immune Response to Control Tumor and Synergizes With CTLA-4 or TIM-3 Blockade," *Journal for Immunotherapy of Cancer* 10, no. 6 (2022): e004762.