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ABSTRACT

Glioblastoma (GBM) remains highly lethal due to intrinsic and extrinsic mechanisms, of which the immunosuppressive tumour

microenvironment (TME) collectively limits treatment efficacy. This review synthesises recent advances in understanding how

metabolic reprogramming, epigenetic remodelling and immune cell dysfunction converge to establish a stable immunosuppres-

sive network dominated by tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T
cells and exhausted T cells. We further summarise emerging therapeutic strategies, including myeloid-targeting agents, epi-
genetic modulators, metabolic inhibitors and combination immunotherapy, and discuss their clinical potential in overcoming
GBM immune resistance. These insights provide a mechanistic and translational framework for developing next-generation

multimodal treatment approaches.

1 | Introduction

In the central nervous system (CNS), adult-type diffuse glio-
mas are categorised into three groups: astrocytoma (isocitrate
dehydrogenase [IDH]-mutant, Grades 2-4), oligodendroglioma
(IDH-mutant with 1p/19q co-deletion, Grades 2-3) and glio-
blastoma (GBM, IDH-wildtype, Grade 4) [1], of which GBM is
characterised by rapid progression, genetic heterogeneity and
resistance to conventional therapies. GBM accounts for approx-
imately 46.6% of CNS malignancies, with an annual incidence
of 3.19 per 100000 population [2]. Intertumoral heterogeneity
of GBM can be broadly classified into three major molecular
subtypes: proneural, classical, and mesenchymal according to
their distinct biological properties [3]. The proneural subtype
is characterised by platelet-derived growth factor receptor-
alpha (PDGFRA) alterations, isocitrate dehydrogenase (IDH)
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mutations in a subset and a more differentiated neural-like tran-
scriptional programme. The classical subtype is characterised
by epidermal growth factor receptor (EGFR) amplification and
chromosome 7 gain/10 loss, displaying a highly proliferative
phenotype. In contrast, the mesenchymal subtype is marked as
neurofibromin 1 (NF1) loss, robust inflammatory and stromal
signatures and the most immunosuppressive tumour microen-
vironment (TME) enriched in tumour-associated macrophages
(TAMs) and myeloid-derived suppressor cells (MDSCs).

Standard treatment of GBM involves maximal surgical resec-
tion followed by chemoradiotherapy, such as the Stupp regi-
men, which combines temozolomide (TMZ) with radiotherapy.
During the concurrent phase, TMZ is administered at 75mg/
m?/day for 42days, followed by a 4-week interval before tran-
sitioning to the adjuvant phase. In the adjuvant phase, TMZ
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is given orally at 150-200mg/m?/day for 5days per 28-day
cycle, repeated for six cycles [4]. However, TMZ resistance is a
major limitation, affecting approximately 50% of patients and
significantly compromising therapeutic efficacy. Despite this
multimodal approach, patient prognosis remains dismal, with
a median survival of 12-15months, a high recurrence rate (ap-
proximately 75% of patients relapse within 6.9 months), and only
25% surviving beyond 2years [2].

GBM resistance to TMZ arises from a multilayered molecular
regulatory network. In intrinsic GBM cells, recurrent stud-
ies have demonstrated that endoplasmic reticulum stress ac-
tivates the PKR-like endoplasmic reticulum kinase (PERK)/
PERK-eukaryotic translation initiation factor 2a (eIF2a)/ac-
tivating transcription factor 4 (ATF4) signalling axis and in-
creases sphingosine kinase 1 (SPHK1) expression to promote
epithelial-mesenchymal transition and invasive phenotypes,
resulting in TMZ resistance [5]. Inositol 1,4,5-triphosphate
(IP3) kinase B (ITPKB) undergoes reduce TRIM25-mediated
ubiquitination to suppress reactive oxygen species (ROS) gen-
eration and enhance drug resistance [6]. Additionally, eukary-
otic translation initiation factor 4A3 (EIF4A3)-driven circular
RNA circASAPI1 exacerbates TMZ resistance by sponging miR-
502-5p [7], thereby relieving its suppression of neuroblastoma
Ras (NRAS), and silencing circASAP1 significantly enhances
therapeutic efficacy in vivo. Another intrinsic mechanism
relates to TMZ pharmacodynamics; TMZ has been shown to
increase the protein expression of the drug efflux transporter
ABCC1 and ABCAL1 [8, 9]. Furthermore, polymerase I and
transcript release factor (PTRF)/Cavin-1 accelerates TMZ
clearance by promoting extracellular vesicle (EV)-mediated
drug efflux [10].

Glioblastoma stem cells (GSCs), characterised by enhanced
DNA damage tolerance, efficient activation of DNA repair
pathways and a predominantly quiescent state, also repre-
sent a major driver of TMZ resistance and tumour relapse.
GSCs exhibit metabolic and epigenetic plasticity, maintain
high expression of stemness-associated transcription factors
(e.g., SOX2, OCT4), and resist apoptosis through upregula-
tion of anti-apoptotic signalling [9]. These properties enable
GSCs to survive chemoradiation, repopulate the tumour mass,
and contribute to the inevitable recurrence observed in GBM
patients.

Besides, increasing studies have illustrated that a highly
TME enriched with tumour-associated macrophages (TAMs),
myeloid-derived suppressor cells (MDSCs), regulatory T cells
(Tregs) and exhausted T cells is another vital factor in GBM
resistance. For instance, immunosuppressive molecules in the
TME prevent the activated T cells from crossing the blood-brain
barrier (BBB). Therefore, this review specifically highlights two
emerging and under-recognised themes: (i) the epigenetic-met-
abolic crosstalk that stabilises immunosuppressive transcrip-
tional programmes across TAMs, MDSCs and Treg populations,
and (ii) the spatial heterogeneity of immunosuppression shaped
by uneven metabolic stress, differential vascular permeability
and localised cytokine gradients within the tumour mass. These
concepts, taken together, provide a more coherent explanation
of how GBM maintains a highly resistant and self-reinforcing

immune ecosystem, offering a refined lens for understanding
therapeutic failure and guiding future treatment strategies.

2 | Immunosuppressive Mechanisms in the
Glioblastoma TME: Metabolism-Epigenetic-
Immune Network

The TME of GBM maintains an immunosuppressive state
through multidimensional mechanisms including the following
key aspects (Figure 1, Table 1).

2.1 | Molecular Subtype-Driven Immune
Heterogeneity in GBM

Glioblastoma subtypes exhibit profoundly different immune
landscapes, which have important implications for targeted im-
munotherapies. The seminal transcriptional classification by
Verhaak et al. defined GBM as proneural, classical and mesen-
chymal, each displaying unique patterns of immune infiltration
and cytokine signalling [3]. Subsequent work from Wang et al.
and Mao et al. further demonstrated that the mesenchymal sub-
type is enriched in inflammatory and myeloid signatures, in-
cluding high TAM/MDSC abundance and robust NF-xB-driven
immune suppression [18, 19]. In contrast, the proneural subtype
typically shows a more limited immune infiltrate and lower
baseline inflammation, while the classical subtype exhibits
intermediate immune activity dominated by EGFR-associated
pathways.

These subtype-specific immune ecosystems critically affect
therapeutic vulnerabilities. Mesenchymal tumours show the
most significant resistance to immune checkpoint blockade due
to myeloid suppression [20]. In contrast, proneural tumours may
be more amenable to T-cell-based strategies in combination with
microenvironmental modulation. Recognising and integrating
these differences are essential for designing rational, subtype-
tailored immunotherapies in GBM.

2.2 | Metabolic Reprogramming as
the Driving Layer

TAMs, MDSCs and Tregs reprogramme their energy metabo-
lism pathways within the TME—including glycolysis, lactate
accumulation, and fatty acid metabolism—to adapt to hypoxic
and nutrient-restricted conditions [21, 22]. For instance, accu-
mulated lactate promotes the M2 polarisation of TAMs, results
in enhanced secretion of IL-10 and TGF-f, and reinforces im-
munosuppressive phenotypes [11, 12]. MDSCs in IDH-mutant
GBM enhance glycolysis and produce excessive IL1{, thereby
reinforcing the inhibitory effects on M2-macrophages and
myeloid-derived suppressor cells [13]. Moreover, Kloosterman
et al. demonstrated that metabolically rewired TAMs, special-
ised as lipid-laden macrophages, directly transfered myelin-
derived lipids to tumour cells and promoted GBM progression
[23]. Specifically, Freitas-Cortez et al. revealed the fatty acid-
binding protein 7 (Fabp7) reprogrammes lipid metabolism of
CD8* T cells to promote immunotherapy resistance [16].
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FIGURE 1 | Immune activation and suppression within the GBM microenvironment. Glioma tumour cells orchestrate a dynamic balance be-
tween immune activation and suppression. Interactions between glioma cells and immune populations—including TAMs, MDSCs, exhausted CD8*
T cells, Tregs, DCs and natural killer (NK) cells—are bidirectional. On the activation side, dendritic cells (DCs) and neutrophils can promote anti-

tumour responses through antigen presentation and the formation of neutrophil extracellular traps (NETs), while NK cells contribute to immune-

mediated cytotoxicity. Conversely, glioma cells exploit multiple immunosuppressive mechanisms: TAMs undergo glycolytic reprogramming and

secrete IL-10/TGF-; MDSCs enhance PD-L1-mediated signalling; regulatory CD4* T cells suppress effector responses; CD8* T cells become ex-

hausted despite recognising tumour-specific antigens and B cells can both boost local immunity and facilitate immune evasion through tertiary

lymphoid structures (TLS).

2.3 | Epigenetic and Non-Coding RNA Regulation
as the Amplification Layer

Epigenetic dysregulation represents a central driver of GBM
evolution and the formation of an immunosuppressive niche.
Histone deacetylases (HDAC) are profoundly deregulated
across nearly all GBM subtypes, with multiple HDAC isoforms
overexpressed, contributing to chromatin condensation, the
repression of immune-stimulatory genes and the promotion
of TAM/MDSC-supportive cytokine programmes. Wu et al.
demonstrated that activation of the HDAC6/RBP/LINC00461
axis promoted GBM resistance [24]. Yang et al. further il-
lustrated that HDAC1/2/6 promoted self-renewal of malig-
nancy by regulating DNA repair transcription [25]. Similarly,
Hanisch et al. revealed that HDAC1/2/3 enhanced the expres-
sion of the E3 ubiquitin ligase RAD18 to promote the bypass of
0O6-methylguanine DNA lesions [26]. Moreover, HDAC7 dys-
regulation in the H3K27ac-SOX8/JUN-LGALS3-ITGB1 axis

facilitated the transformation of the mesenchymal phenotype
of GBM and the M2 polarisation of monocyte-driven macro-
phages [27].

Beyond HDAC activity, DNA methylation, chromatin remod-
elling complexes, histone methylation and non-coding RNAs
collectively orchestrate wide-ranging transcriptional repro-
gramming in glioma cells and infiltrating immune cells. These
epigenetic alterations support stemness, enhance metabolic
adaptability and promote immune evasion [28]. Dong et al.
demonstrated that transcriptional condensation enhanced the
activity of protein arginine methyltransferases (PRMT2) during
GBM progression [29]. CircNEIL3 is transferred via exosomes
to TAMs, where it stabilises IGF2BP3 protein and drives the ex-
pression of immunosuppressive genes [30]. Similarly, Yin et al.
demonstrated the tumour-suppressor-like activity of microglia
specialised by shifting cytosolic DNA sensing via the cGAS-
STING-dependent pathway [31].
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TABLE1 | Keyimmune cells in the glioblastoma microenvironment.

Immune cell type Main function

Immune mechanism

TAMs Promote immunosuppression and angiogenesis
MDSCs Inhibit immune
Tregs Suppress immune response and

maintain immune tolerance

Exhausted T cells

CD8* T lymphocytes Eliminate cancer cells through the recognition
and destruction of infected or malignant cells
Neutrophils Tumour-promoting or tumour-suppressing

roles depending on microenvironment signals

Reduce anti-tumour activity

Secrete IL-10 and TGF-f to inhibit immune
response; promote M2 polarisation to
enhance tumour growth [11, 12]

Release IL-1f to reinforce the inhibitory
effects on M2-macrophages and myeloid-
derived suppressor cells [13]

Release inhibitory cytokines (IL-10, TGF-
18); directly suppress effector T cells; recruit
other immunosuppressive cells [14]

Express inhibitory receptors (PD-1,
CTLA-4); impaire cytokine production
and cytotoxicity functions [15]

Recognise tumour-specific antigens presented
on MHC class I molecules, leading to the
activation and cytotoxic response against
cancer cells, though their function can be

inhibited by immune checkpoints such as PD-1

within the tumour microenvironment [16]

Release exosomes containing enzymes
and cytokines; induce oxidative stress
to suppress T-cell function [17]

Abbreviations: MDSCs, myeloid-derived suppressor cells; TAMs, tumour-associated macrophages; Tregs, regulatory T cells.

2.4 | Dynamic Crosstalk Among
Immunosuppressive Cell Population

Except for TAMs, MDSCs and Tregs, other immune cell pop-
ulations, including Dendritic cells (DCs), natural killer (NK)
cells, and B cells, contribute to the immunological landscape
of GBM.

DCs, specialised by antigens, exert the initiation and regu-
latory effects in GBM. DCs are commonly grouped into con-
ventional DCs (cDCs) and plasmacytoid DCs (pDCs). ¢cDCs
generally prime neoantigen-specific CD8* T-cell responses
against GBM [32], whereas pDCs often remain in an imma-
ture or tolerogenic state due to tumour-derived IL-10, CCL21,
and metabolic suppression, resulting in suppressed CD8* T-
cell priming ability [33]. NK cells can mediate cytotoxicity,
which are frequently functionally inhibited in the GBM mi-
croenvironment through metabolic suppression, cytokine sig-
nalling (e.g., IL-10, TGF-f), and downregulation of activating
ligands. However, Mathewson et al. demonstrated that NK
cells exhibited context-dependent functions in GBM. Their
study revealed that tumour-infiltrating T cells induced CD161
expression on NK cells, thereby suppressing T-cell-mediated
killing of GBM cells [34].

Although neutrophil extracellular traps (NETs) are tradition-
ally associated with antimicrobial immune activation and pro-
mote DCs recruitment or antigen exposure in inflammatory
settings, their role in GBM is largely immunosuppressive. Jain

et al. revealed that NETSs released by intertumoral neutrophils
enhance angiogenesis, remodeled the extracellular matrix and
suppressed T-cell cytotoxicity through ROS production and pro-
tease release [17].

B cells exhibit double-edged-sword functions in GBM. Within
tertiary lymphoid structures (TLS), B cells can participate in
antigen presentation, antibody generation and local priming of
T cells, thereby contributing to anti-tumour immune response
(ATIR) surveillance [35, 36]. However, evidence suggests that
TGF-f secreted from various cells in the TME mediates B-cell
suppression of CD8* T-cell responses [37]. Thus, B cells in
GBM should be understood as a heterogeneous compartment
with both immunostimulatory and immunosuppressive ef-
fects, depending on local cytokine landscapes, metabolic re-
striction, and tumour-driven phenotypic reprogramming.

Within this metabolism-epigenetic framework, TAMs, MDSCs,
and Tregs engage in continuous molecular and cellular interac-
tions that maintain a highly suppressive milieu: metabolic sig-
nals serve not only as sources of inhibitory factors but also as
signalling molecules that regulate immune cell fate, establishing
a metabolism-driven foundation for immunosuppression. IL-
10, TGF-f, and ROS can induce the overexpression of immune
checkpoint molecules including PD-1 and CTLA-4 on T cells,
leading to T-cell exhaustion and significantly weakening ATIR
[14, 38-40]. Additionally, IL-8, secreted by tumour cells, MDSCs,
and CD8* T cells, recruits MDSCs via the CXCR1/CXCR2 axis to
induce angiogenesis and upregulate PD-1 and TIM-3 [41].

Immunology, 2025

85U8017 SUOWWIOD @AIea.D 3|qeoljdde auy Aq peusenoh aJe sajone O ‘88N 4O SajnJ 10} Areiq18UIUQ /]I UO (SUOIPUOD-pUe-SWB}W0D" A3 1M Afe.q 1 BUI|UO//SANY) SUORIPUOD PUe SWiie | 8L} 88S *[9202/T0/E0] U0 ARiqITauljuo A8|IM BifelieueyooD Ag 2800, WWI/TTTT OT/I0p/W0D 8| 1M Aleiq | pul|uo//Sdny Wwoi pepeojumod ‘0 ‘L952S9ET



2.5 | Other Mechanisms

Stem cell-related mechanisms represent a critical layer of GBM
resistance, in which glioblastoma stem cells (GSCs) undergo
profound transcriptional and epigenetic reprogramming in
response to inflammatory cues, hypoxia, therapeutic stress,
and immune cells. This reprogrammed state—characterised
by enhanced DNA repair, metabolic plasticity, and upregula-
tion of immunomodulatory mediators—enables GSCs to resist
cytotoxicity and shape an immune-tolerant niche [28, 42, 43].
Intrinsically, pathways including YBX1-SOX2, PRMT6-RCCI1,
and IGFBP5-ROR1-CREB induce GSCs proliferation and in-
vasion [44-46]; VASN, CLOCK-BMALI, and PHGDH promote
self-renewal [47-49], while KAT5 and synapsin I1T accelerate the
neural-like transdifferentiation of GSCs [50, 51]. Extrinsically,
GSCs are well investigated for their interaction with TAMs, mi-
croglia, T cells, NK cells, and endothelial cells. On one hand,
LGALS3 from GSCs and monocyte-derived macrophages me-
diated crosstalk among them to stimulate a mesenchymal-like
state of GBM [27]. CXCLS8, TNFAIP6, LOXL2, and TGF-f prefer-
entially secreted by mesenchymal GSCs bound to the receptors,
including CXCR2 and EGFR in TAMs to induce M2-like TAM
phenotype [52-55]. Except for TAM, overexpression of ICAM1
in GSCs stimulated PD-L1/PD-1 interaction to induce cytotoxic
CD8* T-cell population [56]. Secretion of GAL3 by GSCs bound
to LAG3 to drive T-cell exhaustion [57]. Furthermore, Shaim
et al. demonstrated that GSCs suppressed NK cell immune
evasion through the aV integrin/TGF-$ axis [58]. Chen et al.
revealed that GSCs secreted histamine to activate endothelial
cells [59]. While, Wang et al. and Pang et al. illustrated that
POSTN and TFPI2 secreted by GSCs recruited microglia via
CD70 or CD51 to induce an immunosuppressive tumour mi-
croenvironment [60, 61]. On the other hand, TGF-£, secreted
by TAMs, promote the maintenance of GSCs via the aV@35-Src-
Stat3 axis [62]. TAM-secreted GPNMB interacted with CD44 on
GSCs to promote their glycolytic and self-renewal abilities [63].
The literature supports the bidirectional interaction between
GSCs and TME in GBM resistance (Figure 2).

Beyond GSCs, other stem cell populations also contribute to
the IME. Haematopoietic stem cells (HSCs) can infiltrate the
tumour bed and differentiate into immunoregulatory my-
eloid subsets, reinforcing TAM and MDSC dominance [64].
Mesenchymal stem/stromal cells (MSCs) recruited from pe-
ripheral tissues or the bone marrow induce PD-L1 upregula-
tion in glioma cells and neovascularization to support tumour
progression [65]. Together, these stem cell-driven processes
amplify immune evasion by promoting a long-lived, therapy-
resistant cellular reservoir and sustaining an immunosup-
pressive TME that limits effective antitumor immunity.

Recent transcriptomic analyses in immunocompetent mouse
models have further expanded the understanding of immunosup-
pressive programmes active in GBM. Garcia-Vicente et al. identi-
fied robust upregulation of myeloid-associated suppressive genes
(e.g., Argl, II-10, and Tgfbl), attenuation of interferon-response,
enhanced expression of T-cell exhaustion markers (Pdcd1, Lag3,
and Havcr2), and cytokine/chemokine circuits (CCL2, CXCL1,
and IL-8) that amplify neutrophil recruitment and myeloid dom-
inance [66]. Other studies have demonstrated that GBM cells can
evade immune recognition by downregulating MHC molecule

expression, thereby reducing antigen presentation and limiting
T-cell activation [67]. Moreover, the gut microbiota may influence
the immune status of TME through systemic immune modula-
tion, though its role in GBM remains to be further explored [68].
Exosomes and extracellular vesicles may also contribute to im-
munosuppression by transferring immunosuppressive signalling
molecules, such as PD-L1, to immune cells, thereby enhancing
immune evasion within the TME [69]. Integrating this preclini-
cal evidence with human GBM data helps refine target selection
for immunotherapy development.

3 | Clinical Challenges in Treating Glioblastoma

Current GBM treatment strategies involve maximal safe surgi-
cal resection, followed by radiotherapy and TMZ chemotherapy.
Despite aggressive treatment, the median survival remains only
12-15months due to high recurrence rates and treatment resis-
tance [70].

Immunotherapy approaches, including PD-1/PD-L1 inhibitors
and CAR-T cell therapy, have shown limited efficacy due to
multiple factors. On one hand, the BBB impedes immune cell
infiltration, further hampering immunotherapy efforts (71, 72].
On the other hand, regulatory immune populations—partic-
ularly TAMs, MDSCs, and Tregs—collectively dominate the
GBM microenvironment and suppress cytotoxic T-cell activity
through cytokine-mediated inhibition, metabolic competition,
and checkpoint ligand expression [73].

To overwhelm BBB, several approaches, including focused ul-
trasound combined with microbubbles, osmotic opening with
mannitol, radiotherapy- or chemotherapy-induced endothelial
modulation and vascular-targeted agents, are being explored to
transiently increase BBB permeability and thereby enhance im-
mune cell trafficking [74, 75]. These strategies can facilitate the
entry of cytotoxic lymphocytes, monoclonal antibodies, and cel-
lular therapies into the tumour bed. However, BBB disruption is a
double-edged sword: excessive or prolonged opening may lead to
vasogenic edema, intracranial haemorrhage, neurocognitive tox-
icity and treatment-related pseudoprogression, all of which com-
plicate clinical management and response assessment. Therefore,
emerging concepts emphasise controlled and reversible BBB mod-
ulation, coupled with real-time imaging, careful dosing schedules
and the use of ‘vascular normalisation’ rather than indiscriminate
barrier breakdown. Such balanced strategies aim to widen the
therapeutic window—allowing sufficient immune and drug infil-
tration to achieve anti-tumour effects, while minimising neurolog-
ical complications and preserving critical neurovascular function.

Furthermore, recent clinical trials targeting TAMs or immune
checkpoints in GBM have shown promising results. The phase
II/IIT NRG-BNO0OO7 trial compared radiotherapy with TMZ
versus radiotherapy with immunotherapy in newly diagnosed
MGMT-unmethylated GBM, aiming to determine whether dual
immune checkpoint blockade could improve outcomes com-
pared with standard therapy. Notably, NCT04396860 is evalu-
ating whether the CSF-1R inhibitor could reprogramme TAMs,
while NCT03493932 is investigating the combinational effect
of PD-1 and LAG-3 blockade in recurrent GBM. These trials
highlight a growing clinical shift towards modulating myeloid
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FIGURE 2 | Immune activation and suppression on glioblastoma stem cells (GSCs). GSCs undergo profound transcriptional and epigenetic re-
programming in response to inflammatory cues, hypoxia, therapeutic stress, and immune cells to resist cytotoxicity and shape an immune-tolerant

niche.

and checkpoint pathways to overcome immune resistance. In
addition, biomarker-guided treatment is becoming increasingly
important in GBM. Established markers, such as MGMT pro-
moter methylation, IDH mutation status, and emerging TME-
based immune signatures, are applied to stratify patients and
predict responsiveness to immunotherapy or myeloid-targeting
approaches. Such stratification may enhance the translational
impact of future GBM immunotherapies.

4 | Future Therapeutic Strategies

Future therapeutic strategies for GBM focus on overcoming the
tumour's highly IME to improve treatment efficacy. Targeting key

mechanisms such as immune checkpoint pathways, metabolic
and epigenetic modulation, and cytokine signalling is a prom-
ising strategy to reprogramme the tumour microenvironment,
enhance immune cell activation, and restore ATIR (Figure 3,
Table 2) [82].

4.1 | Checkpoint Inhibitors for PD-1 and CTLA-4
on Exhausted T Cells

Checkpoint inhibitors targeting PD-1 and CTLA-4 on exhausted
T cells offer a valuable tactic to reactivate immune responses
in the GBM microenvironment. Anti-PD-1 antibodies, such as
pembrolizumab and nivolumab, can restore T-cell activity and
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enhance ATIR. Additionally, the combination of CTLA-4 (e.g.,
ipilimumab) and PD-1 inhibitors boosts immune activation by
countering multiple immune suppression mechanisms within
the TME [83, 84]. This dual-targeted strategy is possible for
overcoming the immunosuppressive barriers in GBM and re-
energising exhausted T cells.

4.2 | Targeting Glycolysis and Epigenetic
Regulation in TAMs and MDSCs

In peripheral blood, granulocytic MDSCs directly suppress T-
cell proliferation, whereas tumour-infiltrating MDSCs upreg-
ulate PD-L1, thereby inducing PD-1 expression on T cells and
indirectly leading to T-cell exhaustion [85]. Additionally, gly-
colysis is a critical pathway supporting the immunosuppressive
functions of TAMs and MDSCs. Therefore, targeting glycolysis
in TAMs and MDSCs offers a potential approach to mitigate
immunosuppression in the GBM microenvironment. As it is
mentioned in Zarychta's study, applying glycolysis inhibitors
like 2-deoxy-D-glucose (2-DG) to GBM therapy significantly
decreased the ATP production and GO0/G1 cell cycle arrest,
thereby creating a more favourable environment for effective
immune responses against tumour [86]. Similarly, histone
deacetylase inhibitors (HDACI), including vorinostat and ro-
midepsin, reduced ATP production and relieved immunosup-
pressive pressure [87].

4.3 | Targeting DNA Methylation in TAMs

Direct targeting of DNA methylation in TAMs is another strat-
egy to reduce their immunosuppressive activities in the TME
of GBM [88]. DNA methyltransferase inhibitors (DNMTi),
such as decitabine, have been reported to inhibit immune
responses. This reduction in TAM-mediated inhibition helps
to restore T-cell activity and promote immune surveillance,
creating a more favourable environment for ATIR within the
TME [89].

4.4 | Targeting Cytokine-Receptor Pathway

IL-10 and TGF-f are the two key immunosuppressive cytokines
that help counteract the immune suppression commonly ob-
served in the GBM microenvironment [14, 40]. Monoclonal anti-
bodies, such as anti-IL-10 and anti-TGF-f antibodies, neutralise
these cytokines to block their suppressive effects on T-cell ac-
tivity and promote a more favourable immune response against
the tumour. Small molecule inhibitors, such as SB431542, spe-
cifically inhibit TGF-# signalling by blocking TGF-f receptor
activity in immune cells. This could reverse immune suppres-
sion and enhance ATIR within the tumour microenvironment
[90]. Additionally, IL-8, secreted by tumour cells, MDSCs and
CD8™* T cells, recruits MDSCs via the CXCR1/CXCR2 axis, in-
duces angiogenesis, and upregulates PD-1 and TIM-3. Liu et al.
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TABLE 2 | Potential therapeutic targets and mechanisms for immunosuppression in GBM.

Target cell/ Targeting
pathway mechanism Potential therapy Clinical trials Status
TAMs Inhibit survival or CSF-1R inhibitors; BLZ945 (NCT02829723) Terminated
reprogramme to CD47 blockade Cabiralizumab (NCT02526017) (2024-01)
M1 phenotype Magrolimab (NCT05169944) Completed
(2022-03)
Completed
(2025-07)
MDSCs Block recruitment CXCR2 inhibitors; ADI-PEG (NCT04587830) Active
to the tumour site arginine depletion BCT-100 (NCT03455140) [76] (2025-08)
Completed
(2022-09)
Tregs Block suppressive ALKS5 (TGF-f inhibitors); Galunisertib (NCT02423343) [77] Completed
cytokine signalling TGF- inhibitor + PD- Bintrafusp alfa (NCT02517398) [78]* (2021-09)
L1 antibody Completed
(2022-05)
Checkpoint Block immune TGF-g inhibitor + PD-L1 Bintrafusp alfa (NCT02517398) [78]* Completed
pathways checkpoint antibody; CTLA-4 inhibitors Nivolumab =+ ipilimumab + bevacizumab (2022-05)
(PD-L1/ interaction (NCT02017717) [79] Completed
PD-1) Tremelimumab + durvalumab (2024-06)
(NCT02794883) Completed
(2022-06)
CAR-T Enhance T-cell Combined with EGFRVIII CAR-T (NCT01454596) [80] Completed
infiltration and oncolytic viruses, IL-8R-CD70- CAR-T (NCT05353530) (2019-01)
persistence in GBM cytokine modulation Recruiting
EGFRVIII CAR-T cells (2025-10)
Combination with
TGF-g inhibitors
Metabolic Target the increased  Caloric restriction ketogenic Atorvastatin (NCT06327451) Recruiting
pathways dependency diet (KD-R), inhibition of Ketogenic diet (NCT05708352) (2024-03)
on glucose and glutaminase, cholesterol Telaglenastat (NCT03872427) Recruiting
glutamine, as well depletion, inhibition of (2025-06)
as the altered lipid fatty acid synthesis Active (2025-11)
metabolism observed
in GBM cells
Epigenetic DNMTi; HDACI; 5-Aza-CdR (DNMTi); Decitabine/vaccine (NCT02332889) Terminated
targets EZH2; BET-BRD; Vorinostat, Romidepsin Vorinostat (NCT00555399) (2016-07)
H3K27M (HDAC!); Tazemetostat Tazemetostat (NCT05023655) Terminated
(EZH2); JQ1, I-BET BMS-986158 or BMS-986378 (2024-08)
(BET-BRD) (NCT03936465) Recruiting
ONC201 (NCT05580562) (2025-07)
2024-10
Completed
2025-08
Recruiting
Oncolytic Infect and kill Engineered oncolytic PVSRIPO (NCT01491893) [81] 2023-09
viruses tumour cells, viruses VBI-1901 (NCT03382977) Completed
releasing antigens to Combination with 2025-03
stimulate immunity checkpoint inhibitors Recruiting

Improve virus
efficacy in TME
through enhanced
immune activation

Abbreviations: BET-BRD: bromodomain and extra-terminal domain-bromodomain inhibitors; DNMTi, DNA methyltransferase inhibitors; EZH2, enhancer of zeste
homologue 2; HDACI, histone deacetylases inhibitors.
2Bintrafusp alfa is a bifunctional fusion protein that targets PD-L1 and TGF.
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revealed that neutralising IL-8 unlashed anti-PD-1-mediated
antitumor immunity [41].

4.5 | Combination Strategies

Combination strategies that simultaneously target multiple im-
munosuppressive mechanisms hold great potential to enhance
immune responses in the TME of GBM. Jiang et al. demonstrated
that combining checkpoint inhibitor (anti-CD47) with glycolysis
inhibitor (etomoxir) mitigated the suppressive metabolic effects
imposed by TAMs and MDSCs [91]. Similarly, combining PD-1/
CTLA-4 inhibitors helps to reduce the overall immunosuppres-
sive environment, enhancing T-cell activation [92]. Additionally,
CAR-T cell therapy combined with TGF-f inhibitors could im-
prove CAR-T cell persistence and function by blocking TGF-£'s
suppressive effects, thereby enhancing CAR-T efficacy in the
TME [93, 94]. These combination strategies leverage synergistic
effects to counteract GBM's immune resistance, creating a more
supportive setting for anti-tumour immunity. Besides, NX cells
engineered to express IL-21 or HER2 enhanced anti-tumour ef-
ficacy against GBM [95, 96]. What is important is that the com-
bination strategy needs to be well considered.

4.6 | Oncolytic Viral Therapy and Stimulation
of Tertiary Lymphoid Structure in GBM

Oncolytic viral therapy has emerged as a promising approach
for GBM by combining direct tumour cell lysis with secondary
activation of ATIR. Engineered viruses can selectively replicate
in glioma cells, induce immunogenic cell death and release tu-
mour antigens that are subsequently taken up by DCs and con-
vert an immunologically ‘cold’ tumour into a more inflamed
microenvironment. However, several challenges currently limit
the efficacy of oncolytic viruses in GBM, including restricted in-
tratumoral spread, the physical and functional barriers imposed
by the BBB, pre-existing or rapidly induced antiviral immunity
and safety concerns such as neurotoxicity and treatment-related
edema. To overcome these obstacles, multiple strategies are
under investigation: optimising delivery routes (e.g., intratu-
moral injection or convection-enhanced delivery), combining
oncolytic viruses with immune checkpoint blockade or myeloid-
targeting agents to counteract the immunosuppressive TME and
engineering viral backbones to express cytokines or costimula-
tory ligands that further enhance local T-cell and NK-cell ac-
tivity [97]. Moreover, tertiary lymphoid structures formed with
T-cell zones containing antigen-presenting dendritic cells and
B-cell zones with germinal centres showed immune-permissive
TME and improved overall survival [35].

5 | Conclusion

In summary, the immunosuppressive TME enriched with
TAMs, MDSCs, Tregs, exhausted T cells, and stromal elements
is particularly involved in GBM resistance. These TME show a
dynamic interplay in a multilayered metabolism-epigenetic-
immune network, which implicates the design of personalised,
multimodal immunotherapeutic strategies to suppress GBM via
reprogramming the immune microenvironment.
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