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Immunotherapies have thus far proved of limited efficacy against glioblastoma. Failures can be attributed to a host of
immunosuppressive mechanisms that are either directly employed by the tumor or are instead a convenient feature
of the intracranial environment. This review aims to categorize glioblastoma immune-evasive tendencies, provide
an update on our understanding of etiologies, and describe newer approaches to improving therapeutic responses.

Key Points:

e Glioblastoma employs multiple methods of immune-evasion and immunosuppression.

e Brain tumors proffer unique immunosuppressive mechanisms due to its central nervous

system location.

Glioblastoma is the most aggressive and most common ma-
lignant primary brain tumor in adults, with an average survival
of less than 21 months following diagnosis.” The 1-year sur-
vival rate is just 41.4% and 5-year survival is a dismal 5.4%.2*
More than 90% of glioblastomas recur following treatment,®
and median survival following recurrence is only 3-9 months.®
Glioblastoma accounts for 57% of all gliomas and 48% of
all primary malignant central nervous system (CNS) tumors.
Standard of care remains maximally safe resection along with
radiotherapy plus concomitant/adjuvant temozolomide.” This
treatment paradigm has remained largely unchanged in the
two decades since the publication of the Stupp protocol.”
While immunotherapies such as checkpoint blockade have
become a mainstay of treatment for a range of solid tumors,
successes have been limited in glioblastoma.®® Failures can be
attributed in large part to the profound immune dysfunction
elicited by these tumors, both at a local and systemic level.'0"
This review will systematically describe the various immu-
nosuppressive measures employed by glioblastoma (Figure
1). Mechanisms will be attributed and described within the
context of 4 domains: the tumor cell (tumor-intrinsic), tumor
microenvironment (TME), tumor location within the CNS
(CNS-imposed), or peripheral to the tumor/tumor extrinsic
(systemic). Intrinsic to the tumor, active mechanisms for im-
mune evasion are augmented by notable tumor heterogeneity,

which can be further exacerbated by the selective pressures
imposed by therapy.'>' Locally, within the TME, glioblast-
omas foster evasion of T cell recognition, dysfunctional lym-
phocyte activity, and a disrupted cytokine milieu.'823 Active
mechanisms for immune evasion are aided by notable tumor
heterogeneity, which can be further exacerbated by the selec-
tive pressures imposed by therapy.'>'7 Glioblastoma'’s intra-
cranial location presents unique challenges to immune access
and avails of unique interactions, such as those between glial
cells and neurons. Systemic alterations evoked by glioblas-
toma can include lymphopenia, lymphoid organ atrophy, se-
questration of T cells, systemicT cell dysfunction, and altered
hematopoiesis.'*?42> These systemic immune derangements
are perhaps particularly surprising given that glioblastoma re-
mains almost exclusively confined within the CNS. Ultimately,
however, this combination of local and systemic immunosup-
pression promotes glioblastoma immune escape and severely
limits the efficacy of immune-based treatment platforms. 82627

Tumor Intrinsic Factors

Glioblastoma can pass through the “cancer immunoediting”
cycle, where it undergoes elimination by immune cells,
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Overview of immunosuppressive mechanisms. At the tumor-intrinsic level, glioblastomas are markedly heterogeneous at even the

single cell level and exhibit changes to gene expression or metabolic profiles that permit them to evade or counter the immune response. Within
the tumor microenvironment, myeloid populations alter the tenor of the immune response, contributing to T cell exhaustion and an immunosup-
pressive milieu. The central nervous system (CNS) itself also provides safe harbor to tumors, creating challenges for antigen presentation and
immune entry and forcing immune interactions with CNS-specific cell populations (microglia, neurons) that can restrict inmune responsivity.
Systemically, glioblastoma, and other intracranial tumors elicit such changes as lymphopenia, lymphoid organ involution, altered hematopoiesis,
and T cell sequestration, despite being confined within the brain. Created in https://BioRender.com.

achieves equilibrium, and escapes an immune system at-
tack via self-and immune-editing.'®?8 Self-editing at the
tumor cell level can constitute a mode of tumor-intrinsic
immune evasion. Common historical examples in the
case of glioblastoma can include the upregulation of pro-
grammed cell death ligand 1 (PD-L1),2>3" downregulation
of major histocompatibility complex (MHC) molecules,3?-33
and various metabolic and epigenetic alterations34-36
(Figure 2).

A well-recognized and tumor cell-intrinsic immunosup-
pressive strategy is the upregulation of PD-L1, which sub-
sequently binds to the immune checkpoint PD-1 onT cells,
limiting their function.3’ Therapies targeting the PD-1/PD-L1
axis, that is immune checkpoint blockade, represent some
of the most successful immunotherapeutic strategies in
solid tumors to date.® While anti-PD1 has failed to date in
clinical trials in glioblastoma,® some more recent studies
suggest that applications in the neoadjuvant setting may
still bear fruit.8 Cloughesy et al. for instance, observed im-
proved immune parameters and a significant extension in
overall survival (417 vs 228.6 days, HR 0.39, P=.04) when
pembrolizumab was administered to patients with recur-
rent glioblastoma in the neoadjuvant, rather than adjuvant,
setting.®

Interestingly, treatments incorporating anti-PD-1 have
enjoyed tremendous success against brain metastatic mel-
anoma,®® suggesting that the CNS location is not a hin-
drance per se: it remains unclear whether the antibodies
require brain access or may simply act systemically onT
cells. Failures against glioblastoma then appear to result
from features unique to these tumors. These can include

an especially immunosuppressive microenvironment, lim-
ited T cell infiltration, and overall T cell dysfunction (partic-
ularly severe exhaustion),*%-#° all factors we will discuss in
the following sections of the review. Additionally, T cells
may develop adaptive resistance to checkpoint blockade
therapy, upregulating alternative immune checkpoints,
such as immunoglobulin mucin-3 (TIM-3).46 TIM-3 serves
a similar function to PD-1 in restricting T cell activity and
may even induceT cell death following binding of exposed
phosphatidyl serine on the tumor cell surface. As a re-
sult, anti-TIM-3 has been found to augment PD-1 blockade
therapy to increase survival in patients with solid tumors,
combating this adaptive resistance mechanism.*¢ A clinical
trial of anti-TIM-3 in combination with anti-PD-1 and stere-
otactic radiosurgery for recurrent glioblastoma is currently
underway (NCT03961971).

MHC downregulation on tumor cells has historically
been viewed as a cell-intrinsic mechanism of immune es-
cape with varying relevance to glioma.®?3347 The loss of
MHC and accompanying antigen presentation theoreti-
cally hides tumor cells from T cells and permits their un-
checked outgrowth. Mutations leading to low or absent
expression of B2-microglobulin (B2m), a crucial compo-
nent to the MHC structure, have in particular been identi-
fied as harbingers of tumor immune-evasion.323348 Recent
studies, in contrast, have also shown low 2m expression
to actually be associated with favorable prognosis in gas-
tric cancer and glioblastoma.*®%® While elimination of
tumor cells by CD8 +T-cells is thought to be hindered by
MHC downregulation, there remain alternative mechan-
isms by which the immune system can attack tumor cells
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Figure 2. Tumor-intrinsic mechanisms of glioblastoma immune-evasion and suppression. Tumor cell-intrinsic mechanisms include antigen
modifications, MHC downregulation, and antigenic and transcriptional heterogeneity that allow tumor cells to evade the immune system.
Checkpoint upregulation and DNA methylation add further layers of suppression. Therapeutic approaches aim to modify gene expression or me-
tabolism, targetimmune checkpoints, or sidestep heterogeneity. Created in https://BioRender.com.

that do not rely onT cells.5" For instance, the loss of MHC
class | can activate NK-mediated innate immunity and
promote tumor cell expression of natural killer groups 2
member D (NKG2D) ligands (NKG2DL), which are typically
upregulated following DNA damage and cellular.’? The
presence of such ligands can mark cells for destruction by
NK cells in antigen-independent fashion.

NKG2DL may also seemingly mark tumors cells for
destruction by CD8 +T cells in both MHC and antigen-
independent fashion. In a true paradigm shift, it was re-
cently revealed that MHC-I-negative glioma and melanoma
cells remain susceptible to CD8+T cell killing through
the NKG2D/NKG2DL axis.?® Importantly, MHC-I-negative
tumor cell killing by CD8 +T cells was antigen-agnostic,
though dependent on prior antigen-specific T cell receptor
activation by antigen presenting cells (APCs) or even local
MHC-I-positive tumor cells. These findings challenge the
notion that loss of tumor MHC-I is synonymous with im-
mune evasion.

The NKG2D/NKG2DL axis retains relevance here for
other reasons as well. Soluble NKG2DL (ie, MICA or MICB)

may be released by tumor cells and prove to be immu-
nosuppressive in this context, competing for NKG2D and
limiting the detection of tumor cells by NKG2D + immune
cells.545% Additionally, MICA and MICB may be transferred
from the tumor cell surface to inhibit immune cell tumor-
binding and activity.3*3¢ Thus, therapies aimed at binding
or removing soluble NKG2DL (such as soluble NKG2D), or
at bringing NKG2D +T cells into better contact with tumor,
may improve antitumor T cell function and/or counter
tumor-imposed immunosuppressive mechanisms.

Despite its relatively high cellular and antigenic hetero-
geneity, glioblastoma possesses a low tumor mutational
burden of ~1.5 mutations/megabase’ with few coding mu-
tations. As a result, there are relatively few neoantigens
proffered for generating targeted adaptive immune re-
sponses. Likewise, those neoantigens present tend not to
be homogenously expressed. Targeted therapies may suc-
cessfully eliminate cells expressing the chosen target but
be thwarted by outgrowth of antigen-negative variants. A
classic example of this is found amidst therapies targeting
the tumor-specific variant of the epidermal growth factor
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receptor (EGFRvVIII) on glioblastoma. EGFRUVIII is expressed
on 30% of glioblastomas, and on 37%-86% of the cells
when present.® EGFRvlll-targeted therapies, such as
EGFRvIII CAR-T cells, have exhibited limited efficacy, and
even successful targeting of EGFRVIII + cells has seen an-
tigen negative variants continue to grow.20:57-59

Further confounding therapy, treatments can also often
increase intratumoral heterogeneity, as treatment-induced
selective pressures can lead to hypermutation and the out-
growth of target-loss variants in the case of targeted ther-
apies.’®"7 This is seen following alkylating chemotherapy,
such as with temozolomide, where treatment induces mu-
tations and genomic changes leading to further chemo-
resistance and immune evasion.'®"780Tumor cells may also
self-edit in response to targeted therapies, downregulating
the expression of immunogenic antigens and fostering
subsequent immune escape.’

Altering the metabolome is another tumor cell-intrinsic
means for escaping immune-based platforms. In addition
to perhaps providing tumors cells themselves a survival
advantage, such alterations may serve to create a hostile
environment for immune cells, fostering, that is, hypoxia
and nutrient depletion that can lead to immune dysfunc-
tion. Metabolic alterations specific to glioblastoma include
those in oxidative phosphorylation (OXPHOS), the pen-
tose phosphate pathway (PPP), fatty acid biosynthesis, and
more.®! Fatty acid metabolism can promote tumor growth,
and current work aims to target fatty acid oxidation with
drugs such as Acyl-CoA binding proteins (ACBP, DBI) to
hinder glioma growth.6263The OXPHOS and PPP pathways
play critical roles in tumor development through their in-
fluence on glycolysis, with OXPHOS inducing glioblas-
toma differentiation.®* Glioma cells also frequently express
indoleamine 2,3 dioxygenase, an enzyme that metabolizes
the amino acid tryptophan, a process known to play roles
in both enhancing tumorigenicity and recruiting immuno-
suppressiveTregs.5®

A variety of epigenetic modifications, such as DNA meth-
ylation, can also help tumors evade the immune system
by altering the expression of genes related to self-renewal
and cell death.®® Other epigenetic changes in subsets of
glioblastoma can include mutations in complexes such as
SWI/SNF-related matrix-associated actin-dependent regu-
lator of chromatin subfamily A-like protein 1 (SMARCAL1),
normally involved in regulating chromatin structure and
transcription. Such mutations can drive changes in chemo-
kine expression and inflammatory cell recruitment to influ-
ence treatment resistance.®’-70 Ultimately, by modulating
the expression of inflammasome components, tumors are
able to manipulate the immune milieu and promote their
survival.

In summary, there are several tumor-intrinsic features
that may permit glioblastoma IDO IDO immune-evasion,
including PDL1 upregulation, MHC downregulation,
intratumoral heterogeneity, metabolic alterations, and ep-
igenetic modifications (Figure 2). Such tumor cell-intrinsic
changes are now the focus of a number of therapeutic plat-
forms. For instance, metabolism-targeting agents include
those inhibiting the OXPHOS pathway, with the compound
gboxin aiming to inhibit the production of ATP in tumor
cells and thus prevent proliferation.”’ As described above,
immune checkpoint blockade targets receptors or ligands

that limit CD8 +T-cell activation, with canonical targets to
date including PD-1/PD-L1727% and CTLA-4.7* Additional
targets have included TIM3,”® LAG-3,%77 and TIGIT,7378
amongst others.

The most straight-forward attempts to side-step tumor
heterogeneity simply employ multitarget strategies. For in-
stance, multipeptide or neoantigen vaccines are designed
to target multiple tumor-specific or tumor-associated
antigens and may be customized to a patient’s own tumor
antigen expression profiles.”®8 Tandem CARs targeting
both IL-13Ra2 and/or EGFRVIII have likewise been devel-
oped and tested in clinical trials.848 Concurrently, Boolean
logic-gated CAR-T cells are beginning to be developed.
These strategies equip CART cells with the capacity to re-
spond only when certain combinations of targets are or are
not expressed, in an effort to limit immune responses to
normal tissues expressing tumor-associated (ie, not tumor-
specific) antigens.8®

Tumor Microenvironment Factors

The TME of glioblastoma is generally considered to be
immunologically “cold” given a relative lack of T cell in-
filtration and fairly immunosuppressive milieu (Figure 3).
The latter contributes a substantial degree of local T cell
dysfunction within the TME that proves to be a significant
barrier to effective antitumor immune responses. Most
broadly, T cell dysfunction can be divided into the fol-
lowing 5 nonmutually exclusive categories: senescence,
tolerance, anergy, exhaustion, and ignorance.**

T cell senescence is typically characterized by the loss of
costimulatory markers and shortened telomeres resulting
from chronic proliferation and stimulation.8-8 Larger im-
mune senescence may be marked as well by thymic in-
volution, which can occur naturally with aging, but is also
found in the context of chronic inflammation and leads to
decreasedT cell output.®

Tolerance is evolutionarily designed to limit T cell re-
sponses to self-antigens and is frequently therefore
adaptive. It can either be central (ie, thymic deletion of
autoreactive T cells) or peripheral (ie, Treg-imposed re-
strictions to autoreactiveT cell responses) and is generally
intended to completely curb cytotoxicity. In autoimmune
diseases, however, tolerance may fail to properly in-
duce T-cell unresponsiveness.?® In the context of cancer,
tolerizing mechanisms may instead be usurped by tu-
mors to restrict responses to shared or even neoantigens.
Glioblastoma cells, for instance, can overexpress FasL in
order to delete T-effector cells peripherally, as well as to re-
cruit regulatory T cells (Tregs) with the help of microglia,
tumor-associated macrophages (TAMS), dendritic cells,
and immunosuppressive cytokine secretion.?39-%Tregs, in
turn, serve as a means for propagating peripheral tolerance
via direct contact-dependent inhibition of T cell responses
or via the production of cytokines such as IL-10 and TGFB%-
100 and the inhibition of IL-2 production.':192 |n the context
of glioblastoma, Tregs become disproportionately repre-
sented among the CD4 compartment,?° thus contributing
to both local and systemic immunosuppression. Increased
CCL2 within the TME has been shown to recruit both Tregs
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Figure 3. Glioblastoma tumor microenvironment-induced immune-evasion and immune-suppression includes mechanisms for locally eliciting
various modes of T cell dysfunction (regulatory T cell-induced tolerance, exhaustion), much of which is aided by the activity of prominent popula-

tions of infiltrating myeloid cells. Created in https://BioRender.com.

and myeloid-derived suppressor cells.?3%4103 Therapeutic
strategies aimed at countering tolerance frequently focus
onTregs or their functional implications.

Anergy describes a fairly specific mode of T-cell inactiva-
tion after antigen binding and can be characterized by a lack
of delayed-type hypersensitivity reactions upon secondary
exposure to antigens. Clonal anergy follows insufficient
costimulation from APCs leading to suboptimal antigen ex-
posure, thus impairing T cell proliferation and preventing
effective antigen recognition, respectively.91.104-109

Ignorance occurs when functional T cells remain inap-
propriately antigen-naive, such as when targets are situ-
ated within immune “privileged” or “distinct” locations
(such as the CNS), or conversely, whenT cells become se-
questered away from APC and/or targets and are not able
to access their target antigen.'0""0-"4TheT cell sequestra-
tion in bone marrow observed with glioblastoma and other
intracranial tumors is a quintessential example.™

T cell exhaustion is a programmed hyporesponsive
(but not nonresponsive) state that occurs often following
chronic antigen exposure of appropriately primed T cells
(ie, nonautoreactive) within the TME. It is characterized by
the upregulation of various canonical and noncanonical im-
mune checkpoint receptors (ie, PD-1, TIM3) on the T cell sur-
face. Immune checkpoint receptor-ligand binding between T
cells and tumor cells or APC elicits subsequent alterations toT
cell metabolism and function and limits their capacity to clear
antigen-expressing targets.”®"6The result is the persistence
of the target in a “stalemate” with the immune system.

Of the above modes ofT cell dysfunction within theTME,
exhaustion has become the most prominently studied of

late, likely due to the frequent therapeutic focus on im-
mune checkpoints. Likewise, T cell exhaustion is espe-
cially severe in glioblastoma.” ExhaustedT cells are now
divided into 2 subgroups: progenitor exhausted T cells
(Tex_prog) and terminally exhausted T cells (Tex_term).
Tex_prog (PD-1*SLAMF6*TIM3") can proliferate but have
less cytotoxic potential, and Tex_term (PD-1"SLAMF6"
TIM3*) are cytotoxic but nonproliferative, with higher
expression of inhibitory receptors.'” The master tran-
scription factor regulator, thymocyte selection-associated
high mobility group box factor (TOX), is expressed within
exhausted T-cells, with levels increasing as exhaustion
progresses.”” TOX promotes chromatin remodeling
at the promoters of genes driving T-cell exhaustion.”®
However, alone, it is insufficient to induce exhaustion and
requires other functional contributors, such as PD-1 and
SLAMF6.M°

Recent studies have suggested that the classical def-
initions of exhaustion may be less relevant within glio-
blastoma. One such study, for instance, revealed unique
transcriptional profiles among glioma-infiltrating lympho-
cytes, finding that clonally expandedT cells within the TME
expressed lower levels of canonical exhaustion markers
and instead terminally differentiated into a GZMK* effector
population with less cytotoxic capabilities.’?® Another
study has highlighted a novel role for the receptor TNFR2
in marking the progression from Tex_prog to Tex_term
within the glioblastomaTME, with blockade of the receptor
prolonging survival in murine models of glioma.’?' Both
studies advance novel phenotypes that may redefine the
face of T cell dysfunction in the intracranial compartment.
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While T cells are an expected focus of discussions sur-
rounding immune dysfunction within the TME, more prev-
alent contributors within the glioblastoma TME are the
various myeloid cell populations present. Tumor-associated
macrophages and other myeloid cell populations play
prominent roles in creating an immunosuppressive and/or
pro-tumor TME. Tumor-associated macrophages found in
tumors can be either microglia- or monocyte-derived and
are self-renewing. Microglia-derived TAMs may be more
prevalent in newly diagnosed tumors, whereas monocyte-
derived TAMs may predominate amidst recurrence.'??
Altogether, they typically make up more than half of the
cells within the glioblastoma TME, and they contribute
significantly to immunosuppression via the secretion of
immune-modulating cytokines,'?3-'%5 such as transforming
growth factor beta (TGFB), I-10, IL-6, IL-1b, and others.'?¢
Likewise, numerous recent studies, including by our own
group, suggest myeloid populations rather than tumor
cells as the direct source of T cell exhaustion within the
TME.42120127128  Altogether, these studies implicate an-
tigen presentation by CD163* or HMOX1* myeloid cells
as an initial event bringing them into contact with T cells,
with secondary interactions involving, that is, IL-10 or SPP1
furthering the exhausted phenotype.

Additional myeloid-derived populations of relevance
within the glioblastoma TME include infiltrating tumor-
associated neutrophils (TANs). Neutrophils may play
multiple roles that both support tumor growth directly
while simultaneously limiting immune responsivity. For
instance, TANs may release osteopontin, which stimu-
lates the maintenance of stem-like glioblastoma cells.'?°
These, in turn, can inhibit T cytotoxicity and promote pro-
liferation in glioma stem cells through the activation of
3-phosphoinositide-dependent protein kinase 1.130-133
Conversely, others have more recently identified a novel
population of skull bone marrow-derived TANs that appear
to possess APC-like features and can activateT cell cytotox-
icity through antigen presentation on MHC I11.'¥* Thus, our
newer understanding of neutrophils suggests increasing
complexity surrounding their roles within the TME.

Current therapies aimed at modifying the TME most
frequently address either T cell exhaustion or myeloid-
induced immunosuppression (Figure 3). Regarding the
former, approaches such as immune checkpoint blockade
(discussed above) aim to target T cell exhaustion directly,
while other therapies, such as CAR-T-cells, are increasingly
being built with an eye toward conferring resistance to ex-
haustive mechanisms within theTME. Exhaustion-resistant
CAR-T cells can be developed by genetically editing CAR-T
cells, for example, via overexpression of specific genes.
One such gene is BATF3, which has been shown to be as-
sociated with memory T cell features and improved cy-
totoxicity.’® Other strategies include “armoring” CARs
with cytokine support. Cotreatment with or coproduction
of IL-15, for instance, can promote self-renewal of pro-
genitor exhausted CAR-T cells, thus replenishing the cy-
totoxic T-cell compartment.'®® Other cytokine supports,
such as I-2 and IL-33,"¥7 have been shown to improve T
cell polyfunctionality. Epigenetically focused therapies
for exhaustion can target hypermethylation with DNA
methyltransferase inhibitors. DNA methyltransferase in-
hibitors can be used to upregulate immune signaling,

including a Type 1 interferon response.’® Examples in-
clude the enhancer of zeste 2 polycomb repressive com-
plex 2 subunit'® inhibitors, as well as hyperacetylation
with histone deacetylase'¥® and bromo- and extra-terminal
domain inhibitors. 139140

Therapies targeting myeloid cells to date have most typ-
ically aimed at impacting macrophage polarization. Such
therapies include colony stimulating factor 1 receptor
(CSF1R) blockade, which has been shown to deplete mi-
croglia and monocyte-derived TAMs'?2 and to alter mac-
rophage polarization toward more pro-inflammatory
phenotypes.’ Some groups have employed anti-CSF1R
preclinically along with checkpoint blockade to elicit
modest success against murine glioma.? Additional
strategies for repolarization of TAMs have utilized CD40
agonists to improve dendritic cell T cell priming and TAM
activation.'?6:143.144 | jkewise, inhibition of signal trans-
ducers and activation of transcription 3 (STAT3) within the
TME may play a variety of antitumor roles, including re-
stricting the immunosuppressive capabilities of infiltrating
myeloid cells.'*>8 A Phase | trial of STAT3 inhibition in
patients with glioblastoma was recently completed'®
(NCT02977780).

Looking to the future, the recent studies highlighted
above delineating the importance of myeloid popula-
tions in driving T cell exhaustion may support newer
strategies to block myeloid—T cell interactions within the
TME.42.120.127128 | jkewise, as newer roles for neutrophils
are uncovered, novel approaches for impacting TAN re-
cruitment or cytotoxicity may be justified. For instance,
the discovery of a pro-inflammatory dendritic-like neutro-
phil population in the skull marrow insinuated a role for
the CXCR4 antagonist AMD3100 for promoting their egress
and recruitment.'3

CNS Factors

Glioblastoma is unique among solid malignancies inso-
much as it typically remains confined to the intracranial
compartment. The CNS provides its own set of distinct
challenges from an immunotherapy perspective (Figure
4). Historically, the CNS had been viewed as immune priv-
ileged: Harkening back to the 1940s, Peter Medawar dem-
onstrated the absence of rejection when allogeneic skin
grafts were implanted within the brain. What is less fre-
quently recalled, however, is that Medawar’s studies did
actually observe rejection if the same skin grafts were pre-
viously grafted outside of the brain, making the notion of
immune privilege somewhat less absolute.’ 190151

The blood-brain barrier (BBB) is also typically advanced
as a feature of an immune-restrictive CNS, limiting ac-
cess to both drugs and immune cells. However, the BBB
deteriorates in glioblastoma,'? and disruption likely al-
lows many therapies to enter the brain space in some ca-
pacity.'®3-1%6 Furthermore, an increasing participation of
the brain with the immune system is now recognized. In
more recent studies, for instance, Louveau et al. observed
that meningeal lymphatics are an essential aspect of im-
mune cell migration from the brain to the draining lymph
nodes (dLNs).’® The glymphatic system (glial-lymphatic)
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was identified as a mechanism of clearance from the brain
where cerebrospinal fluid (CSF) could drain to venous
perivascular spaces."%157-160 Fynctional lymphatic ves-
sels have also been found in the meninges, allowing CSF
to travel to cervical lymph nodes.'33-'3 More recent re-
search has shown that dural sinuses can also accumulate
CNS antigens in the CSF, allowing APC-T cell interactions
and promoting effector immune function.'®' The elucida-
tion of these various CNS antigen drainage and presenta-
tion mechanisms has paved the way for newer therapies
for several CNS pathologies such as Alzheimer’s'%'62 and
stroke,'®® incorporating novel therapeutic delivery routes,
engineered particle delivery, and more.'6

Although not as isolated as perhaps once thought,’6®
the “immunologically distinct” brain still offers chal-
lenges to effective immunity against glioblastoma.
Surrounding cell types unique to the intracranial com-
partment, such as microglia, astrocytes, and neurons, all
can contribute to an immune-restrictive TME. While mi-
croglia and TAM were discussed above, tumor-associated
astrocytes have also been shown to possess immuno-
suppressive activity, secreting cytokines such as IL-10
and TGFB."%¢ Likewise, neurons have been shown to play
a role in gliomagenesis, supporting tumor progression
and infiltration.'® The Monje group has recently shown
that cholinergic neuron stimulation increases glioma
proliferation, while neuron-tumor interactions promote
tumor growth through glutamatergic and GABAergic
neurons.'® Furthermore, gliomas can alter neural cir-
cuits to promote proliferation by tumor cells'®®'7° and
promote hyperexcitability with the secretion of glutamate
and neuroligin-3 (NLGNS3).'6171.172 Sych activity sug-
gests a crosstalk occurs between gliomas and neurons

to promote tumor survival.'® Recently, it has also been
shown that radiotherapy can enhance tumor-neuron con-
nections in a manner that actually contributes to thera-
peutic resistance, while virus-mediated ablation of these
connections can instead decrease tumor proliferation.'”3

Therapies designed to address CNS-imposed limitations
can employ such strategies as better delivery routes prem-
ised in newer understanding of antigen egress and presen-
tation, or can perhaps further open the BBB to allow more
efficient delivery (Figure 4). Regarding delivery routes, in-
trathecal and intraventricular injections have recently been
used to deliver cellular therapies to the brain, allowing
better access to the CSF and intracranial spaces.8>'74
Intratumoral injections have also been used for therapy
administration: one recent clinical trial used this route to
deliver a modified poliovirus (PVSRIPO) into recurrent
glioblastomas.’”®

Regarding BBB opening, focused ultrasound has been
used in patients to transiently open the BBB, permitting
classically nonbrain penetrant therapies better intracranial
access.'’® Laser interstitial thermal therapy has also been
found to open the BBB in mouse models, thus proffering
both tumor cell kill and subsequent improved therapeutic
delivery.'77-179 With regards to brain-specific cell targeting,
in addition to the virus-induced ablation of neuron-tumor
connections mentioned earlier, targeting microglia via,
that is, inhibition of nuclear receptor subfamily 4 group
A member 2 (NR4A2) has been shown to synergize with
immune checkpoint blockade.'® Additional examples of
novel strategies include nanoparticles designed to deliver
various molecules such as small interfering RNA or chemo-
therapy with differing routes for administrations such as
intranasal or intertumoral injections.
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Systemic Factors

Various examples of systemic immune derangements
have been documented in the context of glioblastoma
and other intracranial tumors'025181-185 (Figure 5). Early
work by Brooks and Roszman in patients with glioblas-
toma first identified systemic immune dysfunction in the
form of lymphopenia, impaired antibody production, and
weakened lymphocyte function.83184186-188  Regarding
lymphocytes, studies have shown reduced counts and
function of both CD4 + and CD8 +T cells,'® as well as de-
fects in T cell development.’ [L-2 activity and signaling
is diminished, leading to T cell proliferative defects.8%19

Glioblastoma elaborates anti-inflammatory cytokines, such
asTGFB, IL-10, and PGE2,22192193 whijch serve to further sup-
press IL-2 secretion by T cells, reduce IFN-y production,
downregulate MHC expression/presentation, suppressTh1
cytokine synthesis, inhibit APC capacities, and suppression
proinflammatory cytokine production. Tregs are also ele-
vated both locally and systemically in patients with glio-
blastoma and serve to limit cellular immunity and promote
immune escape.?3:65194,195

More recent work in this area has revealed that peripheral
immunosuppression in glioblastoma patients and mouse
models is characterized by T cell lymphopenia, splenic and
thymic involution, sequestration of T cells within the bone
marrow, and the presence of potent immunosuppressive

ivll
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factors in circulation.’925'81 The role of serum-derived sol-
uble factors as mediators of systemic immunosuppres-
sion in glioblastoma has been previously established.?
Interestingly, systemic immune derangements, including
peripheral lymphopenia mediated by serum-derived fac-
tors, are not unique to the glioblastoma setting and have
also been described in other brain injuries, including
stroke and brain viral infections.?>'% Immunosuppressive
factors in the serum of mice with intracranial pathologies
are large in molecular weight and nonsteroidal in nature.?
Notably, “systemic immune derangements” have been de-
scribed across various intracranial pathologies, including
brain tumors, demyelinating diseases, stroke, and trau-
matic brain injury.?5181.1971% These derangements include
T cell lymphopenia and dysfunction, lymphoid organ at-
rophy/involution, and naiveT cell sequestration in the bone
marrow,'0.181.197.199-201 g ggesting a common mode of CNS-
insult-driven immunosuppression.

Importantly, while much of the work described above
was performed in treatment-naive patients and thus
highlights tumor-imposed deficits, various components
to standard of care therapy for glioblastoma further con-
tribute to an environment of systemic immune dys-
function. While temozolomide assuredly contributes to
lymphopenia, for instance, a perhaps even larger source
of immune dysfunction is the typical dosing regimens of
steroids such as dexamethasone, intended to curb cere-
bral edema. While such benefits are well documented, they
come at a collateral cost to antitumor immune responses,
restricting the number and function of lymphoid cells
and hampering immunotherapeutic success.?922% |t is a
growing trend among immunotherapeutic clinical trials for
cancers in general to place limits on the maximal dose of
steroids that may be employed.

Several hypotheses exist as to the proximal causes of
diminished systemic immunity amidst intracranial pro-
cesses. One focuses on increased sympathetic activity,
which appears to follow neuroinflammation and can im-
pose adrenergic stress on immune cells.2042% One study
showed that beta blockade in combination with immu-
notherapy was able to increase survival in a brain tumor
model, as well as in lung cancer and melanoma brain me-
tastases models. Likewise retrospective clinical data re-
vealed extended survival in patients with glioblastoma or
brain metastases who were prescribed beta blockade.?®

Another potential mediator of systemic immunosup-
pression in serum may be cell-free (CF) DNA. Analysis of
CF-DNA, especially that of circulating tumor DNA, is an ac-
tive area of investigation; as such, “liquid biopsies” can po-
tentially be noninvasive sources of prognostic biomarkers.
However, the functional role of CF-DNA in immunity and its
immune-modulatory roles in cancer and other intracranial
pathologies remains poorly understood. Ayasoufi et al.
have shown heightened levels of CF-DNA in serum of mice
with glioblastoma,?°¢ which has also been observed in pa-
tients.207298 Furthermore, they demonstrated that CF-DNA
isolated from the serum of mice with gliomas suppresses
T cell function.?% Roth et al. also recently showed that the
presence of CF-DNA in the circulation of mice and humans
poststroke conferred T cell immunosuppression indirectly
through monocyte sensing of nucleic acids by Absent In
Melanoma 2 (AIM2)."%8 Distinct immune-modulatory roles

of CF-DNA in various context are likely mediated through
cell-type specific intracellular nucleic sensing mechanisms.
Overall, this common systemic immunosuppression seen
across various CNS diseases and pathologies hints at a
common mechanism, with several hypotheses as to the key
drivers. Reversing systemic immunosuppression in the set-
ting of glioblastoma will be an important step in improving
global host immune dysfunction in a manner that better
permits immunotherapeutic success (Figure 5). Strategies
to address systemic immune derangements may well then
synergize with and license systemically focused immune-
stimulating therapies, such as checkpoint blockade.?%

Conclusion

Immunotherapies for glioblastoma and other intracranial tu-
mors continue to face unique challenges. These challenges
exist at the level of the tumor cell itself, the TME, the CNS
more generally, and even systemically. While we have dis-
cussed these 4 domains in isolation for the purpose of or-
ganization and clarity, they are by no means mutually
exclusive and are ultimately overlapping and intercon-
nected facets dictating glioblastoma’s limited response to
treatment. Likewise, while glioblastoma’s intracranial lo-
cale poses specific immune-related considerations, the
tumor exhibits particularly severe capacities for restricting
immune function that make it more formidable than other
brain-situated lesions, such as metastases. Glioblastoma
presents a notable challenge to immunotherapy, proffering
few neoantigens and eliciting marked local and systemic im-
mune dysfunction. The latter includes such barriers as reg-
ulatory T cells-induced tolerance, severe T cell exhaustion,
an immunosuppressive and myeloid-heavy TME, glial-neu-
ronal interactions, lymphopenia, lymphoid organ involu-
tion, altered hematopoiesis, and T cell sequestration. These
barriers ultimately serve to hinderT cell number, access, and
function, all 3 necessary components to immunotherapeutic
success. In such combination, the sum total of these immune
obstacles is unique to glioblastoma, and immunotherapeutic
approaches must include means for clearing some if not all
of these hurdles. Alternative delivery routes, combinatorial
approaches, epigenetic and metabolic manipulation, innova-
tive cellular therapeutic modifications, and myeloid- or regu-
latory T cell-targeting approaches are just a few examples of
strategies to be explored and expanded.
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