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ABSTRACT
Background: Imaging- based molecular characterization is important for identifying treatment targets in adult- type diffuse gliomas.
Purpose: To assess isocitrate dehydrogenase (IDH) mutation and epidermal growth factor receptor (EGFR) amplification status 
in primary and recurrent gliomas using diffusion and perfusion MRI, addressing spatial and temporal heterogeneity.
Study Type: Retrospective.
Subjects: Three- hundred and twelve newly diagnosed (cross- sectional set, 57.9 ± 13.2 years, 52.2% male, 235 IDH- wildtype, 71 
EGFR- amplified) and 38 recurrent (longitudinal set, 53.1 ± 13.4 years, 44.7% male, 30 IDH- wildtype, 13 EGFR- amplified) adult- 
type diffuse glioma patients.
Field Strength/Sequence: 3.0T; diffusion weighted and dynamic susceptibility contrast- perfusion weighted imaging.
Assessment: Radiomics features from contrast- enhancing tumors (CET) and non- enhancing lesions (NEL) were extracted from 
apparent diffusion coefficient and perfusion maps. Spatial heterogeneity was assessed using intersection and Bhattacharyya 
distance between CET and NEL. Stable imaging features were identified in patients with unchanged genetic profiles in the lon-
gitudinal set. The “best model,” using features from the cross- sectional set (n = 312), and the “concordant model,” using stable 
features identified in the longitudinal set (n = 38), were constructed using the LASSO for IDH and EGFR status.
Statistical Tests: The area under the receiver- operating- characteristic curve (AUC).
Results: For IDH mutations, both best and concordant models demonstrated high AUCs in the cross- sectional set (0.936; 95% 
confidence interval [CI]: 0.903–0.969 and 0.964 [0.943–0.986], respectively). Only the concordant model maintained strong per-
formance in recurrent tumors (AUC, 0.919 vs. 0.656). For EGFR amplification in IDH- wildtype, the best and concordant models 
showed AUCs of 0.821 (95% CI: 0.761–0.881) and 0.746 (95% CI: 0.675–0.817) in newly diagnosed gliomas, but poor performance 
in recurrent tumors with AUCs of 0.503 (95% CI: 0.34–0.665) and 0.518 (95% CI: 0.357–0.678).
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Data Conclusion: Diffusion and perfusion MRI characterized IDH status in both newly diagnosed and recurrent gliomas, but 
showed limited diagnostic performance for EGFR, especially for recurrent tumors.
Evidence Level: 3
Technical Efficacy: Stage 3

1   |   Introduction

The World Health Organization (WHO) classification has in-
creasingly incorporated molecular analysis stratification into 
adult- type diffuse gliomas [1]. Molecular subtyping plays an im-
portant role in prognosis and identification of potential targets 
for effective therapies. Isocitrate dehydrogenase (IDH) mutations 
occur early in tumor development, particularly in low- grade gli-
omas, and are associated with improved survival outcomes com-
pared with IDH- wildtype glioblastomas [2]. Epidermal growth 
factor receptor (EGFR) amplification and mutations are fre-
quently observed in IDH- wildtype glioblastomas, which are as-
sociated with poor prognosis and represent potential targets for 
molecular therapies [3, 4].

Imaging- based molecular characterizations require careful con-
sideration of both spatial and temporal heterogeneity [5]. Spatial 
heterogeneity refers to the variability in molecular and genetic 
profiles across different regions of the tumor, whereas temporal 
heterogeneity reflects dynamic changes over time and is influ-
enced by tumor evolution or treatment response. For example, 
IDH mutations are ubiquitously expressed and remain stable over 
time [6], whereas EGFR amplification demonstrates marked spa-
tial variability between different tumor regions and frequently 
occurs and disappears over time [7, 8]. Addressing these hetero-
geneities is important for developing robust imaging- based mo-
lecular assessment models capable of guiding the noninvasive 
prediction of prognosis and targeted therapies.

Diffusion-  and perfusion- weighted MRI has been employed to an-
alyze spatial heterogeneity in gliomas. Lower apparent diffusion 
coefficient (ADC) values, indicating higher cellularity, are asso-
ciated with IDH- wildtype and EGFR amplification in gliomas 
[9–11]. In IDH- mutant gliomas, relative cerebral blood volume 
(rCBV) values are typically lower and more uniformly distrib-
uted, likely due to the inhibitory effects of 2- hydroxyglutarate on 
hypoxia and angiogenesis as well as the ubiquitous expression 
of IDH mutations across tumor cells [5, 12]. Meanwhile, EGFR- 
amplified tumors exhibit higher rCBV [13] and elevated rela-
tive oxygen extraction fraction (OEF) [14], indicating increased 
tumor cell invasion and angiogenesis. Additionally, EGFRvIII- 
positive tumors exhibit a more isotropic rCBV distribution across 
enhancing and non- enhancing tumor regions [15].

Despite advances in imaging- based spatial analysis, longitudinal 
assessment of molecular changes remains a challenge. Most pre-
vious studies have been limited to cross- sectional data at single 
time points, typically in patients with newly diagnosed tumors 
[11, 13, 16, 17]. However, adult- type diffuse gliomas almost invari-
ably recur and undergo molecular evolution, further complicating 
the spatial and temporal heterogeneity [18]. EGFR amplification 
in recurrent tumors differs from that in primary glioblastomas 
[7, 8], with a concordance correlation coefficient of 0.65 [8]. This 

highlights the necessity of considering temporal heterogeneity 
when assessing molecular changes, particularly those related 
to EGFR.

Thus the aim of this study was to assess IDH mutations and 
EGFR amplification status in primary and recurrent gliomas 
using diffusion and perfusion MRI. Specifically, the aim was to 
analyze imaging features and distribution patterns of enhancing 
and non- enhancing regions to address spatial heterogeneity and 
to identify imaging features consistent across primary and re-
current tumors to account for temporal heterogeneity.

2   |   Materials and Methods

2.1   |   Study Population

This retrospective study was approved by the Institutional 
Review Board of Asan Medical Center, and the requirement for 
informed consent was waived (IRB no. 2023- 0525).

For the cross- sectional set, the database of the Department of 
Radiology and Neurosurgery at our tertiary center between 
March 2017 and March 2023 was reviewed, and 401 consecutive 
patients with pathologically confirmed (on surgical resection or 
biopsy) adult- type diffuse gliomas (Grades 2, 3, and 4) accord-
ing to the WHO 2021 classification of central nervous system tu-
mors were identified. The exclusion criteria were as follows [1]: 
Non- availability of IDH mutation or EGFR amplification status 
(n = 43); [2] missing preoperative multi- parametric MRI (n = 38); 
and [3] imaging that could not be processed because of techni-
cal reasons (n = 8). Finally, 312 patients (57.9 ± 13.2 years; range, 
23–85; 164 men [52.6%]) were included.

For the longitudinal set, 42 patients who had undergone two sur-
geries were included: An initial surgery following the diagnosis of 
adult- type diffuse glioma and a subsequent surgery due to recur-
rence, both within the study period. Following the exclusion of pa-
tients with missing IDH mutations or EGFR amplification status 
in either surgery (n = 2) or due to technical processing errors (n = 2), 
38 patients (53.1 ± 13.4 years; range, 25–75; 17 men [44.7%]) with 76 
specimens were included in the longitudinal set. Preoperative MRI 
scans obtained before the first surgery (referred to as initial MRI) 
and preoperative MRI scans obtained before the second surgery 
(referred to as recurrence MRI) were included for each patient. A 
flow diagram of the patient selection process is shown in Figure 1.

2.2   |   Reference Standard of IDH Mutation 
and EGFR Amplification

The histopathological diagnoses were based on the 2021 WHO 
classification system [1]. Immunohistochemical analysis and 
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next generation sequencing were performed to detect IDH1 
R132H mutations. IDH mutations were assessed at the R132 and 
R172 codons in IDH1 and IDH2, respectively.

Targeted next- generation sequencing was performed using the 
Illumina NextSeq 500Dx panel. For copy number analysis, copy 
number variation amplification detections were performed for 
EGFR (EGFR+, gain vs. balanced). EGFR genes showing a > 2- 
fold change relative to the average level were considered amplified.

2.3   |   Imaging Acquisition

All MRI studies were performed using a 3- T scanner (Ingenia 
3.0T CX; Philips Healthcare, Best, the Netherlands). Both cross- 
sectional and longitudinal sets followed the same MRI protocol, 
including T2- weighted fast spin- echo imaging, fluid- attenuated 
inversion recovery (FLAIR) fast spin- echo imaging, three- 
dimensional pre- contrast and contrast- enhanced T1- weighted 
gradient- echo imaging (CE- T1WI), diffusion weighted fast spin- 
echo imaging (DWI), and dynamic susceptibility contrast (DSC) 
perfusion gradient- echo MRI. The detailed MRI acquisition pa-
rameters are provided in Supporting Information S1. DWI was 

obtained in three orthogonal directions using the following 
parameters: repetition time (TR)/echo time (TE), 3000/56 ms; 
diffusion gradient encoding, b = 0, 1000 s/mm2; field of view 
(FOV), 25 cm; slice thickness/gap, 5/2 mm; matrix, 256 × 256; 
and acquisition time, 39 s. CE- T1WI was obtained with a higher- 
resolution three- dimensional volume image using the following 
parameters: TR/TE, 9.8/4.6 ms; flip angle, 10°; FOV, 256 mm; 
matrix, 512 × 512; and slice thickness, 0.5 mm with no gap. DSC- 
MRI was performed using a gradient- echo echo- planar imaging 
sequence with TR/TE, 1425/30 ms; flip angle, 60°; FOV, 23 cm; 
slice thickness/gap, 4/2 mm; matrix, 128 × 128; and total acquisi-
tion time, 2 min 55 s. All patients were administered a preload of 
0.01 mmol/kg gadoterate meglumine (Dotarem; Guerbet, Paris, 
France), followed by a dynamic bolus consisting of a standard 
dose of 0.1 mmol/kg gadoterate meglumine delivered at a rate 
of 4 mL/s using an MRI- compatible power injector (Spectris; 
Medrad, Pittsburgh, PA). Subsequently, a 20- mL bolus of saline 
was injected at the same rate.

2.4   |   Image Processing

For tumor segmentation, skull stripping was performed using the 
three- dimensional CE- T1WI and FLAIR images with an algo-
rithm optimized to manage heterogeneous MRI data, accounting 
for variations caused by different pathologies or post- treatment 
changes (https:// github. com/ MIC-  DKFZ/ HD-  BET). Tumor 
segmentation masks for contrast- enhancing tumor (CET) and 
non- enhancing lesion (NEL) were created on three- dimensional 
CE- T1WI and FLAIR images using a 3D UNet- based method 
(https:// github. com/ MIC-  DKFZ/ nnUNet) [19] and the PyTorch 
package version 1.1 in Python 3.7 (www. python. org). The segmen-
tation approach was based on a model from the BraTS21 challenge 
framework, which leverages the robust training and generaliza-
tion capabilities of nnU- Net [20]. The BraTS21 dataset, comprising 
1251 skull- stripped multi- parametric MRI scans across four mo-
dalities (FLAIR, T1, CE- T1WI, and T2), provided the foundation 
for this model. Three- dimensional CE- T1WI and FLAIR data were 
used as input imaging modalities to generate the segmentation of 
contrast- enhancing lesions, NEL, and necrosis. The segmentation 
model was trained on data from 455 patients with brain tumors 
and validated using 2034 MRI scans from 532 patients as part of 
the EORTC- 26101 study. Technical and clinical validation of this 

Plain Language Summary

• Noninvasive imaging- based characterization of mo-
lecular status is important for identifying potential 
treatment targets in adult- type diffuse gliomas.

• This study aimed to assess IDH mutation and EGFR 
amplification in primary and recurrent gliomas using 
radiomics features derived from perfusion and diffu-
sion MRI.

• It focused on spatial heterogeneity, representing mo-
lecular variability within the tumor, and temporal het-
erogeneity, reflecting dynamic changes in the tumor 
over time.

• Radiomics models reliably characterized IDH muta-
tion in both newly diagnosed and recurrent gliomas 
but showed limited accuracy in EGFR amplification, 
particularly in recurrent tumors.

FIGURE 1    |    Patient selection process. EGFR, epidermal growth factor receptor; IDH, isocitrate dehydrogenase.
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method has been reported previously [20–22]. A neuroradiologist 
(Ji Eun Park, with 9 years of experience in neuro- oncologic imag-
ing) reviewed and validated all segmented results.

The three- dimensional CE- T1WI, T1 co- registered FLAIR, and 
segmentation masks were co- registered with the mean DSC. 
Similarly, the ADC map calculated using DWI was co- registered 
with the mean DSC. This was important for aligning the segmen-
tation masks with the diffusion and perfusion maps for spatial 
mapping.

For DSC analysis, all standard perfusion maps, along with para-
metric maps related to microvascular and oxygen metabolism, 
were automatically generated using Cercare Medical Neurosuite 
(Cercare Medical ApS, release 2021- 03- 02- 02), as previously 
described [23, 24]. The arterial input function (AIF) was auto-
matically identified using cluster analysis techniques, and its 
deconvolution was performed using time- insensitive block- 
circulant singular value decomposition [25]. AIF was provided 
by Cercare software, and a researcher (Roh Yoon Wha, with 
3 years of experience in neuro- oncologic imaging.) checked its 
validity. The rCBV and relative cerebral blood flow (rCBF) were 
calculated by fitting a gamma variate- based vascular model to 
the measured R2* curve. Capillary transit time heterogeneity 
(CTH) maps were obtained by computing the standard devia-
tion of the gamma distribution. Coefficient of variation (COV) 
maps were calculated by dividing CTH by the mean transit time 
(MTT). The OEF and cerebral metabolic rate of oxygen (CMRO2) 
maps were created using the software. The rCBV and rCBF val-
ues were normalized to nCBV and nCBF in normal- appearing 
white matter, respectively, as provided by the software. The 
perfusion maps were resampled to match the iso- voxel three- 
dimensional CE- T1WI using rigid transformations with 6° of 
freedom in SPM12 (www. fil. ion. ucl. ac. uk/ spm/ ). Perfusion- , 
microvasculature- , and oxygen- related values were calculated 
using the CET volume.

2.5   |   Feature Extraction

To quantitatively characterize the tumor regions of interest 
(ROIs; CET and NEL) and account for their physiological back-
ground, a radiomics approach was employed using the open- 
source Python Library PyRadiomics (version 3.0.1) [26]. Fourteen 
shape features were extracted from the two ROIs. Additionally, 
93 radiomics features were extracted from each ROI across nine 
parametric maps (ADC, nCBV, nCBF, MTT, time to peak [TTP], 
CTH, COV, OEF, and CMRO2). These 93 features comprised 
18 first- order features, 24 Gray Level Co- occurrence Matrix 
(GLCM) features, 16 Gray Level Run Length Matrix (GLRLM) 
features, 16 Gray Level Size Zone Matrix (GLSZM) features, 
14 Gray Level Dependence Matrix (GLDM) features, and 5 
Neighboring Gray Tone Difference Matrix (NGTDM) features. 
Detailed descriptions of the extracted radiomics features can be 
found in the PyRadiomics documentation available at https:// 
pyrad iomics. readt hedocs. io/ en/ latest/ featu res. html.

To account for the spatial heterogeneity between CET and NEL, 
the intersection and Bhattacharyya distances were used [15, 27]. 
These metrics quantify the differences (or similarities) between 
two histograms, H1 and H2: The mathematical equations for 

each method are as follows: The CET and NEL histograms are 
represented as H1 and H2, respectively.

The intersection uses the minimum value across the correspond-
ing bins to quantify the overlap and measures the common area 
under the two histograms. The value lies between zero and one. 
A high value (closer to 1) indicates a close match, whereas a low 
value (closer to 0) indicates a poor match.

The Bhattacharyya distance uses the geometric mean and log-
arithm to quantify the overlap between the two distributions. 
The Bhattacharyya coefficient (before taking the negative log-
arithm) lies between 0 and 1, with a lower value indicating a 
better match. A value of 0 represents a perfect match (identical 
distribution), and a value of 1 represents an absolute non- match.

For enhancing tumor and non- enhancing tumor ROIs, 93 ra-
diomics features were extracted for each of the nine paramet-
ric maps (ADC, nCBV, nCBF, MTT, TTP, CTH, COV, OEF, and 
CMRO2) across the two ROIs (CET and NEL). Fourteen shape 
features were extracted from each ROI. Two spatial heterogene-
ity features (intersection and Bhattacharyya distance) were then 
calculated for each parametric map, resulting in a final count of 
1720 features per patient, using the following formula:

Substituting the values: (93 × 9 × 2) + (14 × 2) + (9 × 2) = 1720. In 
total, 1720 features were extracted from each patient.

2.6   |   Statistical Analysis

2.6.1   |   Power Analysis

The target distribution was EGFR amplification, reported in 
20%–30% of glioblastomas [28], and this distribution was consis-
tent with the longitudinal cohort in the current study. The null 
hypothesis assumed an area under the receiver operating char-
acteristic curve (AUC) of 0.50, whereas alternative hypothesis 
targeted an AUC of 0.80 for the radiomics model in detecting 
EGFR amplification. The statistical parameters included a Type 
I error (α) of 0.05 and a Type II error (β) of 0.20, corresponding 
to a statistical power of 80% [29]. Based on these parameters, the 
required sample size was 36. Because the longitudinal cohort in-
cluded 38 patients, the statistical power was deemed sufficient to 
ensure a robust analysis.

2.6.2   |   Clinical Characteristics

Differences in patient and tumor characteristics between the cross- 
sectional and longitudinal sets and imaging parameters according 

Dintersection (H1,H2) =
∑

min (H1(i),H2(i))

DBhattacharyya (H1,H2)=

�

�

�

�1−
�

i

√

H1(i) ⋅H2(i)
√

∑

iH1(i) ⋅
∑

iH2(i)

(Radiomics features×parametric maps×ROIs)+(shape features×ROIs)

+(parametric maps×spatial heterogeneity features)
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to the IDH mutation or EGFR amplification status were evaluated 
using independent samples t- tests and chi- square tests.

2.6.3   |   Assessing Concordance of the Features Between 
Initial and Recurrence MRI in the Longitudinal Set

In the longitudinal dataset, patients with unchanged genetic 
profiles between the first and second surgeries were identified. 
We hypothesized that if the genetic profile remained stable, the 
corresponding MRI features would also remain stable over time. 
Temporally stable MRI features were defined as those showing 
no substantial variation based on concordance analysis between 
the initial MRI and the recurrence MRI in these patients.

Using this definition, the intraclass correlation coefficient (ICC) 
was calculated to quantify the concordance of radiomics fea-
tures between the two MRI studies. Since the IDH mutation 
status did not change in any of the patients, the ICCs for the 
radiomics features between the initial MRI and recurrence 
MRI were calculated across all patients. Features with an ICC 
threshold > 0.5 were considered [30], which is a commonly used 
threshold for ICC, temporally stable, and selected for classifica-
tion to diagnose IDH mutation.

Similarly, to identify temporally stable MRI features for EGFR 
amplification in IDH- wildtype tumors, patients exhibiting a 
consistent EGFR amplification status (i.e., either amplifica-
tion or no amplification) between the first and second surger-
ies were included. The ICC of the radiomics features on the 
initial and recurrence MRI scans for these patients was calcu-
lated. Features with an ICC > 0.5 were defined as temporally 
stable and selected for constructing a diagnostic model for 
EGFR amplification.

2.6.4   |   Feature Selection and Model Construction

The least absolute shrinkage and selection operator (LASSO) 
logistic model was applied to identify significant features with 
nonzero coefficients within the two sets of stable features related 
to consistent genetic profiles. Linear predictors for IDH muta-
tion for all patients and EGFR amplification for patients with 
IDH- wildtype tumors were constructed using logistic regres-
sion, resulting in “concordant models.” Subsequently, LASSO 
was applied to the entire features within the cross- sectional set 
to select significant predictors for genetic mutations. When a 
group of features is correlated with each other, LASSO tends to 
select only one of them [31]. This reduces false- positive findings 
and subsequent errors. These models were referred to as “best 
models.” In summary, four models were developed: The “best 
model” and the “concordant model” for diagnosing IDH muta-
tion and for diagnosing EGFR amplification in IDH- wildtype 
tumors.

2.6.5   |   Diagnostic Performance

The diagnostic performance of the best and concordant models 
using cross- sectional and longitudinal sets was measured using 
the AUC. The optimal thresholds of AUCs were determined by 

maximizing the sum of the sensitivity and specificity values 
calculated to predict the diagnosis using the Youden index. The 
accuracy, sensitivity, and specificity of optimal thresholds were 
calculated.

For all statistical analyses, two- sided p values < 0.05 were con-
sidered statistically significant. All statistical analyses were 
performed using R statistical software (version 4.1.3, Vienna, 
Austria).

3   |   Results

3.1   |   Baseline Characteristics

Table  1 summarizes the baseline clinical characteristics of the 
312 patients in the cross- sectional set (77 IDH- mutant, 235 
IDH- wildtype) and 38 patients in the longitudinal set (8 IDH- 
mutant, 30 IDH- wildtype). Patients in the longitudinal set were 
significantly younger than those in the cross- sectional set, with 
no significant differences in sex (p = 0.459), proportion of histo-
pathologic grade (p = 0.393), and IDH mutations (p = 0.77).

In the cross- sectional set of 235 IDH- wildtype patients, 71 (30.2%) 
showed EGFR amplification. Among the 30 IDH- wildtype pa-
tients in the longitudinal set, EGFR amplification status re-
mained unchanged between the first and second surgeries in 
22 (73.3%) patients, whereas changes were reported in 8 (26.6%) 
patients. Imaging parameters related to IDH mutation status and 
EGFR amplification status in the cross- sectional and longitudi-
nal sets are summarized in Tables S1 and S2.

3.2   |   MRI Features Depicting Spatial 
Heterogeneity for IDH and EGFR Profiles in 
the Cross- Sectional Cohort

Table 2 presents the intersection and Bhattacharyya distances 
between CET and NEL according to IDH mutation and EGFR 
amplification status. For IDH, a significantly larger intersec-
tion between CET and NEL was observed in the IDH mutant 
than in the IDH- wildtype for nCBV (mutant vs. wild: 0.63 vs. 
0.52), nCBF (0.68 vs. 0.60), and CMRO2 (0.67 vs. 0.58), indi-
cating greater spatial heterogeneity in the IDH- wildtype. In 
contrast, intersection values were significantly higher in the 
IDH- wildtype for CTH (mutant vs. wild type: 0.51 vs. 0.60), 
MTT (0.45 vs. 0.53), and ADC (0.55 vs. 0.60) than in the IDH- 
mutant type. The Bhattacharyya distances showed a similar 
pattern, with shorter distances observed in the IDH mutant for 
nCBV, nCBF, and CMRO2.

For EGFR amplification status in IDH- wildtype tumors, no 
significant difference in spatial heterogeneity was observed be-
tween the ADC and perfusion parameters (Table  2). Figure  2 
illustrates the spatiotemporal heterogeneity between CET and 
NEL for different IDH mutation and EGFR amplification sta-
tuses. IDH mutations exhibited a large overlap between CET 
and NEL on nCBV, whereas IDH- wildtype exhibited a large 
overlap between regions on ADC. The EGFR amplification sta-
tus showed no difference in overlap between the two regions on 
both the nCBV and ADC maps.
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3.3   |   Temporally Stable MRI Features 
Reflecting Unchanged IDH and EGFR Profiles in 
the Longitudinal Cohort

All patients in the longitudinal set maintained consistent IDH 
mutation status between the first and second surgeries. A com-
parison of the initial and recurrence MRIs identified 251 stable 
features, with an ICC > 0.5. Detailed information on the ICC of 
these features is provided in the Supporting Information S2.

Among the 30 IDH- wildtype patients in the longitudinal set, 
six exhibited consistent EGFR amplification across both the 
first and second surgeries, and 16 remained consistently EGFR 
non- amplified in both surgeries. Consequently, 22 patients 
demonstrated a consistent EGFR status (either amplified or non- 
amplified) at both time points. In these patients, 295 temporally 
stable features with an ICC of > 0.5 were identified.

3.4   |   Feature Selection for the Concordant Model 
and Best Model in the Cross- Sectional Data

Of the 251 temporally stable features associated with IDH 
mutation status, 49 were selected using LASSO to construct a 
concordant model for IDH mutation categorization. Similarly, 
among the 295 temporally stable features associated with EGFR 

amplification status in IDH- wildtype tumors, seven were se-
lected using LASSO to build a concordant model for EGFR am-
plification categorization.

The LASSO was applied to a cross- sectional set for feature se-
lection. Thirty features were selected to build the best model 
for diagnosing IDH mutations, and 19 features were selected to 
construct the best model for diagnosing EGFR amplification sta-
tus in IDH- wildtype tumors. Details of the selected features are 
provided in Table S3.

3.5   |   Diagnostic Performance of the Concordant 
Model and Best Model

Table 3 and Figure 3 summarize the diagnostic performance of 
the concordant and best models in the cross- sectional and longi-
tudinal sets. In the cross- sectional set, both models demonstrated 
high diagnostic performance for diagnosing IDH mutation sta-
tus. The concordant model achieved an AUC of 0.964 (95% CI: 
0.943–0.986), sensitivity of 90.8%, specificity of 93.6%, and ac-
curacy of 93%. The best model exhibited an AUC of 0.936 (95% 
CI: 0.903–0.969), sensitivity of 86.8%, specificity of 90.3%, and 
accuracy of 89.4%. For diagnosing EGFR amplification in IDH- 
wildtype tumors, the concordant model achieved an AUC of 
0.746 (95% CI: 0.675–0.817), sensitivity of 58.6%, specificity of 

TABLE 1    |    Clinical characteristics of patients.

Cross- sectional set (n = 312) Longitudinal set (n = 38) p

Age, years (mean ± SD) 57.9 ± 13.2 53.1 ± 13.4 0.034*

Sex, male (%) 164 (52.6) 17 (44.7) 0.459

Histopathologic grade

Grade 2 or 3 82 (26.3) 7 (18.4) 0.393

Grade 4 230 (73.7) 31 (81.6)

WHO 2021 classification

Oligodendroglioma, IDH- mutant, 1p19q co- deleted 40 (12.8) 3 (7.9) 0.679

Diffuse astrocytoma, IDH- mutant 37 (11.9) 5 (13.2)

Glioblastoma, IDH- wildtype 235 (75.3) 30 (78.9)

Molecular change in longitudinal data

IDH mutation (first, second surgery)

Mutation, mutation 8/38 (21.1)

Wild- type, wild- type 30/38 (78.9)

EGFR amplification 71/235 (30.2)

EGFR amplification (first, second surgery)

Amplification, amplification 6/30 (20)

Non- amplification, non- amplification 16/30 (53.3)

Non- amplification, amplification 1/30 (3.3)

Amplification, non- amplification 7/30 (23.3)

Note: Unless otherwise specified, the data are presented as numbers or numerators/denominators, with percentages in parentheses.
Abbreviations: EGFR, epidermal growth factor receptor; IDH, isocitrate dehydrogenase; SD, standard deviation.
*Statistical significance.
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84.3%, and accuracy of 76.7%. The best model had an AUC of 
0.821 (95% CI: 0.761–0.881), sensitivity of 71.4%, specificity of 
79.5%, and accuracy of 76.7%.

In the longitudinal set, the concordant model achieved an AUC 
of 0.919 (95% CI: 0.853–0.985), sensitivity of 75%, specificity of 
86.7%, and accuracy of 84.2% in diagnosing IDH mutations. The 
best model demonstrated an AUC of 0.656 (95% CI: 0.47–0.841), 
sensitivity of 50%, specificity of 86.7%, and accuracy of 79%. Both 
models showed limited capabilities for diagnosing EGFR amplifi-
cation in IDH- wildtype tumors. The concordant model achieved 
an AUC of 0.518 (95% CI: 0.357–0.678), with a sensitivity of 30%, 
a specificity of 72.5%, and an accuracy of 58.3%. The best model 
had a similarly low AUC of 0.503 (95% CI: 0.34–0.665), sensitivity 
of 40%, specificity of 62.5%, and accuracy of 55%.

4   |   Discussion

This study evaluated spatial and temporal heterogeneity of 
diffusion and perfusion MRI parameters in CET and NEL 

to diagnose IDH mutation and EGFR amplification in adult- 
type diffuse gliomas. The best model used MRI at a single 
time point (cross- sectional data) for newly diagnosed gliomas, 
whereas the concordant model used MRI at two time points 
(longitudinal data) for both primary and recurrent tumors. 
For IDH mutations, both models demonstrated high perfor-
mances in a cross- sectional dataset of newly diagnosed glio-
mas. However, only the concordant model maintained a strong 
performance in the longitudinal dataset of recurrent gliomas, 
whereas the best model showed decreased performance. For 
EGFR amplification in IDH- wildtype tumors, both models 
showed moderate performance in the cross- sectional dataset 
but poor diagnostic performance in the longitudinal dataset. 
These results show that imaging features with temporal sta-
bility have high diagnostic performance for stable IDH muta-
tions but poor performance for dynamic EGFR amplification, 
which changes over time.

Previous studies have similarly reported a better diagnostic 
performance for IDH mutations than for EGFR amplification 
using radiomics models. A radiomics model incorporating 

TABLE 2    |    Imaging features for spatial heterogeneity in IDH mutation and EGFR amplification status.

IDH mutation status EGFR amplification status in IDH- wildtype

Mutation 
(n = 92)

Wild- type 
(n = 296) p

Amplification 
(n = 90)

Non- amplification 
(n = 206) p

Intersection

nCBV 0.63 ± 0.21 0.52 ± 0.18 < 0.001* 0.50 ± 0.18 0.53 ± 0.18 0.169

nCBF 0.68 ± 0.19 0.60 ± 0.19 < 0.001* 0.58 ± 0.20 0.60 ± 0.19 0.457

CMRO2 0.67 ± 0.19 0.58 ± 0.18 < 0.001* 0.55 ± 0.18 0.59 ± 0.18 0.094

COV 0.57 ± 0.22 0.57 ± 0.20 0.927 0.55 ± 0.20 0.58 ± 0.20 0.229

CTH 0.51 ± 0.24 0.60 ± 0.20 0.001* 0.59 ± 0.22 0.60 ± 0.19 0.702

MTT 0.45 ± 0.27 0.53 ± 0.26 0.018* 0.54 ± 0.25 0.52 ± 0.26 0.547

OEF 0.67 ± 0.19 0.67 ± 0.16 0.928 0.66 ± 0.19 0.67 ± 0.14 0.73

TTP 0.30 ± 0.24 0.33 ± 0.27 0.374 0.32 ± 0.27 0.33 ± 0.27 0.817

ADC 0.55 ± 0.19 0.60 ± 0.18 0.01* 0.61 ± 0.19 0.60 ± 0.18 0.568

Bhattacharrya distance

nCBV 0.34 ± 0.20 0.43 ± 0.17 < 0.001* 0.45 ± 0.17 0.42 ± 0.17 0.136

nCBF 0.30 ± 0.17 0.37 ± 0.18 0.003* 0.37 ± 0.18 0.36 ± 0.18 0.574

CMRO2 0.31 ± 0.18 0.38 ± 0.17 < 0.001* 0.41 ± 0.17 0.37 ± 0.17 0.088

COV 0.41 ± 0.21 0.40 ± 0.19 0.657 0.41 ± 0.19 0.39 ± 0.18 0.285

CTH 0.45 ± 0.22 0.38 ± 0.19 0.003* 0.38 ± 0.21 0.37 ± 0.18 0.696

MTT 0.51 ± 0.25 0.44 ± 0.24 0.019* 0.42 ± 0.24 0.44 ± 0.24 0.499

OEF 0.32 ± 0.19 0.31 ± 0.15 0.64 0.32 ± 0.19 0.31 ± 0.14 0.64

TTP 0.69 ± 0.23 0.66 ± 0.26 0.243 0.67 ± 0.26 0.65 ± 0.26 0.699

ADC 0.43 ± 0.17 0.38 ± 0.17 0.02* 0.38 ± 0.18 0.38 ± 0.16 0.764

Note: Data are presented as mean ± standard deviation.
Abbreviations: ADC, apparent diffusion coefficient; CMRO2, cerebral metabolic rate of oxygen; COV, coefficient of variation; CTH, capillary transit time heterogeneity; 
EGFR, epidermal growth factor receptor; IDH, isocitrate dehydrogenase; MTT, mean transit time; nCBF, normalized cerebral blood flow; nCBV, normalized cerebral 
blood volume; OEF, oxygen extraction fraction; TTP, time to peak.
*Statistical significance.
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8 of 12 Journal of Magnetic Resonance Imaging, 2025

FIGURE 2    |    Imaging features reflecting spatial heterogeneity between contrast- enhancing tumor (CET) and non- enhancing lesion (NEL) ac-
cording to IDH mutation status and EGFR amplification status using histogram analysis. (A) (Left) Comparison of the intersection between IDH- 
mutant and IDH- wildtype gliomas. Notably, IDH- mutant gliomas show a larger intersection of CBV (IDH- mutant vs. IDH- wildtype: 0.66 vs. 0.31), 
whereas the IDH- wildtype gliomas exhibit a larger intersection of ADC (IDH- mutant vs. IDH- wildtype: 0.59 vs. 0.72). (Right) On contrast- enhanced 
T1- weighted gradient- echo imaging (CE- T1WI) and FLAIR, both IDH- mutant and IDH- wild type tumors exhibit a necrotic enhancing mass with 
extensive FLAIR high signal intensity change. (B) (Left) Comparison of the intersections between EGFR- amplified and non- amplified gliomas, both 
IDH- wildtype. The intersection of the CBV and ADC was similar between the two groups. The CBV map indicates no large overlap between CET 
and NEL, with no significant difference between the EGFR- amplified and non- amplified groups. In contrast, a large overlap was observed between 
CET and NEL on the ADC map, with no significant difference between the EGFR- amplified and non- amplified groups. (Right) On CE- T1WI and 
FLAIR, both EGFR non- amplified and amplified tumors exhibit a necrotic enhancing mass with extensive FLAIR high signal intensity infiltrative 
tumor. ADC, apparent diffusion coefficient; CBV, cerebral blood volume; EGFR, epidermal growth factor receptor; IDH, isocitrate dehydrogenase.
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diffusion and conventional MRI achieved an accuracy of 0.76 
for diagnosing IDH mutation, whereas accuracy was lower at 
0.66 for EGFR amplification [32]. Likewise, a model utilizing 
both perfusion and diffusion MRI demonstrated a higher ac-
curacy (0.92) for diagnosing IDH mutations but a lower ac-
curacy (0.72) for EGFR amplification [33]. This discrepancy 
in performance between IDH mutations and EGFR amplifi-
cation may be attributable to the greater spatial heterogene-
ity of EGFR amplification compared to the stable distribution 
of IDH mutations, making EGFR amplification inherently 
more challenging to diagnose. The current study offers in-
sights into the molecular assessment of recurrent gliomas. 
For IDH mutations, a relatively stable temporal profile allows 
for more consistent diagnostic ability across primary and re-
current tumors, highlighting the importance of incorporating 
temporally stable imaging features into diagnostic models. In 
contrast, EGFR amplification is characterized by greater tem-
poral heterogeneity, making diagnosis inherently challenging, 
particularly in recurrent gliomas. Although spatial heteroge-
neity analysis remains useful for diagnosing EGFR amplifi-
cation in newly diagnosed tumors, addressing its temporal 
variability will require further refinement of imaging- based 
diagnostic strategies.

In the current study, both perfusion and diffusion parameters 
were helpful in diagnosing IDH mutations in newly diagnosed 
gliomas. IDH- mutant tumors exhibited lower nCBV in CET and 
higher ADC in both CET and NEL, consistent with previous 
studies [12, 34, 35]. Additionally, parameters related to micro-
vasculature and hypoxia showed decreased CMRO2 in CET of 
IDH- mutant tumors than in wild- type tumors. This finding is 
consistent with that of a previous study indicating that high- 
grade gliomas, which are more hypoxic, show increased CMRO2 
and neovascularization, whereas IDH mutations in low- grade 
gliomas are associated with decreased CMRO2 [36]. IDH mu-
tations are early causative events in glioma formation, ubiqui-
tously expressed throughout the tumor, and frequently retained 
during disease progression [37]. This relative temporal homo-
geneity likely explains the consistent diagnostic performance of 
the concordant model in diagnosing IDH mutation status in the 
longitudinal analysis. The perfusion and diffusion parameters 
observed in the current study were maintained in recurrent tu-
mors, further demonstrating the stability of IDH- mutated cells, 
even in recurrent settings.

In the current study, EGFR amplification was associated with 
high perfusion and low diffusion parameters, as evidenced 
by high nCBV, nCBF, and CMRO2, coupled with low ADC in 
EGFR- amplified tumors. Notably, the best model showed higher 
nCBV and nCBF in NEL, whereas the concordant model showed 
higher nCBF and CMRO2 in NEL. These findings are consistent 
with those of a previous deep learning study that used complex 
time- signal intensity curves from DSC imaging of immediate 
and distant peritumoral regions [15]. EGFRvIII- positive tumors 
showed more homogeneity in time- signal intensity curve- based 
features between the immediate and distant peritumoral regions, 
whereas EGFRvIII- negative tumors displayed greater heteroge-
neity. However, diagnosing EGFR amplification longitudinally 
remains challenging, even with models using temporally stable 
features selected from both initial and recurrent tumors. Two 
hypotheses may explain the temporal heterogeneity of EGFR T
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amplification [7]. First, environmental pressures within the 
tumor microenvironment may be regional, leading to the focal 
emergence of EGFRvIII and other EGFR mutations promoting 
angiogenesis through oncogenic signaling. These selective pres-
sures may favor specific EGFR mutations, such as EGFRvIII, 
in EGFR- amplified tumor cells at later stages of tumor develop-
ment. The second possibility is “mutational switching,” where 
one EGFR mutation replaces another upon tumor recurrence 
[38]. This process, recently described in glioblastoma, suggests 
the frequent occurrence and disappearance of EGFR mutations, 
contributing to temporal heterogeneity. The spatial heteroge-
neity in CET and peritumoral NEL, combined with temporal 
heterogeneity of EGFR amplification, complicates the use of 
physiologic MRI from both regions for accurately diagnosing 
EGFR amplification.

To further explore spatial heterogeneity, the intersection 
and Bhattacharyya distances between CET and NEL were 

calculated. IDH- mutant tumors showed higher intersections 
in nCBV, nCBF, and CMRO2 between CET and NEL compared 
with IDH- wildtype tumors. This increased overlap aligns with 
the ubiquitous expression of IDH mutations across the tumor 
[1]. Similar findings were reported in a previous study, where 
histogram analysis of rCBV- voxels showed IDH- mutant tumors 
clustering at lower values, whereas wild- type tumors had a 
broader distribution [12]. Mutations in cancer- associated IDH 
acquire neoactivity, producing 2- hydroxyglutarate and leading 
to decreased activation of hypoxia- inducible factor 1- alpha [39], 
explaining the similarly high CMRO2 in both CET and NEL. In 
the current study, the overlap of ADC values between CET and 
NEL regions was greater in IDH- wildtype than in IDH- mutant 
tumors. This observation is consistent with the presence of sub-
stantial tumor infiltration in FLAIR hyperintensity regions of 
IDH- wildtype glioblastomas, contributing to their aggressive 
biological behavior [40, 41]. Diffuse tumor infiltration and mi-
crovascular proliferation in the NEL of IDH- wildtype gliomas 

FIGURE 3    |    Diagnostic performance of the best and concordant models in the cross- sectional and longitudinal sets for IDH mutation categoriza-
tion (A, B) and EGFR amplification (C, D). EGFR, epidermal growth factor receptor; IDH, isocitrate dehydrogenase.
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likely resulted in comparable ADC values as those observed in 
the CET, explaining the greater overlap. Regarding EGFR am-
plification, no significant difference was observed between non- 
amplified and amplified tumors, which could be attributed to 
the sporadic expression of EGFR amplification [7], unlike the 
ubiquitous IDH mutations, making detection of differences be-
tween CET and NEL regions challenging.

5   |   Limitations

First, the small sample size and absence of an external vali-
dation set, particularly in the longitudinal analysis, limit the 
generalizability of the findings. Publicly available longitudinal 
datasets with pathological validation are scarce; therefore, every 
effort was made to include 38 patients with longitudinal patho-
logical data from primary and recurrent tumors. Nonetheless, a 
multicenter study with a larger patient cohort for longitudinal 
datasets is warranted. Second, the prognostic relevance of the 
selected imaging features was not directly assessed for mid-  to 
long- term clinical outcomes. Future studies with longitudinal 
clinical follow- up data are needed to validate the prognostic 
implications of our findings. Third, microvascular and oxygen-
ation parameters are not widely available, and combining them 
with dynamic contrast enhancement parameters may improve 
utility. Finally, temporal heterogeneity, especially for EGFR, 
should be validated through biopsies from multiple locations on 
the specimen and correlated with EGFR amplification levels.

6   |   Conclusion

This study highlights the challenges in diagnosing EGFR am-
plification status in recurrent gliomas. Although IDH mutation 
status in newly diagnosed and recurrent gliomas can be reli-
ably assessed using multi- parametric MRI, the greater spatial 
and temporal variability of EGFR amplification complicates its 
imaging- based characterization.
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