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Abstract

Quantitative magnetic resonance imaging (qMRI) denotes MRI methods that estimate physical
tissue parameters in units, rather than relative signal. Typical readouts include T1/T2 relax-
ation (ms; or R1/R2 in s−1), proton density (%), diffusion metrics (e.g., ADC in mm2/s, FA),
magnetic susceptibility (χ, ppm), perfusion (e.g., CBF in mL/100 g/min; rCBV; Ktrans), and
regional brain volumes (cm3; cortical thickness). This review synthesizes brain qMRI across
T1/T2 relaxometry, myelin/MT (MWF, MTR/MTsat/qMT), diffusion (DWI/DTI/DKI/IVIM),
susceptibility imaging (SWI/QSM), perfusion (DSC/DCE/ASL), and volumetry using a uni-
fied framework: physics and signal model, acquisition and key parameters, outputs and
units, validation/repeatability, clinical applications, limitations, and future directions. Our
scope is the adult brain in neurodegenerative, neuro-inflammatory, neuro-oncologic, and
cerebrovascular disease. Representative utilities include tracking demyelination and repair
(T1, MWF/MTsat), grading and therapy monitoring in gliomas (rCBV, Ktrans), penumbra and
tissue-at-risk assessment (DWI/DKI/ASL), iron-related pathology (QSM), and early dementia
diagnosis with normative volumetry. Persistent barriers to routine adoption are protocol
standardization, vendor-neutral post-processing/QA, phantom-based and multicenter re-
peatability, and clinically validated cut-offs. We highlight consensus efforts and AI-assisted
pipelines, and outline opportunities for multiparametric integration of complementary qMRI
biomarkers. As methodological convergence and clinical validation mature, qMRI is poised to
complement conventional MRI as a cornerstone of precision neuroimaging.

Keywords: quantitative MRI; neuroimaging; imaging biomarkers; diffusion MRI; perfusion
imaging; brain volumetry

1. Introduction
Conventional magnetic resonance imaging (MRI) refers to the imaging techniques

routinely used in clinical practice to describe pathology by analyzing contrast differences
in weighted images [1–5]. These images predominantly, though not exclusively, reflect
biophysical contrast mechanisms, such as T1- and T2-weighted scans [6–10].

Over the past decade, significant advancements have occurred in the field of MRI, includ-
ing innovations in hardware, pulse sequence design, image reconstruction techniques, and
data analysis algorithms [11–15]. These technological improvements have shifted attention
toward quantitative MRI (qMRI), which aims to derive objective metrics from MR images that
are directly related to specific physical or biophysical tissue properties [13,16–18].
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Quantitative imaging provides insight into biological processes by measuring parame-
ters that may serve as biomarkers, rather than relying solely on relative signal intensities
with arbitrary units, as in routine diagnostic imaging [13,19–21]. Thus, qMRI techniques
offer superior sensitivity to subtle abnormalities in both lesions and normal-appearing
tissue and can improve specificity by identifying the nature of tissue damage [2,22–24].

However, for quantitative biomarkers to be reliable and clinically useful, the acqui-
sition and analysis protocols must be standardized. Kessler et al. defined a quantitative
imaging biomarker (QIB) as “an objective characteristic derived from an in vivo image
measured on a ratio or interval scale, serving as an indicator of normal biological processes,
pathological processes, or response to therapeutic intervention.” Unlike conventional imag-
ing, where sensitivity and specificity describe diagnostic power, QIBs must demonstrate
technical performance in terms of bias (accuracy), precision (variability), and linearity to
ensure reliable use in diagnosis, monitoring, and prognosis [3,25–29].

Currently, qMRI is not widely adopted in clinical practice because most techniques
have not reached clinical maturity [16,30–32]. A qMRI method is considered clinically
mature when it can be implemented on standard clinical scanners without the need for
custom pulse sequences, with validated software for data analysis and interpretation, and
established diagnostic cut-off values [33–36].

2. Scope and Organization of the Review
This review focuses on adult brain quantitative MRI (qMRI) across neurodegenera-

tive, neuro-inflammatory, neuro-oncologic, and cerebrovascular conditions. To facilitate
navigation and comparability, each modality is presented using a substantially uniform
framework—including Physics and signal model, Acquisition and key parameters, Outputs
and units, Validation and repeatability, Clinical applications, Limitations and pitfalls, Future
directions—in the following fixed order: T1 relaxometry (R1), T2 relaxometry and myelin-
water/magnetization transfer, diffusion (DWI/DTI/DKI), susceptibility imaging (SWI/QSM),
perfusion (DSC/DCE/ASL), and volumetry. Topics such as cortical plasticity/learning-related
plasticity, pediatric/developmental trajectories, and rehabilitation-induced remodeling are
acknowledged but fall outside the primary scope of this article. This review focuses on
imaging-based quantitative MRI modalities; MR spectroscopy is outside the scope and there-
fore not covered. A disease-centric summary linking major qMRI biomarkers to specific
clinical conditions is provided in Table 1. Alongside acquisition and post-processing har-
monization, we emphasize standardization of output visualization—including units, scale
limits, report layout, and color conventions—so that T1/T2, QSM, rCBV/Ktrans, ASL-CBF,
and volumetric outputs can be consistently interpreted across scanners and sites [31,32].

Table 1. Disease-centric mapping of qMRI biomarkers (adult brain) (p.u., “percentage units,” denotes
software-specific unitless MTsat scale) [23,37,38].

Disease/Condition Most Relevant qMRI Biomarkers (Examples) Typical Readouts (Units) Representative Uses

Multiple sclerosis (MS) Myelin/MT (MWF, MTsat), T1/R1, DTI (FA/RD),
QSM (rim-positive), volumetry (GM/thal)

MWF (%), MTsat (p.u.), T1 (ms), R1
(s−1), FA/RD (–/mm2/s), χ (ppm),

volumes (cm3)

Demyelination vs. repair; lesion
staging; disability risk; progressive

disease monitoring

Dementia/AD Volumetry (hippocampus/cortex), ASL-CBF,
QSM (deep nuclei iron)

cm3; cortical thickness (mm); CBF
(mL/100 g/min); χ (ppm)

Early diagnosis; subtype patterns;
progression tracking

Neuro-oncology
(gliomas/metastases)

DSC rCBV, DCE Ktrans/Ve, ADC, QSM
(calcification vs. hemorrhage)

rCBV (ratio), Ktrans (min−1), Ve (–),
ADC (mm2/s), χ (ppm)

Grading; pseudo-progression vs.
progression; early response

(SRS/anti-angiogenic)

Ischemic stroke DWI/ADC, DKI MK, ASL-CBF, DSC delay/MTT ADC (mm2/s); MK (–); CBF
(mL/100 g/min); MTT (s)

Core/penumbra; tissue-at-risk
delineation

TBI SWI/QSM (microbleeds), DTI
(FA/RD), volumetry χ (ppm); FA/RD; cm3 Diffuse axonal injury;

microhemorrhage burden; prognosis

Spinal cord/DCM DTI (FA/MD), MT/MTsat, MWF FA/MD; MTsat; MWF (%) Subclinical degeneration; severity;
outcome prediction
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3. Search Strategy and Selection Criteria
We searched PubMed/MEDLINE, Scopus, and Web of Science for studies pub-

lished 1 January 2000–1 October 2025. Queries combined “quantitative MRI/qMRI”
with modality terms (T1/T2 relaxometry; MT/MWF; diffusion—DWI/DTI/DKI/IVIM;
susceptibility—SWI/QSM; perfusion—DSC/DCE/ASL; volumetry) and clinical contexts
(multiple sclerosis, dementia/Alzheimer’s, stroke, glioma). Inclusion: peer-reviewed hu-
man brain studies, consensus/standards, methodological/validation (including phantoms),
and systematic reviews/meta-analyses; adult populations unless the modality is inherently
developmental. Exclusion: non-quantitative MRI, non-brain works unless informing stan-
dardization, single-case reports without quantitative endpoints, and non-English. Records
were deduplicated, screened by title/abstract, and full texts assessed; reference lists were
hand-searched. When overlaps occurred, we prioritized consensus/validation and mul-
ticenter/multivendor reproducibility, then representative clinical studies. Last update:
1 October 2025.

4. Biological and Clinical Ground Truth for qMRI Validation
Beyond technical performance (bias, precision, linearity), translation requires linking

qMRI metrics to biological and clinical ground truth. Biological validation includes post-
mortem MRI–histology co-registration (e.g., myelin/iron stains vs. R1/MWF/QSM), biopsy-
level or segment-wise correlations, and—where tissue is not feasible—alignment with orthogo-
nal biomarkers (e.g., PET, CSF) [39,40]. Clinical validation spans cross-sectional discrimination,
longitudinal responsiveness (including minimal clinically important differences, MCID), and
prognostic/predictive value for outcomes (disability, relapse, survival). These studies must
be underpinned by test–retest, Bland–Altman, and multicenter/multivendor repeatability,
ideally following consensus profiles (e.g., QIBA), and supported by physical/digital phantoms
and open protocols for pre-registration and power planning.

5. Visualization and Interpretability of qMRI Maps
Clinical adoption of qMRI depends not only on technical performance but also on

how metrics are visualized and read. We therefore recommend: (i) perceptually uni-
form colormaps with explicit units (e.g., T1/T2 in ms, χ in ppm, ADC in mm2/s, CBF in
mL/100 g/min); (ii) consistent scale limits across timepoints and patients to enable longi-
tudinal and cross-subject comparisons; (iii) anatomical overlays and linked multi-panel
views (e.g., structural T1 with parametric map) for spatial context; (iv) reference distribu-
tions (e.g., regional histograms/z-scores) for interpretability; (v) optional uncertainty or
quality control maps (fit residuals, SNR, motion metrics) to flag unreliable voxels. These
practices complement standardized acquisition and processing and are intended to lower
the threshold for radiologist adoption.

A cross-modality summary of acquisition requirements, approximate scan times,
primary outputs (with units), strengths, and common limitations is provided in Table 2.

Table 2. qMRI modalities at a glance (brain). Typical acquisitions/readouts, approximate clinical
scan times, primary outputs (units), strengths, and common limitations for the modalities reviewed.
Values indicate typical clinical ranges and may vary with vendor/protocols.

Modality Typical Acquisition Approx. Time Primary Outputs
(Units) Strengths Common Limitations

T1 relaxometry IR/MP2RAGE; VFA
(B1-corrected); SyMRI ~4–8 min T1 (ms), R1 (s−1)

Myelin/sclerosis
sensitivity;

whole-brain maps

B1/MT bias;
sequence heterogeneity

T2 relaxometry/MWF MESE/GRASE;
mcDESPOT ~4–8 min T2 (ms), MWF (%) Myelin-

related specificity

Stimulated echoes;
ill-posed

multi-component fits
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Table 2. Cont.

Modality Typical Acquisition Approx. Time Primary Outputs
(Units) Strengths Common Limitations

MT (MTR/MTsat/qMT) GRE with MT prep;
multi-parametric MT ~4–7 min MTR (p.u.), MTsat (p.u.),

qMT params
Myelin/macromolecule

sensitivity
B1 dependence;

vendor diversity

Diffusion
(DWI/DTI/DKI/NODDI)

EPI with ≥30 dirs;
multi-b shells ~3–10 min ADC/FA/MD;

MK/NDI/ODI
Microstructure;
tractography

EPI distortions;
motion/eddy; model

dependence

SWI/QSM 3D multi-echo GRE ~4–7 min SWI (qual.), χ (ppm) Veins/iron; calcification
vs. hemorrhage

Ill-posed inversion;
regularization trade-offs

Perfusion (DSC/DCE/ASL) T2* EPI (DSC); 3D GRE
(DCE); pCASL

~2–3/5–15/4–6
min

rCBV/rCBF/MTT;
Ktrans/Ve/Vp/Kep;

CBF/ATT

Vascular den-
sity/permeability/flow

Leakage/AIF/ATT;
SNR; model variance

Volumetry 3D T1 (MPRAGE/SPGR) ~4–6 min Regional volumes (cm3),
thickness (mm)

Objective
atrophy metrics

6. Positioning Relative to Broader qMRI Reviews
Cross-domain qMRI surveys span multiple organ systems and provide broad method-

ological overviews. In contrast, our review is domain-focused on the adult brain and
integrates method physics, validation/repeatability, standardized outputs, and clinical use-
cases (neurodegenerative, neuro-inflammatory, neuro-oncologic, cerebrovascular), aiming
at near-term clinical translation. We view these approaches as complementary: cross-
domain breadth provides context, whereas domain-specific depth is required to specify
clinically actionable pipelines.

7. T1 Relaxometry
7.1. Physics and Signal Model

T1 relaxometry measures the recovery of longitudinal magnetization of excited spins in
tissue, providing quantitative T1 relaxation time values. These values are sensitive to both
microstructural and macrostructural tissue integrity, particularly myelin, axonal density,
and water content [1]. In practice, after an inversion or saturation pulse, the longitudinal
magnetization returns toward equilibrium with a time constant T1; most clinical methods
assume a mono-exponential recovery [41–45]. Apparent T1-relaxation time can be biased by
B1 inhomogeneity, incomplete inversion/saturation, and magnetization transfer (MT), so
flip-angle (B1) correction and MT-aware processing are recommended; inversion-recovery
approaches tend to be more accurate, whereas variable-flip-angle methods are faster but
more B1-sensitive [41–43,46,47]. Exchange between free-water and myelin-bound pools and
partial volume effects further explain deviations from ideal behavior [48–53]; for reporting,
some studies also provide R1 (=1/T1) alongside T1-relaxation time. In multiple sclerosis
(MS), several studies have demonstrated that T1-relaxation time correlates strongly with
both myelin and axon content in normal-appearing white matter (NAWM) and white
matter lesions [1,54].

In white matter, exchange between free-water and myelin-bound pools leads to non-
mono-exponential longitudinal recovery; routine clinical fits are therefore mono-exponential
approximations that yield an apparent T1 dominated by the free-water pool and influenced by
MT and partial volume. This should be considered when comparing across sequences/sites;
where feasible, IR-based methods (with B1 and MT-aware corrections) and complementary
metrics (R1, MTsat) can improve interpretability and reduce bias [41–47].

7.2. Acquisition and Key Parameters

From a technical standpoint, T1 mapping can be achieved using different acquisition
strategies, including inversion recovery (IR), saturation recovery (SR), variable flip angle
(VFA), and hybrid methods such as Look-Locker, MOLLI, or SAPPHIRE. Each technique
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offers specific trade-offs between scan time, accuracy, and sensitivity to artifacts. For
example, IR-based methods provide gold-standard accuracy but are time-consuming, while
VFA methods are fast but highly sensitive to B1 inhomogeneity. Accurate T1 quantification
also depends on correcting for MT effects, B1 field variations (e.g., actual flip-angle imaging
or Bloch–Siegert shift), and partial volume contamination in cortical or small white matter
regions [46,47].

7.3. Outputs and Units

Various quantitative biomarkers can be derived from T1 relaxometry. In addition to
absolute T1-relaxation time values, metrics such as:

• R1 = 1/T1, a linear proxy for myelin content,
• T1-normalized intensity, typically normalized to CSF or gray matter for inter-

subject comparison,
• Histogram-based features (mean, standard deviation, skewness, kurtosis) of T1 values

in NAWM,
• ∆T1 values for longitudinal lesion monitoring,

have been proposed as potential biomarkers for disease activity, progression, or
treatment response [41–47]. Several studies have shown that T1 histogram metrics in
NAWM predict disability progression and correlate with cognitive impairment in MS [54].
Representative whole-brain T1 and R1 maps—and the corresponding T2/R2 maps with
synthetic contrast-weighted images—are shown in Figure 1.

 

Figure 1. Quantitative parametric maps and synthetic contrasts from a single qMRI acquisition.
Representative brain slice showing T1 map (ms), R1 map (s−1; R1 = 1/T1), T2 map (ms), and R2 map
(s−1; R2 = 1/T2) (left and middle panels), alongside synthetic contrast–weighted images reconstructed
from the quantitative data (right panels; example T1 + T2-weighted and T2-weighted). As expected,
CSF exhibits long T1/T2 (high values on T1/T2 maps; correspondingly low R1/R2), white matter
shows shorter T1/T2 (higher R1/R2), and gray matter is intermediate; iron-rich deep nuclei tend to
have elevated R2. These maps enable region-wise statistics (e.g., histograms), longitudinal monitoring
(∆T1/∆T2/R1/R2), and on-the-fly synthesis of conventional contrasts by selecting TE/TR/TI in
post-processing. Color scales are arbitrary but consistent across maps for visualization.
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7.4. Validation and Repeatability

Nonetheless, promising approaches have emerged. One such technique is the MP2RAGE
sequence (Magnetization Prepared 2 Rapid Acquisition Gradient Echoes), which enables highly
reproducible T1-relaxation time maps with a coefficient of variation as low as 3% [41–45].
MP2RAGE has been validated in phantom and multicenter studies using 3T MRI scanners,
demonstrating excellent intra- and inter-scanner repeatability [30,55–57]. An alternative and
increasingly popular method is synthetic MRI (SyMRI), which simultaneously acquires quanti-
tative maps of T1, T2, and proton density (PD), along with a B1 correction map. These maps
(R1, R2, PD) represent intrinsic MR tissue properties and can be used to synthetically generate
multiple contrast-weighted images from a single ~6 min scan, with flexible adjustment of
echo time (TE), repetition time (TR), and inversion time (TI) [6,56–60]. Reproducibility across
scanners and sites remains limited, particularly in multivendor environments [45,61–63].

7.5. Clinical Applications

Prolonged T1-relaxation time is associated with demyelination, axonal loss, and iron
depletion, reflecting more destructive tissue changes and extracellular water accumulation.
Conversely, T1 shortening or stabilization over time may indicate reparative processes
such as remyelination or gliosis. As such, quantitative T1 metrics can act as surrogate
biomarkers to distinguish between active, chronic, or reparative lesion stages.

T1 relaxometry has significant relevance in developmental neuroimaging. During CNS
myelination—most rapid in the first two years of life and continuing through adolescence—
T1 and T2 relaxation times decrease, while anisotropy and MT metrics increase. This
maturation process reflects structural reorganization and water compartmentalization in
white matter, making T1 mapping a potential quantitative biomarker in pediatric neurol-
ogy. T1-derived growth curves have been used to assess normal brain maturation and
detect early deviations in neurodevelopmental disorders, such as hypoxic–ischemic injury,
metabolic encephalopathies, or autism spectrum disorder [64–66].

7.6. Multimodal Integration

T1 relaxometry also benefits from multimodal integration. When combined with diffu-
sion tensor imaging (DTI), magnetization transfer imaging (MTI), or quantitative susceptibility
mapping (QSM), T1 mapping can improve tissue characterization by offering complementary
information. For instance, the combination of R1 and MTR better distinguishes between
demyelination and inflammation, while integration with QSM helps characterize iron-related
changes and microstructural damage. To coherently fuse R1 with MTR/MTsat and diffu-
sion/QSM metrics at the patient level, AI-driven post-processing (co-registration, denoising,
outlier-aware harmonization, and composite visualization) is increasingly necessary [67,68].

7.7. Limitations and Pitfalls

Despite its diagnostic potential, T1 relaxometry is not yet widely implemented in
routine MS clinical protocols. Several technical and methodological challenges persist:

1. Multiple competing acquisition methods exist, each with varying sensitivity to con-
founding factors such as magnetization transfer (MT), B1 inhomogeneities, diffusion,
and T2 effects [41–43];

2. No consensus has been reached on the optimal sequence for accurate in vivo T1
mapping [44];

3. T1 relaxation in white matter is known to follow bi-exponential behavior due to
magnetization exchange with myelin-bound protons, while most available methods
assume mono-exponential decay [45];
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4. Reproducibility across scanners and sites remains limited, particularly in multi-vendor
environments [61–63,69].

8. T2 Relaxometry and Magnetization Transfer
8.1. Physics and Signal Model

Quantitative T2 relaxometry (qT2) estimates tissue water content by fitting a mono-
exponential signal decay, capturing contributions from both intracellular/extracellular
water and myelin-associated water. More advanced models, such as multi-component
T2 relaxometry, allow the separation of distinct water pools [70–74]—most notably the
myelin water fraction (MWF), which quantifies the proportion of water trapped between
myelin bilayers and serves as a surrogate marker of myelin integrity. These models rely on
multi-echo sequences and fitting algorithms such as non-negative least squares (NNLS) or
Bayesian inference to resolve the fast-decaying myelin water component (typically <40 ms)
from intra/extracellular water (70–90 ms) and cerebrospinal fluid (>200 ms) [70–74]. In
practice, the mono-exponential assumption is an approximation: refocusing flip-angle
imperfections and stimulated-echo pathways, B1/B0 inhomogeneity, and echo spacing
influence the observed decay [46,47]. Accurate qT2 therefore benefits from multi-echo
spin-echo (or GRASE) acquisitions with refocusing control and, when needed, fat suppres-
sion, plus forward models (e.g., EPG-based) that account for slice profile and stimulated
echoes [46,47,70–74]. For multi-component qT2, the inversion is ill-posed and requires
regularization/priors (as in NNLS/Bayesian approaches); MWF estimates also depend
on noise floor, partial volume, and potential exchange between pools [48,50–53,70–74].
Documenting TE train length, number of echoes, and echo spacing alongside T2/MWF
outputs improves reproducibility and interpretability [70–74].

8.2. Acquisition and Key Parameters

Several acquisition strategies have been developed to estimate MWF in clinically feasible
timescales, including multi-echo spin-echo, gradient-and-spin-echo (GRASE), and multi-
component DESPOT (mcDESPOT) [70–77]. Recent advancements, such as compressed sensing
and parallel imaging, have reduced acquisition times to under 6 min while maintaining
accuracy [46,47]. Furthermore, histogram analysis of qT2 values can provide additional
microstructural insight by capturing tissue heterogeneity and subtle demyelination through
changes in distribution metrics such as standard deviation or skewness [70–74,78,79].

8.3. Magnetization Transfer (MT) Framework

Magnetization transfer (MT) imaging complements qT2 by selectively saturating
protons bound to macromolecules (such as myelin), enabling the derivation of semi-
quantitative metrics like the magnetization transfer ratio (MTR) and MT saturation (MTsat).
While MTR is straightforward to compute, it is influenced by acquisition parameters and
B1 field inhomogeneity. MTsat offers improved specificity by accounting for T1 depen-
dence [52,80] and flip-angle variability. More advanced quantitative MT (qMT) models
represent tissue as a two-pool system [51–53] (free and bound proton pools), enabling the
estimation of additional parameters such as the macromolecular pool fraction (f), exchange
rate (k), and T2 of the bound pool [48–50].

8.4. Clinical Applications

In multiple sclerosis (MS), MTR abnormalities have been detected in normal-appearing
white matter (NAWM) prior to the appearance of gadolinium-enhancing lesions. MTR has
also shown dynamic longitudinal changes that correspond to demyelination and remyelina-
tion, especially in subpial cortical regions and the spinal cord of patients with progressive
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disease. Lower MTR values have been observed in cervical cord regions in both relapsing-
remitting and primary progressive MS, with progressive decline over time [59,79]. Similar
trends have been observed with MTsat and MWF, which have shown greater specificity for
myelin loss and potential for detecting reparative changes. Several longitudinal studies
have demonstrated increases in MWF or MTsat in response to treatment, suggesting their
potential as biomarkers of remyelination and tissue repair [81,82].

8.5. Validation and Repeatability

Although qT2, MWF, and MT imaging are not yet part of routine clinical protocols,
recent technical advances have enabled acquisition of qT2 and MWF maps in 3–6 min,
which may be compatible with clinical workflow. Preliminary fast-acquisition protocols for
spinal cord MWF mapping have also emerged. However, clinical implementation remains
limited, particularly for MTR reconstruction, due to the lack of standardized and validated
sequences across vendors. In addition, partial volume effects and variability due to scanner
hardware and field strength continue to challenge widespread adoption [75–77].

8.6. Multimodal Integration and Future Directions

As with other quantitative imaging biomarkers—such as diffusion (DWI) or perfusion
imaging (DCE)—the future adoption of qT2 and MT metrics in personalized medicine will
depend on demonstrating robust repeatability and reproducibility, especially in multicenter
and longitudinal studies [16,30]. Biomarkers derived from these modalities—such as
MWF, MTsat, and qMT parameters—are currently under evaluation in several multicenter
initiatives [75]. Their integration with other quantitative measures, such as diffusion tensor
imaging (DTI) or quantitative susceptibility mapping (QSM), may provide complementary
insights into demyelination, axonal injury, and inflammation. In addition, the use of MWF
in pediatric imaging shows promise for tracking myelination during development and
identifying early neurodevelopmental disorders [77].

9. Diffusion Imaging (DWI, DTI, DKI)
9.1. Physics and Signal Model

Diffusion-weighted imaging (DWI) is a cornerstone of modern clinical MRI, partic-
ularly essential for the early diagnosis of acute ischemic stroke, and widely used in the
assessment of brain tumors and intracranial infections. It captures the random Brown-
ian motion of water molecules, which is hindered by biological structures such as cell
membranes and organelles. The apparent diffusion coefficient (ADC), calculated from a
mono-exponential model, quantifies average water diffusivity in tissue and is reported in
mm2/s [1,83]. In practice, diffusion weighting is encoded with pulsed gradient spin-echo
(Stejskal–Tanner–type) preparations; the degree of weighting is governed by the “b-value,”
which increases with gradient amplitude, duration, and separation. Under the Gaussian
(mono-exponential) assumption, higher b-values produce greater signal attenuation and
the ADC summarizes ensemble-averaged diffusivity; deviations from mono-exponential
behavior at higher b-values reflect microstructural restrictions and heterogeneity [84].

Diffusion tensor imaging (DTI) expands upon DWI by adding directional information,
modeling diffusion as an ellipsoid rather than a sphere. This captures anisotropic diffu-
sion, especially prominent in white matter tracts where water movement is constrained
along axonal pathways. In tensor terms, diffusion is represented by a 3 × 3 symmetric
positive-definite matrix whose eigenvalues/eigenvectors encode principal diffusivities and
orientations; rotationally invariant scalars (e.g., FA, MD, AD, RD) are derived from these
eigenvalues [3,4]. Accurate tensor estimation requires sufficient unique gradient direc-
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tions and appropriate b-values [55,85], alongside correction for motion and eddy-current
distortions and mitigation of susceptibility-induced EPI warping [83,84].

Diffusion kurtosis imaging (DKI) is an extension of DTI that accounts for non-Gaussian
diffusion, which arises due to complex tissue environments [86]. The apparent kurtosis
coefficient (AKC) quantifies this deviation, offering increased sensitivity to microstructural
complexity and heterogeneity [87,88]—especially relevant in stroke, tumors, and neurode-
generation [83]. Practically, reliable DKI estimation uses multiple b-values (often up to
~2000–2500 s/mm2) and dense angular sampling to stabilize the higher-order fit [89–91].

Common confounders across DWI/DTI/DKI include bulk motion and physiological
pulsatility, eddy currents, gradient nonlinearity, susceptibility-induced EPI distortions,
Gibbs ringing, Rician noise-floor bias, CSF partial volume, and B0/B1 inhomogeneity. Stan-
dard remedies include motion/eddy correction, distortion correction (e.g., field-mapping
or reversed-phase encoding), denoising and ringing suppression, fat suppression and
shimming, and careful ROI/segmentation to minimize partial volume effects [91].

9.2. Acquisition and Key Parameters

DWI typically uses three orthogonal diffusion directions and fast 2D multi-slice acqui-
sitions. Recent advances include the use of high b-values (e.g., b = 2000–3000 s/mm2) to
improve sensitivity to restricted diffusion, especially in highly cellular tumors and acute
stroke. However, at these values, diffusion decay becomes non-monoexponential, moti-
vating the use of higher-order models such as DKI or IVIM. Multi-band accelerated EPI
and reduced field-of-view DWI are increasingly used to reduce susceptibility artifacts and
improve resolution, especially in spinal cord imaging [55].

For DTI, advanced acquisition protocols recommend ≥30 diffusion directions for
robust tensor estimation, and newer approaches like high angular resolution diffusion
imaging (HARDI) are being explored to mitigate the limitations of the single-tensor model
in regions with crossing fibers. While HARDI improves depiction of complex fiber config-
urations, it entails longer acquisitions and lower SNR at higher b-values [85]; estimates
depend on b-value/shell design and response-function assumptions (for deconvolution),
and remain sensitive to motion, eddy currents, and susceptibility-induced EPI distor-
tions [1,83,84]. Orientation distribution functions (ODFs) reflect orientation rather than
specific microstructural parameters [85]; partial volume with CSF, gradient nonlinearity,
and lack of standardized pipelines further limit cross-site comparability [16,30]. Clinical
interpretation should therefore emphasize robust scalar derivatives and quality-assured
tractography rather than over-interpreting model-specific parameters [3,4,55].

Compared to DTI, DKI requires higher b-values (up to 2500 s/mm2) and more diffu-
sion directions, but provides better differentiation of tissue types in gray matter, tumors,
and ischemic penumbra. In stroke, MK often exceeds the spatial extent of the DWI lesion
and may capture tissue at risk [1,92]. In neuro-oncology, increased MK and RK have been
correlated with tumor grade, cellularity, and microenvironmental heterogeneity [88,93,94].

9.3. Outputs and Units

From DTI, the principal rotationally invariant scalar metrics include:

• Fractional anisotropy (FA): degree of diffusion directionality,
• Mean diffusivity (MD): average diffusivity, equivalent to ADC but derived from

tensor data,
• Axial diffusivity (AD): diffusion parallel to axons,
• Radial diffusivity (RD): diffusion perpendicular to axons [3,4].
• From DKI, key parameters include:
• Mean kurtosis (MK): overall measure of tissue complexity,
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• Axial kurtosis (AK): non-Gaussianity along the primary fiber axis,
• Radial kurtosis (RK): kurtosis perpendicular to axonal direction, sensitive to myelin integrity.
• In addition, NODDI provides two parameters:
• Neurite density index (NDI): reflects axonal and dendritic density,
• Orientation dispersion index (ODI): measures angular variation in neurites.
• In neuro-oncology, ADC has proven valuable in:
• Grading gliomas (high vs. low grade),
• Distinguishing gliomas from metastases,
• Differentiating tumor progression from pseudo-progression, and
• Predicting IDH mutation status and survival [9,95,96].

Although ADC is influenced by acquisition protocol and tumor heterogeneity, mul-
tiple meta-analyses confirm its utility as a quantitative imaging biomarker. The QIBA
diffusion profile suggests that longitudinal ADC changes ≥11% reflect true biological
variation [10,16,97,98].

9.4. Clinical Applications

DTI is widely used to assess white matter integrity in conditions such as multiple
sclerosis (MS), stroke, spinal cord injury (SCI), and brain tumors. In MS, DTI-derived
abnormalities—such as decreased FA and increased RD—have been associated with de-
myelination, axonal injury, and cognitive or physical disability. Longitudinal DTI studies
have demonstrated microstructural changes in both lesions and normal-appearing white
matter that correlate with clinical progression [11,22,99–104].

In SCI, DTI metrics can detect tissue damage at the lesion site and in adjacent spinal cord
segments. Acute SCI shows decreased FA and AD and increased RD, suggesting both axonal
and myelin damage. These metrics correlate with functional outcomes and are sensitive to
degeneration above and below the lesion, often not visible on conventional MRI [100,105,106].

In degenerative cervical myelopathy (DCM), studies show that reduced FA and in-
creased MD at the stenosis level—and even rostrally—correlate with subclinical degen-
eration and functional impairment. These changes are detectable even in asymptomatic
individuals with cord compression [107–111].

In neuro-oncology, patient-specific DTI tractography complements volumetric lesion
segmentation by depicting displacement or encasement of eloquent white-matter pathways
relative to the tumor, informing risk assessment and surgical planning (Figure 2).

 

Figure 2. Multimodal integration of diffusion tractography and volumetric segmentation on structural
MRI (presurgical planning example). (Left): Streamline tractography of major perilesional white-
matter pathways (color-coded by local orientation) overlaid on a high-resolution T1-weighted image,
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illustrating the spatial relationship between fibers and the abnormality. (Center/right): Lesion/target
segmentation mask (white) co-registered to the same T1 reference and displayed in axial, coro-
nal, and sagittal planes. This combined view supports risk assessment and trajectory planning
by showing fiber displacement/encasement relative to the lesion while providing volumetric mea-
surements for longitudinal follow-up. Color legend: tractography streamlines are RGB direction-
encoded—red = left–right, green = anterior–posterior, blue = superior–inferior; the anatomical back-
ground is grayscale; the lesion/target mask is white.

9.5. Validation and Repeatability

Standardization, repeatability, and validation of diffusion metrics are crucial for clinical
translation and integration into personalized medicine and treatment monitoring. The
QIBA diffusion profile suggests that longitudinal ADC changes ≥11% reflect true biological
variation [10,16,97,98].

9.6. Emerging Techniques and Integration

Newer diffusion models such as neurite orientation dispersion and density imaging
(NODDI) and vascular, extracellular, and restricted diffusion for cytometry in tumors
(VERDICTs) aim to disentangle complex microstructural compartments (e.g., intracellular,
extracellular, and vascular spaces). These models improve tissue specificity but currently
remain within research settings [55,85]. In brain development and neurodegeneration,
NODDI-derived metrics have shown greater sensitivity than DTI to changes in neurite
architecture and may serve as future imaging biomarkers.

Advanced spinal DTI techniques incorporating reduced-FOV EPI and motion correc-
tion have improved the reliability of these measures.

9.7. Summary and Outlook

Diffusion MRI techniques provide non-invasive biomarkers of tissue microstructure,
applicable across a wide range of neurological disorders. While DWI and DTI are clinically
established, DKI and emerging compartmental models offer enhanced sensitivity and
specificity, particularly in MS, oncology, and spinal cord pathology.

10. Quantitative Susceptibility Mapping (QSM) and
Susceptibility-Weighted Imaging (SWI)
10.1. Physics and Signal Model

Magnetic susceptibility reflects the ability of a material to become magnetized in
the presence of an external magnetic field [112]. This property has become a powerful
endogenous source of tissue contrast in MRI, particularly through Susceptibility-Weighted
Imaging (SWI) and Quantitative Susceptibility Mapping (QSM). In gradient-echo (GRE)
acquisitions, microscopic susceptibility differences perturb the local magnetic field and
produce phase shifts that grow with echo time; SWI exploits this by combining magnitude
with high-pass–filtered phase (typically at longer TEs) to enhance venous structures, mi-
crobleeds, iron, and calcifications, yielding a semi-quantitative contrast sensitive to local
susceptibility variations.

QSM, in contrast to SWI, reconstructs quantitative, voxel-wise maps of tissue magnetic
susceptibility from the phase data of GRE sequences [113–115]. The process involves:
(i) estimating the local magnetic field perturbation from the phase images; (ii) removing
background fields (e.g., from air–tissue interfaces); (iii) solving the inverse problem to
deconvolve the field shifts with a dipole kernel, allowing the direct computation of tissue
susceptibility. These steps are implemented using pipelines that include phase unwrapping,
background field removal (e.g., SHARP, RESHARP, or PDF), and dipole inversion with
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algorithms such as TKD, iLSQR, or MEDI. Regularization techniques, like Morphology
Enabled Dipole Inversion (MEDI), are crucial to solving the ill-posed dipole inversion
problem [116]. In practice, multi-echo 3D GRE improves SNR and phase linearity; careful
masking, echo combination, and handling of air–tissue interfaces help minimize artifacts.
QSM yields tissue-specific values in ppm (paramagnetic vs. diamagnetic), whereas SWI
provides a highly sensitive but semi-quantitative visualization.

SWI emphasizes susceptibility-related blooming on the magnitude image, whereas
QSM reconstructs voxel-wise χ (ppm) with reduced blooming and improved tissue speci-
ficity (Figure 3).

 

Figure 3. SWI magnitude versus QSM from the same GRE acquisition. (Left): Susceptibility-
weighted imaging (SWI) magnitude image (long-TE GRE) highlighting venous structures and focal
paramagnetic deposits as hypointense foci due to susceptibility-induced blooming. (Right): Quanti-
tative Susceptibility Mapping (QSM) reconstructed from the GRE phase (after phase unwrapping,
background-field removal, and dipole inversion), providing voxel-wise χ values (ppm) with reduced
blooming and improved tissue specificity. Paramagnetic sources (e.g., veins/iron-rich regions) ap-
pear with positive χ, whereas diamagnetic sources (e.g., calcium) would show negative χ, enabling
differentiation of calcification from hemorrhage and facilitating longitudinal quantification.

10.2. Acquisition and Key Parameters

SWI is a gradient-echo (GRE)-based technique that combines magnitude and filtered
phase images—typically using long echo times—to enhance contrast arising from differ-
ences in local magnetic susceptibility [9,69]. The resulting susceptibility-weighted images,
often visualized through minimum intensity projections (mIPs), are particularly sensitive
to paramagnetic substances such as deoxyhemoglobin, hemosiderin, and ferritin, enabling
improved visualization of venous vasculature, microhemorrhages, calcifications, and iron
deposits in the brain [2,99,110].

QSM acquisition typically employs 3D multi-echo GRE sequences to enhance SNR and
improve phase linearity over time. This yields quantitative measures of paramagnetic (e.g.,
iron, deoxyhemoglobin) and diamagnetic (e.g., calcium, myelin) tissue components [117].

10.3. Outputs and Units

A key distinction is that SWI is a semi-quantitative visualization technique, while QSM
provides numerical, tissue-specific metrics expressed in parts per million (ppm). Compared
to T2*-weighted imaging, QSM offers more accurate tissue characterization by reducing
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blooming artifacts and geometric distortions [48,50,117]. This makes QSM more suitable
for longitudinal tracking and cross-subject comparisons [118].

10.4. Clinical Applications

Multiple Sclerosis (MS). QSM has shown superior sensitivity in detecting early and
chronic MS lesions. Increased susceptibility values in active lesions correspond to myelin
breakdown and iron accumulation within macrophages. Chronic rim-positive lesions—
defined by a hyperintense peripheral rim on QSM—have been associated with slowly
expanding lesions and smoldering inflammation, which correlate with disease progression
and poor prognosis [119,120]. When combined with relaxation mapping (e.g., T1, T2) or
magnetization transfer metrics (e.g., MTsat), QSM allows improved differentiation between
iron-related pathology and myelin loss [117,121].

Traumatic Brain Injury (TBI). SWI and QSM outperform diffusion imaging in detecting
microhemorrhages and small-vessel injuries, particularly in diffuse axonal injury. QSM has
also demonstrated greater diagnostic sensitivity than fractional anisotropy in mild TBI by
capturing tissue damage not limited to axonal membranes but also involving iron-related
pathology and myelin integrity [117,122–125].

Cerebral Microbleeds and Vascular Pathologies. SWI and QSM are considered gold stan-
dards for visualizing cerebral microbleeds (CMBs) due to their high sensitivity to hemosiderin.
QSM enables artifact-free quantification of lesion burden and allows for the distinction be-
tween hemorrhage (paramagnetic) and calcification (diamagnetic) [126,127], which appear
similarly hypointense on conventional GRE images. Moreover, QSM can estimate venous
oxygen saturation and oxygen extraction fraction (OEF), with potential application in ischemic
stroke, hypoperfusion, and arteriovenous malformations [83,117,128].

Neuro-Oncology. In brain tumors, QSM improves the ability to distinguish hem-
orrhagic deposits from calcifications [129] and may aid in characterizing intratumoral
vasculature and neovascularization. Elevated susceptibility in tumor rims may reflect
hemorrhagic necrosis or iron deposition associated with angiogenesis. QSM is being ex-
plored as a biomarker for treatment response in gliomas and recurrent glioblastomas [122],
particularly in the context of anti-angiogenic therapies [117,129].

Spinal and Extra-CNS Applications. While QSM is not yet routinely used in spinal
imaging, both QSM and SWI have been explored in evaluating spinal cord hemorrhage,
disk degeneration, and carotid atherosclerotic plaques [130,131]. In carotid imaging, SWI
can distinguish intraplaque hemorrhage (paramagnetic) from calcification (diamagnetic)
based on polarity of susceptibility. These features may offer diagnostic value in assessing
asymptomatic carotid disease or spinal cord injury, although susceptibility artifacts from
adjacent bone and air remain a technical challenge [110,111,132].

10.5. Limitations and Pitfalls

Despite its promise, clinical adoption of QSM faces technical and logistical challenges:

• Lack of standardization among reconstruction algorithms and no universally accepted
processing pipeline;

• Offline post-processing requirements that are complex and time-consuming;
• Limited vendor integration, although standard GRE sequences used for SWI or T2*

can often be repurposed for QSM if phase images are preserved.

QSM reconstruction often prioritizes numerical stability over image contrast, leading
to potential oversmoothing and reduced visibility of fine anatomical details. Nevertheless,
multiple studies have demonstrated excellent intra- and inter-scanner reproducibility
in both healthy controls and MS patients, supporting QSM’s technical robustness as a
quantitative imaging biomarker [117,133].
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The dipole kernel has zeros on a conical surface in k-space, making inversion ill-posed
and amplifying noise/streaking [113–115]. Regularization choices balance stability vs.
accuracy: TKD (k-space thresholding) is fast but yields underestimation and orientation
bias, iLSQR/Tikhonov provide stable solutions at the cost of smoothing, and MEDI/TV-
based approaches use morphological priors to preserve edges but can oversmooth fine
detail if over-regularized [113–116]. Parameter selection (e.g., L-curve, cross-validation)
and uncertainty mapping help document confidence, while COSMOS (multi-orientation)
offers a reference standard but is impractical clinically [113–116,134].

10.6. Future Outlook

Efforts such as the QSM Challenge and the development of open-source toolkits (e.g.,
MEDI, STI Suite, QSMxT) are helping to improve standardization and reproducibility across
research sites [134]. As reconstruction algorithms become faster and more clinically inte-
grated, QSM is expected to play a growing role in neurodegenerative, vascular, oncological,
and spinal imaging, offering tissue-specific, quantitative insights that go beyond conven-
tional MRI contrast mechanisms [17]. Building on the QSM Challenge and open-source
pipelines (MEDI, STI Suite, QSMxT), the next step is clinically integrated software that
preserves fine anatomical detail while providing uncertainty maps and vendor-agnostic
reporting, an area where AI-assisted regularization selection and artifact rejection can
bridge current gaps [134].

11. Perfusion Imaging
11.1. Physics and Signal Model

Perfusion imaging plays a central role in assessing the delivery of blood—and thus
oxygen and nutrients—to tissues, providing critical insights into microvascular function
and tissue viability [135]. In magnetic resonance imaging (MRI), perfusion can be evaluated
using either exogenous tracers (gadolinium-based contrast agents, GBCA) or endogenous
tracers (magnetically labeled arterial blood water in ASL) [136]. Among perfusion tech-
niques, two dynamic contrast-enhanced MRI methods are primarily employed: Dynamic
Susceptibility Contrast (DSC) and Dynamic Contrast-Enhanced MRI (DCE). Both rely
on serial imaging acquisitions before, during, and after intravenous administration of
gadolinium, but they differ in imaging sequences, contrast mechanisms, and physiologic
parameters derived.

Dynamic Susceptibility Contrast (DSC). In DSC, a T2*-weighted EPI sequence captures
the first pass of a GBCA bolus: susceptibility-induced microscopic field gradients around
intravascular contrast cause a transient signal drop proportional to the local contrast con-
centration [2,90,137,138]. Using an arterial input function (AIF) and the indicator-dilution
framework, rCBV is obtained from the area under the tissue concentration–time curve (nor-
malized by the AIF), while rCBF arises from deconvolution of tissue and arterial curves; MTT
follows from the central-volume principle [83,139,140]. Accurate quantification depends on
short TR, appropriate TE, and high temporal resolution to sample the bolus peak [2,83]. A
key confound is contrast leakage through a disrupted blood–brain barrier, which introduces
T1 effects into the T2*-weighted signal; mitigation includes pre-bolus/preload dosing or
model-based leakage correction [16,55,139]. EPI-related distortions, AIF selection, and low
SNR at reduced dose are additional considerations [25,123,141–143].

Dynamic Contrast-Enhanced MRI (DCE). In DCE, a T1-weighted 2D/3D GRE se-
quence tracks gadolinium uptake and washout over minutes [16,144]. Signal is converted
to contrast concentration using pre-contrast T1 and known sequence parameters (flip an-
gle, TR), and pharmacokinetic models (e.g., Tofts, extended Tofts, Patlak, 2CXM) yield
Ktrans, Ve, Vp, and Kep [6,95,145]. The choice and quality of the AIF (population-averaged
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vs. local) and the trade-off between temporal resolution and spatial coverage/SNR are
central to model stability [55,83]. B1 inhomogeneity, motion, and partial volume effects
can bias parameter estimates and should be managed with calibration and motion correc-
tion [16,83,95,144].

A side-by-side summary of DSC and DCE acquisitions, models, outputs, and typical
parameter ranges is provided in Table 3.

Table 3. Contrast-based perfusion MRI sequences (DSC vs. DCE). Side-by-side summary of Dynamic
Susceptibility Contrast (DSC) and Dynamic Contrast-Enhanced (DCE) MRI. DSC uses T2*-weighted
EPI (temporal resolution < 2 s; duration ~2–3 min) to derive rCBV, rCBF, and MTT, reflecting
microvascular density; principal limitations are contrast leakage and susceptibility/EPI artifacts. DCE
uses T1-weighted 3D GRE (temporal resolution ~4–6 s; duration ~5–15 min) to estimate Ktrans, Ve,
Kep, Vp, indexing capillary permeability; limitations include AIF estimation and modeling variability.

Feature DSC DCE

Sequence T2*-weighted EPI T1-weighted 3D GRE
Key Parameters rCBV, rCBF, MTT Ktrans, Ve, Kep, Vp

Temporal Resolution <2 s ~4–6 s
Duration ~2–3 min ~5–15 min

Sensitivity Microvascular density Capillary permeability

Limitations Leakage effects, susceptibility AIF estimation, modeling
variability

11.2. Acquisition and Key Parameters

DSC. DSC-MRI uses T2*-weighted echo planar imaging (EPI) to detect signal changes
caused by susceptibility effects during the first pass of a gadolinium bolus, typically within
the first minute following injection. This approach primarily evaluates signal intensity
changes related to magnetic field inhomogeneities induced by the paramagnetic contrast
agent within the vascular compartment [2,90,137,138]. Typical acquisition parameters
include TE 30–40 ms, TR < 2 s, and voxel sizes ~2 × 2 × 5 mm3. Temporal resolution should
ideally be <2 s to accurately capture first-pass dynamics.

DCE. DCE-MRI uses T1-weighted 2D or 3D gradient echo sequences [144] to monitor
the temporal evolution of gadolinium uptake and washout in tissue, typically over 5–15
min [16]. Unlike DSC, DCE is sensitive to gadolinium-induced T1 shortening and provides
information on tissue permeability and vascular architecture.

11.3. Outputs and Units

From DSC data, several hemodynamic parameters can be calculated, including rela-
tive cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit
time (MTT). Among these, rCBV is particularly valuable, as it correlates with microvas-
cular density, endothelial proliferation, and tumor grade [2,83,139,140]. Studies have
proposed rCBV thresholds (e.g., >1.75) for distinguishing high- from low-grade gliomas.
Representative DSC-MRI parametric maps—rCBV (overlay with ROIs), rCBF, MTT, and
time-to-peak/bolus delay—are shown in Figure 4.

In DCE, pharmacokinetic modeling allows extraction of biologically relevant param-
eters such as Ktrans (volume transfer constant between blood plasma and EES) [144,145],
Ve (volume fraction of the EES), Kep (reflux rate constant, Ktrans/Ve), and Vp (plasma
volume fraction). These are computed using models like Tofts, extended Tofts, Patlak, or
two-compartment exchange model (2CXM), which conceptualize tissue as intravascular
and EES compartments [6,16,83,95,146]. Accurate pre-contrast T1 mapping is critical for
converting signal intensities to gadolinium concentration.
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Figure 4. DSC-MRI perfusion parametric maps. (Top-left): relative cerebral blood volume (rCBV)
overlaid on the structural reference, with ROIs placed in the lesion and contralateral white matter for
ratio calculation. (Top-right): relative cerebral blood flow (rCBF) map. (Bottom-left): mean transit
time (MTT) map. (Bottom-right): time-to-peak/bolus arrival delay map. Warm colors indicate higher
rCBV/rCBF or prolonged transit/arrival times, whereas cool colors indicate lower values/shorter
times. Maps were derived from a single-bolus T2*-weighted EPI DSC acquisition using AIF-based
deconvolution (with leakage correction) and are shown with arbitrary but consistent color scales.

11.4. Validation and Quantification Considerations

A key limitation of DSC is its sensitivity to contrast leakage [5,139]. In high-grade
tumors with a disrupted blood–brain barrier, gadolinium may extravasate into the extravas-
cular extracellular space (EES), introducing T1-weighted effects that distort the T2*-based
signal drop. To mitigate this, a pre-bolus of gadolinium is sometimes administered to
saturate the EES, minimizing leakage effects during the main bolus and improving the
accuracy of rCBV measurements [16,55,83]. Alternatively, mathematical leakage correction
models, such as the Boxerman–Schmainda–Weiskoff method [139], can be applied.

Signal analysis in DSC often involves deconvolution techniques, with basic methods
available in most commercial software. More advanced approaches, such as Bayesian
deconvolution [142,143], offer greater accuracy and robustness in low SNR conditions,
enabling reduced contrast doses and improved quantification [25,83,123,141]. Additionally,
rCBV histogram analysis has been used to predict treatment response and clinical outcomes
in high-grade gliomas.

In DCE, a major technical challenge is the estimation of the arterial input function
(AIF); difficulties arise due to low temporal resolution (>3 s), partial volume effects, and
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voxel placement. Strategies include population-averaged AIFs, local AIFs, or dual-bolus
methods with high temporal resolution [55,83].

Given the diversity of DSC/DCE inputs (AIF estimation, leakage correction, PK
models, ATT), AI systems designed to handle, harmonize, and present multi-parametric
outputs (e.g., rCBV/rCBF/MTT, Ktrans/Ve/Vp, CBF/ATT) with standardized visualization
and quality flags are likely to improve robustness and clinical usability [31,32].

11.5. Clinical Applications

Both DSC and DCE provide valuable tools in neuro-oncology, particularly in:

• Tumor grading and characterization,
• Assessing treatment response, especially in therapies targeting angiogenesis or vascu-

lar disruption [7,9,69,85],
• Differentiating tumor progression from pseudo-progression [147,148], especially in

high-grade gliomas [16,55,83],
• Evaluating brain metastases before and shortly after stereotactic radiosurgery (SRS),

where perfusion and diffusion-derived parameters have shown promise in predicting
early response [2,83,90].

DSC remains the workhorse of MR perfusion imaging due to its speed, robustness,
and widespread clinical implementation. However, DCE offers complementary informa-
tion on vascular permeability and EES dynamics, and is increasingly applied in clinical
trials, particularly those involving anti-angiogenic therapies or blood–brain barrier disrup-
tion [149,150].

11.6. Limitations and Pitfalls

Despite their clinical utility, both techniques face limitations that hinder widespread
standardization:

• Model- and software-dependent variability in DCE parameter estimation,
• AIF inaccuracies and technical demands of T1 mapping,
• Lack of universal rCBV thresholds and consistent leakage correction methods,
• Parameter fitting instability in multi-compartment models,
• Absence of digital phantoms for cross-platform validation.

11.7. Future Directions

Recent efforts focus on standardizing acquisition protocols [31,32], validating digital
perfusion phantoms, and integrating perfusion with other quantitative modalities such as
diffusion, QSM, and ASL for multiparametric imaging.

12. Arterial Spin Labeling (ASL)
12.1. Physics and Signal Model

Arterial Spin Labeling (ASL) is a noninvasive MRI perfusion technique that uses mag-
netically labeled arterial blood water as an endogenous tracer [151,152], eliminating the
need for exogenous contrast agents. This makes ASL particularly suitable in clinical scenar-
ios where contrast is contraindicated, such as in patients with renal insufficiency, pediatric
populations, and longitudinal follow-up studies [25,83,85,96,153]. ASL enables quantitative
measurement of cerebral blood flow (CBF) in physiological units (mL/min/100 g of tissue)
by acquiring two sets of images: one with a labeling pulse that inverts the magnetization
of arterial blood, and one control image without inversion. The subtraction of the labeled
image from the control provides a perfusion-weighted map reflecting the amount of labeled
blood delivered to tissue [151,154,155]. Under a single-compartment kinetic description,
the label–control difference is proportional to labeling efficiency and arterial magnetization,
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scaled by the blood–tissue partition coefficient, and attenuated by blood T1 and arterial
transit time (ATT) [154–157]. Consequently, the signal depends on several physiological
and technical factors, including the T1 relaxation time of blood (~1650 ms at 3T) and
ATT [154,155]; background suppression minimizes static-tissue signal and motion sensitiv-
ity [151], while calibration of labeling efficiency and a reference M0 image support absolute
quantification [151,158,159]. To reduce ATT-related variability, precise timing parameters
such as labeling duration, post-labeling delay (PLD), and background suppression are
optimized based on the target population and clinical application [151,156,157].

12.2. Acquisition and Key Parameters

There are three main labeling approaches in ASL:

• Pulsed ASL (PASL): uses a short, high-powered pulse to invert a thick slab of arterial
blood proximal to the imaging volume;

• Continuous ASL (CASL): applies a long, uninterrupted RF pulse and gradient field to
continuously invert blood across a fixed labeling plane;

• Pseudo-continuous ASL (pCASL): the most widely used clinical approach, combines
short, rapid RF pulses and gradients to simulate continuous labeling, achieving high
labeling efficiency and favorable signal-to-noise ratio [83,155,158].

pCASL has been endorsed by consensus guidelines (ISMRM, QIBA) as the clinical
standard [151], typically using:

• Labeling duration: ~1.5–2.0 s
• Post-labeling delay (PLD): ~1.5–2.0 s
• 3D acquisition (e.g., GRASE or spiral)
• Background suppression pulses for artifact reduction
• Optional multi-delay protocols for estimation of ATT, particularly in cerebrovascu-

lar disorders

Newer techniques are under development:

• Velocity-Selective ASL (VS-ASL): labels blood based on flow velocity, making it less
sensitive to ATT variability [151];

• Time-encoded ASL (e.g., Hadamard encoding): improves temporal resolution and
enables rapid acquisition of multiple PLDs [151].

12.3. Outputs and Quantification

ASL uses a mono-compartment kinetic model (e.g., Buxton model) to quantify CBF,
assuming negligible venous return, instantaneous delivery, and constant labeling effi-
ciency [154,155]. However, advanced modeling incorporating ATT and bolus dispersion is
increasingly used in patients with altered hemodynamics [156,157].

12.4. Clinical Applications and Biomarkers

ASL has demonstrated increasing clinical relevance in neurology, oncology, and neu-
roinflammation [160,161].

Neurodegeneration. ASL studies have consistently shown reduced CBF in the pos-
terior cingulate cortex (PCC) and precuneus in patients with Alzheimer’s disease (AD),
mirroring the hypometabolic patterns observed with [18F]FDG-PET. This spatial overlap
supports the tight coupling between perfusion and glucose metabolism, positioning ASL as
a noninvasive surrogate biomarker of early neuronal dysfunction [81,106,162,163]. In mild
cognitive impairment (MCI), hypoperfusion in temporoparietal regions has been shown to
precede structural atrophy, suggesting its utility as an early marker of disease [162].

Multiple sclerosis (MS). In MS, ASL has detected perfusion abnormalities in both
normal-appearing white matter (NAWM) and evolving lesions, often before changes are
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visible on T2-weighted MRI or signs of blood–brain barrier disruption [161,164]. ASL
studies have shown:

• Reduced CBF in NAWM and cortical gray matter;
• Associations between low CBF and increased disability scores (EDSS), cognitive im-

pairment, and atrophy;
• Distinct perfusion patterns between relapsing-remitting and progressive MS pheno-

types [25,83,96].

Neuro-oncology. ASL offers a contrast-free alternative to DSC or DCE perfusion imag-
ing. Particularly useful in pediatric patients or those with impaired renal function [161,165],
ASL has been used to:

• Differentiate low-grade from high-grade gliomas, with pooled accuracy around 83%,
using a CBF ratio threshold near 1.45 [16,165];

• Predict IDH mutation status in gliomas, as IDH-mutant tumors often exhibit reduced
perfusion [165];

• Assess perfusion heterogeneity using histogram metrics (e.g., skewness, kurtosis),
which correlate with tumor grade and progression [165].

12.5. Advantages, Limitations, and Future Directions

ASL’s repeatability, quantitative output, and lack of contrast requirements make it ideal
for longitudinal studies, pediatric imaging, and patients with renal insufficiency [151,164].
Moreover, CBF is expressed in absolute units (mL/100 g/min), facilitating cross-center
comparisons and longitudinal tracking [151,160].

However, several limitations must be addressed:

• Low signal-to-noise ratio (SNR) compared to DSC [151];
• Sensitivity to ATT variability, especially in elderly or vascular patients [157,166] (par-

tially addressed with multi-delay ASL);
• Dependence on hematocrit, labeling efficiency, and T1 relaxation properties of

blood [158,159];
• Limited spatial resolution and susceptibility to motion artifacts [167].

Ongoing efforts aim to standardize acquisition and quantification protocols, integrate
ASL into multi-parametric imaging pipelines, and expand its role in precision diagnostics,
particularly in neurovascular and neurodegenerative conditions [151,152,160,165,168,169].

13. Brain Volume Quantification
13.1. Scope and Overview

MRI-based brain volumetry has emerged as a fundamental tool in the evaluation
of neurodegenerative and demyelinating disorders, particularly dementia and multiple
sclerosis (MS). Quantitative assessment of regional and global brain atrophy provides
clinically relevant biomarkers that improve diagnostic precision and help monitor disease
progression [170,171].

13.2. Acquisition Physics and Pre-Processing

Volumetry depends on T1-weighted 3D structural MRI (e.g., MPRAGE/IR-SPGR).
Accurate morphometry requires bias-field correction (B1-driven intensity non-uniformity),
robust skull-strip, and partial volume handling at CSF/GM/WM interfaces. Cross-vendor
harmonization (voxel size, TI/TR/TE/flip) and gradient nonlinearity correction reduce
systematic bias across time and sites [27,113].
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13.3. Acquisition and Processing Pipeline

Common approaches include:

• Voxel-based morphometry (VBM): detects regional differences in GM/WM density,
• Surface-based morphometry (SBM): estimates cortical thickness and curvature using

3D cortical meshes,
• Longitudinal analysis tools (e.g., SIENA, FreeSurfer longitudinal stream): quantify

volume changes over time [172,173],
• Deep learning algorithms: allow for rapid and accurate segmentation, even in the

presence of artifacts or lesions.

Methodological refinements and harmonized processing pipelines continue to improve
robustness across scanners and sites [174,175]. Examples of automated report outputs
(segmentation overlays, regional volumes normalized to ICV, and age-adjusted normative
z-scores) are shown in Figure 5.

 

Figure 5. Examples of automated brain volumetry reports from commercial platforms. Each report
is generated from a 3D T1-weighted MRI and illustrates: (i) segmentation overlays of cortical and
subcortical structures on structural images; (ii) tables of regional/lobar and hippocampal volumes,
typically normalized to intracranial volume (ICV); (iii) normative percentiles/z-scores (age- and
sex-adjusted) with visual summaries (e.g., radial/ring plots); and (iv) percentile curves showing
the patient’s measurement relative to a healthy reference across age and enabling longitudinal
tracking. Such reports support clinical assessment (e.g., dementia work-up) by highlighting regional
atrophy patterns and asymmetries. Trade names/layouts shown for illustration only; values and
thresholds can vary across software and require local validation and quality control. Color legend.
Segmentation overlays (both panels): colored labels differentiate anatomical regions (software-defined
palette; no direct biophysical meaning). Anatomical backgrounds are grayscale. Left panel (percentile
charts): light-blue shaded bands represent the normative 5th–95th percentile range; the thin central
blue linemarks the 50th percentile; the patient’s measurement/trajectory is shown by the darker blue
point/line. Right panel—small “Brain volumes” graphs: the orange band denotes <10th percentile; the
green band denotes 10th–90th percentile (normative range); the thin central green line is the 50th
percentile; the patient’s values are plotted in black (points/lines). Values >90th percentile lie above
the green band. Right panel—radial/ring “volume signature”: the green ring depicts the normative
reference profile (≈z 0), while the patient’s profile is drawn in black (polygon/trace). Sectors falling
within the orange band correspond to <10th percentile.
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13.4. Outputs and Units

From a biomarker standpoint, quantitative volumetry enhances diagnosis and risk
stratification. Hippocampal volume below 3.0 cm3 is a known marker of AD and has
been shown to predict conversion from mild cognitive impairment (MCI) to AD. Cortical
thinning in the entorhinal cortex, parahippocampal gyrus, and posterior cingulate cortex is
associated with early neurodegeneration, while ventricular enlargement provides comple-
mentary information in hydrocephalus or advanced disease. Normative z-scores < –1.5 are
typically considered abnormal [176,177].

13.5. Clinical Applications—Dementia

Quantitative Volumetry in Dementia. In Alzheimer’s disease (AD) and other forms
of dementia, specific patterns of regional atrophy—such as medial temporal lobe atrophy
(MTA)—can aid in distinguishing between subtypes. Traditionally, these markers are
assessed visually (e.g., the MTA scale), but visual evaluations are susceptible to inter-
rater variability, especially early on when atrophy patterns may overlap with healthy
aging [178,179].

To overcome these limitations, automated quantitative tools have been developed
that compare a patient’s brain volumes with normative databases derived from healthy
control populations. These methods offer multiple advantages: increased diagnostic objec-
tivity, improved early detection of subtle atrophy, reduced dependence on subjective visual
interpretation, and support from emerging AI-driven software packages [67]. Several com-
mercial solutions now offer AI-based volumetric analysis platforms (e.g., NeuroQuant [180],
FreeSurfer [172,173], VolBrain, QyScore), with the ability to compute regional volumes,
cortical thickness, and normative z-scores adjusted for age and sex [181,182].

13.6. Clinical Applications—Multiple Sclerosis

Brain Atrophy in Multiple Sclerosis. In MS, brain atrophy reflects chronic neurode-
generation and correlates more strongly with physical and cognitive disability than lesion
burden alone. Atrophy is detectable from the earliest stages, including clinically isolated
syndrome (CIS), and tends to progress steadily throughout the disease course [22,55,183].

Key volumetric markers in MS include: annual whole-brain atrophy rates of 0.5–1%
(vs. 0.1–0.3% in healthy individuals), a commonly accepted threshold for pathological
brain volume loss of ≥0.4%/year, and pseudoatrophy (treatment-induced resolution of
inflammatory edema) that should not be mistaken for true neurodegeneration [22,184].

Regional analysis further refines our understanding of atrophy-related dysfunction:
deep gray matter (GM) structures (thalamus, putamen, caudate) are frequently affected
early; cortical GM atrophy tends to develop later and is more prominent in progressive MS;
GM atrophy is a stronger predictor of long-term disability than white matter (WM) atrophy;
and GM loss is linked to conversion from CIS to clinically definite MS (CDMS) [55,185].

Clinical correlations include: thalamic and central GM atrophy associated with cogni-
tive dysfunction, fatigue, and gait impairment; cortical thinning in motor/parietal regions
related to fine hand coordination; and periventricular lesion load correlating with cortical
GM loss, possibly via CSF-mediated neurodegenerative processes [22,186].

Longitudinal MRI studies show that baseline brain volume, percent brain volume
change (PBVC), and black-hole lesion volume are among the most robust predictors of
future disability progression. Quantification tools such as SIENA (FSL), longitudinal
FreeSurfer [172,173] pipelines, and deep learning segmentation frameworks (e.g., nnU-Net)
are increasingly used in research and, more recently, clinical settings.
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13.7. Validation and Repeatability

Inter-software agreement remains suboptimal. Studies have reported differences of
up to 10–15% in hippocampal and cortical volume estimates across platforms, largely
due to variations in segmentation algorithms, reference atlases, and intracranial volume
correction [68]. Thus, while intra-rater reproducibility is generally high, consistency be-
tween software outputs remains moderate, particularly in diagnosis-specific interpretation.
Discrepancies in intracranial volume measurement and regional labeling may influence
diagnostic conclusions, especially when borderline values are involved; clinics are therefore
advised to independently evaluate and validate volumetric software before integration into
clinical workflows [185].

13.8. Limitations and Pitfalls

Volumetric quantification faces several challenges: variability in acquisition protocols
(scanner type, field strength, MPRAGE vs. SPGR), motion artifacts, signal dropouts, partial
volume effects, undersegmentation in severe atrophy or enlarged ventricles, and lack of
universally accepted normative datasets across ethnicities and age groups. These issues
contribute to moderate cross-software agreement and must be considered when interpreting
borderline volumetric findings [89,90].

13.9. Future Directions

As AI-driven volumetric tools become more accessible, their potential in personalized
neurology continues to grow. When rigorously validated, brain volumetry provides a
powerful, objective complement to conventional radiological assessment. In dementia,
it improves diagnostic accuracy and reduces inter-observer variability. In MS, it offers
sensitive measures of disease burden and long-term prognosis, often outperforming con-
ventional lesion metrics [22,55,67,68].

14. Conclusions
Quantitative MRI (qMRI) represents a transformative advancement in neuroimaging,

offering unprecedented sensitivity and specificity in the evaluation of tissue microstructure,
physiology, and pathology. While qMRI is increasingly used to interrogate cortical plasticity,
learning-related remodeling, and pediatric development, these areas are deliberately out
of scope here to maintain a clinically focused synthesis on adult disease. Future work can
extend this structured framework to those domains [105].

Techniques such as T1 and T2 relaxometry, diffusion imaging, quantitative suscep-
tibility mapping (QSM), magnetization transfer (MT) imaging, perfusion imaging, and
volumetry have proven to be powerful tools for deepening our understanding of central
nervous system (CNS) disorders, including neurodegenerative diseases, inflammatory
conditions, and brain tumors.

Despite this potential, qMRI has not yet reached full clinical maturity [100]. Several
limitations currently restrict its routine application, including:

i. The lack of standardized acquisition protocols across vendors and platforms,
ii. Limited availability of robust, validated software for map reconstruction and

biomarker extraction,
iii. Absence of large normative datasets and clinically validated pathological cut-off values,
iv. The need for multicenter clinical validation studies directly comparing qMRI metrics

to established clinical, histological, or molecular outcomes.

Furthermore, while brain-focused qMRI applications have matured considerably, their
extension to spinal cord imaging remains technically challenging. Limitations such as
spinal motion, physiological pulsatility, and reduced cross-sectional area require:



Brain Sci. 2025, 15, 1088 23 of 32

i. Motion-compensated acquisition strategies and physiological gating,
ii. Dedicated hardware (e.g., optimized phased-array coils),
iii. Advanced software for region-of-interest (ROI) localization and signal modeling.

In parallel, the growing use of quantitative imaging biomarkers (QIBs) supports
the broader movement toward personalized and precision medicine. QIBs—defined by
their objectivity, repeatability, and biological relevance—are increasingly used not only for
diagnosis but also to guide prognosis and monitor treatment efficacy. When fully validated,
they may serve as surrogate endpoints in clinical trials and inform risk stratification and
treatment algorithms [19].

To achieve widespread clinical integration, qMRI must also embrace quantitative
metrology, ensuring that metrics demonstrate technical performance in terms of bias, pre-
cision, and reproducibility. Initiatives such as RSNA QIBA and EIBALL have proposed
methodological frameworks for technical validation and standardization, which are essen-
tial for regulatory approval and cross-site consistency.

Recent advances are accelerating spinal qMRI: reduced-FOV EPI and motion/CSF-
pulsation management enable more reliable DTI in cervical cord (e.g., degenerative cervical
myelopathy), with FA/MD/RD correlating with impairment and subclinical degener-
ation; MT/MTsat and MWF extend myelin-sensitive mapping; preliminary QSM/SWI
work targets hemorrhage and disk/degenerative changes. Key challenges remain (small
cross-section, B0/B1 inhomogeneity, susceptibility interfaces, motion), but multicenter har-
monization and dedicated coils/sequences are improving robustness, supporting near-term
translation in MS, SCI, and DCM [105–108].

Another key enabler is the development of AI-driven pipelines, which promise to
streamline post-processing, improve the robustness of parametric mapping, and facilitate
the detection of subtle disease patterns. AI also enables integrative modeling by combining
qMRI data with genomics, cognitive scores, and fluid biomarkers, ultimately enhancing clin-
ical decision support. Emerging AI/ML tools already address key bottlenecks: (i) denoising
(self-supervised and patch-based) for diffusion/ASL to improve SNR without repeat scans;
(ii) motion and distortion correction (navigator-less retrospective motion estimates; learned
susceptibility-distortion correction for EPI); (iii) harmonization across vendors/sites with
outlier-aware domain adaptation; (iv) QSM inversion with learned regularizers that pre-
serve edges and provide uncertainty maps; (v) perfusion QC (automatic AIF detection,
leakage-aware model selection) and multiparametric fusion (rCBV/Ktrans/CBF with stan-
dardized color scales); (vi) automated report generation (normative z-scores, longitudinal
deltas) exported as DICOM-SR for PACS integration. These examples illustrate how AI/ML
can reduce noise/artifacts and deliver consistent, interpretable outputs at scale [130–132].

To translate qMRI into routine care, AI should target four concrete needs: (i) metric
coherence, enforcing internal consistency across modalities (e.g., R1 = 1/T1), unit checks,
cross-modality co-registration with resolution matching, and outlier-aware harmoniza-
tion across vendors/sites; (ii) robust visualization, delivering standardized, perceptually
uniform maps with linked views, anatomical overlays, and uncertainty/QC layers; (iii) au-
tomatic QC and failure detection (motion, bias fields, EPI distortions, leakage effects); and
(iv) report generation with normative z-scores, longitudinal deltas, and multiparametric
summaries integrated into PACS/DICOM-SR [31,32,67].

Finally, qMRI is poised to evolve from a set of research techniques to a clinically robust
imaging framework. Through interdisciplinary collaboration among clinicians, physicists,
data scientists, and regulatory agencies, and with the support of ongoing multicenter
efforts, qMRI can become a cornerstone of modern neurodiagnostics—enabling early
detection, disease characterization, and precision-guided therapy across a broad spectrum
of neurological conditions.
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