

☰ Menu

[Home](#) [Journal of Neuro-Oncology](#) [Article](#)

Effects of proton therapy on cognition in adults with brain tumors: a systematic review

Review Published: 12 December 2025

Volume 176, article number 121, (2026) [Cite this article](#)

[E. Scagliotti](#) , [B. Capetti](#), [L. Conti](#), [G. Fiore](#), [C. Fanizzi](#), [G. Bertani](#), [G. Pravettoni](#) & [M. Locatelli](#)

Purpose

Proton therapy (pt) is increasingly employed in treating of intracranial neoplasms due to its ability to spare surrounding healthy tissue. However, its effects on cognitive function in adult patients remain unclear, despite rising clinical adoption. This review systematically evaluates evidence on neurocognitive outcomes in adults treated with pt for primary intracranial tumors, and assess its impact across multiple cognitive domains.

Methods

This review followed PRISMA guidelines and was registered on PROSPERO (ID: CRD42024591714). Eligible studies included adults (> 18 years) with primary brain tumors treated with PT and assessed using standardized neuropsychological tests. Pediatric populations, metastases, self-report-only assessments, and other radiotherapy techniques were excluded. Literature was searched across PubMed, Embase, and Scopus. Methodological quality was appraised using the Mixed Methods Appraisal Tool.

Results

Eight studies comprising 310 patients (247 receiving PT) were included. Tumor types varied and included gliomas, meningiomas, craniopharyngiomas, and others. Overall, PT was associated with stable or improved outcomes in global cognition, memory, language, executive function, attention, working memory, and visuospatial abilities. No study reported progressive cognitive decline. Improvements were often observed over long-term follow-up, particularly in patients without treatment-induced toxicity. Subgroup analyses revealed better recovery in left-sided lesions and worse outcomes in patients with radiation-induced brain lesions or toxicities.

Conclusion

PT appears to be a cognitively sparing modality for treating intracranial neoplasms in adults. While most cognitive domains are preserved or improve over time, patients experiencing treatment-related toxicities may be at higher risk of impairment. Future large-scale, multicenter trials with longer follow-ups and domain-specific assessments are warranted to confirm these findings and optimize treatment protocols.

This is a preview of subscription content, [log in via an institution](#) to check access.

References

1. Stewart BW, Wild CP (2014) World cancer report 2014. International agency for research on cancer, Lyon
2. Rezaei N, Hanaei S (2023) Human brain and spinal Cord tumors: from bench to bedside. Volume, 2: the path to bedside management. Springer International Publishing, Cham
[Book](#) [Google Scholar](#)
3. Sughrue ME (2020) The glioma book, 1. Auflage. Thieme Medical Publishers, Stuttgart
[Google Scholar](#)
4. Weller M, Van Den Bent M, Preusser M et al. (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18:170–186. <https://doi.org/10.1038/s41571-020-00447-z>
[Article](#) [PubMed](#) [Google Scholar](#)
5. Kotecha R, La Rosa A, Mehta MP (2024) How proton therapy fits into the management of adult intracranial tumors. Neuro Oncol 26:S26–S45. <https://doi.org/10.1093/neuonc/noad183>
[Article](#) [PubMed](#) [PubMed Central](#) [Google Scholar](#)
6. Scaringi C, Agolli L, Minniti G (2018) Technical advances in radiation therapy for brain tumors.

Anticancer Res 38:6041–6045. <https://doi.org/10.21873/anticanres.12954>

[Article](#) [CAS](#) [PubMed](#) [Google Scholar](#)

7. Tsang DS, Patel S (2019) Proton beam therapy for cancer. CMAJ 191:E664–E666. <https://doi.org/10.1503/cmaj.190008>

[Article](#) [PubMed](#) [PubMed Central](#) [Google Scholar](#)

8. Lassalleta Á, Morales JS, Valenzuela PL et al. (2023) Neurocognitive outcomes in pediatric brain tumors after treatment with proton versus photon radiation: a systematic review and meta-analysis. World J Pediatr 19:727–740. <https://doi.org/10.1007/s12519-023-00726-6>

[Article](#) [PubMed](#) [PubMed Central](#) [Google Scholar](#)

9. Fiore G, Porto E, Bertani GA et al. (2024) The burden of skull base chordomas: insights from a meta-analysis of observational studies. Neurosurgical Focus 56:E13. <https://doi.org/10.3171/2024.3.FOCUS23922>

[Article](#) [PubMed](#) [Google Scholar](#)

10. Page MJ, McKenzie JE, Bossuyt PM et al. (2021) The PRISMA, 2020 statement: an updated guideline for reporting systematic reviews. BMJ n71. <https://doi.org/10.1136/bmj.n71>

[Article](#) [Google Scholar](#)

11. Belur J, Tompson L, Thornton A, Simon M (2021) Interrater reliability in systematic review methodology: exploring variation in coder decision-making. Sociological Methods Res 50:837–865. <https://doi.org/10.1177/0049124118799372>

[Article](#) [Google Scholar](#)

12. Hong QN, Fàbregues S, Bartlett G et al. (2018) The mixed methods appraisal tool (MMAT) version 2018 for information professionals and researchers. EJ 34:285–291. <https://doi.org/10.3233/EJ-180221>

[Article](#) [Google Scholar](#)

13. Sherman JC, Colvin MK, Mancuso SM et al. (2016) Neurocognitive effects of proton radiation therapy in adults with low-grade glioma. *J Neurooncol* 126:157–164. <https://doi.org/10.1007/s11060-015-1952-5>

[Article](#) [CAS](#) [PubMed](#) [Google Scholar](#)

14. Shih HA, Sherman JC, Nachtigall LB et al. (2015) Proton therapy for low-grade gliomas: results from a prospective trial. *Cancer* 121:1712–1719. <https://doi.org/10.1002/cncr.29237>

[Article](#) [PubMed](#) [Google Scholar](#)

15. Tabrizi S, Yeap BY, Sherman JC et al. (2019) Long-term outcomes and late adverse effects of a prospective study on proton radiotherapy for patients with low-grade glioma. *Radiother And Oncol* 137:95–101. <https://doi.org/10.1016/j.radonc.2019.04.027>

[Article](#) [Google Scholar](#)

16. Petruccelli M, Parent A, Holwell M et al. (2023) Estimating potential benefits to Neurocognition with Proton therapy in adults with brain tumors. *Int J Particle Ther* 9:261–268. <https://doi.org/10.14338/IJPT-22-00024.1>

[Article](#) [Google Scholar](#)

17. Flechl B, Konrath L, Lütgendorf-Caucig C et al. (2023) Preservation of Neurocognition after Proton beam radiation therapy for intracranial tumors: first results from REGI-MA-002015. *Int J Radiat oncol*biol*phys* 115:1102–1114. <https://doi.org/10.1016/j.ijrobp.2022.09.081>

[Article](#) [Google Scholar](#)

18. Donix M, Seidlitz A, Buthut M et al. (2022) Subjective memory impairment in glioma patients with curative radiotherapy. *Radiother And Oncol* 171:101–106. <https://doi.org/10.1016/j.radonc.2022.04.010>

[Article](#) [Google Scholar](#)

19. Brown PD, Chung C, Liu DD et al. (2021) A prospective phase ii randomized trial of proton radiotherapy vs intensity-modulated radiotherapy for patients with newly diagnosed glioblastoma. *Neuro-Oncology* 23:1337–1347. <https://doi.org/10.1093/neuonc/noab040>

[Article](#) [PubMed](#) [PubMed Central](#) [Google Scholar](#)

20. Dutz A, Agolli L, Bütof R et al. (2020) Neurocognitive function and quality of life after proton beam therapy for brain tumour patients. *Radiother And Oncol* 143:108–116. <https://doi.org/10.1016/j.radonc.2019.12.024>

[Article](#) [CAS](#) [Google Scholar](#)

21. Lesueur P, Calugaru V, Nauraye C et al. (2019) Proton therapy for treatment of intracranial benign tumors in adults: a systematic review. *Cancer Treat Rev* 72:56–64. <https://doi.org/10.1016/j.ctrv.2018.11.004>

[Article](#) [CAS](#) [PubMed](#) [Google Scholar](#)

Acknowledgements

B.C. is a Ph.D. student within the European School of Molecular Medicine (SEMM).

Author information

G.Pravettoni, M. Locatelli contributed equally to this work as co–last authors.

Authors and Affiliations

Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy

E. Scagliotti, G. Fiore, C. Fanizzi, G. Bertani & M. Locatelli

Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy

B. Capetti, L. Conti & G. Pravettoni

Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy

B. Capetti & G. Pravettoni

Department of Pathophysiology and Transplantation, University of Milan, Milan, 20122, Italy

G. Fiore & M. Locatelli

Contributions

All authors contributed to the study conception and design. The idea for the article was proposed by Pravettoni Gabriella. The literature search and material preparation, data collection and analysis were performed by Scagliotti Elena, Capetti Benedetta and Conti Lorenzo. The first draft of the manuscript was written by Scagliotti Elena, Capetti Benedetta, Conti Lorenzo and all authors commented on previous versions of the manuscript. All authors reviewed and commented on previous versions of the manuscript. All authors read and approved the final manuscript. The work was supervised by Locatelli Marco and Pravettoni Gabriella.

Corresponding author

Correspondence to [E. Scagliotti](#).

Ethics declarations

Declarations

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

[Supplementary material 1](#)

[Supplementary material 2](#)

[Supplementary material 3](#)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Scagliotti, E., Capetti, B., Conti, L. *et al.* Effects of proton therapy on cognition in adults with brain tumors: a systematic review. *J Neurooncol* 176, 121 (2026). <https://doi.org/10.1007/s11060-025-05371-9>

Received	Accepted	Published
30 October 2025	03 December 2025	12 December 2025

Version of record

12 December 2025

DOI

<https://doi.org/10.1007/s11060-025-05371-9>

Keywords

[**Proton therapy**](#) [**Brain tumor**](#) [**Cognitive impairment**](#) [**Treatment-induced toxicity**](#)
[**Neuropsychological assessment**](#)