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Glioma neuron symbiosis: a
hypothesis

Avital Schurr*

Department of Anesthesiology and Perioperative Medicine, University of Louisville School of
Medicine, Louisville, KY, United States

Glioma cells, just like all cancerous cells, consume substantial amounts of glucose
for their energy needs, using glycolysis, an inefficient metabolic pathway (Warburg
effect) to produce only two moles of adenosine triphosphate and two moles
of lactate for each mole of glucose consumed. By contrast, neurons consume
glucose via glycolysis and utilize its end-product lactate as the substrate of the
mitochondrial tricarboxylic acid cycle and its coupled oxidative phosphorylation,
a process eighteen times more efficient at adenosine triphosphate than glycolysis
alone. It hypothesizes here that glioma-produced lactate is the preferred oxidative
energy substrate of their surrounding neurons. Consequently, by using lactate,
neurons bypass glycolysis, sparing their glucose and making it readily available
for the glucose-craving cancer cells. Moreover, glioma cells’ ability to secrete
glutamate, which excites glutamatergic neurons, could drive the latter to consume
even more lactate, sparing more glucose. Such symbiotic exchange, especially
at the initial stages of malignancy, assures the budding cancer cells an ample
glucose supply ahead of the development of additional vasculature. While this
hypothesis focuses on gliomas, it may also apply to other cancer types.
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Introduction

A century ago, Otto Warburg showed that cancer cells consume substantial amounts of
glucose and secrete excessive lactate (Warburg et al., 1927). This hallmark of malignancy,
known as Warburg’s effect, was cited over 28,700 times since 1926 and over 5,200 times in the
first 6 months of 2025, according to a Google Scholar search. The main impetus for this activity
has always been the pursuit of possible anti-cancer therapy through understanding this
phenomenon. Nevertheless, Warburgs observation that cancerous cells utilize glucose
glycolytically converting it to lactate, despite the presence of oxygen stood in contrast to the
accepted knowledge that respirating cells converting glucose to CO, and water. The general
notion that lactate is a useless end-product of fermentation that also could be, at elevated
levels, poisonous to normal cells, has prevailed for years. Our understanding of the
relationships between cancer cells and the normal cells that surround them has grown
significantly over the past half a century. Most existing research focuses on the interactions
between cancerous tissue and neighboring healthy tissue in relation to tumor growth and
persistence (Cuddapah et al., 2014; Venkataramani et al., 2022; Crivii et al., 2022; Gillespie and
Monje, 2018). Among them, a considerable number of studies that investigated the interactions
between these cell populations, deal with brain cancers, i.e., gliomas and glioblastomas. While
we have a better understanding of the benefits that different brain cancer types gain from their
surrounding neurons, little is known about any benefits that neurons may gain from those
invading brain cancers. Where glycolysis is concerned, significant discoveries over the past
four decades have ushered in a paradigm shift in this field of research (Brooks, 1985; Schurr
etal, 1988; Gladden, 2004; Gladden, 2008; Hall et al., 2016). As a result, glycolysis should not
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be classified into two separate processes, one labeled “aerobic” with
pyruvate as the end-product, and the other “anaerobic” yielding lactate
as its final product, labeling that has become even more confusing
these days, when aerobic glycolysis means non-oxidative glucose
hydrolysis in the presence of oxygen. Rather glycolysis should
be described without any prefix, just “glycolysis,” the cytosolic pathway
that hydrolyzes glucose to lactate, where its last reaction, the
conversion of pyruvate to lactate is catalyzed by cytosolic lactate
dehydrogenase (cLDH), independently of the presence or absence of
oxygen or mitochondria (Figure 1).

Lactate enters the mitochondrion via a monocarboxylate
transporter (MCT), where mitochondrial lactate dehydrogenase
(mLDH) transforms it back into pyruvate. The latter then enters the
mitochondrial tricarboxylic acid (TCA) cycle via acetyl CoA
(Passarella et al., 2008; Schurr, 2014; Rogatzki et al., 2015; Van Hall,
2000). The idea that lactate is an oxidative energy substrate for neurons
has slowly gained acceptance. It is plausible that lactate is a favored
mitochondrial substrate over glucose since glucose requires an
investment of two moles of adenosine triphosphate (ATP) ahead of its
conversion to lactate. By contrast, the oxidative utilization of lactate
does not require ATP investment, and one mole of lactate produces
seventeen moles of ATP through the mitochondrial TCA cycle, the
electron transport chain, and its coupled oxidative phosphorylation
(OXPHOS). Do neurons use glioma-secreted lactate as an oxidative
mitochondrial substrate for ATP biosynthesis?

10.3389/fnins.2025.1646148

The glioma neuron symbiosis (GNS)
hypothesis: exchanging lactate for
glucose

It hypothesizes that neurons regularly benefit from the endless
supply of glioma-produced lactate, the preferred neuronal oxidative
mitochondrial energy substrate over glucose, especially at the initial
stages of malignancy, just as much as glioma cells benefit from the
neuronal machinery. Moreover, the neuronal preference for lactate
over glucose spares the latter, making it readily available to the
glucose-craving glioma cells. Such symbiotic relationships would
explain the tendency of cancerous cells (gliomas) to flourish in the
vicinity of the more active brain regions (Gillespie and Monje, 2018).
Contrary to the established thinking, according to which cancerous
cells parasitically utilize normal cells to propagate and survive, the
GNS hypothesis postulates that both glioma cells and neurons, benefit
from each other, especially at the preliminary stages of metastasis, i.e.,
they have a symbiotic relationship.

The GNS hypothesis is based on 40 years of progress in research
on brain energy metabolism. That research established lactate as the
end-product of the brain glycolytic pathway, independent of the
presence or absence of oxygen, demonstrating the preference of
neurons, especially glutamatergic ones, to utilize it as the oxidative
mitochondrial substrate. In addition, the metabolic relationship
between astrocytes and neurons as laid out by the astrocyte neuron
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FIGURE 1
The paradigm shift of glycolysis that took place over the past four decades presents the first metabolic pathway to be elucidated as a series of 11
enzymatic reactions that begin with glucose and end with lactate, not pyruvate, independently of the presence or absence of oxygen or mitochondria.
As such, it also guarantees the continuous supply of reducing power in the form of nicotinamide adenine dinucleotide (NADH), preserving the cyclical
nature of the pathway.
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lactate shuttle (ANLS) hypothesis (Pellerin and Magistretti, 1994), and
the possible origin of glioma cells from stem cells of the
oligodendroglial type, both lend support to a postulated symbiotic
relationship between glioma cells and neurons.

Evolution of the hypothesis

The discovery in 1988 that lactate can both support survival of brain
tissue and its function in vitro (Schurr et al., 1988) despite the skepticism
it faced for years, is now accepted universally (Gladden, 2004; Gladden,
2008; Hall et al., 2016; Passarella et al., 2008; Schurr, 2014; Rogatzki
etal,, 2015; Van Hall, 2000). According to the astrocyte neuron lactate
shuttle (ANLS) hypothesis, published in 1994 (Pellerin and Magistretti,
1994), the excitatory neurotransmitter glutamate activates glutamatergic
neurons, which thereafter is taken up by astrocytes, a function that
requires the participation of the Na*/K*- ATPase pump (Pellerin and
Magistretti, 1996). The ATP necessary for the pump’s action is produced
by a glycolytic pathway specifically dedicated to that function. The
lactate produced during this activity is transported out of astrocytes
through membranal monocarboxylate transporters (MCT1 and
MCT4), and into neurons via MCT2, where it is consumed oxidatively
(Pellerin, 2003; Handy, 2006; Pellerin and Magistretti, 2012; Nalbandian
and Takeda, 2016; Ferguson et al., 2018). Our own study demonstrated
that glial cells are the source of lactate consumed by neurons (Schurr
etal., 1997). Although the ANLS hypothesis is still being debated among
its backers and detractors, ample evidence supports its central concept
that neurons consume lactate oxidatively as the substrate of the
mitochondrial TCA cycle and its coupled OXPHOS, the main source of
ATP needed for neuronal function (Schurr, 2018; Schurr, 2006; Schurr,
2008; Schurr, 2023; Schurr, 2024; Bittar et al., 1996; Pellerin et al., 1998;
Pellerin et al., 1998; Pierre et al., 2000; Aubert et al., 2005; Bouzier-Sore
et al., 2003; Bouzier-Sore et al., 2006; Pellerin et al., 2007; Wyss et al.,
2011; Proia et al., 2016; Hu and Wilson, 1997a; Schurr et al., 1999;
Brooks, 2000; Brooks, 2009; Qu et al., 2000; Mangia et al., 2003; Smith
etal., 2003; Kasischke et al., 2004; Herard et al., 2005; Schurr and Payne,
2007; Hashimoto et al., 2008; Erlichman et al., 2008; Gallagher et al.,
2009; Chuquet et al., 2010; Figley, 2011; Dias et al., 2023). The lactate
shuttle idea originated a decade before the ANLS hypothesis (Brooks,
1985) and may indicate that the phenomenon is universal. Neuronal
preference for lactate over glucose has been documented both in vitro
and in vivo (Hu and Wilson, 1997a; Schurr et al., 1999; Qu et al., 2000;
Mangia et al., 2003; Smith et al., 2003; Kasischke et al., 2004). Taking
into consideration the above-cited studies, it is reasonable to extrapolate
from neuronal preference for lactate as the oxidative energy substrate to
the hefty amounts of lactate glioma cells produce. Moreover, the glucose
spared due to neuronal use of lactate becomes available for consumption
by the glioma cells. Much understanding has been gained over the past
two decades demonstrating the ability of gliomas to hijack neuronal
mechanisms (Venkataramani et al., 2022; Pan and Monje, 2022; Jung
et al, 2020; Tianzhen et al, 2022), flourish in the neuronal
microenvironment (Crivii et al., 2022), and especially interact with
active glutamatergic neurons (Gillespie and Monje, 2018). While the
origin of glioma cells is still being deliberated, accumulated evidence
points at “neural stem or precursor cells of the oligodendroglial type” (5,
and references within), which could explain the ability of glioma cells to
manipulate neurons for their growth needs, the very needs that are
specifically being provided by active neurons (Gillespie and Monje,
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2018; Buckingham et al., 2011). Clearly, in all the studies on the topic,
the prevailing message is that glioma cells take over the neuronal
machinery necessary for their own proliferation, a one-way relationship
where these cells take all and give nothing back. However, the probable
origin of glioma cells from glial cells could indicate that their
interactions with neurons are like those demonstrated between
astrocytes and neurons, where these two cell types have, in essence, a
symbiotic relationship (Pellerin and Magistretti, 1994; Pellerin, 2003;
Pellerin and Magistretti, 2012). Similarly to astrocytes, glioma cells
could supply neurons with lactate. In return, the glucose spared by
neurons due to their preference for lactate, is readily consumed by the
glioma cells. Moreover, evidence shows that glioma cells can secrete
glutamate, which excites glutamatergic neurons (Buckingham et al.,
2011; Campbell et al., 2012; Venkataramani et al., 2019; Ye and
Sontheime, 1999). Such excitation should increase neuronal lactate
consumption and spare even more glucose for consumption by glioma
cells (Figure 2). While direct communications between glioma cells and
neurons have been described, including the formation of synaptic
connections between the two cell types (Venkataramani et al., 2019), no
reports exist on possible benefits neurons may gain through their
interactions with glioma cells. Such a lack of data does not necessarily
mean lack of neuronal benefits from their interaction with glioma cells.
It could simply indicate that only the benefits of glioma cells were
investigated, implicating a parasitic relationship between the two
populations. A single review article (Turner and Adamson, 2011)
alludes to the possibility that neurons interact with astrocytoma cells,
where similarly to astrocytes, they extrude the lactate produced
glycolytically, making it available for neuronal use. Interestingly,
Sonveaux et al. (2008) demonstrated the shuttling of lactate from
anaerobic cancer cells to aerobic ones. A more recent article highlights
the similarities of brain tumor cells transcriptomic profiles have with
oligodendrocytes and astrocytes (Pan and Monje, 2022), and a review
article details the crosstalk between high grade glioma (HGGs) and
their microenvironment, including neurons, astrocytes and endothelial
cells (Ramachandran and Jeans, 2024). However, those interactions
between tumor cells and normal brain cells are all considered to benefit
the former, not the latter. Other interactions between cancer cells and
neural tissue, such as glioblastoma-induced axonal injury (Hamed et al.,
2025; Clements et al., 2025; Baruch et al., 2025) would be outside the
scope of the present hypothesis. The absence of information on possible
neuronal benefits of interaction with gliomas formed the foundation on
which the GNS hypothesis has been developed. Such a symbiotic
relationship, at least at the early stages of gliomas’ proliferation, benefits
both cell types equally. This attraction between the two cell types is
probably driven by both the glucose-hungry glioma cell and the lactate-
preferred neuron. The fundamental appetite of normal and malignant
cells alike for continuous supply of energy substrates could be at the
basis of the interaction between other types of cancer and the normal
tissues they invade. Recognizing the ability of certain cell types in other
tissues and organs to efficiently utilize lactate, the glycolytic end-product
of cancer cells (Warburg’s effect), could explain the tendency of certain
cancer types to relocate to and proliferate in other locations. The GNS
hypothesis is based on the accumulated evidence over the past four
decades showing that different types of tissues and cells, when given the
choice, would prefer the readily available mitochondrial substrate
lactate, for their oxidative energy production over the glycolytic
substrate glucose (Brooks, 1985; Schurr et al.,, 1988; Brooks, 2002;
Brooks, 2007; Brooks et al., 2022; Brooks et al., 2022) Although where
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more glucose for consumption by the glioma cells.

A schematic illustration of a benign neuronal tissue (left panel) and a cancerous neuronal tissue (right panel). The glioma neuron symbiosis (GNS)
hypothesis as illustrated in on the right depicts the relationship between glioma cells and a glutamatergic pyramidal neuron. While in benign neuronal
tissue the pyramidal neuron consumes glucose to produce ATP oxidatively via glycolysis and mitochondrial oxidative phosphorylation, the glioma cells
use glycolysis to consume glucose for their ATP production, not mitochondrial oxidative phosphorylation, generating two moles of lactate for one
mole of glucose consumed (the Warburg effect). The lactate is transported via monocarboxylate transporters (MCTs) from the glioma cell (MCT4 and
MCT2?) to the neuron (MCT1). The neuron’s preference for lactate over glucose as its substrate for oxidative energy metabolism, which is abundantly
supplied by the glioma cells, spares neuronal glucose utilization, making it available for the glioma cells. The ability of the glioma cells to secrete
glutamate, the excitatory neurotransmitter that could excite the neuron, should also increase neuronal lactate consumption and would spare even

brain energy metabolism is concerned, the ANLS hypothesis appears to
play a significant role in support of this preference concept, the GNS
hypothesis does not stand or fall on evidence for or against the ANLS
hypothesis, respectively. Moreover, the GNS hypothesis is not contingent
on glutamatergic activation of neurons by glutamate secreted from
glioma cells.

As mentioned earlier, Sonveaux et al. (2008) introduced the concept
that anaerobic (hypoxic) cancer cells, and aerobic (normoxic) cancer
cells can exist in symbiosis, with lactate produced by the anaerobic cells
being oxidatively consumed by the aerobic ones. Others expanded on
it, recognizing the role that lactate plays in cancer not only as a
byproduct of glycolysis, but as a substrate for oxygenated cancerous
cells (Semenza, 2008; Goodwin et al., 2015; Gladden, 2019; Goodwin
et al., 2019; Pennington et al., 2019). The existence of two different
glioma cell populations within the cancerous tumor has already brought
up new suggestions for possible anti-cancer treatments (Vaupel and
Multhoff, 2021; Gatto et al., 2024). Nevertheless, except for the single
review article (Turner and Adamson, 2011) that alludes to the possibility
that lactate produced by astrocytoma cells could be oxidatively utilized
by neurons, all studies focus on either lactate production and
metabolism within tumors themselves or on the hijacking of the cellular
machinery of the normal cells surrounding such tumors.

Evaluating the hypothesis and its
implications

Researchers can assess the GNS hypothesis in vitro by monitoring
lactate transport in glioma cell lines (Ye and Sontheime, 1999), either
independently or in conjunction with neuronal cell lines, while
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manipulating MCT activity. Established MCT inhibitors, such as
a-cyano-4-hydroxycinnamate (4-CIN) (Halestrap and Denton, 1974;
Brooks et al., 1999; Schurr et al., 2001a,b) can be used to accomplish
such manipulation, where the transport of lactate, extruded from
cancerous cells, would be blocked and potentially prevent neuronal
utilization of glioma lactate. Lactate transport blockers into neurons
should also block its transport into neuronal mitochondria,
consequently preventing neuronal glucose-sparing. Moreover, 4-CIN
should also block lactate utilization by the normoxic glioma cells that
are important for the proliferation of gliomas. An alternative in vitro
approach would be the exposure of glioma cell lines to the glial
metabolic toxin fluorocitrate (FC) (Schurr et al., 1997; Swanson and
Graham, 1994). FC specifically impairs the flow of carbon through the
glial cell's TCA cycle (Swanson and Graham, 1994). Given the
similarity between glial and glioma cells, the latter may react to FC in
the same way as former do. When glucose availability is low, neurons
co-cultured with glioma cells utilize lactate produced by the glioma
cells as their primary energy source. In this case, FC may indirectly
decrease neuronal survival by inducing toxic glioma cell death.
Furthermore, it is possible to assess whether excitatory receptor
antagonists can help reduce the impact of glutamate released by
glioma cells on heightened neuronal excitability and increased lactate
usage. There are multiple models for in vivo testing of the GNS
hypothesis, each with specific strengths and limitations (Lenting et al.,
2017). Presently, it would be too early to recommend one model over
the other. However, in general, either a human or an animal glioma
xenograft model could be employed, to evaluate the effects of MCT
blockers, FC, excitatory receptor antagonists of distinct types, on both
the proliferation of the glioma and on the xenograft surrounding
neural tissue. Interestingly, one of the earlier studies of glioma
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xenografts in a mouse brain (Kaye et al., 1986) seems to be adequate
for an in vivo evaluation of the GNS hypothesis, since it allows several
pharmacological, physiological and histological manipulations. This
glioma xenograft model could enable an investigation of both short-
and long-term interactions between the host mouse brain tissue and
the glioma xenograft. For instance, techniques that employ
microsensors (Hu and Wilson, 1997b; Hu and Wilson, 1997a) to trace
tissue glucose and lactate levels in the brain region (hippocampus)
hosting the xenograft can be easily employed. The effects of either
MCT blockers, glucose uptake transporter (GLUT) inhibitors, FC,
glutamatergic antagonists or any combination thereof on the levels of
the two substrates can be tested by applying these pharmacological
agents locally at the microsensors via a cannula.

Both the short-term effects of such treatments on the levels of
glucose and lactate at the interaction region of the xenograft with the
hosting neuronal tissue can be measured along with their long-term
effects on the rate of the xenograft proliferation. Figure 3 postulates
how photomicrographs of coronal sections prepared from mice
inoculated in their hippocampus with rat glioma xenograft would
appear following different treatments. The progression of the glioma
xenograft proliferation from 7 days (Figure 3A) to 14 days post
inoculation (Figure 3B) is indicated by the enlargement of the tumor
in B compared to A. Placement of a cannula in the hippocampus near
the xenograft allows the delivery of chemical agents. In the example
shown, the glial TCA cycle inhibitor FC was delivered daily starting
on day eight after inoculation (Figure 3C) slowed down the glioma
proliferation, but also damaged many pyramidal neurons in the

10.3389/fnins.2025.1646148

hippocampus, since the FC is also toxic to astrocytes, the suppliers of
lactate to neurons. If, however, FC was delivered along with lactate,
the glioma proliferation slowed down without damaging the
pyramidal neurons (Figure 3D).

The idea that glioma cells and neurons may have a symbiotic
relationship indicates that there are still unexplored or unstudied areas
regarding how these cells affect each other. Establishing such a
symbiotic relationship between glioma cells and neurons could
explain their reciprocated attraction and possible mutual dependency;,
at least during the early stages of proliferation. Second, if symbiosis
does exist, it could open a new direction in the development of anti-
cancer treatments, especially if said symbiosis is crucial for the
survival and proliferation of cancerous cell types.

Summary

The GNS hypothesis proposes that neurons regularly benefit from the
endless supply of glioma-produced lactate, their preferred neuronal
oxidative energy substrate over glucose. That preference spares neuronal
glucose, which becomes readily available for use by the glucose-craving
glioma cells. The latter’s ability to secrete glutamate, which excites
glutamatergic pyramidal neurons, could increase the neuronal
consumption of lactate, sparing even more glucose for consumption by
glioma cells, since this excitation increases cerebral blood flow and
therefore supply of glucose. Such a symbiotic relationship, at least at the
beginning of the gliomas proliferation, benefits both cell types equally. As

Cannula

Glioma xenograft

FIGURE 3

Representative hypothetical photomicrographs of brain coronal sections taken from four groups (A—D) of mice showing a xenograft of rat glioma a
week (A) and 2 weeks after inoculation (B). A cannula implanted close to the xenograft in the hippocampus used to deliver daily buffered solutions
(vehicle) to A and B or buffered solutions containing FC (C) or FC + lactate (D) starting on day eight.
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a result, both glucose-hungry glioma cells and neurons that prefer lactate
may contribute to the interaction between these two cell types. The ability
of glioma cells to secrete glutamate should enhance their symbiosis with
neurons. Several in vitro and vivo experiments are suggested to assess the
GNS hypothesis. When the hypothesis is validated, the potential results
of such validation are outlined.
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