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Seizures are a frequent presenting symptom for pa-
tients with adult-type diffuse gliomas, as well as a 
major source of morbidity affecting patient quality 

of life postoperatively.1–6 While the incidence of seizure 
varies by tumor size, location, histopathological type, and 
grade, IDH-mutant tumors are thought to be more epilep-
togenic than IDH-wildtype tumors, with > 80% of them 
presenting with seizure in some cohorts.1 Seizure control 
following resection is a core aspect of disease manage-
ment for patients with glioma, as there is a tradeoff be-
tween mitigating the deleterious effects of seizures and 
minimizing the adverse effects associated with the use 
of antiseizure medication. Several associations between 
postoperative seizures and tumor progression as well as 
worse survival outcomes have been reported, underscor-
ing the importance of seizure freedom as an oncological 
consideration.1,2,7,8 As new developments in cancer neuro-
science have shed light on the tumor biology underpinning 
tumor-associated epilepsy, exploring molecular alterations 
in gliomas through methods such as next generation se-
quencing could reveal novel therapeutic opportunities and 
optimize the clinical management of seizures in glioma. 
Here we summarize the current literature on the surgical 

and postoperative medical management of tumor-associat-
ed epilepsy, review relevant biological pathways implicat-
ed in tumor-related epileptogenesis, and present our own 
institution’s experience with the use of next generation se-
quencing to identify molecular alterations associated with 
preoperative and postoperative seizures.

Methods
We performed a literature search of PubMed for ar-

ticles published before March 1, 2025. The search terms 
“glioma”, “glioblastoma”, “seizure”, “epilepsy”, “resec-
tion”, “hippocampectomy”, “lobectomy”, “laser”, “glioma 
associated epilepsy”, “targeted inhibitor”, “antiepileptic”, 
“antiseizure”, and “AED” were used with a combination of 
AND/OR restrictions to identify relevant articles. These 
articles were included as references on the basis of a re-
view of the abstract.

Patient records from our institution were also retrospec-
tively reviewed with approval from the University of Cali-
fornia, San Francisco Institutional Review Board. Patients 
were included in our analysis if they were 18 years of age 
or older at the time of primary resection, underwent resec-
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tion of pathology-confirmed diffuse supratentorial glioma, 
and had next generation sequencing profiling of their tu-
mor tissue with a gene panel of 529 cancer-related genes. 
For patients with multiple resections or multiple next gen-
eration sequencing panels, preoperative and postoperative 
seizure history was indexed from the first resection and 
results of the first next generation sequencing were used.

Clinical and demographic variables included age, sex, 
past medical history, preoperative Karnofsky Performance 
Status (KPS), seizures at presentation, tumor size, tumor 
location, extent of resection, and postoperative seizure his-
tory. Only seizures 72 hours after surgery and beyond were 
considered, as seizures before this time point could be 
more associated with surgical factors. To stratify patients 
by postoperative seizure burden, those who experienced 
postoperative seizures at an approximately monthly fre-
quency or more at any point in their postoperative course 
were considered to have recalcitrant seizures; those who 
did not experience any seizures, a single seizure, or rare 
seizures were considered to not have recalcitrant seizures. 
Glioma grade and subtype were assessed using the WHO 
CNS tumor 2021 guidelines. Only mutations present in 
more than 5% of each cohort (IDH-wildtype and IDH-mu-
tant) were included in the analysis. All statistical analysis 
was performed using R (version 4.2.2, The R Foundation 
for Statistical Computing). Predictors that had p < 0.1 on 
univariate analysis were included in a multivariate model. 
The threshold for statistical significance was set at p < 
0.05 for all analyses.

Results
Surgical Strategies to Maximize Seizure Freedom and 
Prognostic Associations 

Resection plays an important role in long-term seizure 
freedom, particularly for patients with low-grade gliomas 
of the insular or temporal lobe, near the cortical surface, 
or near eloquent areas. In several reports, a greater extent 
of resection has been found to predict increased seizure 
freedom in patients with low-grade glioma.1,4,9–15 For ex-
ample, in a multicenter study of 1509 patients with low-
grade glioma, Pallud et al.1 found that total or subtotal re-
section (STR), as compared to partial resection or biopsy, 
resulted in significantly greater rates of complete seizure 
freedom at 6 months. In a meta-analysis of 2641 patients 
with low-grade glioma, Shan et al.4 found that gross-total 
resection (GTR) as compared to STR was associated with 
a significantly higher rate of Engel class I seizure freedom 
(complete freedom from disabling seizures); Nandoliya et 
al.11 reported a similar conclusion for seizure freedom in 
a meta-analysis of 1628 patients. Some studies have sug-
gested an extent of resection threshold of > 80% for total 
seizure freedom in low-grade glioma and 81% for Engel 
class I seizure freedom in insular glioma.10,16

While fewer studies have assessed postoperative sei-
zure freedom in high-grade gliomas, there is evidence of 
a similar benefit in postoperative seizure control from a 
greater extent of resection. In a cohort of 1006 patients 
with glioblastoma (GBM), Pallud et al.2 showed that while 
seizure rates increased from diagnosis to after standard of 
care treatment to tumor progression to finally end of life, 

supramarginal and total resection compared to STR or bi-
opsy predicted greater seizure freedom during the disease 
course. Li et al.8 found that GTR compared to STR pro-
duced a higher rate of seizure freedom in a cohort of 449 
patients with high-grade gliomas.

Given the propensity of temporal and insular lobe tu-
mors to cause seizures, some authors have also compared 
GTR to supratotal resection for survival and seizure free-
dom. In a systematic review of 1181 low-grade gliomas 
and glioneuronal tumors, Englot et al.9 reported not only 
a higher rate of Engel class I seizure freedom at 6 months 
in the patients who had undergone GTR versus STR, but 
also greater seizure control among the patients who had 
undergone hippocampectomy or anterior temporal lobe 
corticectomy in addition to GTR versus GTR alone. In a 
meta-analysis of supratotal resection with anterior tempo-
ral lobectomy and GTR alone for temporal lobe GBM in 
286 patients, Zheng et al.17 reached a similar conclusion. 

Laser interstitial thermal therapy (LITT) is another 
surgical approach for treating gliomas that are difficult 
to access.18 Although the data on seizure outcomes fol-
lowing LITT for glioma are sparse, one series comparing 
LITT to resection in 14 patients with insular low-grade 
epilepsy-associated tumors demonstrated a similar rate of 
approximately 50% with freedom from disabling seizures 
at 12 months.19 However, one review of LITT for insular 
tumors and epilepsy documented complete seizure free-
dom in only 1 of the 7 patients who had undergone the 
procedure.20

While maximal safe resection is important, so too 
is the need for further work to understand the value of 
targeting epileptogenic tissue beyond the tumor margin. 
Intraoperative electrocorticography (ECoG) can be used 
in epilepsy surgery to identify seizure foci.21 And while 
the technique is commonly used to monitor for discharge 
potentials in glioma resection, there is no consensus on its 
value in improving seizure outcomes following surgery, 
primarily due to a lack of data, although individual stud-
ies have reported no significant impact on seizures.14,15 
One recent meta-analysis comprising 1115 patients with 
low-grade brain tumors and medically refractory epilepsy 
has revealed that the use of intraoperative ECoG to guide 
resection improves postoperative seizure freedom and 
seizure control more than lesionectomy alone,22 although 
there is a need to replicate these analyses specifically in 
glioma to reflect the growing understanding of the mecha-
nism of glioma-associated epilepsy.

Similar to patient quality of life considerations, post-
operative seizure control may be relevant prognostically. 
Many studies have reported that a history of seizures at 
initial diagnosis confers a favorable overall survival ben-
efit.1,2,6,7,23 Moreover, some have shown that postoperative 
seizures confer an improved prognosis as compared to 
their absence in both high- and low-grade gliomas.1,2,7,8,23 
However, others have reported worse survival3,24 or a cor-
relation between seizures and disease progression.25 We 
have also found a strong correlation between the timing 
of the first postoperative seizure and tumor progression as 
well as improved overall survival in patients with greater 
seizure freedom for both IDH-wildtype and IDH-mutant 
gliomas.26
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Antiepileptic Drug Therapy
Antiepileptic drugs (AEDs) are a cornerstone of man-

aging seizures in patients with diffuse gliomas in both the 
pre- and postoperative setting, and the optimal strategy 
for regimen selection and timing has been the subject of 
much study and discussion.27–31 The consensus among cli-
nicians is to begin AEDs after a single verified seizure 
before or after surgery,27,31 although quality data on the 
benefit of seizure prophylaxis are lacking.30 These opin-
ions are reflected in the 2021 practice guidelines from 
the Society for Neuro-Oncology (SNO) and European 
Association of Neuro-Oncology (EANO), which advise 
against prophylactic AEDs in seizure-naive patients with 
newly diagnosed brain tumors (level A) and insufficient 
evidence to support preventative peri- or postoperative 
AEDs (level C).32–34

Determining the best agent for glioma-associated epi-
lepsy is made difficult by a lack of focused studies.31,35,36 
Generally, first-generation antiepileptics are avoided out 
of concern for side effects and drug-drug interactions 
with steroids or chemotherapy.28,29,31 Levetiracetam is 
commonly favored among clinicians in part because of 
its favorable side-effect profile and has the largest body 
of evidence supporting its use as a first-line agent in this 
population.28,30,32,35,37,38 Other potential agents include 
lacosamide, which has been shown to significantly reduce 
seizures in patients with brain tumor–related epilepsy, in-
cluding those with glioma, either as monotherapy or an 
add-on agent.39–41 Valproic acid, once a popular treatment 
option, has fallen out of favor due to concerns about side 
effects and a lack of evidence of superiority in this patient 
population.27,42,43 Newer AED options, such as brivarace-
tam and perampanel, show promise in this clinical context 
but require more robust study.31

The optimal duration of antiepileptic treatment is not 
well defined,44 and there is currently no widely accepted 
schedule for the tapering of medication in patients with 
glioma-associated seizures, primarily due to a lack of data 
specific to this population. Consideration must be given 
to the adverse effects of long-term AED use, primarily 
cognitive and mood disturbances, which can significantly 
impact quality of life.28,45,46 A review by Koekkoek et al. 
suggested that stopping AEDs may be considered in pa-
tients with stable low-grade glioma and long-term seizure 
freedom.47 Withdrawal timing can range from 2 weeks af-
ter surgery to lifelong use depending on the preoperative 
and postoperative seizure burden, extent of resection, and 
tumor- and surgery-related risk factors.48

Randomized trials of AEDs in patients with glioma-
associated epilepsy, such as the STING (first-line leve-
tiracetam versus valproic acid in glioma patients with 
epilepsy, NCT030480) and SPRING (prophylactic leve-
tiracetam versus no prophylactic AED in seizure-naive 
glioma patients) trials, might identify optimal agents and 
regimens.36,49 Additional work could identify subgroups 
of patients with glioma who are more predisposed to sei-
zures and warrant a more aggressive or prophylactic AED 
regimen.29

Institutional Experience
We performed univariate and multivariate logistic re-

gression analyses of clinical and genomic factors to iden-
tify correlates of seizures at initial presentation and diag-
nosis of glioma, as well as postoperative seizures. Patients 
were stratified by their IDH mutation status to control for 
the distinct tumor biology of these two subsets of glioma.

In total, 539 patients were analyzed in the seizure 
presentation analysis (Fig. 1). Of the 366 patients with 
IDH-wildtype glioma, 129 (35.2%; Table 1) presented 
with seizure. On multivariate analysis, KPS (OR 1.03, 
95% CI 1.00–1.05, p = 0.025) and EGFR mutation (OR 
2.23, 95% CI 1.38–3.65, p = 0.001) were associated with 
a greater likelihood of presenting with seizure, whereas 
tumor volume (OR 0.98, 95% CI 0.97–0.99, p < 0.001) 
and PI3K-mTOR pathway mutations (OR 0.58, 95% CI 
0.35–0.96, p = 0.033; Table 2) were associated with less 
frequent seizure presentation. For the 173 IDH-mutant 
tumors, 116 (67.1%; Table 1) presented with seizure. Tu-
mor volume was similarly associated with lower odds of 
seizure (OR 0.99, 95% CI 0.98–1.00, p = 0.01), whereas 
temporal lobe tumors (OR 7.29, 95% CI 2.11–34.5, p = 
0.004) and those with CIC mutations (OR 4.07, 95% CI 
1.21–17.0, p = 0.034; Table 2) were associated with higher 
odds of seizure presentation.

Patients were included for postoperative seizure analy-
sis if they had had standard of care resection, radiation 
therapy to the resection cavity, and temozolomide for 
IDH-wildtype tumors and at least resection for IDH-
mutant tumors (n = 403; Fig. 2, Table 1). Median over-
all survival for the 254 IDH-wildtype tumors included in 
the analysis was 20.2 months (IQR 12.9–35.4 months), 
120 patients experienced at least 1 postoperative seizure 
(47.2%), and 50 (19.7%) experienced recalcitrant seizures. 
In a multivariate analysis of any postoperative seizures 
versus complete seizure freedom, male sex (OR 2.14, 95% 
CI 1.27–3.66, p = 0.005) and seizure at initial presentation 
(OR 1.8, 95% CI 1.04–3.13, p = 0.036; Table 3) were both 
associated with increased odds of seizure. On multivariate 
analysis, seizures at initial presentation (OR 2.43, 95% CI 
1.18–5.08, p = 0.017), CHEK2 mutation (OR 25, 95% CI 
1.49–1.93, p = 0.05), and TSC1 mutation (OR 10.5, 95% 
CI 1.20–132, p = 0.036; Table 4) were all associated with 
greater odds of postoperative recalcitrant seizures. Among 
the 149 IDH-mutant tumors included for analysis, median 
overall survival was 63.8 months (IQR 4.0–110.5 months), 
70 patients (47.0%) experienced 1 or more postoperative 
seizures, and 38 (25.5%; Table 1) experienced postoper-
ative recalcitrant seizures. Multivariate analysis for any 
postoperative seizures identified male sex (OR 2.13, 95% 
CI 1.06–4.36, p = 0.037; Table 3) as associated with sei-
zures. No clinical or molecular factors were significantly 
associated with recalcitrant postoperative seizures in 
IDH-mutant tumors in our cohort.

Discussion
Key Molecular and Circuit Mechanisms

Gliomas are thought to cause seizures through several 
mechanisms (Fig. 3). Many reports from the basic science 
literature suggest not only that neurons and glioma cells 
form synaptic connections, but also that this signaling may 
promote tumor growth.50–52 Glutamate-mediated calcium 
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signaling through AMPA receptors at the neuron-glioma 
interface and gap junctions among glioma cells can drive 
tumor progression.50,51 Membrane depolarization of tumor 
cells via potassium currents may also have a similar ef-
fect.50 Krishna et al. have also shown that gliomas that 
maintain high functional connectivity through local syn-
aptic remodeling have a worse survival prognosis than less 
integrated gliomas.52

In turn, gliomas can influence neighboring neurons 

by increasing hyperexcitability via increased extracel-
lular glutamate from upregulation of cysteine-glutamate 
exchange,50,53 synaptic remodeling,50,52 or dysregulated 
potassium and chloride ion homeostasis.50,54,55 Tumor 
metabolomics may also play a role in glioma-associated 
epilepsy. Seizures are more common in patients with 
IDH1-mutated tumors, which may be attributable to the 
structural similarity between D-2-hydroxyglutarate (D2-
HG), a Kreb’s cycle metabolite that accumulates in IDH1-

FIG. 1. Oncoplot of a cohort of adult diffuse gliomas (n = 539), including IDH-wildtype (n = 366) and IDH-mutant tumors (n = 173), 
depicting the 100 most common genomic alterations detected with next generation sequencing. Samples are grouped by diagno-
sis based on WHO 2021 criteria and by the presence of preoperative seizures.
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mutant tumors,56,57 and glutamate. D2-HG may also di-
rectly induce mTOR pathway activation as another route 
to seizure activity.58

In addition to IDH1 mutations, tumor-specific molecu-
lar alterations may further influence epileptogenesis sepa-
rately from the mechanisms above. In long-term epilepsy-
associated tumors, the BRAF V600E mutation is thought 
to contribute to seizures due to decreased inhibition of the 
RAS-RAF-MAPK pathway and dysregulation of the tran-
scription factors governing ion channel expression.6,59–61 
Mutations of the PI3K-AKT-mTOR pathway have also 
garnered interest for their potential role in mediating tu-
mor-associated epilepsy. PTEN, NF1, and TP53 are nega-
tive regulators of the mTOR or MPK pathways commonly 
mutated in GBM, and their loss of function has been as-
sociated with increased seizures in preclinical models.62 
Increased mTOR pathway activity has been seen in peritu-
moral tissues of patients with tumor-associated epilepsy,63 
PI3K pathway alterations have been found to mediate sei-
zure phenotypes in cortical malformations,64 and different 
mutations of PIK3CA, the catalytic subunit of PI3K, have 
been linked to a broad spectrum of epileptic activity in 

mouse models65,66 and in correlation with tumor molecular 
profiles from humans.67

Transcriptomic and other methods to molecularly pro-
file tumors may yield additional insights into the mecha-
nisms of glioma-associated epilepsy55,68 and reveal thera-
peutic opportunities. While BRAF and MEK inhibitors 
have not effectively controlled tumor-associated epilepsy 
in GBM, they may have a role in treating gangliogliomas.6 
The dual role of the mTOR pathway in promoting unregu-
lated tissue growth and inducing epilepsy has motivated 
the use of the mTOR inhibitor everolimus in tuberous scle-
rosis.31 The mutant IDH inhibitor vorasidenib improved 
progression-free survival compared to placebo in patients 
with WHO grade 2 oligodendroglioma in phase 3 testing. 
While not advanced to phase 3 testing,69 another mutant 
IDH inhibitor, ivosidenib, has shown promising results in 
improving seizure control in patients with both high- and 
low-grade gliomas.70,71

Conclusions
Tumor-associated epilepsy is both a common present-

TABLE 2. Clinical and molecular predictors of presentation with seizure

IDH-Wildtype Tumor No. of Cases
Univariate Analysis Multivariate Analysis

OR 95% CI p Value OR 95% CI p Value

KPS 366 1.03 1.01–1.05 0.007 1.03 1.00–1.05 0.025
Tumor vol 351 0.98 0.97–0.99 <0.001 0.98 0.97–0.99 <0.001
Tumor location 366       
  Frontal  — —  — —  
  Insular  2.77 0.90–8.92 0.076 2.22 0.66–7.81 0.2
  Occipital  0.52 0.14–1.52 0.27 0.39 0.10–1.22 0.13
  Other  0.62 0.13–2.17 0.49 0.35 0.05–1.47 0.2
  Parietal  0.98 0.52–1.80 0.94 1 0.50–1.96 >0.9
  Temporal  1.46 0.87–2.47 0.15 1.24 0.69–2.23 0.5
EGFR mutation 366 2.05 1.33–3.17 0.001 2.23 1.38–3.65 0.001
PI3K mTOR pathway mutation 366 0.51 0.33–0.80 0.003 0.58 0.35–0.96 0.033
NIPBL mutation 366 3.8 0.99–18.3 0.062 2.21 0.48–12.1 0.3
RTK RAS pathway mutation 366 0.61 0.33–1.07 0.1 0.72 0.36–1.36 0.3

IDH-Mutant Tumor No. of Cases
Univariate Analysis Multivariate Analysis

OR 95% CI p Value OR 95% CI p Value

Age 173 0.97 0.95–1.00 0.086 0.97 0.93–1.01 0.12
Tumor vol 139 0.99 0.99–1.00 0.003 0.99 0.98–1.00 0.01
Tumor location 173       
  Frontal  — —  — —  
  Insular  5.13 1.35–33.6 0.036 4.95 1.14–34.7 0.054
  Occipital  3,934,505 0.00–NA >0.99 541,134,605 0.00–NA >0.9
  Other  3,934,505 0.00–NA >0.99 64,355,656 0.00–NA >0.9
  Parietal  1.06 0.43–2.77 0.9 0.56 0.14–2.03 0.4
  Temporal  3.42 1.30–10.8 0.02 7.29 2.11–34.5 0.004
CIC mutation 173 2.84 1.23–7.43 0.021 4.07 1.21–17.0 0.034
Notch pathway mutation 173 10.3 2.04–188 0.025 77,368,378 0.00–NA >0.9

NA = not available.
Boldface type indicates statistical significance on multivariate analysis. 
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ing symptom and a frequent complication following surgi-
cal treatment for adult diffuse gliomas. Maximizing the 
extent of resection is a mainstay of postoperative seizure 
control, with GTR providing the greatest seizure freedom 
over STR. In cases of temporal lobe involvement, su-
pratotal resection involving temporal lobectomy may be 
preferred. Optimal medical management of antiseizure 
medications requires a patient-focused approach, as no 

strong guidelines exist for initiation and cessation of anti-
seizure regimens, and quality of life considerations must 
be weighed against seizure control and medication adverse 
effects.

While gliomas can cause seizures through increased 
extracellular glutamate release, local synaptic remodeling, 
metabolism, and dysregulated ion homeostasis overacti-
vation of key biological pathways such as the PI3K-AKT-

FIG. 2. Oncoplot of a subset of the cohort of adult diffuse gliomas treated with resection (n = 403), including IDH-wildtype tumors 
treated with standard radiotherapy and temozolomide (n = 254) and IDH-mutant tumors (n = 149), depicting the 100 most common 
genomic alterations detected with next generation sequencing. Samples are grouped by diagnosis based on WHO 2021 criteria 
and by the presence of seizures > 72 hours after resection.
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TABLE 3. Clinical and molecular predictors of any postoperative seizures

IDH-Wildtype Tumor No. of Cases
Univariate Analysis Multivariate Analysis

OR 95% CI p Value OR 95% CI p Value

Age 254 0.98 0.96–1.00 0.064 0.98 0.96–1.00 0.04
Sex 254       
  F  — —  — —  
  M  2.08 1.25–3.48 0.005 2.14 1.27–3.66 0.005
Sz at presentation 254 1.8 1.07–3.06 0.027 1.8 1.04–3.13 0.036
SETD2 mutation 254 0.35 0.10–1.04 0.076 0.45 0.12–1.50 0.2
SPTA1 mutation 254 0.15 0.01–0.87 0.081 0.17 0.01–1.12 0.11
LZTR1 mutation 254 0.32 0.07–1.07 0.088 0.32 0.07–1.18 0.11

IDH-Mutant Tumor No. of Cases
Univariate Analysis Multivariate Analysis

OR 95% CI p Value OR 95% CI p Value

Sex 149       
  F  — —  — —  
  M  2.2 1.14–4.34 0.02 2.13 1.06–4.36 0.037
Location 149       
  Frontal  — —  — —  
  Insular  3.77 1.04–17.9 0.058 3.42 0.89–17.0 0.093
  Occipital  7,234,175 0.00–NA >0.99 3,450,922 0.00–NA >0.9
  Other  0  >0.99 0  >0.9
  Parietal  1.26 0.45–3.51 0.66 1.65 0.55–5.04 0.4
  Temporal  0.89 0.37–2.06 0.78 0.8 0.33–1.90 0.6
RT 149 1.83 0.94–3.61 0.079 1.53 0.74–3.17 0.2
Cell cycle pathway mutations 149 1.44 0.97–2.17 0.075 1.34 0.89–2.05 0.2

RT = radiotherapy.
Boldface type indicates statistical significance on multivariate analysis. 

TABLE 4. Clinical and molecular predictors of multiple postoperative seizures

IDH-Wildtype Tumor No. of Cases
Univariate Analysis Multivariate Analysis

OR 95% CI p Value OR 95% CI p Value

Age 254 0.98 0.95–1.00 0.086 0.98 0.95–1.01 0.3
Sex 254       
  F  — —  — —  
  M  1.88 0.98–3.74 0.063 1.96 0.95–4.27 0.078
Sz at presentation 254 2.24 1.19–4.21 0.012 2.43 1.18–5.08 0.017
Preop tumor vol at index op 252 0.99 0.98–1.00 0.032 0.99 0.98–1.00 0.2
CHEK2 mutation 254 13 1.62–265 0.028 25 1.49–1.93 0.05
TSC1 mutation 254 6.45 1.04–50.0 0.044 10.5 1.20–132 0.036
Cell cycle pathway mutation 254 0.29 0.07–1.21 0.072 0.58 0.12–3.25 0.5
KMT2B mutation 254 4.28 0.77–23.7 0.081 2.7 0.06–96.0 0.6
NOTCH3 mutation 254 4.28 0.77–23.7 0.081 0.26 0.01–11.2 0.5
GRIN2A mutation 254 4.28 0.77–23.7 0.081 3.89 0.45–27.0 0.2
ARID1A mutation 254 4.28 0.77–23.7 0.081 4.1 0.40–32.0 0.2
POLQ mutation 254 8.46 0.79–184 0.084 0.06 0.00–5.41 0.2
PTCH1 mutation 254 8.46 0.79–184 0.084 1.23 0.03–71.1 >0.9
PALB2 mutation 254 8.46 0.79–184 0.084 5.14 0.37–133 0.2
Polysomy 7/monosomy 10 254 0.55 0.28–1.13 0.095 0.58 0.26–1.35 0.2

Boldface type indicates statistical significance on multivariate analysis.
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mTOR and RAS-RAF-MAPK pathways may be implicated. 
Molecular profiling of tumors may yield further insights 
into the biology of glioma-associated epilepsy and lead to 
new therapeutic avenues, such as mutant IDH inhibitors, 
which could have combined antitumor and antiseizure ef-
fects.

The molecular alterations we found to be associated with 
seizures are consistent with the clinical and basic science 
literature. Previous studies72 have reported an association 
between EGFR amplification and seizures at presentation 
in GBM, whereas in vitro work has shown CIC mutation 
contributing to increased extracellular glutamate.73 TSC1 
mutation is seen in tuberous sclerosis and focal cortical 
dysplasia where it is thought to contribute to seizure activ-
ity via decreased inhibition of the PI3K pathway.74 While 
no seizure associations with CHEK2 have been reported, 
the gene may play a role in GBM progression, as its loss 
contributes to defective DNA damage repair.75

Large multicenter studies with long-term follow-up are 
needed to better quantify the burden of glioma-associated 
epilepsy in patients with all grades of glioma and to reveal 
how seizure frequency evolves over the course of treat-
ment. These clinical studies should also consider whether 
certain AED regimens are more efficacious in preventing 

seizures and possibly influencing overall survival. These 
clinical data should be correlated with tumor molecular 
profiling performed at the time of resection to better dis-
cern the relationship between tumor mutational profile and 
postoperative seizure risk, which may yield therapeutic 
opportunities specific to certain patient populations.
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