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Abstract
Glioblastomas (GBMs) originate from glial cells and are characterized by aggressive growth and poor prognosis. 
Despite advances in surgical resection, complete elimination remains challenging, often leading to recurrence that 
is resistant to standard therapies. Immunotherapy and conventional treatments show promise in enhancing ther-
apeutic outcomes across various cancers. Researchers continue to explore new treatments, particularly radiation, 
chemotherapy, and surgery; however, glioblastoma remains highly challenging, with only modest improvements 
in survival. Recent progress in immunotherapy, especially with tumor vaccines such as peptide-based and cell-
based options (eg, dendritic cell vaccines), represents significant advancements despite the limitations observed in 
current clinical trials. This article reviews recent developments in vaccine-based immunotherapy for glioblastoma 
treatment.

Key Points

1.	 GBM exhibits lethal progression, posing significant challenges for treatment.

2.	 Immunotherapy with conventional treatments shows promise in GBM treatment.

3.	Tumor vaccine advances show promise, but efficacy assessment challenges persist.
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Glioblastoma (GBM) develops through the proliferation of 
cells in the brain or spinal cord. It grows rapidly and has 
the potential to infiltrate and destroy normal brain tissue.1 
Glioblastoma originates from astrocytes, which are a type 
of cell that nourishes nerve cells.2 Common GBM symptoms 
include headaches, vomiting, nausea, epileptic attacks, 
discrepancies in eyesight or speech, and cognitive prob-
lems.3 Nevertheless, the symptoms may differ depending 
on the location and size of the tumor.4 Glioblastoma is fre-
quently treated with surgery, radiation, or chemotherapy.5 
However, given the aggressive nature and potential for 
recurrence of glioblastoma, the prognosis for glioblas-
toma patients is frequently poor. Despite advancements in 
treatment, the median survival time for patients with glio-
blastoma is typically less than two years. Researchers con-
tinue to explore new treatment approaches and therapies, 
including targeted therapies, to improve outcomes for pa-
tients with glioblastoma. There are several modes of im-
munotherapy.5 However, managing glioblastoma remains 
a significant challenge in oncology. Adjuvant radiation, 
temozolomide (TMZ) chemotherapy, and tumor-treating 
fields (TTFs) are all standard of care (SOC) treatments for 
GBM. Immunotherapy to increase host immunity has long 
been considered a viable treatment strategy for GBM.6 
The main variation between these antigen dependencies 
is whether a known antigen or group of known antigens is 

being targeted rather than whether tumor antigens are nec-
essary. Antigen-independent treatments frequently seek to 
inhibit the immunosuppressive process of the tumor mi-
croenvironment (TME) to help T cells avoid fatigue, mount 
an antitumor immune response, or promote the release 
of tumor antigens.7–15 Neoadjuvant ICB immunotherapy 
has been shown by some researchers to improve overall 
survival (OS) in patients with recurrent GBM; however, no 
discernible alteration in immune checkpoint expression or 
cytotoxic T-cell activity has been observed in other studies, 
which may account for the inadequate survival benefit ob-
served in GBM patients.16–22 The blood‒brain barrier (BBB), 
tumor heterogeneity, and glioma immunosuppression 
are among the limitations that impact the effectiveness of 
current treatment plans. Moreover, by increasing antigen 
exposure, oncolytic virus pretreatment can successfully 
increase the effectiveness of ICB therapy. There is an explo-
ration of novel therapeutic options and some progress, par-
ticularly in vaccine therapy and tumor immunotherapy.23–29 
The basic principle of vaccine treatment is the immune re-
sponse specific to the injected exogenous antigens in the 
tumor.23,30–33 Therefore, introducing antigen-specific immu-
notherapy to a patient’s course of treatment could improve 
its clinical results. We address antigen-specific immune 
therapies for brain tumors in general in this review, but we 
pay particular attention to therapeutic vaccine platforms 
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and types of GBM immunization. We also discuss the chal-
lenges, ongoing strategies, and possible ways to improve 
GBM immunotherapy in clinical practice.

Mechanisms Implicated in the 
Diagnosis and Treatment of GBM

The structure of the brain is extremely complex and con-
sists of several distinct regions, each with its function, such 
as the cerebrum, cerebellum, brainstem, thalamus, hypo-
thalamus, amygdala, hippocampus, and cerebral cortex.34 
These are just a few of the key structures of the brain, and 
each plays an important role in overall brain function. The 
brain is extremely flexible and malleable, which means that 
it may reorganize itself in response to learning, damage, 
and other events. Glioblastoma is an aggressive brain 
tumor caused by astrocytes, which are brain-supporting 
cells. It is the most prevalent and severe malignant pri-
mary brain tumor in adults.34–47 These tumors are desig-
nated grade IV astrocytomas, indicating that they are very 
malignant. Glioblastomas are very aggressive tumors that 
spread quickly and invade nearby brain tissue, as shown in 
Supplementary Figure S1.48–56 They are notorious for their ca-
pacity to spread rapidly throughout the brain, making total 
surgical eradication difficult.57 Overall, the diagnosis and 
treatment of glioblastoma are poor, necessitating a multi-
modal approach to therapy. Despite modern breakthroughs, 
it is still one of the most challenging malignancies to cure.

The ECM influences brain tumorigenesis, particularly in 
the context of glioblastoma, including the tumor micro-
environment, cell adhesion and migration, angiogenesis, 
and the modulation of signaling pathways57 (Figure 1). 
Endothelial junctions are specialized structures that form 

adjacent endothelial cells lining blood vessels, which are 
essential for the integrity and function of the BBB in the 
brain58 (Figure 1). The BBB is a highly selective barrier that 
regulates the passage of chemicals from the circulation to 
the brain parenchyma, protecting the brain from poten-
tially dangerous compounds while allowing the required 
nutrients to enter, as shown in Supplementary Figure 
S1.59 Several variables contribute to angiogenesis in GBM, 
the most notable of which is vascular endothelial growth 
factor (VEGF). GBM cells thrive under hypoxic conditions 
and upregulate VEGF to promote angiogenesis.60 VEGF 
stimulates endothelial cell proliferation and vessel cre-
ation, hence facilitating tumor growth. Anti-angiogenic 
medicines, such as bevacizumab (a VEGF inhibitor), seek to 
starve the tumor by blocking its blood supply.61 However, 
these medicines frequently encounter difficulties, such as 
tumor adaptation and resistance. Angiogenesis targeting 
may improve the effectiveness of other therapies, such 
as chemotherapy and radiation, by normalizing the tumor 
vasculature.62 Liquid biopsies are a minimally invasive 
diagnostic method that examines tumor-derived compo-
nents in bodily fluids, including blood, cerebrospinal fluid 
(CSF), or urine. Liquid biopsies can detect GBM early, as-
sess therapy response, and explain tumor progression.63 
Ongoing research is needed to validate liquid biopsy 
markers and incorporate them into standard GBM treat-
ment. Liquid biopsies can detect biomarkers linked to an-
giogenesis (such as VEGF levels or endothelial-derived 
exosomes).64 Monitoring angiogenesis-related changes via 
liquid biopsy can help guide antiangiogenic therapy and 
identify resistance mechanisms. Researchers and phys-
icians hope to improve glioblastoma diagnosis, moni-
toring, and treatment by inhibiting angiogenesis and 
utilizing liquid biopsy technology, resulting in better pa-
tient outcomes.65
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Figure 1.  Angiogenesis is important in cancer development because solid tumors require a blood supply to grow beyond a few millimeters. 
Tumors can cause this blood supply to grow by releasing chemical signals that promote angiogenesis. Primary and metastatic brain tumors grow 
owing to their capacity to recruit blood vessels by coopting host vessels (cooption), sprouting new arteries (angiogenesis), and/or recruiting bone 
marrow-derived cells (vasculogenesis).
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Identifying the role of claudins in brain cancer may aid in 
the development of innovative treatment techniques that 
target the BBB or tumor cell behavior. Dysregulation of 
Claudine may increase BBB permeability, allowing cancer 
cells to infiltrate brain tissue and facilitating tumor devel-
opment and progression.66 Claudins are essential compo-
nents of tight junctions between cells, particularly those 
in the BBB.67 Their ability to regulate paracellular trans-
port across epithelial and endothelial barriers is critical for 
tissue integrity and homeostasis, particularly in the brain. 
Claudins have sparked interest in the treatment of brain 
cancer, particularly glioblastoma multiforme (GBM), for a 
variety of reasons, including BBB integrity, tumor cell be-
havior, therapeutic targeting, and personalized medicine.67 
However, further study is needed to determine the specific 
pathways by which claudins lead to brain cancer develop-
ment and progression.68

Endothelial junction modifications and the inability of 
the BBB are prevalent characteristics of brain tumors, par-
ticularly glioblastoma. Endothelial junctions play a role in 
brain cancer by affecting the BBB, tumor angiogenesis, in-
vasion, and metastasis, making them effective therapeutic 
targets.69 Identifying the role of endothelial junctions in 
brain cancer progression and BBB homeostasis is essen-
tial for developing successful therapeutic approaches. 
Studies designed to elucidate the molecular mechanisms 
underlying endothelial junction dysfunction in GBM may 
lead to the development of new treatments to improve the 
lives of patients.70 Angiogenesis, or the development of 
new blood vessels from existing vessels, is critical to the 
growth and spread of brain tumors such as glioblastoma. 
Angiogenesis contributes to brain tumor growth through 
nutrition and oxygen delivery; BBB disruption; invasion 
and metastasis; angiogenic factors; and therapeutic tar-
gets, as shown in Supplementary Figure S2.70

Liquid biopsy is a novel and effective technique for 
tracking tumor development and response to therapy in a 
variety of malignancies, including glioblastoma.71 Liquid 
biopsy is the process of analyzing blood or other bodily 
fluids for tumor-related biomarkers such as circulating 
tumor DNA (ctDNA), circulating tumor cells (CTCs), and 
extracellular vesicles. In the case of glioblastoma, liquid 
biopsy has several potential advantages, including nonin-
vasive monitoring, early diagnosis of recurrence, assess-
ment of therapy response, and discovery of therapeutic 
targets.72

Liquid biopsy strategies include the detection and moni-
toring of circulating tumor cells, cell-free DNA, and extra-
cellular vesicles. Blood and urine are frequent samples 
used in liquid biopsy treatments.73 As a result, liquid bi-
opsies are less intrusive to patients than tissue samples 
are, making them suitable for long-term monitoring of 
tumor growth. Liquid biopsy can detect a variety of mo-
lecular markers, including circulating cancer cells (CTCs), 
circulating tumor DNA (ctDNA), tumor-derived extracel-
lular vesicles (EVs), tumor-educated platelets (TEPs), and 
circulating free RNA (cfRNA).74 Future studies are needed 
to answer biological questions about which cancer types 
can benefit from a liquid biopsy-based assay on the basis 
of known etiology, type, and degree of cfDNA or ctDNA fo-
liation, as well as the mechanism behind foliation. In addi-
tion to previously documented methods of ctDNA release 

(apoptosis and necrosis), active secretion has been linked 
to various patterns of ctDNA fragmentation.75 Histone pro-
teins form the nucleosome core, which protects ctDNA 
from nuclease cleavage. However, the remaining linker 
ctDNA sequence found between nucleosomes is extremely 
susceptible. Future research is needed to answer biolog-
ical questions about which cancer types can benefit from a 
liquid biopsy-based assay on the basis of known etiology, 
the type and degree of cfDNA or ctDNA foliation, and the 
mechanism behind foliation. In addition to the previously 
described types of ctDNA release (apoptosis and necrosis), 
active secretion has been linked to different patterns of 
ctDNA fragmentation.76 Histone proteins construct the nu-
cleosome core, shielding ctDNA from nuclease breakage. 
However, the remaining linker ctDNA sequence found be-
tween nucleosomes is particularly vulnerable. Overall, 
liquid biopsy is an effective method for tracking glioblas-
toma progression and guiding therapy options.76 More 
research and technological advances in this sector are 
needed to fully realize its potential for improving outcomes 
for individuals with this aggressive brain cancer, as shown 
in Figure 2.

GBM is the most severe and prevalent initial malignant 
brain tumor in adults. GBM is defined through multiple ge-
netic variations, including mutations, amplifications, and 
deletions. The most common genetic abnormalities include 
loss of function of the tumor suppressor genes PTEN, TP53, 
and RB1, as well as overexpression of the oncogene epi-
dermal growth factor receptor (EGFR), as shown in Figure 
3.77 These alterations disrupt critical signaling pathways in-
volved in cell cycle regulation, apoptosis, and DNA repair, 
resulting in uncontrolled cell proliferation and survival. 
Epigenetic changes, such as DNA methylation, histone 
modifications, and altered microRNA expression, play sig-
nificant roles in GBM pathogenesis.78 These alterations can 
cause the silencing of tumor suppressor genes or the ac-
tivation of oncogenes, both of which contribute to cancer 
formation and progression.68,79–91

GBM is characterized by numerous genetic alterations, 
including mutations, amplifications, and deletions. The 
most common genetic alteration is the loss of function 
of the tumor suppressor genes PTEN (phosphatase and 
tensin homologue), TP53 (tumor protein P53), and RB1 (RB 
transcriptional corepressor 1), as well as amplification of 
the oncogene EGFR, as shown in Figure 3).92–101 Tumor-
associated macrophages and microglia (TAMs), as well 
as other immune cells, can promote tumor growth and 
invasion by secreting cytokines and growth factors that 
create an immunosuppressive environment and stimulate 
angiogenesis.102–114 The complex and heterogeneous na-
ture of GBM presents significant challenges for effective 
treatment strategies.69,87,115–131 There have been several ad-
vancements in treatment approaches, particularly in vac-
cine therapy and tumor immunotherapy. The foundation of 
vaccine treatment is the immune response specific to the 
injected exogenous antigens in the tumor.11,69,132–143 The 
host immune response is induced and strengthened when 
foreign antigens are introduced to antigen-presenting 
cells. The main vaccines being tested in clinical trials for 
GBM are peptide-based vaccines and phytophthora seed-
ling cells. This study examined the potential use of vaccina-
tion treatments to treat GBM.144
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GBM patients with strong functional status (eg, 
Karnofsky performance status ≥ 70) often receive multi-
modal treatment. This comprises maximally safe surgical 
resection, chemoradiation with temozolomide (TMZ), 
and adjuvant TMZ therapy.145 Maximal safe surgery in-
volves removing as much of the tumor as possible while 
preserving neurological function.146 A postsurgical MRI 
(within 24–72 h) was used to determine the degree of re-
section. Radiotherapy with doses of 60 Gray in 30 fractions 
(2 Gy per fraction) was administered over 6 weeks (5 days 
per week).147 Targets include the tumor bed and a margin 
to accommodate microscopic illness. Temozolomide (TMZ) 
should be taken orally at 75 mg/m² daily for the duration 
of radiation (7 days/week).148 TMZ is an alkylating agent 
that exposes tumor cells to radiation and causes DNA 
damage. Adjuvant temozolomide therapy is often initiated 
4 weeks after chemoradiation to allow for recovery from 
acute toxicities. The dose schedule includes TMZ at 150 mg/
m² daily for 5 days in a 28-day cycle.149 If tolerated, the 
dose was increased to 200 mg/m² daily for 5 days every 
28-day cycle. 6 to 12 cycles, depending on the patient’s 
tolerance and clinical response. Supplemental therapy in-
cludes prophylaxis with ondansetron or similar medicines 
to treat TMZ-induced nausea, regular blood count moni-
toring (to identify neutropenia or thrombocytopenia), and 
liver function testing.150 Owing to the risk of lymphopenia, 
Pneumocystis jirovecii pneumonia prophylaxis is 

recommended during chemotherapy. Corticosteroids (eg, 
dexamethasone) are advised for side effect management 
to control cerebral edema, which decreases in severity as 
it is tolerated.151 To predict the TMZ reaction, molecular 
aspects must be considered. Patients with MGMT pro-
moter methylation have improved outcomes. Although 
uncommon in GBM, IDH mutation-positive tumors have 
a better prognosis and may impact treatment options.152 
Follow-up and monitoring can be accomplished via MRI 
surveillance every 2–3 months during adjuvant therapy 
and thereafter to monitor for recurrence. Repeat surgery, 
reirradiation, or second-line systemic treatments (such as 
bevacizumab and tumor-treating fields) can also be used to 
manage progression.153

Glioblastoma multiforme (GBM) is notoriously difficult to 
treat owing to its invasive growth style.154 GBM cells invade 
normal brain tissue, making surgical excision almost impos-
sible. Even when a tumor appears to be completely gone 
on imaging, microscopic cancer cells are often left behind, 
leading to recurrence.155 Other variables that contribute 
to GBM incurability include the BBB. The BBB restricts the 
passage of many therapeutic agents to the brain, making it 
difficult for medications to efficiently target tumor cells.156 
Glioblastoma multiforme (GBM) is notoriously difficult to 
treat because of its invasive growth pattern. GBM cells pen-
etrate normal brain tissue, making surgical removal very dif-
ficult. Even when a tumor appears to be entirely gone on 
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Figure 2.  Microenvironmental Control of Tumor Progression and Therapeutic Response in Brain Metastasis. Cellular and noncellular compo-
nents of the tumor microenvironment (TME) are important regulators of initial tumor growth, organ-specific metastasis, and treatment response. 
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imaging, microscopic cancer cells are frequently left behind, 
resulting in recurrence. Other factors that contribute to GBM 
incurability include the BBB.157 The BBB inhibits the entry of 
many therapeutic drugs into the brain, making it difficult for 
treatments to effectively target cancer cells.

Vaccine Platforms

GBM vaccination is a novel strategy to combat this ag-
gressive and treatment-resistant brain malignancy. These 
vaccines are intended to activate the immune system to 
recognize and fight tumor cells.158 The following is a com-
parison of various GBM vaccination platforms, outlining 
their distinctions, benefits, and drawbacks. Each vaccine 
platform has unique benefits and drawbacks.144 The tumor 
antigen profile, patient-specific traits, cost, and logistics 
all influence the platform selection process. Advances in 
personalized medicine and combination therapy show 

potential for increasing GBM vaccination efficacy and pa-
tient outcomes.159 A comparison of various glioblastoma 
vaccine platforms, highlighting their differences, advan-
tages, and disadvantages, is shown in Table 1. An antigen, 
a warning signal, and a method of delivering the antigen 
are the fundamental components of every vaccine design.30 
These three factors interact to affect the effectiveness and 
spectrum of the vaccine. Clinical trials of tumor vaccine 
therapy for glioblastoma are described in Table 2.144 Next, 
we discuss the vaccine development platforms that incor-
porate these components and have been employed in GBM 
clinical trials, including peptide vaccines, mRNA vaccines, 
viral vector vaccines, and dendritic cell (DC) vaccines.144

Peptide Vaccines

GBM is recognized for its large number of mutations be-
cause the protein and peptide changes produced by 
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the mutant gene are unique to cancer cells and lacking 
in normal cells, it can be utilized as a specific antigen to 
elicit immune responses directed against tumor cells.160 
These antigens are known as tumor-specific antigens 
(TSAs); however, they were formerly referred to as “neo-
antigens.” Few mutations produce unique epitopes, and 
when these epitopes are presented by antigen-presenting 
cells in the human leukocyte antigen (also known as HLA), 
T cells respond.160 The high expression of epitopes and 
lack of selectivity in GBM make peptide vaccine-based 
techniques difficult to design. Investigators produced a 
peptide vaccination against a TSA in the late 1990s in an 
attempt to uncover and trigger immune responses to mu-
tant sequences.30 CDX-110 (Rindopepimut) generates hu-
moral and cytotoxic T-cell responses in mouse brain tumor 
models with high preclinical efficacy.161 Two recent studies 
highlighted the trend of tailored cancer vaccines against 
new antigens. In the first trial, a personalized cancer vac-
cine was created utilizing entire-exon sequencing data 
from a resected tumor and matching normal tissues to 
combat a new antigen. Each patient was given a vaccine 
comprising 7 to 20 antigens that have a high affinity for 
binding to HLA type I-human leukocytes type 1.162

Peptide vaccines are made more quickly and cheaply 
than are cell-based vaccines. These patients are immun-
ized via chemically synthesized in vitro peptide sequences 
that are either unique to tumors or highly expressed in 
tumors.163 Therapeutic cancer peptide vaccines fall into 

two primary categories: synthetic long peptides (approxi-
mately 25–30 amino acids) and minimum peptide epitopes 
(approximately 8–11 AAs).164 Without going through an 
internalization phase, the minimum peptide epitope may 
connect directly to the I-binding groove of the major his-
tocompatibility complex (MHC). It also increases the 
possibility of binding to non-APC-nucleated cells that ex-
press MHC I molecules but do not have costimulatory 
molecules.164 This might result in peptide tolerance or 
inadequate T-cell activation. SLPs need APC processing 
as opposed to minimum peptide epitopes. APCs may ef-
fectively present MHC I- and MHC II-restricted epitopes 
through cross-presentation due to their extended length. 
Following in vivo injection, autologous CD4 + and CD8 + T 
lymphocytes are prepared to cytotoxically circulate to 
the tumor after APCs ingest and deliver SLPs to them.165 
Peptide vaccines require the inclusion of additional im-
mune adjuvants because of their inability to stimulate 
the innate immune system. Adjuvant support guarantees 
that APCs provide enough costimulatory signals to trigger 
a strong T-cell response.166 Peptide vaccines exploiting 
tumor-associated antigens (TAAs), such as EGFRvIII, IDH1-
R132H, or survivin, have been studied in various clinical 
trials. ACT IV (NCT01480479), which studies rindopepimut 
(an EGFRvIII-targeted vaccine) in newly diagnosed GBM, is 
one of the most notable and was eventually discontinued 
for lack of efficacy; however, earlier-phase studies in rGBM 
(such as the ReACT, NCT01498328) revealed a modest 

Table 1.  Comparing Various Glioblastoma Vaccine Platforms, Highlighting their Differences, Advantages, and Disadvantages

Vaccine 
platform

Description Advantages Disadvantages Refer-
ences

Peptide-
Based 
Vaccines

Utilize tumor-associated 
antigens (eg, EGFRvIII, 
survivin) in the form of syn-
thetic peptides.

- Specific targeting of tumor 
antigens- Relatively easy to 
manufacture- good safety 
profile

- Limited to patients with specific 
tumor mutations- Potential for 
antigen escape- Limited immu-
nogenicity

160

Dendritic 
Cell Vac-
cines

Use patient-derived den-
dritic cells loaded with 
tumor antigens to stimulate 
T-cell response.

- Personalized approach- Po-
tent activation of T cells- Can 
use multiple antigens

- Complex and expensive 
manufacturing- Variable efficacy 
depending on the patient- Re-
quires invasive procedures

161

Tumor 
Lysate Vac-
cines

Derived from whole tumor 
lysates containing a broad 
range of tumor antigens.

- Broad antigen coverage- 
Avoids the need to identify 
specific mutations- Suitable 
for heterogeneous tumors

- Risk of tolerizing immune  
response- Limited standardization- 
May include non-tumor antigens

162

DNA/RNA 
Vaccines

Deliver tumor antigen-
encoding DNA or RNA 
directly into the patient to 
induce an immune response.

- Scalable and stable production- 
Can encode multiple antigens-  
Induces both humoral and cellular 
immunity

- Risk of low transfection  
efficiency- May require adjuvants 
for enhanced efficacy

163

Oncolytic 
Virus-
Based 
Vaccines

Use engineered viruses to 
selectively infect and kill 
tumor cells while stimulating 
immunity.

- Combines direct tumor 
killing and immune  
activation- Can carry tumor 
antigens- Intratumoral  
delivery

- Risk of off-target effects- pre-
existing immunity to the 
virus- Complex regulatory re-
quirements

164

Neoantigen 
Vaccines

Use patient-specific 
tumor neoantigens iden-
tified through genomic 
sequencing.

- Highly personalized- Tar-
gets truly tumor-specific 
antigens- Reduced risk of 
off-target effects

- High cost and time-intensive 
production- Requires advanced 
bioinformatics- Limited to pa-
tients with sufficient neoantigens

165

Heat Shock 
Protein Vac-
cines

Use tumor antigens chaper-
oned by heat shock proteins 
(HSPs) to enhance immune 
presentation.

- Efficient antigen  
presentation- Can carry  
multiple antigens- Potential 
for broad immune response

- Manufacturing challenges- May 
induce unwanted immune re-
sponses

166
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survival advantage with rindopepimut when combined 
with bevacizumab.167 Peptide vaccines remain a potentially 
viable option, particularly in combination with adjuvants 
or immune checkpoint inhibitors.

Dendritic Cell Vaccines

The most competent APCs at inducing autoimmune reac-
tions are DCs. DCs occur mostly during the immature stage 
before antigen absorption.168 By encouraging the release 
of different cytokines and the upregulation of surface MHC, 
costimulatory molecules, and cytokine receptors, antigen 
capture accelerates the maturation of DCs.168 Antitumor 
CD8 + T-cell responses are initiated in three consecutive steps: 
tumor antigen absorption and cross-presentation, tumor 
antigen-specific CD8 + T-cell priming by DCs, and tumor cell 
destruction by effector CTLs.169 It is essential to provide DC 
tumor antigens either ex vivo (DC vaccination) or in the form 
of peptide vaccines to stimulate the production of effector T 
lymphocytes specific to tumors. Peptide vaccines require the 
inclusion of additional immune adjuvants because of their 
inability to stimulate the innate immune system.169 Adjuvant 
support guarantees that APCs provide enough costimulatory 
signals to trigger a strong T-cell response. Peptide vaccines, 
such as SurVax (survivin) and Rindopepimut (EGFR III), are 
the most widely used GBM vaccines.170 DC vaccines are cre-
ated by pulsing autologous dendritic cells with either tumor 
antigens or lysates. For example, the DCVax-L vaccine util-
izes autologous tumor lysate-pulsed DCs. A phase III clinical 
trial (NCT00045968) with the DCVax-L vaccine in recurrent 
GBM revealed promising results, especially among the sub-
group of recurrent GBM patients who achieved a prolonged 
overall survival benefit.171

mRNA Vaccines

One strand of DNA is converted into a monomeric mole-
cule called mRNA in the nucleus of cells. This endogenous 
mRNA is translated into proteins in the cytoplasm by ribo-
somes after transcription.144 By using this approach, re-
searchers have generated vaccine-grade mRNAs. On the 
other hand, mRNA techniques induce immunogenic cell 
death by causing cancer cells to release tumor antigens di-
rectly. These techniques not only speed up the procedure 
but also make it possible to generate customized vaccin-
ations for tumor removal.172,173 Since mRNA vaccines are 
customized, the immune system may more effectively 
target cancer cells while minimizing damage to healthy 
cells. However, the adaptability of mRNA vaccines is dem-
onstrated by their compatibility with different cancer treat-
ments. The use of mRNA vaccines for brain cancer is still 
in its early phases, despite promising results in other dis-
ease areas.173 DCs have been a major target in neoantigen 
and/or mRNA vaccine research for brain cancer because 
of their efficacy in stimulating immunity and the prece-
dent of one FDA-approved immunotherapy (Provenge). 
It has been demonstrated that DC-based vaccinations 
are beneficial against malignancies, such as brain cancer 
and glioma.174 A recent phase III clinical trial examined 

the effectiveness of supplementing conventional glio-
blastoma therapy with DCVax-L, a tumor lysate-based DC 
vaccination. According to these findings, individuals with 
newly diagnosed and recurrent glioblastoma had a longer 
survival rate when DCVax-L was added to conventional 
therapy.171,175–177 This finding implies that DCVax-L may be 
a potential supplement to the available glioblastoma ther-
apies. There have been few published studies on mRNA-
based vaccines. Seven patients with glioblastoma received 
a DC vaccine containing cancer stem cell (CSC) mRNA in 
groundbreaking research.171

The accessibility of cell-surface proteins, their involve-
ment in critical signaling networks, and their dysregulation 
in cancer make them particularly interesting targets. They 
have the potential to be employed in both chimeric an-
tigen receptor (CAR)-based immunotherapy and mRNA 
vaccination procedures.178 The use of antigens (FCGBP, 
FLNC, TLR7, and CSF2RA) has aided in the development 
of mRNA cancer vaccines.173 Researchers also identified 
ARPC1B and HK3 as potential mRNA antigens for building 
a GBM mRNA vaccine via the same technology and anal-
ysis, and they determined that patients in IS2 were the best 
candidates for GBM immunization.179 MMP9 and SLC16A3 
were identified as antigens for GBM, whereas PTBP1 
and SLC39A1 were chosen as antigens for LGG. Four 
overexpressed and mutant tumor antigens, TP53, IDH1, 
C3, and TCF12, are associated with a poor prognosis and 
antigen-presenting cell infiltration in glioma patients.180 
These four coldeoantigens are effective antigens for de-
veloping antiglioma mRNA vaccines.181,182 After exam-
ining RNA-seq data and clinical information from more 
than 1000 patients, four glioma antigens, ANXA5, FKBP10, 
MSN, and PYGL, which are associated with improved prog-
noses, were identified.183 Furthermore, they may act as 
potential antigens in generating an antiglioma mRNA vac-
cine, particularly for those with immunological subtypes 
2 and 3. Ongoing investigational trials using mRNA vac-
cines (eg, those targeting IDH1 mutations or multiple TAAs) 
are currently being conducted for early-phase evaluation 
(eg, NCT03893903).184 The use of GBM-associated surface 
antigens to identify novel treatment targets for GBM via an 
mRNA approach has been revealed.

Viral Vector Vaccines

Antigens have been delivered in clinical settings via several 
recombinant viral vectors.185 Viral pathogen-associated 
molecular patterns not only elicit a strong immune re-
sponse via antigen delivery but also boost the recipient’s 
immune system.186 However, prolonged use of viral vec-
tors may result in increased humoral immunity to viruses. 
Clinical experiments using viral vector vaccines to target 
the human cytomegalovirus peptide in GBM are still un-
derway (NCT03382977).186

Tumor Antigens in GBM

The effectiveness of tumor vaccination depends on the 
choice of antigens.187 An ideal cancer antigen should 
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be highly immunogenic and present in practically all 
tumor cells.188 An efficient T-cell response can be induced 
only by nonself-antigens that are distinct from pep-
tides prevalent in normal peripheral tissues. Moreover, 
for cancer cells to evade exogenous tumor antigen-
induced immunosurveillance,189 antigen loss must occur 
throughout tumor growth for an optimal tumor antigen 
to be expressed widely and steadily.189 Not every peptide 
produced from tumors is antigenic. Owing to MHC limita-
tions, only peptides with matching attach residues and a 
fitting length are permitted to be presented by MHC mol-
ecules.190 Stronger T-cell antitumor activity is correlated 
with a peptide that has a high affinity for MHC molecules. 
Similarly, MHC limitation affects the immunogenicity of 
peptides.191 Tumor cell intracellular proteins are the source 
of endogenous antigens, which include neoantigens 
(tumor-specific antigens, or TSAs) and TAAs.162 Recently, in-
terest in the use of exogenous antigens in cancer vaccina-
tion treatments has increased. Cancer MHC presents these 
antigens, which are produced from cancer cells that pref-
erentially infect pathogens and trigger the T-cell response. 
Notably, sources of bulk tumor-derived antigens from 
GBM, such as tumor lysate vaccines such as AV-GBM-1 and 
GBM6-AD95, or tumor-mRNA vaccines, may contain these 
antigen categories as well as as yet unrecognized antigen 
classes.180

Cancer-testis antigens (CTAs) are more abundant in 
cancer cells and germ cells (such as the testis) than in 
other organs, and they contribute to meiosis, aberrant 
chromosomal segregation, and aneuploidy.191 Tumor-
overexpressed antigens are proteins that are significantly 
overexpressed in tumors relative to healthy tissues. These 
are the three types of TAAs in GBM.192 TAAs can prolong 
overall survival in GBM vaccination, as demonstrated by 
the promotion of CD8 + T-cell activation and cytotoxicity, 
which is facilitated by increased CTA expression in GBM 
cells.193 Neoantigens and TAAs produced successful im-
munotherapies, particularly for tumors with low TMB, ac-
cording to a recent clinical study on newly diagnosed GBM 
patients.194

Identifying antigens for GBM vaccination requires ad-
vanced approaches aimed at identifying tumor-specific or 
TAAs capable of eliciting a strong immune response.162 
These strategies concentrate on identifying antigens ex-
pressed exclusively or predominantly in tumor cells to re-
duce off-target effects and maximize therapeutic efficacy. 
Antigens for GBM vaccination are frequently identified 
via a mix of genomic, proteomic, and immunological ap-
proaches, as well as modern analytics. Advances in single-
cell technology and personalized medicine are increasing 
the precision and application of GBM vaccinations.195 
Antigens for glioblastoma vaccination are identified via a 
variety of techniques, each utilizing modern technologies 
to discover tumor-specific or tumor-associated targets, as 
shown in Table 3.

Immunosuppressive TME in GBM

GBM is recognized as having an immunosuppressive mi-
croenvironment that protects tumor cells from immune 

attack.196 This tumor persists by recruiting and reprogram-
ming immune cells and establishing a so-called “cold” 
tumor where there is no significant immune infiltration/
activation.196 GBM is associated with high infiltration 
of immunosuppressive cells, such as tumor-associated 
macrophages (TAMs), regulatory T cells (Tregs), and 
myeloid-derived suppressor cells (MDSCs).189 More 
knowledge on the immunological landscape of GBM will 
therefore be important because of the profoundly im-
munosuppressive tumor microenvironment (marked by 
inadequate immune cell infiltration, T-cell exhaustion, 
and the composition of suppressive immune cell popu-
lations) and the complex immune landscape that fa-
cilitates tumor growth and can restrict the potential for 
efficacy of immune-based therapeutic strategies.144 As 
such, recognizing aspects of immune evasion applied by 
GBM is necessary and relevant to developing effective 
immunotherapeutic approaches specific to the tumor and 
microenvironment.197 The tumor enlists and reprograms 
different immune cells, effectively creating a “cold” tumor 
that cannot recruit and activate immune cells effectively. 
This occurs despite high infiltration of immunosuppres-
sive immune cells (eg, TAMs, regulatory T cells [Tregs], and 
MDSCs).197 Glioblastoma is uniquely resistant to immu-
notherapy, in part because of its highly immunosuppres-
sive microenvironment and immune-privileged site in the 
brain.197 The field is currently working to better understand 
and overcome this barrier through combination strategies 
that exploit the immune system and induce responses in 
the tumor.189

The minimal burden of tumor mutations and TMB levels 
remain chronically low in CNS tumors, such as GBM, 
which may be due to epigenetic alterations.196 Few mu-
tations can be found in GBM cells as neoepitopes for ef-
fective autologous T-cell identification, since neoantigen 
presentation is a probabilistic process that is dependent 
on neoantigen quantity.198 Antigen dissemination is an im-
portant immunotherapy response mechanism that occurs 
during therapeutic tumor vaccination. It is produced by 
increased exposure to tumor antigens, which is linked to 
early tumor lysis triggered by vaccination.144 The benefits 
of antigen dispersion after immunotherapy may be coun-
tered by a smaller antigen pool caused by low TMB, which 
exposes fewer immunogenic neoantigens following vacci-
nation.199 Hypoxia-induced T-cell sequestration may negate 
the therapeutic effects of bevacizumab treatment. Effector 
T cells in GBM develop fatigue characteristics, which are 
linked to several TME-related variables.200 In GBM, IL-10 is 
essential for the development of an immunosuppressive 
TME because it suppresses APCs, impedes T-cell prolifer-
ation, and activates regulatory T (Treg) cells. It encourages 
Treg differentiation by inducing tolerogenic DC matura-
tion.189 Research has demonstrated that individuals with 
gliomas have a relatively high percentage of CD4 + Treg 
cells in their blood and tumors. Neutralizing antibodies 
against CD25, which impair the suppressive activity of 
Tregs, can restore suppressed cytotoxic T-cell antitumour 
activities in mice.201 Furthermore, intratumoural regula-
tory T cells (Tregs) possess a unique TCR repertoire that 
identifies tumor neoantigens, or TAAs, indicating that the 
tumor antigens might result in the colony growth of tumor 
antigen-recognized regulatory T (Treg) cells. Reducing the 
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number of Treg clones that recognize cancer antigens in-
creases effector/memory T-cell antitumour responses 
against the same tumor antigens.144 TAMs, which are com-
posed of MDSCs and TAMs, are another critical component 
in the formation of an immunosuppressive TME in GBM.197

Upregulated GMCSF expression in the GBM TME leads 
to increased IL-4Rα expression in GBM-infiltrated mye-
loid cells.202 This IL-13-induced synthesis of arginase in-
hibits T-cell proliferation and function. The suppression of 
T-cell activity can be considerably reversed by eliminating 
MDSCs from the peripheral circulation. A prior study re-
vealed that MDSCs accumulate in the peripheral blood of 

GBM patients.203 Upregulated GMCSF expression in the 
GBM TME leads to increased IL-4Rα expression in GBM-
infiltrated myeloid cells.203 This IL-13-induced synthesis of 
arginase inhibits T-cell proliferation and function. The sup-
pression of T-cell activity can be considerably reversed 
by eliminating MDSCs from the peripheral circulation. 
Interaction with the vaccine for at least five days induces 
T-cell anergy mediated by IFN-γ and MDSCs.204 One of the 
resistant cancers with the highest degree of heterogeneity 
is GBM, particularly at the molecular level.205 Moreover, 
the immunoediting effect and the balance between im-
mune surveillance and carcinogenesis continuously shape 
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Table 3.  The Identification of Antigens for Glioblastoma Vaccination Involves Multiple Methodologies

Method Description Key Features Examples of Identified 
Antigens

References

Genomic 
Sequencing

High-throughput sequencing of 
tumor DNA to identify mutations, 
amplifications, or deletions.

- Detects tumor-
specific neoantigens
- Requires bioinfor-
matics for analysis

EGFRvIII, IDH1 
R132H mutations

200

Transcriptomics 
(RNA-Seq)

Sequencing of tumor RNA to 
identify overexpressed genes 
and novel transcripts.

- Identifies aber-
rantly expressed or 
fusion genes
- Can infer protein-
level antigen candi-
dates

Survivin, SOX2 201

Proteomics Mass spectrometry to analyze the 
tumor’s protein expression pro-
file and identify unique peptides.

- Detects post-
translational modifi-
cations
- Validates antigen 
expression at the 
protein level

HER2, IL13Rα2 8

Immunopeptidomics Mass spectrometry analysis of 
peptides bound to MHC mol-
ecules on tumor cells.

- Identifies directly 
presented antigens
- Prioritizes epitopes 
recognized by T cells

Tumor-associated 
neoantigens pre-
sented by MHC 
class I/II

202

Bioinformatics and 
Machine Learning

Computational prediction of 
potential neoantigens based on 
sequencing data.

- Predicts binding to 
MHC molecules
- Accelerates antigen 
discovery

Predicted 
neoantigens spe-
cific to individual 
tumors

203

Serological Analysis Identification of antigens rec-
ognized by autoantibodies in 
patient serum.

- Reflects antigens 
naturally targeted by 
the immune system

NY-ESO-1, 
MAGE-A1

204

In Situ Hybridization Localization of mRNA expres-
sion in tumor tissues to confirm 
tumor-specific gene expression.

- Validates spatial 
distribution of an-
tigen expression
- Complements 
RNA-Seq and prote-
omics

EGFRvIII expres-
sion in tumor 
cells

205

Reverse-Phase Pro-
tein Arrays (RPPA)

High-throughput detection of 
protein expression in tumors.

- Quantifies protein 
levels
- Suitable for large 
patient cohorts

p53, VEGF 206

Functional Screens CRISPR/Cas9 or RNAi screens to 
identify essential tumor antigens 
or immune targets.

- Focuses on 
antigens critical for 
tumor survival
- Links function to 
antigenicity

Targets identified 
through syn-
thetic lethality

207

Tumor Lysate or 
Exosome Analysis

Use of tumor-derived lysates or 
exosomes to identify immuno-
genic proteins.

- Enriches for tumor-
restricted antigens
- Includes a wide 
array of potential 
targets

Heat shock pro-
teins, unique 
exosome-
associated 
antigens

208
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the pool of tumor antigens during postsurgical recurrence. 
The effectiveness of immunotherapy is limited during the 
escape phase by the predominance of immunosuppres-
sive characteristics and the elimination of numerous im-
munogenic antigens.206

Clinical Characteristic Challenges in 
GBM Patients

Tumor vaccines are more advantageous to patients in their 
early years.207 Changes in the natural immune system as-
sociated with aging may harm the efficiency of tumor 
vaccination.208 Age-associated involution of the thymus 
adversely impacts the immune response, resulting in re-
duced tumor immune surveillance.209 This leads to a re-
duction in the variety of the peripheral T-cell repertoire and 
immunosenescence, which impairs the ability to recog-
nize and respond to novel stimuli.210 Age-related atrophy 
of deep cervical lymph nodes (DcLNs), which are thought 
to constitute the primary secondary lymph organ response 
to CNS tumors, further reduces the T-cell compartment.211 
The function of the dural lymph vessels that drain CSF de-
creases with age. Dysmorphology, increased lymphatic 
channel thickness, and dural lymph vessel dysfunction 
are linked to aging.212 Age-related inflammatory condi-
tions may also lessen the efficiency of vaccinations by fur-
ther inhibiting antigen-specific immunity. Patients who 
achieved a complete response (CR) in a phase I/II study of 
oncolytic DNX2401 virotherapy with ICB in recurrent GBM 
patients were younger than 30 years, indicating that age 
may be a protective factor.213

The exact process of cancer antigen presentation from 
parenchymal to dc-LNs has been identified by researchers, 
with structural lymphatic vessels and the glymphatic 
system in the brain.214 The subarachnoid lymphatic-like 
membrane (SLYM) and the dural lymph vessel, which 
are located close to the main site and are used by APCs, 
especially DCs, for immune monitoring, may be irrev-
ocably destroyed during treatment.215 Data indicating 
that the meningeal lymphatic vasculature affects both 
neuroinflammation and CNS lymphatic outflow support 
these findings. Moreover, patients’ postoperative inflam-
matory diseases may exacerbate their immunosuppres-
sion.216 More studies are needed to determine the exact 
process of brain tumor antigen outflow into the lymph 
nodes.

Various hematological and solid tissue tumors respond 
favorably to T-cell immunotherapy platforms. However, 
T-cell dysfunction significantly decreases the effective-
ness of these approaches in the management of GBM. 
GBM exhibits inherent and therapy-driven clonal dynamics 
as the illness progresses.217 Multiple neoplastic treat-
ments, including chemotherapy and radiation, as well as 
age-induced immunosenescence, promote thymocyte 
death, hasten thymic involution, and reduce lymphoid pre-
cursors. Clinicians commonly employ corticosteroids to 
control the course of peritumoral edema.218 In theory, a de-
crease in the number of corticosteroid-mediated immune 
cells might negate the anticancer benefits of cancer vac-
cines; however, no phase III clinical trial results have been 

published that definitively reveal a deleterious effect on 
GBM patient survival.219 Alternatives to steroids should be 
studied when developing GBM vaccines. Bevacizumab is 
effective at controlling cerebral edema. The combination of 
GBM vaccination therapy with bevacizumab is a prospec-
tive steroid treatment for edema.220

Personalized Neoantigens

GBM patients differ from one another; hence, the majority 
of neoantigens produced by these mutations are rarely 
shared.221 Compared with priming T cells with all tumor 
lysate proteins in an unselective manner, personalized 
neoantigen creation via bioinformatic prediction has the 
potential to improve the clinical effectiveness of GBM pa-
tient vaccination. Moreover, by including numerous private 
cancer antigens, primed T cells recognize a significant frac-
tion of tumor cells with distinct antigens, thereby lowering 
the tumor burden and mitigating the chance of antigen 
loss.222 CD4 + helper T cells are essential for the survival 
of CD8 + T-cell populations to recognize tumor antigens. 
After presenting tumor antigens, DCs activate CD4 + T 
cells, resulting in IL-2 production and T-cell proliferation 
and development.223 Prepared CD4 + T cells produce IL-21, 
which induces CD8 + T cells to establish a cytotoxic phe-
notype and prevents them from increasing into collapsed 
subclones.224–227 A recent study revealed a cellular triad as-
sociated with anticancer activities.223 The intratumoral cel-
lular triad consists of DCs, CD4 + T cells, and CD8 + T cells. 
The presence of spatially attracted CD4 + T cells and DCs 
on the outskirts of CD8 + T cells boosts local CD8 + T-cell dif-
ferentiation into effector T cells and increases CD8 + T-cell 
cytotoxicity.228–231 Antigen-induced antitumor responses 
require both CD4 + and CD8 + T cells that have been primed 
with tumor antigens. CD4 + T-cell priming ensures that tu-
mors are effectively rejected after immunization.232,233 The 
degree of CD8 + T-cell infiltration alone is not a significant 
predictor in glioma patients, underscoring the importance 
of CD4 + T cells, which have been neglected in previous 
glioma antigen studies. GBM immunization increased both 
CD4 + and CD8 + T lymphocytes.224

Long-term vaccination increases IFN-γ levels, resulting 
in increased expression of immune checkpoint markers. 
To combat this immunosuppressive procedure, ICB is an 
effective complement to vaccines.234,235 Combination ICB 
therapy increases vaccine antitumor efficiency in both pre-
clinical mouse cancer models and clinical trials and can 
even result in a rapid and long-lasting complete response 
in patients with metastatic tumors. The combined adminis-
tration of ICB and neoantigen vaccines improved survival 
in an ICB-resistant GBM mouse model. Additional inves-
tigations using armed oncolytic viruses for GBM are also 
ongoing. This method allows the combination of tumor 
antigens with oncolytic viruses to enhance their anticancer 
properties.235 In addition, a multiphase combination treat-
ment strategy may be a useful supplemental regimen after 
SOC. During chemotherapy and oncolytic virus treatment, 
the TME might switch from “cold” to “hot,” resulting in 
the release of tumor-lysed antigens.9 These tumor-lysed 
antigens are important sources of ICD-induced antigens. In 
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addition to preloaded antigens, ICD-induced antigens will 
increase the efficacy of future DC vaccination therapies.

Future Prospective

Tumor vaccines are an effective approach for improving the 
therapeutic impact of SOC on GBM patients. GBM is a ma-
lignant tumor that may have originated from an aberrant 
epigenome. It has a low TMB and few neoantigens, which 
may impair immunotherapy effectiveness. Several clinical 
studies of GBM vaccinations have reported disappointing 
results, with limited therapeutic advantages.144 Future 
areas for improving GBM vaccine efficacy will include vac-
cination design optimization, such as tailored antigen se-
lection, multiantigen targeting, and vaccine platform or 
adjuvant development. Another challenge is developing 
a strong antitumor response in patients to overcome the 
immunosuppressive properties of GBM.236 Tumor vaccines 
are an excellent way to improve the treatment efficacy for 
GBM patients after SOC. GBM is a malignant tumor that 
can develop from an abnormal epigenome. It has a low 
TMB and few neoantigens, which might reduce immu-
notherapy effectiveness. Several clinical studies of GBM 
vaccinations have reported inadequate outcomes and no 
therapeutic effects. Another challenge is creating an effec-
tive antitumor response in patients to counteract the im-
munosuppressive effects of GBM. In the context of cancer 
vaccine therapy, investigating how it can improve a GBM 
patient’s immune system, which has been impaired by 
age, medicine, or the tumor immune escape mechanism, is 
vital.144 Tumor vaccination is effective when combined with 
other immunotherapies, such as ICB. Combination therapy 
and immunization of premalignant LGG patients provide 
innovative approaches for improving vaccination regimen 
design.236 While each vaccination platform (mRNA vs. pep-
tide, DC loading vs. viral vector) and antigen source has 
recognized and claimed benefits and drawbacks, current 
and future research must investigate the differences be-
tween them.

Concluding Remarks

The GBM tumor vaccine shows potential as a supplement 
to SOC. Personalized multipeptide vaccinations containing 
neoantigens and TAAs outperform single-peptide vaccines 
in terms of cancer regression and antitumor responses. 
Owing to the unique epigenetic process of gliomagenesis, 
the number of neoantigens available for GBM immu-
notherapy is expected to be restricted, and TAAs and 
pathogen-derived antigens may be effective in expanding 
the vaccine-antigen arsenal. The efficacy of GBM vaccines 
can be influenced by patient age, immunological fitness, 
and treatment regimens. Future therapeutic applications 
of GBM tumor vaccines will focus on the most efficient 
combination of cancer vaccinations and SOC. Optimizing 
vaccine design (antigen and adjuvant selection), concen-
trating on the role of CD4 + T cells in tumor vaccines, and 
utilizing combination immunotherapy will be new keys to 
increasing the efficacy of GBM vaccines.
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