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Chimeric antigen receptor—natural killer (CAR-NK) cell therapy has shown
favorable results in treating hematological malignancies but with limited
efficacy against solid tumors, including glioblastomas, which is partly due to
the immunosuppressive microenvironment of solid tumors. This mini review
focuses on the various immunosuppressive strategies employed by the
glioblastoma microenvironment for immune evasion, including stromal
barriers, hypoxic conditions, immunosuppressive cytokines, downregulation of
activating ligands, and upregulation of immune checkpoints. A range of
emerging strategies has been proposed to counteract these inhibitory effects,
such as genetic engineering of NK cells and molecular targeting of the stroma in
combination with oncolytic virus therapy. Future single-cell spatiotemporal
omics studies are expected to further enable a personalized and dynamic
approach to treating glioblastoma with improved outcomes.
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1 Introduction

Glioblastomas are among the most aggressive and treatment-resistant brain tumors
despite advancements in surgery, chemotherapy, and radiation therapy. One promising
immunotherapy for glioblastomas is chimeric antigen receptor T cell (CAR-T) therapy to
target tumor cells with the immune cell’s innate cytotoxic activity. However, CAR-T
therapy has shown limited success and a high rate of recurrence in clinical studies (1). The
emergence of chimeric antigen receptor natural killer (CAR-NK) therapy provides a way to
counteract the limitations of previous treatments. Compared with CAR-T, CAR-NK
therapy has off-the-shelf potential and better safety, such as reduced risk of cytokine
release syndrome (CRS) and graft versus host disease (GVHD) (2, 3). However, the efficacy
of CAR-NK therapy is compromised by the tumor microenvironment (TME), which limits
its application in various tumors (2). The goal of this article is to explore how the
glioblastoma TME affects natural killer cells and ways of targeting the TME to enhance
CAR-NK therapy in glioblastomas.
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2 Characteristics of glioblastomas and
its immunosuppressive
microenvironment

Glioblastomas are characterized by their immunosuppressive
microenvironment, which contains endothelial cells, astrocytes,
immune effector cells like microglia, myeloid-derived suppressor
cells (MDSCs), tumor-associated macrophages (TAMs), regulatory
T-cells (Tregs) and other noncellular components (4, 5). This
environment is a complex interplay of tumor, immune, and
molecular features. The cellular components are known to
contribute to the suppressive environment by fostering tumor
evasion, progression, and angiogenesis (4). For example, MDSCs
are known to promote tumor growth by secreting certain factors,
such as tumor necrosis factor (TNF)-o. and vascular endothelial
growth factor (VEGF) (6). Immunosuppression may be exacerbated
by hypoxia, cytokines (IL4, IL10, and TGF-f}), and varying expression
of MHC class I molecules (5, 7), which aids in impairment of
recognition by immune cells and immune invasion (7). The blood-
brain barrier (BBB) is another anti-immune mechanism utilized by
glioblastomas. The BBB is a membrane composed of microvascular
endothelial cells that separate blood from brain interstitial fluid. For
treatment to be administered, the BBB must be penetrated, posing a
challenge to many therapies (8). The BBB is among one of a
glioblastoma’s characteristics that presents a hurdle to treatment,
and it is known that the BBB may be disrupted in certain pathological
states that allow immune traffic to more easily infiltrate the central
nervous system (9). Clinically, intratumoral/resection cavity and
intracerebroventricular (ICV) administration, as well as focused
ultrasound and convection-enhanced delivery, have been explored
for treating glioblastoma with varying results (10, 11). Overall, the
glioblastoma microenvironment contributes to reduced treatment
efficacy through various immunosuppressive/evasive mechanisms
and the BBB as a physical barrier. This tumor microenvironment
represents a potential target for further modulation to enhance
antitumor therapy.

3 Biology and function of NK cells in
the central nervous system

Natural killer (NK) cells make up a small subset of immune cells
in the brain and glioblastomas, consisting of about 1.5% of the total
immune cells in a healthy CNS. In the healthy brain, NK cells
perform a variety of immune functions: they participate in immune
surveillance, work as cytotoxic effectors, and regulate inflammation
(12). scRNA-seq analysis has revealed five NK subtypes:
CD56bright, early CD56dim, intermediate CD56dim, late
CD56dim and adaptive, all named to reflect their maturation. The
two different cell states, CD56 bright and dim are notably distinct
due to their differential expression of the CD56 neural cell adhesion
molecule gene (NCAM1) (13). CD56 bright NK cells are considered
precursors to the more mature CD56 dim NK cells. Current studies
support that bright cells play a bigger cytokine effector role while
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dim cells are known for their cytotoxic ability (14, 15). The
infiltration of NK cells into the central nervous system is poorly
investigated, but research shows that higher NK migration occurs
during BBB breakdown (12). In cerebral small vessel disease
(CSVD), proteomic analyses revealed that CD56 dim NK cells
may contribute to BBB breakdown through secretion of cathepsin
D (CTSD), a molecule that participates in protein degradation. This
allows the NK cells to further infiltrate and disrupt the neural
environment, suggesting that NK cells may intensify damage in
cerebrovascular diseases (16, 17). Indeed, NK cell trafficking is very
complex and is influenced by many different factors, such as
adhesion and cytokine networks secreted by NK, glial, vascular,
and other CNS cells (12, 18, 19).

4 CAR-NK therapy: current landscape
and glioblastomas-specific challenges

4.1 CAR-NK therapy and its cellular
sources

The CAR construct is composed of a few domains: an extracellular
antigen-binding domain, transmembrane domains, intracellular
signaling domains, and hinge regions (20). Majority of NK cells used
in therapy are sourced from the NK92 cell line due to its “off the shelf”
potential, lower manufacturing cost, and reduced sensitivity to freeze/
thaw cycles. However, the drawbacks of this line include its
tumorigenic potential and loss of expansion due to lethal irradiation
prior to infusion (21, 22). Other prospective cell lines include peripheral
blood mononuclear cells (PBMCs), which have been used in many
clinical studies; umbilical cord blood (UCBs) due to the advantage of
selecting donors with HLA compatibility and desired NK receptor
traits; CD34+ hematopoietic progenitor cells (HPCs), which can be
obtained in large amounts and exhibit high cytotoxicity in certain
cancers such as leukemias; and induced pluripotent stem cells (iPSCs)
for creating “off the shelf products (23)”.

4.2 CAR-NK immunotherapy success in
hematological malignancies

The focus for treatment in glioblastomas has shifted to CAR-
NK therapy due to successes in hematological malignancies. Several
clinical trials (ClinicalTrials.gov) have been conducted to evaluate
the efficacy of CAR-NK therapy in hematological tumors, such as
leukemias, and has shown clinical significance (20). For instance, a
study of CNTY-101 (an iPSC-derived anti-CD19 CAR-NK cell
product) in CD19-Positive B-Cell malignancies demonstrated
initial safety and efficacy (NCT05336409). Another first-in-
human clinical trial of CD19-CAR-UCB-NK for relapsed or
refractory CD19-positive non-Hodgkin’s lymphoma or chronic
lymphocytic leukemia (CLL) was conducted in 11 patients. The
results were mostly positive, with eight out of 11 patients
responding to the treatment: seven achieved complete remission,
and one had a partial remission. (NCT03056339).
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4.3 CAR-NK challenges in solid tumors

While CAR-NK therapy provides many benefits, evident in
hematological malignancies, its effectiveness is limited by certain
barriers in solid tumors. Table 1 lists some recently completed as
well as ongoing clinical trials on CAR-NK therapy for hematological
malignancies and solid tumors. However, no outcomes have been
reported for glioblastoma treatment yet. Several mechanisms are
known to contribute to the reduced effect in solid tumors: hypoxia
and other metabolite factors, NK-tumor interactions, cytokines, and
exosomes (2).

Hypoxia is the process involving abnormal changes in metabolism
due to insufficient oxygen supply. In the TME, hypoxia reduces ERK
and STAT3 phosphorylation through protein tyrosine phosphatase 1
(SHP-1) dependent manner, diminishing NK cell cytotoxicity by up to
40% as measured by flow cytometry in an in vitro system (24). In
addition, hypoxia promotes angiogenesis, metabolic reprogramming,
immune evasion, inflammation, and genomic instability (25).

NK-tumor cell interaction also plays a role in reducing the efficacy
of CAR-NK therapy in solid tumors. NKG2D is a surface receptor of
NK cells and can stimulate immune effectors without antigen
presentation (26). As a result, NKG2D plays a crucial role in immune
activation; however, it may be downregulated due to the production of
soluble NKG2DLs by tumor cells, therefore preventing NK-tumor cell
association and diminishing the efficacy of CAR-NK therapy (2, 27).

Cytokines are signaling proteins that mediate communication
within the immune system. Transforming growth factor-B (TGF-B)
regulates cell growth and differentiation. It has been found that TGF-3
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is mainly produced by tumor cells and is related to the poor prognosis
in solid tumors like lung, gastric, liver, and pancreatic cancer (28-30).
TGF-f suppresses NK cell activation and function by downregulating
activating receptors and inhibiting the mTOR pathway (31).

Exosomes, vesicles that contain various lipids and proteins,
mediate communication and play an important role in disease
prognosis (32). Tumor derived exosomes (TDEs) differ from
normal exosomes in their biological function: they are involved in
tumor formation, metastasis, angiogenesis, and are known to
reprogram immune cells via inhibitory proteins, cytokines, RNA,
and other factors, such as in non-small cell lung cancer, leukemia, and
hepatocellular carcinoma (33-36). Glioblastoma releases exosomes
containing 4IgB7H3, which can suppress NK-mediated tumor lysis
(37). TDEs also negatively affect CAR-NK therapy by dysregulating
NK cell function and reducing their antitumor activity (38).

5 How the glioblastomas TME impairs
NK function

5.1 Suppression by astrocytes and cancer
associated fibroblasts

Glioblastomas are known for their suppressive TME and BBB
that impedes immune infiltration. Astrocytes and microglia have
been shown to alter cellular arrangement and contribute to a physical
barrier in 3D models. Spheroid models were used to model the
tumor, and pure spheroid models had loosely packed cells that

TABLE 1 Clinical trials treating hematological malignancies and solid tumors with CAR-NK therapy.

\[e) .
Disease Outcome
Number
A Study of CNTY-101 in Participants With CD19-Positive . . ORR/CRR was 67%/33% for
NCT0533640 B-Cell Mal; Ph 1
¢ ® | B-Cell Malignancies (ELiPSE-1) Cell Malignancies ase 300¢6 cells (DL2A)
1 fi D19-positi
Umbilical & Cord Blood (CB) Derived CAR-Engineered NK Relapsed or. r(’e ractory CD19 posmv'e Phase 1/ | 8/11 responded to treatment, 7
NCT03056339 R X K non-Hodgkin’s lymphoma or chronic K o
Cells for B Lymphoid Malignancies . . 2 achieved complete remission
lymphocytic leukemia
Clinical Study of Cord Blood-derived CAR-NK Cells 62.5% response rate at day 30,
Relapsed/Refractory B-Cell Non-Hodgki
NCT05472558 | Targeting CD19 in the Treatment of Refractory/Relapsed B- Leljlp;eoél: ractory el Ron-HOogKIn 1 phase 1 4/8 patients achieved a
cell NHL yop complete response
NCT06696846 CD70-CAR»NK Cell Tl'.lerapy for T Cell Lymphoma and T-Cell L'ymphoma, Acute Myeloid Phase I | Active
Acute Myeloid Leukemia Leukemia
NCT06690827 Clinical Trial of CD123-targeted CAR-NK Therapy for Acute Myeloid Leukemia, Blastic Phase 1 Active
v
Relapse/refractory AML or BPDCN Plasmacytoid Dendritic Cell Neoplasm
Clinical Study on the Safety and Efficacy of CAR-T/CAR- Solid tumors. including pancreatic Earl
NCT06572956 | NK Cells in the Treatment of Recurrent Refractory or X . &P ’ v Active
X prostate, breast, glioma, etc. Phase 1
Unresectable Solid Tumors
Clinical Study of Trop2 CAR-NK in the Treatment of Phase 1/ .
T06454 -
NCT06454890 Relapsed/Refractory Non-Small Cell Lung Cancer (NSCLC) Non-Small Cell Lung Cancer 2 Active
NCT05410717 CLDN6/GPC%/Mesothelm/AXL—CAR-NK Cell Therapy for TAXL-P‘osmve {&dvance-d Solid Tumf;rs Phase 1 Active
Advanced Solid Tumors including ovarian, testis, endometrial, etc.
linical f NKG2D CAR-NK i ith PD-1 Phase 1
NCT06856278 Clinical Study o i G, ¢ Combined wit Anaplastic Thyroid Carcinoma ase 1/ Active
Monoclonal Antibody in the Treatment of ATC 2

ORR, overall response rate; CRR, complete response rate.
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exhibited large pores on the surface. The introduction of astrocytes
and microglia caused the model to become more compact and
structured in certain areas. The nuclear density was higher in these
models and supports that these cells may alter the glioblastoma
morphology to reduce infiltration (39). In addition, cancer associated
fibroblasts (CAFs) are known to exhibit immunosuppressive
properties and promote tumor progression. CAFs are a common
characteristic of the TME and may impair the cytotoxic function of
NK cells (40). This occurs through ferroptosis, a cell death process
caused by build-up of iron-catalyzed lipid peroxides (41). A study in
gastric cancer found that CAFs increase the intracellular reactive
oxygen species (ROS) and malondialdehyde (MDA) lipids within NK
cells, which has been shown to consistently contribute to CAF-
induced death in NK92 cells. As expected, cell death was reversed
by ferroptosis inhibitor Ferrostatin-1 (Fer-1) and cytotoxicity was
partially repaired by Fer-1 and Lip-1, another ferroptosis inhibitor
(42). In glioblastoma, enhanced ferroptosis was shown to attenuated
antitumor cytotoxic killing of immune cells (43). Lastly, it should be
noted that CAFs in glioblastoma may differ from those in epithelial
tumors, as the fibroblast-like stromal cells or perivascular fibroblasts
in glioblastoma may act as potential glioblastoma-initiating cells
within the TME (44).

5.2 Impairment by indoleamine 2,3-
dioxygenase, TGF-f3, and adenosinergic
processes

Indoleamine 2,3-dioxygenase (IDO) is an enzyme that facilitates
the metabolism of tryptophan (Trp) and is controlled in the
glioblastoma microenvironment to suppress immune activity. IDO-1
in the glioblastoma TME reduces tryptophan levels, which has an
immunosuppressive effect and leads to CD8+ T cell exhaustion (45). In
thyroid cancer, cancer cells produce kynurenine using IDO, resulting in
NK dysfunction. Kynurenine enters the NK cell via the aryl
hydrocarbon surface receptor and disrupts NK receptor expression
through modulation of the STAT1 and STAT3 pathways (46). A recent
study using the kynurenine inhibitor PVZB3001 demonstrated
promising results, as this compound restored NK cell viability and
function in A172 glioblastoma cell cultures (47). In addition to IDO/
kynurenine, TGF-f and activin A inhibit NK cell function by reducing
its efficacy in tissue homing and residency. Also, CD73-mediated
production of adenosine drives reprogramming of the TME and
contributes to immune evasion in solid tumors. Increased activity of
CD39 and CD73 drives the adenosinergic process by converting ATP
to AMP and then to adenosine, which suppresses immune responses
(48). NK cells can be engineered to target the CD73-adenosine axis and
block the immunosuppressive effect (49).

5.3 Downregulation of activating ligands

The NKG2D ligand family acts as activating receptors for
immune responses in NK cells and some T cell. It has been a
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target in potentially improving cancer immunotherapy because of
its selective expression and strong NK cell activating potency (50).
However, glioblastomas stem cells (GSCs) in glioblastomas
downregulate NKG2D ligands, which impairs NK cell-driven
killing (51).

5.4 Upregulation of immune checkpoints

PD-LI is an immunosuppressive receptor and is mainly located
on immune cells such as macrophages, CD3+/CD8+ T cells, and
NK cells. The expression of PD-1/PD-L1 in glioblastomas is
upregulated and often contribute to immune escape. PD-L1
expression is elevated at the edge of glioblastomas tumor cells
compared to the tumor core, suggesting the presence of a PD-LI-
mediated barrier at the tumor margins that impedes immune cell
infiltration (52). This is another line of evidence that the
glioblastomas TME plays a significant role in impairing immune
cell function.

6 Opportunities: reprogramming the
TME to enhance CAR-NK therapy

6.1 Engineering CAR-NK cells to resist
TGF-p and hypoxia

Recently, there have been many strategies proposed to address
the limitations of CAR-NK immunotherapy. Mentioned previously,
TGF-B impairs the antitumor activity of NK cells; now, studies
show that NK cells engineered with the CRISPR-Cas9 system to
knock SMAD4 exhibit increased resistance to TGF-f suppression
(53, 54). The canonical TGF-B signaling pathway in NK cells is
mediated by SMAD2 and SMAD?3 phosphorylation, subsequently
followed by the phosphorylated SMAD2/3 forming a complex with
SMAD4. SMAD4 plays a central role in TGF-f signaling and
enables the SMAD2/3 complex to influence gene expression in
the nucleus. The knockout of the SMAD4 gene prevents the
SMAD2/3 complex from forming a functional transcriptional
complex and blocks the signaling pathway to the nucleus.
Experimental data shows that NK cells with reduced or absent
SMAD4 are less susceptible to TGF-B-induced downregulation of
activating receptors and retain higher cytotoxic function (54-56).

Hypoxia is another hurdle in CAR-NK efficacy. Studies found
that HERI-overexpressing NK cells genetically engineered with
catalase, called HER1-CAR-CAT-NK cells, were more tolerant
towards hypoxia and high levels of oxidative stress. Intratumoral
delivery of HER1-CAR-CAT-NK cells resulted in sustained
attenuation of tumor hypoxia and improved retention and
antitumor activity of the engineered NK cells (57). Other
strategies for overcoming the hypoxic TME include direct oxygen
delivery to tumors, increasing intratumoral oxygen levels, and
combinatorial approaches targeting pH, angiogenesis, and
immune dysfunction (58).
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6.2 Combination treatments, genetic
engineering, and oncolytic viruses

Other advancements have come out by genetic manipulation and
co-administering drugs to ameliorate the functional defects of NK cells
in the TME. Since activation of the CXCL12/CXCR4 axis restricts
autophagy, an essential cellular process in NK cells, inhibition of
CXCR4 and C/EBPP restores NK functionality (59). This can be
seen as a strategy that can be employed when developing NK
products for CAR-NK therapy to improve efficacy and resistance to
the TME.

Hypoxic tumors overexpress proteins like VEGF, which influence
angiogenesis and promotes immune escape. Combination therapy with
anti-angiogenic drugs targeting VEGF may be considered to normalize
vascular structure and improve the efficacy of CAR-NK therapy.
However, it is known that monotherapy with anti-angiogenic drugs
can exacerbate the immunosuppressive TME and result in poor
prognosis (2). Recently, studies have found that administering
oncolytic viruses engineered to secrete immunostimulatory cytokines
improves the efficacy of CAR-NK therapy in neuroblastoma and other
cancers. The modified herpes simplex virus C021 expresses interleukin-
21 (IL-21), which boosts NK cell proliferation and persistence. In
addition, the combination of C021 with anti-ROR1 CAR-NK cells
significantly increased cytotoxicity against neuroblastoma cells (60).
The CO021 virus effectively reprograms the TME from a cold
(immunosuppressive) to hot (immunostimulatory) environment and
enhances immune infiltration. As a result, the integration of cytokine-
secreting oncolytic viruses with CAR-NK cells provides a synergistic
and novel immunotherapeutic approach for enhancing anti-tumor
efficacy (61).

6.3 Targeting CAFs and HER2 expressing
cells

Some recent developments have turned attention to stromal
players that contribute to immunosuppression in the TME. The
presence of CAFs in the TME are associated with poor prognosis and
research has shown that combination therapy with CAF inhibitors
enhanced CAR-NK cytotoxicity (62). CAR-NK-cP6 cells modified to
continuously produce the P6 peptide disrupt the interaction between
TGF-B1 and its receptor TGF-BR1. CAFs are known to secrete TGF-
B1, a major immunosuppressive cytokine which creates a physical
and molecular barrier for immune surveillance (63). The modified
cells block TGF-B1 signaling in CAFs through a paracrine effect,
therefore allowing CAR-NK-cP6 cells to display cytotoxic efficacy
in a CAF-rich environment. Targeting TGF-B can provide
synergistic effects for eliminating CAFs, cancer cells, and their
immunosuppressive effect on immune cells (64).

HER2 is expressed in many tumors, such as glioblastomas
and breast cancers. Moderate to high HER2 expression has been
detected in 41% of primary glioblastoma samples and in the
majority of investigated glioblastoma cell lines, as shown by
immunohistochemistry (65). As a result, HER2 has been a target for
CAR-NK therapy in glioblastomas; however, monotherapy is not
enough to overcome the immunosuppressive TME in advanced-stage
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glioblastomas. Combination therapy of NK-92/5.28.z CAR-NK cells
and anti-PD-1 checkpoint inhibition demonstrated robust anti-tumor
activity and was able to selectively lyse HER2-expressing glioblastomas
cells in vitro. Checkpoint blockade PD-1 has a considerable effect due
its ability to block the pathways of immune response. Recent studies
have identified PD-1" NK cell subsets with impaired immune functions
in tumors such as high-grade serous ovarian cancer and B-cell chronic
lymphocytic leukemia (B-CLL), making them suitable targets for
combined immune checkpoint blockade therapy. Administration of
PD-1 inhibitors allows both CAR-NK cells and endogenous T cells to
proliferate and maintain their cytotoxic functions (66-68). In mouse
models, the modified CAR-NK cells were capable of eradicating smaller
HER2 tumors and developed durable immunity against glioblastomas
rechallenge (69).

7 Discussion

CAR-NK immunotherapy relies on the innate cytotoxic and
targeting ability of NK cells in tumors. The key challenges in
glioblastomas include the stromal barriers, hypoxia environment,
immune-inhibitory cytokines, downregulation of activating ligands,
and upregulation of immune checkpoints. Recent advancements
have begun addressing these limitations with promising outcomes,
such as modifying NK cells to resist hypoxic environments,
modulating stromal elements, and combination treatments.

Future work is needed to further improve the field of CAR-NK
therapy. Given the heterogeneity of the glioblastomas TME, patient-
specific profiling using single-cell and spatial tools will be crucial for
identifying immune escape mechanisms and elucidating novel
combination strategies. These high-resolution tools can reveal spatial
architecture of stromal cells, ligand-receptor interactions, and immune
infiltrates, allowing for clear-cut design of CAR constructs tailored for
TME landscapes. More specifically, upcoming efforts could include: (i)
pairing spatial ligand-receptor maps to select CAR antigens and
cytokine payloads; and (ii) using patient-matched organoid or
spheroid co-cultures with astrocytes and microglia to benchmark NK
cell persistence and motility under hypoxia. Overall, integrating CAR-
NK therapy with TME reprogramming will be essential for overcoming
immunosuppression and enhancing infiltration, persistence, and
cytotoxicity of NK cells. With ongoing biological and therapeutic
progress, CAR-NK therapy will transition from a generalized strategy
to a personalized and dynamic approach for treating glioblastomas.
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