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Abstract: Objective: To evaluate the efficacy and survival outcomes of bevacizumab combined with minocycline
versus bevacizumab monotherapy in patients with glioblastoma (GBM). Methods: We conducted a retrospective
analysis of 132 GBM patients treated at multiple centers between January 2022 and December 2023. Patients
were divided into a control group (bevacizumab monotherapy, n = 67) and an observation group (bevacizumab plus
minocycline, n = 65). Short-term treatment response, serum biomarkers, immune function, inflammatory and angio-
genic factors, quality of life, safety, and long-term survival were assessed. Results: The observation group showed
significantly higher objective response rate (53.85% vs. 29.85%) and disease control rate (78.46% vs. 61.19%),
along with improved immune function, reduced inflammatory and angiogenic markers, and enhanced quality of life
(all P < 0.05). Median progression-free survival (PFS) (8.5 vs. 6.7 months) and overall survival (OS) (10.6 vs. 8.9
months) were longer in the observation group. No significant difference in treatment-related adverse events was
observed. Conclusion: This retrospective analysis suggests that the combination of bevacizumab and minocycline
is associated with promising efficacy in GBM patients, including improved objective response, survival, and quality
of life, with a manageable safety profile. These findings support further evaluation in prospective randomized trials
to confirm the therapeutic potential of this combination.
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Introduction innovation in treatment approaches for GBM
[3]. Among these, bevacizumab, a monoclonal
antibody targeting angiogenesis, has been
shown to inhibit tumor vascularization and

modulate the tumor microenvironment. It can

Glioblastoma (GBM), the most common and
aggressive primary brain tumor in adults, is
characterized by rapid proliferation, significant

heterogeneity, and high invasiveness [1]. Al-
though current multimodal treatments - includ-
ing surgical resection, radiotherapy, and che-
motherapy - can delay tumor progression to
some extent, they have failed to substantially
improve the high recurrence rate and poor sur-
vival outcomes associated with GBM. Thus, the
prognosis for patients remains dismal [2]. Thus,
there is an urgent need for novel therapeutic
strategies to improve outcomes.

In response to this urgent clinical need, res-
earch has increasingly focused on immunother-
apy and targeted therapy. This has promoted

thereby delay tumor growth and recurrence [4].
By binding to vascular endothelial growth factor
(VEGF), bevacizumab blocks its interaction with
VEGF receptors. This reduces the formation
of new blood vessels and has demonstrated
clinical benefits, particularly in the second-line
treatment of GBM [5]. Meanwhile, minocycline,
a broad-spectrum antibiotic with excellent cen-
tral nervous system penetration, has gained
increasing attention for its potential use in
brain tumor therapy [6]. Beyond its antibacteri-
al effects, minocycline exhibits multiple anti-
tumor mechanisms. These include immuno-
modulation, induction of apoptosis, and su-
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ppression of tumor-associated inflammation
[7]. Furthermore, its ability to cross the blood-
brain barrier is superior to other tetracycline
analogs. This makes it a promising candidate
for treating brain malignancies [8]. Although
the combined use of bevacizumab and minocy-
cline has not been fully evaluated in clinical set-
tings, their potential synergy may improve treat-
ment efficacy for GBM. This combination could
achieve dual inhibition of angiogenesis, modu-
late the tumor immune microenvironment, and
suppress tumor invasion. It may offer a new
therapeutic alternative for patients.

This study was designed to investigate the effi-
cacy and survival outcomes of bevacizumab
combined with minocycline in GBM, and to eval-
uate the safety and effectiveness of this combi-
nation regimen, with the aim of providing a
rationale for its broader clinical application.

Materials and methods
Study population

We retrospectively enrolled 132 patients with
GBM treated at Shandong Provincial Third
Hospital, Affiliated Tumor Hospital of Shan-
dong First Medical University, Affiliated Central
Hospital of Shandong First Medical Univer-
sity, and Fuding Hospital Affiliated to Fujian
University of Traditional Chinese Medicine
between January 2022 and December 2023.
Patients were divided into a control group (bev-
acizumab monotherapy, n = 67) and an obser-
vation group (bevacizumab combined with
minocycline, n = 65). Inclusion criteria were: (1)
age 18-65 years; (2) no contraindications to
bevacizumab or minocycline; (3) clinical stage
ll/1ll disease. Exclusion criteria included: (1)
other malignancies; (2) expected survival < 3
months; (3) severe psychiatric or cognitive
impairment; (4) significant organ dysfunction.
The study protocol received approval from the
Institutional Ethics Committee of Shandong
Provincial Third Hospital (Approval No.: KYLL-
2025200).

Sample size

Prior to the study, a sample size calculation was
performed using the log-rank test for survival
data. The assumed hazard ratio (HR) of 0.60 for
progression-free survival (PFS) in the combina-
tion group was based on effect sizes reported
in pivotal trials of combination therapies involv-
ing bevacizumab in other solid tumors, where
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HRs around 0.60-0.65 were observed for sur-
vival endpoints [9]. With a two-sided signifi-
cance level (a) of 0.05 and a statistical power
(1-B) of 80%, the calculation indicated that a
total of approximately 120 patients (60 per
group) would be required. Accounting for an
estimated 10% dropout rate, we aimed to enroll
a total of 132 patients. Thus, the final sample
size of 132 patients is considered adequate to
detect the anticipated clinically meaningful
treatment effect.

Treatment protocols

Patients in the observation and control groups
received conventional radiotherapy, which was
initiated 2-4 weeks following surgery. Imm-
obilization was achieved with thermoplastic
masks, and treatment planning was performed
via CT simulation. All patients received intensi-
ty-modulated radiation therapy (IMRT). The
clinical target volume (CTV) was defined based
on preoperative MR images and any postopera-
tive residual lesions, and included the gross
tumor volume (GTV) and/or the surgical cavity
with a 2-3 cm margin, incorporating the sur-
rounding edema region visible on MRI. The
planning target volume (PTV) was created by
adding a 0.5 cm margin to the CTV, with the
constraint that > 95% of the PTV received the
prescription dose. The initial dose regimen was
1.8 Gy per fraction, delivered 5 times per week.
After a total dose of 50.4 Gy in 28 fractions, the
radiation field was reduced to cover the GTV
plus a 0.5-1.0 cm margin. An additional boost
dose of 10 Gy in 5 fractions was then adminis-
tered at 2.0 Gy per fraction, 5 times per week,
bringing the total dose to 60.4 Gy in 33 frac-
tions. This regimen, which delivers a compara-
ble total dose using smaller fraction sizes, rep-
resents a clinical adaptation to optimize the
therapeutic ratio. This approach aligns with
contemporary guidelines that acknowledge the
use of hypofractionated and adapted sched-
ules in GBM radiotherapy, based on individual
clinical considerations and institutional proto-
cols [10].

In the control group, bevacizumab was adminis-
tered intravenously at 5 mg/kg on day 1 of
each cycle. The drug was diluted in 250 mL of
normal saline and infused over 30 to 90 min-
utes, based on patient tolerance. Treatment
cycles were repeated every two weeks for a
total of 6 cycles (3 months). The observation
group additionally received oral minocycline
hydrochloride capsules at 100 mg twice daily
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for 3 months. This dosing regimen was informed
by prior preclinical studies in glioma models,
where minocycline demonstrated antitumor
efficacy and provided a rationale for its clinical
investigation [11], and is supported by its
established clinical safety and central nervous
system penetration profile [6, 8].

Baseline data and clinical evaluation

Upon hospital admission, baseline data includ-
ing gender, age, body mass index (BMI), clinical
stage, place of residence, marital status, aver-
age monthly household income, and education-
al level were collected from the patients. Short-
term treatment efficacy was evaluated after
the completion of chemotherapy, according to
the criteria established in the Chinese expert
consensus on immunotherapy and targeted
therapy for gliomas in the central nervous sys-
tem (2nd edition) [12]. The criteria were defined
as follows: complete response (CR): disappear-
ance of all target lesions; partial response (PR):
> 30% reduction in tumor diameter; stable dis-
ease (SD): reduction in tumor volume that did
not meet the criteria for PR, or increase that did
not meet the criteria for progressive disease;
progressive disease (PD): > 20% increase in
tumor diameter or emergence of new lesion(s).
The objective response rate (ORR) was calcu-
lated as (CR + PR)%, and the disease control
rate (DCR) as (CR + PR + SD)%.

Serum biomarker assays

To minimize pre-analytical variations, all venous
blood samples were collected under standard-
ized conditions. The sampling time was uni-
formly set as early in the morning (7:00-9:00)
with an overnight fasting state. Samples before
treatment were obtained before starting any
study drug treatment, while samples during the
treatment period were collected at fixed time
points according to the bevacizumab infusion
cycle (immediately before the next scheduled
administration). Samples were centrifuged
within 2 hours after collection (at 2°C, 3,000
rpm for 10 minutes with a rotor radius of 8 cm)
to separate serum, which was then aliquoted
into three portions. One aliquot was used to
determine the levels of matrix metalloprotein-
ase-2 (MMP-2), matrix metalloproteinase-8
(MMP-8), matrix metalloproteinase-13 (MMP-
13), and tissue inhibitor of metalloproteinase-1
(TIMP-1) using enzyme-linked immunosorbent
assay (ELISA) kits purchased from Shanghai
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Enzyme-linked Biotechnology Co., Ltd. Another
aliquot was analyzed using a DxP Athena
flow cytometer (Qingdao Jiading Analytical
Instrument Co., Ltd.) to assess immune func-
tion markers, including the levels of Cluster of
Differentiation 3 positive (CD3*), Cluster of
Differentiation 4 positive (CD4"), and Cluster of
Differentiation 8 positive (CD8*) T lymphocytes.
The CD4*/CD8" ratio was then calculated. All
kits were procured from Beijing Everbridge
Medical Co., Ltd. The third aliquot was subject-
ed to ELISA to quantify the levels of inflamma-
tory cytokines [interleukin-8 (IL-8), tumor necro-
sis factor-a (TNF-a), and leukotriene B4 (LTB4)]
as well as angiogenesis factors [vascular endo-
thelial growth factor (VEGF), basic fibroblast
growth factor (bFGF), and transforming growth
factor-B1 (TGF-B1)]. Measurements were per-
formed using an AEW-96S multifunctional
microplate reader (Shanghai Shiwei Laboratory
Instrument Technology Co., Ltd.).

Quality of life, safety, and long-term efficacy
assessment

Quiality of life was assessed using the European
Organization for Research and Treatment of
Cancer Quality of Life Questionnaire-Core 30
(EORTC QLQ-C30) [13] on the day before che-
motherapy initiation and one day after chemo-
therapy completion. The physical functioning
(PF), role functioning (RF), cognitive functioning
(CF), and emotional functioning (EF) domains
were evaluated, each scored on a scale of O to
100, with higher scores indicating better quali-
ty of life. Treatment safety was monitored by
recording treatment-related adverse events
occurring during treatment, including vomiting/
diarrhea, bone marrow suppression, anemia,
abnormal liver function, rash, dizziness, skin
pigmentation, headache/visual changes, and
other potential complications. Long-term effi-
cacy was evaluated through follow-up visits
conducted monthly via outpatient clinic or tele-
phone for one year after the initiation of treat-
ment. PFS was defined as the time from treat-
ment initiation to disease progression, and
overall survival (OS) was defined as the time
from treatment initiation to death from any
cause.

Statistical analysis

Data were analyzed using SPSS 25.0 and
GraphPad Prism 9.5. Normally distributed con-
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Table 1. Comparison of baseline characteristics between control and observation groups

Characteristic Control (n = 67) Observation (n = 65) t/x? P
Gender (n, %) 0.141 0.707
Male 37 (55.22) 38 (58.46)
Female 30 (44.78) 27 (41.54)
Age (years, X £S) 40.66 + 7.44 41.35 + 8.00 0.519 0.605
BMI (kg/m?, X S) 22.69 +2.82 22.68 + 3.02 -0.024 0.981
Clinical Staging (n, %) 0.339 0.844
lla 26 (38.81) 28 (43.08)
Ilb 23 (34.33) 22 (33.85)
1 18 (26.86) 15 (23.07)
Residence (n, %) 0.152 0.696
Urban 39 (58.21) 40 (61.54)
Rural 28 (41.79) 25 (38.46)
Marital Status (n, %) 1.481 0.477
Never married 2 (2.99) 5 (7.69)
Married 58 (86.56) 53 (81.54)
Divorced/Widowed 7 (10.45) 7 (10.77)
Monthly household income (n, %) 0.255 0.614
<5,000 28 (41.79) 30 (46.15)
> 5,000 39 (58.21) 35 (53.85)
Education level (n, %) 0.588 0.443
High school or below 40 (59.70) 43 (66.15)
College or above 27 (40.30) 22 (33.85)

Note: BMI: body mass index.

tinuous data were expressed as mean * stan-
dard deviation and analyzed using paired
t-tests for within-group comparisons and inde-
pendent ttests for between-group compari-
sons. Non-normally distributed data were pre-
sented as median and interquartile range, with
within-group comparisons conducted using the
Wilcoxon signed-rank test and between-group
comparisons analyzed using the Kruskal-Wallis
H test. Categorical data were summarized as
frequency and percentage (n, %), and group dif-
ferences were assessed using the chi-square
test. Survival analysis was performed using the
Kaplan-Meier method, and survival curves
were compared with the log-rank test. A P-value
< 0.05 was considered statistically significant.

Results
Comparison of baseline characteristics

No significant differences were observed be-
tween the two groups in gender, age, BMI, clini-
cal stage, residence, marital status, income, or
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education level (all P > 0.05), as detailed in
Table 1.

Comparison of short-term treatment response
between the two groups

The proportion of patients achieving CR and PR
was higher in the observation group compared
to the control group (P < 0.05; Table 2).
Furthermore, both the ORR and DCR were sig-
nificantly greater in the observation group, with
all differences being statistically significant (P <
0.05; Table 2).

Comparison of tumor invasion markers be-
tween the two groups

Baseline levels of MMP-2, MMP-8, MMP-13,
and TIMP-1 were comparable between the two
groups (all P > 0.05; Figure 1). Following treat-
ment, significant improvements in all markers
were observed within each group relative to
their baseline levels. Compared with the con-
trol group, the observation group exhibited a
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Table 2. Comparison of short-term treatment response between the control and observation groups

(n, %)

Group n CR PR SD PD ORR DCR
Control 67 8(11.94) 12 (17.91) 21(31.34) 26(38.81) 20 (29.85) 41 (61.19)
Observation 65 11(16.92)  24(36.92) 16(24.62) 14 (21.54) 35(53.85) 51 (78.46)
X 8.721 7.816 4.658

P 0.033 0.005 0.031

Note: CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease, ORR: objective response rate,

DCR: disease control rate.
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Figure 1. Comparison of tumor invasion markers between the control and
observation groups. (A) MMP-2, (B) MMP-8, (C) MMP-13, (D) TIMP-1. Data
are presented as mean + standard deviation (SD). Between-group compari-
sons were analyzed by independent samples t-test. MMP-2 = matrix me-
talloproteinase-2; MMP-8 = matrix metalloproteinase-8; MMP-13 = matrix

Pre-treatment
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were observed within each
group relative to their baseline
levels. Compared with the con-
trol group, the observation
group exhibited significantly
lower concentrations of IL-8,
TNF-x, and LTB4 (all P < 0.05;
Figure 3).

Pro-treatment

metalloproteinase-13; TIMP-1 = Tissue inhibitor of metalloproteinase-1; ns

= not significant; P < 0.01; *P < 0.001.

significant reduction in the concentrations of
MMP-2, MMP-8, and MMP-13, and a signifi-
cantly higher level of TIMP-1 (all P < 0.05; Figure
1).

Comparison of immune function indicators
between the two groups

Immune function parameters, including CD3",
CD4*, CD8" T cell levels, and the CD4*/CD8*
ratio, were similar between groups at baseline
(all P> 0.05; Figure 2). Following treatment, sig-
nificant improvements in all immune parame-
ters were observed within each group relative
to their baseline levels. Compared with the con-
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Comparison of angiogenic fac-
tors between the two groups

Baseline levels of VEGF, bFGF, and TGF-B1 were
comparable between the two groups (all P >
0.05; Figure 4). Following treatment, a signifi-
cant reduction in the levels of these angiogenic
factors was observed within each group rela-
tive to baseline levels. Compared with the con-
trol group, the observation group exhibited sig-
nificantly lower expression levels of VEGF, bFGF,
and TGF-B1 (all P < 0.05; Figure 4).

Comparison of quality of life scores between
the two groups

Quality of life scores (PF, RF, CF, and EF) were
comparable between the two groups at base-
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Figure 2. Comparison of immune function indicators between the control

and observation groups. (A) CD3*, (B) CD4*, (C) CD8*, (D) CD4*/CD8*. Data

Discussion

are presented as mean * standard deviation (SD). Between-group compari-
sons were analyzed by independent samples t-test. CD3*

ferentiation 3 positive; CD4* = Cluster of differentiation 4 positive; CD8*
= Cluster of differentiation 8 positive; CD4*/CD8* = CD4 positive to CD8

positive ratio; ns = not significant; “*P < 0.001.

line (all P > 0.05; Figure 5). Following treat-
ment, significant increases in these scores
were observed within each group compared to
their baseline levels. Compared with the con-
trol group, the observation group exhibited sig-
nificantly greater improvements in all four
dimensions (PF, RF, CF, and EF) (all P < 0.05;
Figure 5).

Comparison of treatment safety between the
two groups

The overall incidence of treatment-related
adverse events did not differ significantly be-
tween the control and observation groups
[32.84% (22/67) vs. 26.15% (17/65), respec-
tively; x? = 0.708, P = 0.400]. In response to the
specific safety concerns regarding minocycline,
we performed a detailed analysis of its charac-
teristic toxicities. As summarized in Figure 6,
the incidences of skin pigmentation (3.08% vs.
4.48%), headache (4.62% vs. 5.97%), and hep-
atotoxicity (1.54% vs. 2.99%) in the observation
group were all comparable to, and not signifi-
cantly higher than, those in the control group
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Cluster of dif- GBM is the most common and

aggressive primary brain tumor
in adults. Due to its high recur-
rence rate, poor prognosis and
limited treatment options, it
poses significant challenges to clinical practice
[14]. This multicenter retrospective study evalu-
ated the efficacy and safety of oral minocycline
combined with bevacizumab in patients with
GBM. Compared with bevacizumab monothera-
py, the combination therapy led to superior out-
comes in ORR, DCR, PFS and OS, and demon-
strated a synergistic effect in multiple biological
processes including tumor invasion, immune
regulation, suppression of inflammation and
angiogenesis.

In this study, treatment led to a marked reduc-
tion in MMP-2, MMP-8, and MMP-13 levels
and a concurrent increase in TIMP-1 in both
groups (P < 0.05), mirroring findings from earli-
er studies [15]. Furthermore, significantly more
patients in the observation group achieved CR,
PR, ORR, and DCR compared to the control
group (P < 0.05), indicating a potent synergistic
antitumor effect between oral minocycline and
bevacizumab. The observed synergy likely aris-
es from the distinct yet complementary mecha-
nisms of action of the two agents. The primary
mechanism of bevacizumab involves inhibiting
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Figure 3. Comparison of inflammatory factors between the control and observation groups. Data are presented as
mean * standard deviation (SD). Between-group comparisons were analyzed by independent samples t-test. IL-8 =
interleukin-8; TNF-a = Tumor necrosis factor-alpha; LTB4 = leukotriene B4; ns = not significant; *"P < 0.01; ™"P <
0.001.
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Figure 4. Comparison of angiogenic factors between the control and observation groups. (A) VEGF, (B) bFGF, (C)
TGF-B1. Data are presented as mean + standard deviation (SD). Between-group comparisons were analyzed by in-
dependent samples t-test. VEGF = vascular endothelial growth factor; bFGF = basic fibroblast growth factor; TGF-B1
= Transforming growth factor-beta 1; ns = not significant; P < 0.01; ""*P < 0.001.

the binding of VEGF to its receptors, thereby involved in various physiological and pathologi-
suppressing tumor angiogenesis and growth cal processes such as embryonic development,
[16]. Bevacizumab has shown synergistic tissue repair, inflammation, and tumor forma-
effects in various cancer treatments, such as tion [21]. Their activity is regulated by TIMPs,
by enhancing antitumor efficacy when com- and the balance between MMPs and TIMPs
bined with chemotherapeutic agents like oxali- maintains extracellular matrix homeostasis.
platin [17]. Additionally, bevacizumab exerts After treatment, the levels of MMP-2, MMP-8,
antitumor effects by inhibiting microvessel and MMP-13 in both groups of patients signifi-
density (MVD) and inducing tumor cell apopto- cantly decreased, while the level of TIMP-1
sis [9, 18]. Minocycline, a tetracycline antibiot- increased (P < 0.05), which is consistent with
ic, possesses anti-inflammatory, antimicrobial, the results of earlier studies [22-24]. These
and neuroprotective properties, and has shown changes were particularly significant in the
inhibitory effects on tumor cells in some stud- observation group (P < 0.05). The decrease in
ies, for instance, by suppressing autophagy or MMP levels often indicates a reduction in
inducing apoptosis [19, 20]. inflammation or tissue damage, while the

increase in TIMP-1 may reflect enhanced tissue
Matrix metalloproteinases (MMPs) play a cru- repair or improved inflammation control [25].
cial role in extracellular matrix degradation, From a mechanistic perspective, minocycline
cell migration, and tissue remodeling, and are and bevacizumab jointly affect the MMP-TIMP
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Figure 6. Comparison of treatment-related adverse
events between the control and observation groups.
Adverse events of special interest for minocycline
(hepatotoxicity, headache, and skin pigmentation)
are indicated by an asterisk (*). Between-group com-
parisons were analyzed by Chi-square test. VOM =
Vomiting; DIA = Diarrhea; HEP = Hepatotoxicity; HA
= Headache.
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Tumor-infiltrating lymphocytes
(TILs) are mainly composed of
CD3*, CD4* and CD8" T cells
and are the core components
of anti-tumor immunity [28]. The density, distri-
bution and CD4*/CD8" ratio of these cells are
key parameters for evaluating the tumor
immune microenvironment (TIME). After treat-
ment, we observed a significant increase in the
infiltration of CD3" and CD4"* T cells, an increase
in the CD4*/CD8"* ratio, and a decrease in the
number of CD8* T cells (P < 0.05). Compared
with the control group, these changes were
more obvious in the observation group (P <
0.05), which was consistent with the reported
immune regulatory treatment response [29].
The decrease in CD8" T cells may reflect the
post-antigenic clonal contraction or differentia-
tion process, rather than immunosuppression
[30, 31]. This dynamic pattern is consistent
with the good response in other immune regu-
latory treatments. The significant increase in
the CD4*/CD8* ratio in the observation group
suggests that bevacizumab and minocycline
may work synergistically to transform the tumor
immune microenvironment from an immuno-
suppressive state to an immune-active. The
continuous increase in this ratio has been prov-
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which may contribute to im-
proved prognosis.

In the pathological progress-
ion of GBM, VEGF-mediated
pathological angiogenesis and
blood-brain barrier disruption
exacerbate cerebral edema

c
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Figure 7. Comparison of long-term efficacy between the two groups. (A) PFS,
(B) OS. Survival curves were compared using the log-rank test. Vertical ticks
indicate censored data. PFS = progression-free survival; OS = overall sur-

vival; vertical ticks indicate censored data.

en to be a predictive indicator for a good clinical
outcome [32]. The results of this study not only
support the value of this ratio in evaluating the
efficacy of immunotherapy for glioblastoma,
but also indicate that the combined treatment
strategy may improve clinical benefits by opti-
mizing immune indicators.

Inflammatory cytokines including IL-8, TNF-c,
and LTB4 are key mediators involved in angio-
genesis, cell proliferation, and immune evasion
within the tumor microenvironment, and play
significant roles in rheumatoid arthritis, inflam-
matory bowel disease, and malignancies [33-
35]. We observed a significant decrease in
serum levels of IL-8, TNF-a, and LTB4, a finding
that aligns with previous reports [36-38] and
extends beyond them to underscore the supe-
rior anti-inflammatory efficacy of the combina-
tion therapy. Decreases in these cytokines typi-
cally reflect suppressed neutrophil activation,
attenuated macrophage responses, and regu-
lated leukotriene pathways, indicating effective
control of inflammation [36-38]. The combina-
tion therapy acts through multiple mechanistic
pathways. Minocycline suppresses NF-kB and
p38 MAPK signaling, which in turn reduces the
transcription and secretion of TNF-ac and IL-8. It
also curbs neutrophil migration and LTB4 syn-
thesis [39, 40]. Bevacizumab neutralizes VEGF,
inhibiting abnormal angiogenesis and reducing
vascular permeability and inflammatory cell
infiltration; it also promotes M2 macrophage
polarization, indirectly suppressing TNF-a and
LTB4 [41, 42]. Together, the drugs synergisti-
cally suppress inflammation through multi-tar-
geted actions, leading to reduced cytokine lev-
els and improved anti-inflammatory effects,
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gistically promotes angiogen-
esis, invasion, and microenvi-
ronment remodeling; TGF-f dr-
ives malignancy by suppress-
ing immune function, inducing
immunosuppression, and pro-
moting EMT [43-45]. Our re-
sults indicate that the minocycline-bevacizum-
ab combination was more effective than mono-
therapy in lowering serum levels of VEGF, bFGF,
and TGF-B1 in GBM patients (P < 0.05), under-
scoring a multi-mechanistic synergy in sup-
pressing tumor progression. This supports
contemporary approaches that simultaneously
target multiple pathways within the tumor
microenvironment [46-48]. Bevacizumab me-
chanistically functions by directly neutralizing
VEGF, thereby inhibiting abnormal angiogenesis
and alleviating cerebral edema[16]. Minocycline
complements this action by enhancing anti-
angiogenic effects and suppressing tumor inva-
sion through the inhibition of MMP activity and
blockade of bFGF release and activation [27,
49]. Moreover, minocycline modulates the
immune microenvironment, inhibits microglia/
macrophage M2 polarization, reduces TGF-B1
secretion, and thereby reverses immunosup-
pression and enhances anti-tumor immunity
[11, 50]. Together, the two drugs synergistically
inhibit EMT and suppress malignant progres-
sion through multiple pathways.

Time (months)

The overall incidence of adverse events was
comparable between groups (P > 0.05). A
focused analysis of minocycline-associated tox-
icities - specifically skin pigmentation, hepato-
toxicity, and headache - revealed low and sta-
tistically comparable incidences between the
observation and control groups. No cases of
intracranial hypertension or autoimmune hepa-
titis were confirmed. This manageable safety
profile supports the feasibility of further clinical
evaluation of the combination regimen.

The observation group exhibited significantly
longer median PFS and 0S, alongside greater

Am J Transl Res 2025;17(12):9846-9858
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improvements in all quality-of-life domains
compared to controls [51]. The concurrent
enhancement of survival and patient-reported
outcomes indicates comprehensive clinical
benefit. This may be attributable to reduced
symptom burden from delayed progression,
preserved neurological function due to a toler-
able safety profile, and psychological benefits
derived from effective disease control, poten-
tially mediated by reduced neuroinflammation
[52]. These integrated benefits substantiate
the strategy’s further investigation in GBM
management.

This multicenter study provides clinical and bio-
marker evidence supporting the potential syn-
ergy of bevacizumab and minocycline. However,
this study also has some limitations. The retro-
spective design and the lack of comprehensive
molecular profiling (e.g., MGMT, IDH) and stan-
dardized monitoring for specific bevacizumab-
related toxicities (e.g., hypertension, protein-
uria) introduce the possibility of unmeasured
confounding. Consequently, we were unable to
perform a multivariable Cox regression to
report adjusted hazard ratios, and the survival
benefits should be interpreted as exploratory.
Furthermore, the safety analysis, while now in-
cluding minocycline-specific events, could not
fully account for all bevacizumab-associated
adverse events due to inconsistent documen-
tation. The minocycline dosing regimen and the
comprehensive safety profile of the combina-
tion also require further validation in prospec-
tive settings. These limitations underscore the
necessity for future randomized controlled tri-
als that include prospective molecular profiling
and systematic toxicity monitoring to confirm
the efficacy and therapeutic value of this
combination.

Conclusion

In conclusion, this retrospective analysis sug-
gests that bevacizumab plus minocycline is
associated with promising efficacy, including
improved survival and quality of life, in GBM
patients. Despite the inherent limitations,
these data indicate potential synergy and justi-
fy future prospective, randomized trials to con-
firm the therapeutic value of this combination.
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