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1  A B S T R A C T

Problem: Machine learning (ML)/Deep learning (DL) techniques have been evolving to solve more complex 
diseases, but it has been used relatively little in Glioblastoma (GBM) histopathological studies, which could 
benefit greatly due to the disease’s complex pathogenesis.
Aim: Conduct a systematic review to investigate how ML/DL techniques have influenced the progression of brain 
tumour histopathological research, particularly in GBM.
Methods: 54 eligible studies were collected from the PubMed and ScienceDirect databases, and their information 
about the types of brain tumour/s used, types of -omics data used with histopathological data, origins of the data, 
types of ML/DL and its training and evaluation methodologies, and the ML/DL task it was set to perform in the 
study were extracted to inform us of trends in GBM-related ML/DL-based research.
Results: Only 8 GBM-related studies in the eligible utilised ML/DL methodologies to gain deeper insights into 
GBM pathogenesis by contextualising histological data with -omics data. However, we report that these studies 
have been published more recently. The most popular ML/DL models used in GBM-related research are the SVM 
classifier and ResNet-based CNN architecture. Still, a considerable number of studies failed to state training and 
evaluative methodologies clearly.
Conclusion: There is a growing trend towards using ML/DL approaches to uncover relationships between bio
logical and histopathological data to bring new insights into GBM, thus pushing GBM research forward. Much 
work still needs to be done to properly report the ML/DL methodologies to showcase the models’ robustness and 
generalizability and ensure the models are reproducible.

1. Introduction

Glioblastoma (GBM) is the most common malignant brain tumour 
[1]. GBM is almost invariably fatal, with the patient’s median overall 
survival being approximately one year [2]. The standard care for many 
newly diagnosed GBM patients involves surgical tumour resection and 
radio-chemotherapy [3]. However, GBM tumours often recur in func
tional brain areas and are less sensitive to therapy than the original 
tumour, thus preventing another surgical resection [4]. A distinct 
feature of GBM is its heterogeneity, which plays a significant role in the 
difficulty of treating GBM [5,6]. Therefore, much research has investi
gated the nature of the heterogeneity of GBM and its contribution to 
treatment difficulties and fatality.

The consensus amongst The Cancer Genome Atlas (TCGA) Research 
Network and others is that GBM can be categorised into four subtypes: 
proneural, neural, classical and mesenchymal [7,8]. Verhaak and col
leagues noticed that subtypes could be differentiated using distinct 
molecular signatures. They reported that 100 % of the classical subtype 
exhibited a chromosome 7 amplification paired with chromosome 10 
loss, with 97 % of the classical subtype having high levels of epidermal 
growth factor receptor (EGFR) gene amplifications [8] Verhaak and 
colleagues further noted that mesenchymal subtype predominantly 
featured lower NF1 expression levels, while proneural subtypes had 
alterations platelet-derived growth factor alpha (PDGFRA) receptor and 
isocitrate dehydrogenase (IDH) 1 as their significant features [8] This 
shows that although GBM is heterogenous, patterns were observed. 
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Based on this, potential treatments can be more effective and person
alised to improve patient outcomes.

More recently, the World Health Organization (WHO) broadly clas
sified GBM into two types: IDH-wildtype (wt) GBM and IDH-mutant (mt) 
GBM [9]. Louis and colleagues further noted GBM variants under the 
two classifications mentioned above. They classified epithelioid GBM 
(Ep-GBM) under the IDH-wt group. It featured large epithelioid cells 
with abundant eosinophilic cytoplasm, vesicular nuclei and large 
melanoma-like nucleoli, all of which can be distinguished histopatho
logically [9]. Louis and colleagues further categorised GBM with prim
itive neuronal component (GBM-PNC) to have highly cellular nodules in 
an otherwise diffuse astrocytoma in MRI screenings. They can be his
topathologically identified by the Homer Wright rosettes along with 
large cell/anaplastic features [9]. Small cell GBM can be characterised 
by uniform, small neoplastic cells and often exhibiting EGFR amplifi
cations, while granular cell GBM exhibits granular to macrophage-like, 
lysosomic-rich tumour cells [9]. Overall, the histo
pathological/morphological classification of GBM types and the shared 
genes identified give rise to the potential of correlating image data and 
molecular markers in GBM for better diagnosis and prognosis.

Recent advancements in machine learning (ML) and deep learning 
(DL) have diversified its use, particularly in clinical use. ML/DL can 
extract patterns from examples at its core, and it has proven to be more 
beneficial with more enormous datasets, especially for more intricate 
patterns, which are usually too complex for human analyses. In the field 
of brain tumour research, many of the ML/DL applications have 
revolved around the segmentation and volumetric analyses of brain 
tumours from MRI and CT screenings [10–13]. This was often in the 
form of segmentation of the tumour volume in MRI images using various 
convolutional neural networks (CNN) [14,15]. Classification tasks and 
improving accuracy are also common objectives in ML/DL-based MRI 
research. Studies would often develop novel pipelines and asses their 
accuracies in classifying various types of brain tumours [16,17]. These 
tasks would otherwise be incredibly difficult to achieve without the 
ML/DL’s capabilities to recognise underlying patterns that are too 
complex for humans to understand.

Emerging research has also utilised ML/DL tools to recognise pat
terns in histopathological images, either as a segmentation tool or to 
classify the tumours [18,19]. In segmentation, CNNs are standard tools 
used to segment tumour features [19–22]. ML/DL has also been used to 
identify and correlate patterns in brain tumour histopathologic images 
with their corresponding molecular statuses. Notably, Cui and col
leagues extracted features from histopathology images of glioma pa
tients and correlated them with their IDH mutation statuses via 
multiple-instance learning [18]. In another example, Fatima and col
leagues extracted features from segmented nuclei of meningioma his
tology images to classify different subtypes of meningioma using a 
support vector machine (SVM) ensemble ML model [23].

It is evident that in more recent brain tumour histopathological 
studies, ML/DL has been used more often. However, our recent litera
ture survey suggests that relatively few works consolidate bio- 
information with image data, and fewer pieces of literature focused 
their investigations on GBM histopathology. This is important because 
GBM diagnoses are primarily based on expensive multi-omics assays on 
tissue biopsies [9]. These are more closely related to cheaper and 
affordable histopathological work than relatively more expensive and 
less accessible MRI/CT scans. Therefore, it is logical to infer that the 
contextualisation of bio-information acquired from biopsies and 
state-of-the-art research using ML/DL methods would result in a better 
understanding of GBM’s microenvironment, as well as the development 
of accessible and standardised diagnostic and prognostic tools for GBM. 
Thus, a knowledge gap exists that utilises ML/DL to meaningfully 
combine GBM bio-information and its corresponding histopathology 
data. We propose that a review of ML/DL utilisation in brain tumour 
research as a whole can inform us about what and how we can improve 
multi-scale ML/DL-based GBM research.

Therefore, this systematic review consolidates the various ML/DL 
models and their purpose in brain tumour histopathological research. 
The primary contributions of this review are as follows. 

• Conduct a meta-analysis of various ML/DL-based studies on brain 
tumours to investigate the current trend of ML/DL use in brain 
tumour histopathological studies. From the current trends, identify 
the common ML/DL models with a focus on the task they perform in 
brain tumour histopathology studies. Uncovering their role in un
derstanding brain tumour pathology is key here.

• Suggest novel ML/DL utilisation avenues in GBM histopathology 
studies based on the current trends and gaps identified in the meta- 
analysis.

The remainder of the article is split into four sections. The method
ology section (Section 3) describes how the articles were searched, 
filtered and analysed. Section 4 consists of the result section, where 
trends in types of brain tumours used, types of datasets and dataset 
availability, and the ML/DL models together with their purpose in each 
study were reported. Section 5 discusses the findings of the results, while 
Section 6 concludes the article.

2. Methods

2.1. Search strategy, eligibility screening and data extraction

This systematic review followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [24]. 
Original articles were sourced from the PubMed and Science Direct 
electronic databases published up to March 2022 (from 2000-) to review 
the recent advancements in the field. After the initial search, duplicated 
articles were identified and removed manually. Reviews, non-English 
articles and conference articles were excluded. The three main cate
gorical keywords used to identify relevant studies to this systematic 
review were: 1.) Histology or histopathology, 2.) Machine learning or 
deep learning (DL), and 3.) Brain tumour or glioblastoma. The studies 
that include the three main categorical keywords were screened using 
Boolean operations in the databases’ advanced search function. Table 1
details the search parameters of PubMed and Science Direct.

The studies were further screened for eligibility in this systematic 
review. During the initial search, studies involving MRI and CT with 
minimal to no histology work were included in the search results, which 
were beyond the scope of this review. Thus, an additional NOT Boolean 
operation was implemented in the search to exclude non-relevant MRI/ 
CT studies, along with the inclusion of the “histology OR histopatholo
gy” search terms (Table 1). Furthermore, the glioblastoma search term 
was returning very sparse results. Hence, an additional brain tumour 
search term with the OR operator was added to find more relevant 
studies (Table 1). The “segmentation OR classification” and “deep 
learning OR machine learning” search terms were included to constrain 
the studies towards ML/DL-based brain tumour research. Then, a further 
manual screening was applied to remove the remaining non-relevant 

Table 1 
Search terms used in the advanced search feature from ScienceDirect and 
PubMed databases.

Database Search

ScienceDirect ("brain tumour" OR "glioblastoma") AND ("segmentation" OR 
"classification) AND ("histology" OR "histopathology") AND ("deep 
learning" OR "machine learning") NOT "magnetic resonance 
imaging"

PubMed ((glioblastoma) OR (glioma) OR (brain tumour)) AND 
((segmentation) OR (classification)) AND ((histology) OR 
(histopathology)) AND ((machine learning) OR (neural network)) 
NOT ((magnetic resonance) OR (computer tomography) OR 
(positron emission))
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studies that did not include all 3 of the categorical keywords.

2.2. Risk of bias assessment

The screened articles were assessed for their methodological quality 
by conducting a risk of bias assessment. Based on the QualSyst Assess
ment Tool for quantitative studies [25], ten questions were asked for 
each of the screened articles within the scope of this review. The ques
tions were as follows: 1.) Was a clear objective stated? 2.) Was the study 
design appropriate to answer the study question/goal? 3.) Was the 
subject selection or information source described appropriate? 4.) Were 
subject characteristics or input variables clearly described and appro
priate? 5.) Was the methodology and outcome clearly described? 6.) 
Was there an appropriate sample/training size for the study? 7.) Were 
there analyses and validation appropriate for the study? 8.) Was there an 
estimate of variance, if applicable? 9.) Were the result details appro
priate and sufficient? 10.) Did the result support the conclusion made in 
the study? The questions were answered either yes, partial or no, 
denoted under the scores of 2,1 and 0, respectively. The scores across the 
ten questions were summated to acquire the summary score, and the 
final score was calculated by dividing the summary score by the highest 
possible score for the study. Articles with a score of 0.78 or higher were 
deemed eligible for data extraction. The author, C.V., initially assessed 
the risk, which was then cross-checked with the corresponding author, 
V.S.

2.3. Data extraction and analyses

After the quality assessment, specific data was extracted from each 
study. ML or DL methods used in these studies were identified with a 
particular focus on how they were used in relation to histopathological 
work. Five data criteria were extracted from each article and investi
gated: 1.) The type of brain tumour used in the study, 2.) What histo
pathological type, and if applicable, what combination of other data 
types and the histopathological data, were used in the study? 3.) Where 
the data was collected 4.) The type of ML/DL tools, and its training and 
evaluative methodologies conducted in the study, 5.) How were the ML/ 
DL tools used to achieve the study’s research goals? These first and third 
criteria were developed to understand the landscape of brain tumour 
studies and the available data, while the three other criteria ascertain 
the current trends in brain tumour histopathological studies and how 
ML/DL is utilised in brain tumour studies. Within the fourth criterion, 
ML/DL training and testing methodologies, along with its evaluation 

methodologies (when applicable), were collected to investigate the 
reproducibility of the studies’ models and to observe the trends in recent 
ML/DL model design. The resultant extracted criteria would highlight 
the innovative trends that can push ML/DL-based brain tumour research 
in a new direction.

3. Results

3.1. Search results

A total of 388 articles were initially retrieved from the search. Of the 
388 articles, 324 articles were deemed irrelevant for this systematic 
review and 8 duplicate articles were removed. Interestingly, many 
irrelevant studies used MRI/CT-based datasets. 2 articles were removed 
as they failed to meet our risk of bias assessment criteria (Supplementary 
Table 1). Notably, most articles included in this systematic review were 
published in recent years (Fig. 1). This is indicative of the nascent nature 
of this scope of research.

As the scope of this review is brain tumour studies that used ML/DL 
techniques in analyzing histopathological work for integration with 
available bioinformation, 54 eligible articles were selected (Fig. 2). We 
identified the following features – 1.) brain tumour types, 2.) image stain 
types, 3.) databases used to obtain histopathology work or additional 
data, 4.) how ML/DL methods were used. Tables 2 and 3 detail the 
culmination of the analyses completed on the 54 articles, with Table 2
providing a general summary of how the ML/DL tools were utilised in 
the group, while Table 3 provides a detailed overview of the data sources 
and ML/DL training and evaluation methodologies.

3.2. Brain tumour types and data sources

The purpose of the collection and analysis of types of brain tumours 
and the data sources used in the 54 studies is to give us an insight into 
the landscape of which brain tumour is more studied and the data 
availability of the studies, respectively. To this end, each study noted the 
main types of tumours used and which data centres or hospitals they 
collected their specimens or data. From the review, 37 studies were 
reported to be GBM-related, while the remaining 17 were not GBM- 
related. Of the GBM-related studies, 12 focused on GBM only, while 
18 focused on gliomas including GBM, and the remaining 7 studies 
either studied human-derived GBM cell lines or studied various brain 
tumours including GBM (Fig. 3). In GBM-unrelated studies, the most 
common brain tumour studied was gliomas, excluding GBM (6 studies; 

Fig. 1. Histogram of final selection of articles sorted based on the year it is publish from ScienceDirect and PubMed.
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Fig. 3), followed by meningioma brain tumours (Fig. 3). This indicates 
that much ML/DL-histopathological research focuses on GBM and LGG. 
Interestingly, the surveyed glioma-GBM studies tended to compare the 
LGG against GBM tumour types against each other. For instance, Barker 
and colleagues developed a pipeline to accurately distinguish between 
GBM and LGG histopathology slides [26]. What is also interesting to 
note is that although GBM has been a keen area of study in this sys
tematic review in the past two decades, the general consensus is that the 
median overall survival rate of patients has only improved from 
approximately 6 months–10 months in the last two decades [27,28]. 
This indicates that despite the keen interest in studying GBM, our un
derstanding of the disease remains nascent and inadequate to improve 
patient outcomes.

Looking at the datasets used in all studies in our analysis, we report 
that The Cancer Genome Atlas, a publicly available dataset, is the most 
used public dataset in our review (21 articles; Fig. 4). We report that the 
other two popular publicly available datasets used were the Computa
tional Precision Medicine (CPM) dataset and the Medical Image 
Computing and Computer Assisted Intervention (MICCAI) dataset, with 
3 articles and 2 articles reported to use these datasets, respectively 
(Fig. 4). However, 25 articles used non-public datasets (data collected 
from hospitals, research centres or in-house cell lines) in their studies 
(Fig. 4). In GBM-related studies, a similar trend is observed in the ratio 
between the most popular publicly available dataset and the non-public 
datasets used for studies. It is concerning to note that 4 of the 54 articles 
did not clearly specify where their data was collected from (Fig. 4), 
which would prove to be difficult for others to replicate its results. 
Overall, there is a clear interest in using publicly available datasets in 
brain tumour-related studies, but a similar amount of interest in curating 
the data from research centres, hospitals or cell lines.

3.3. Stain types and analyses

This section explores primarily why the ML/DL-based tools were 
used in the studies. To understand why, we first report what type of 
histopathological data they are working with and whether they were 
integrated with other data types (e.g. -omics data, patient data, clinical 
diagnostic data) in their studies’ ML/DL models. We also investigated 
how these data were analysed, categorising them as studies that only 
segment or processed images: Studies that primarily predict patient 
survival and tumour grades using only histopathological data are cat
egorised under typical analysis, whilst studies that integrate histopath
ological data with other data types (i.e. additional -omics data) for their 
analysis were categorised as unique analysis. The results from this sec
tion give us insight into what types of data are being combined with 
histopathology in ML/DL-based brain tumour research and what novel 
ways the data are being combined to enhance brain tumour research.

The eligible studies used hematoxylin and eosin (H&E) stained im
ages as their data type, with 41 of the 54 studies combining various other 
data types with H&E data for more complex analyses and investigations 
(Fig. 5). Interestingly, 3 studies utilised DAPI stained images, stimulated 
Raman histology (SRH) and immunohistochemical (IHC) stained im
ages, and it was included in the relevant studies as we believe that the 
methodologies in these studies are similar enough to other H&E-based 
studies and can be transferable to H&E-based applications. Orzan and 
colleagues utilised IHC staining with their respective transcriptomic 
data to train their random forest (RF) classifier to discriminate between 
different GBM subtypes (proneural, mesenchymal and classical). Woll
man and colleagues used nuclei segmentations from DAPI-stained im
ages to train their model to accurately segment nuclei [19]. Hollon and 
colleagues trained their model to classify and segment SRH images of 
brain tumours; it was able to accurately classify various types of brain 
tumours, including GBM, diffuse LGG subtypes (oligodendroglioma and 

Fig. 2. Flowchart of how the articles from the search was screened for relevancy and assessed for eligibility.
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Table 2 
Table summarising how ML/DL tools were used to achieve the task/s of each eligible paper in the systematic review.

Authors Publication 
Date (Year)

Brain Tumour specified Data type Utilisation of ML/DL

[43]. 2007 Meningioma (Meningotheliomatous, 
Fibroblastic, Transitional, Psammomatous)

Hematoxylin and eosin (H&E) 
images and clinical data (tumour 
subtypes)

Authors used SOM to cluster and classify meningioma 
subtypes. They utilised a class separation measure to 
show that a subset of features can accurately 
distinguish the four meningioma subtypes.

[30] 2022 Glioblastoma (GBM) and Lower-Grade 
Glioma (LGG)

H&E images, genomic and clinical 
data (survival data and tumour 
subtype)

presented a multi-modal fusion framework based on 
multi-task correlation learning (MultiCoFusion) for 
survival analysis and cancer grade classification using 
whole slide images (WSIs) (trained under the ResNet- 
152 model) and mRNA expression (trained under 
SCGN) data. As a result, the multi-modal framework 
was able to learn better representations than 
traditional feature extraction models for accurate 
survival prediction.

[66] 2015 Meningioma (Fibroblastic, Meningothelial, 
Psammomatous, Transitional)

H&E images and clinical data 
(meningioma subtypes)

The H&E image patch features were used to train their 
custom fractal model and extract optimal features for 
meningioma classification. Once the optimal features 
were extracted, the SVM, Bayesian and kNN algorithms 
were used to classify them with their known subtypes. 
The fractal-model-design-based SVM, Bayesian, and 
kNN classifiers achieved an overall classification 
accuracy of 94.12 %, 92.50 % and 79.70 %, 
respectively, which outperformed classical energy- 
based selection approaches (86.31 %, 83.19 % and 
51.63 % for the co-occurrence matrix, and 76.01 %, 
73.50 % and 50.69 % for the energy texture signatures; 
respectively).

[67] 2021 GBM H&E and Ki-67-stained histological 
images

Propose an unsupervised tissue cluster level graph cut 
(TisCut) method for segmenting histological images 
into meaningful compartments. TisCut could segment 
necrotic sections accurately in the dataset, with 
comparable performance to trained models such as TL- 
InceptionV3, U-Net, U-Net-MA, and U-Net-AS.

[26] 2016 GBM and LGG H&E images and clinical data 
(tumour subtype)

Extraction of spatially localised features of shape, 
colour and texture from tiled regions covering the 
slide. The tiles were clustered based on their features 
via Kmeans++ algorithm. The various feature types 
from the clusters were normalized and passed through 
the Elastic Net linear regression model to classify the 
clusters, and weighted voting aggregate the final 
decision value (GBM vs. LGG) based on the 
classification of the clusters. Their method was 
evaluated on 203 brain cancer cases with an accuracy 
of 93.1 % and achieved a 100 % accuracy in the 2014 
MICCAI Pathology Classification Challenge.

[68] 2008 Astrocytomas (low-grade and high-grade) H&E images and clinical data 
(tumour subtype)

Extracted image features were fed into FCM to grade 
tumours (low vs. high). The FCM was designed based 
on the histopathologists’ expertise in the Department 
of Pathology, University Hospital of Patras, Greece, 
which was then used to accurately grade the brain 
tumours at the time (90.26 % and 93.22 % accuracy on 
low and high grade, respectively).

[69] 2022 Gliomas (with focus on IDH mutation status) H&E images Used the dataset to train the CAGAN to normalise 
stains. The aim is to create a network that can 
consistently normalise stains so that further training of 
images for other purposes may be more effective. They 
achieved better performance of benchmark algorithms 
by 5–10 % compared to baselines not using 
normalisation.

[70] 2021 GBM and LGG H&E images present a lightweight slice-wise CS-Net building on 
novel hierarchical dimension-decomposed (HDD) 
convolutions and a novel instance-aware loss for 2D 
and 3D microscopy image segmentation. In the case of 
the brain tumour images, they were utilised to train the 
network for nuclei segmentation. As a result, the 
network’s nuclei segmentation was able to outperform 
some of the more common models (including 
variations of U-Net, HoVer-Net, Mask-RCNN and 
DCAN)

[52] 2017 GBM and LGG H&E images Output accurate probability maps of histological 
objects but also depict clear contours simultaneously 
for separating clustered object instances, further 
boosting the segmentation performance. GBM and LGG 
images and ground truths were used to train and 

(continued on next page)
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Table 2 (continued )

Authors Publication 
Date (Year) 

Brain Tumour specified Data type Utilisation of ML/DL

validate the network’s performance. The network was 
able to outperform most other methods in the 2015 
MICCAI gland segmentation challenge and the 2015 
MICCAI nuclei segmentation challenge

[40] 2022 GBM H&E images and associated gene 
data from spatial transcriptomics

Using their trained RESEPT pipeline, they could 
segment and identify a prominent area in a WSI 
containing elongated nuclei characteristic of 
infiltrating GBM cells. These areas matched with the 
infiltrating tumour marker genes, and RESEPT was 
able to recognise the tumour, non-tumour and 
infiltrating tumour architecture.

[55] 2022 GBM and LGG H&E images and clinical data 
(tumour subtype)

They developed a new characterisation approach, 
where evolutionary algorithms were used to generate a 
small set of features that accurately represent each 
tissue. The aim was to optimize the output of pre- 
trained deep networks to mitigate computational 
bottlenecks in the form of irrelevant/redundant 
features. GBM and LGG H&E images were used to train 
the DNN in this pipeline, and the optimised features 
achieved 93 % classification accuracy.

Komosin’ski 
et al., 2000 
[71]

2000 Various brain tumours including GBM microscopic images and clinical 
data (tumour subtype)

Proposed a pipeline that uses the GA and kNN 
classifiers to select and weight features in the brain 
tumour images to improve the predictive accuracy 
(astrocytic vs. glial tumours). The best-achieved 
classification accuracy exceeded 80 %, which was 
considered the minimum accuracy needed for medical 
diagnosis

[72] 2021 Human-derived Glioblastoma stem cells 
(GSC)

H&E images and biomarker data The H&E tumour images were used to identify tumour 
regions, which were then trained in an unspecified ML 
model using Iba-1, F4/80 and CD45 markers. 
Incorrectly classified images in the article were 
removed from the final analysis.

[36] 2017 LGG H&E images and overall survival 
(OS), molecular biomarkers and 
clinical factors data

SVM was used to classify the long and short OS based 
on the H&E image features via the bag-of-words (BOW) 
methodology. The BOW methodology used K-means 
clustering to cluster statistical features extracted from 
the H&E image patches and created a "dictionary" for 
the SVM to use and classify. The study showed that it 
was able to discriminate OS with a predictive area 
under the receiver operating characteristic curve 
(AUC) of 0.76 with the dictionary alone, 0.82 when 
supplemented with molecular markers, and 0.89 when 
further supplemented with other clinical factors

[46] 2022 GBM and LGG H&E images Proposed meta-learning and multi-task learning on the 
U-Net model. This allowed the model to learn more 
generalised features and increase its generalisation and 
generalizability to unseen data. The H&E images were 
used to train and test the model. Meta-MTL U-Net was 
able to maintain improved performance in nuclei 
segmentation over decreasing training samples 
compared to some of the common models (HoVer-Net 
and TripleU models)

[73] 2019 GBM and LGG H&E images They presented a CNN model, Micro-Net, to segment 
cells, nuclei and glands in fluorescence and histology 
images. LGG and GBM H&E images were used to train 
and evaluate the model. It was shown that it was able 
to outperform other recent models (U-Net, SAMS-Net, 
FCN8, etc.) in cell and nuclei segmentation

[74] 2022 GBM and LGG H&E images and tumour samples 
for genomics analysis

They developed a MIL model that predicts tumour 
purity in H&E images. The images in the TCGA brain 
tumour were used to train and evaluate the model’s 
performance. The model was able to predict the 
tumour purity in 8 TCGA cohorts successfully, and the 
predictions correlated very well with the subsequent 
genomic tumour purity values

[54] 2022 GBM and LGG H&E images and matching CNV, 
mutation and RNA-Seq data

Developed the PORPOISE workflow, a weakly 
supervised MMF DL algorithm to integrate WSI and 
molecular profile data to perform tasks such as survival 
analysis. GBM and LGG samples were used as training, 
but additional LGG samples were used to evaluate their 
performance. Overall, it was able to accurately predict 
survival outcomes and discover features that correlate 
with poor and favorable outcomes.

[42] 2022 Neuroblastoma H&E images, classification and 
prognostic evaluation data

To extract their features, they segmented 
neuroblastoma nuclei via the HoVer-Net model (pre- 

(continued on next page)
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Table 2 (continued )

Authors Publication 
Date (Year) 

Brain Tumour specified Data type Utilisation of ML/DL

trained on the PanNuke Dataset). The nucleus and 
patient-level features were then fed into the K-means 
algorithm to learn visual words (i.e., clustering 
centres). The features were then further optimised 
before it would predict survival and thus calculate the 
degree of risk to the pathological prognosis. It achieved 
an AUC of 0.946 in the training/test dataset and an 
AUC of 0.938 in the independent validation dataset, 
thus showing good generalizability.

[75] 2018 Human-derived GSC H&E, magnetic resonance (MR) and 
fluorescence images

The software segments images into classes of interest, 
labelling them into objects of interest. These 
segmented images were further processed in ImageJ to 
extract labelled area measurements. The labelled areas 
were used to investigate the invasive pattern of 
tumours

[31] 2021 GBM H&E images and proteomics 
analysis data

They used the models for 3 different prediction tasks, 
including G-CIMP phenotype, immune response and 
telomere length. The images were trained in various 
DL CNN models to find the best performance for their 
use case. Once trained, the model was applied to 
discover histological features associated with G-CIMP 
phenotype, telomere length and immune response. 
NMF was used to perform unsupervised clustering of 
tumour samples and to identify proteogenomic 
features.

[34] 2022 Medulloblastoma H&E images and associated clinical 
and molecular data

Nuclei in the images were segmented via watershed 
segmentation, and their features were extracted. The 
top-performing features were fed into SVM classifiers 
to distinguish molecular subtypes and disease-specific 
outcomes. The overall pipeline was able to distinguish 
the different molecular subtypes with an AUC of 0.7, 
and survival within Group 3 tumours was predicted 
with an AUC of 0.92. They proposed that this model 
can be used to study medulloblastoma genetic 
expression phenotypes as it could distinguish 
meaningful features of disease pathology

[48]. 2022 GBM H&E images, classification, single- 
cell data and spatial transcriptomics 
data

Trained VGG16 with the H&E images and 
classification (infiltrating, necrosis, necrotic edge, 
cellular, vascular) ground truths. The model was then 
used to predict spotwise histological phenotype. 
Transcriptional data were integrated into the 
segmented image to corroborate with histologic 
estimation. This was used to infer the relationships 
between genotypic data with phenotypic observations.

[76] 2018 LGG Immunohistochemical (IHC) images They used an ML algorithm that scores CD31 positivity 
by segmenting DAB-positive pixels. Once trained, it 
was used to segment CD31-positive objects (e.g., 
microvessels) and was summed in each ROI.

[77] 2022 GBM and LGG H&E images and clinical data 
(tumour subtype)

The aim is to use ML algorithms such as SNN to 
distinguish GBM and LGG tumours in WSIs. Features 
extracted from the segmented nuclei in the H&E 
images were clustered (100 clusters) via k-means 
clustering, and the cluster centres were then fed into 
SVM, kNN and SNN to compare their performance in 
predicting GBM vs. LGG. The proposed SNN model 
outperformed kNN and SVM models (97.21 % accuracy 
compared to 93.04 % and 95.13 %, respectively).

[78] 2017 GBM H&E images Incorporated StackedPSD-KSPM and AlexNet-KSPM 
DL methods for feature extraction and FE-KSPM ML 
model for three-category classification (tumour, 
necrosis and transition to necrosis). The H&E image 
patches were used to train and test the DL models. To 
this end, the authors found that sparse feature encoders 
and feature extraction strategies based on DL 
techniques consistently improved the performance of 
tissue histology classification.

[79] 2022 GBM IHC images A bifocal CNN is used that takes in 2 patches of 
different sizes, and they are each fed into one of 2 
convolutional sub-nets; one serves as a feature 
concatenation module, and the other is a classification 
layer. This allowed the trained model to assign the 
positivity of CD276 expression by "halo cells", and a 
heat map was produced. It achieved an accuracy of 
97.7 %, outperforming other models, such as Resnet- 
50.

(continued on next page)
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Table 2 (continued )

Authors Publication 
Date (Year) 

Brain Tumour specified Data type Utilisation of ML/DL

[44] 2021 Medulloblastoma H&E images and clinical data (i.e. 
subtypes)

Created a pipeline where medulloblastoma images 
were trained on ResNet-50, MobileNet, and DenseNet- 
201 to extract features. The discrete wavelet transform 
(DWT) method enhanced feature extractions by giving 
spatial-time-frequency representations. This was fed 
into DCT and PCA methods to fuse and drop redundant 
features. Finally, features were used to classify 
medulloblastoma subtypes (normal, classic, 
desmoplastic, large cell, and nodular) via LDA and ESD 
classifiers (99.4 % accuracy).

[47] 2021 Medulloblastoma H&E images and clinical data (i.e. 
subtypes)

Similar to the MB-AI-His pipeline by the same author. 
Various CNN models were used to train with pediatric 
medulloblastoma H&E images for feature extraction, 
and optimal features were selected to be classified via 
Bi-LSTM. The classification technique is capable of 
binary (normal vs. medulloblastoma) and multi- 
classification of medulloblastoma subtypes (normal, 
classic, desmoplastic, large cell, and nodular) (100 % 
and 99.35 % accuracy for binary- and multi- 
classification respectively).

[35] 2022 GBM IHC images, overall survival and 
associated miRNA data

Using their IHC images, they trained the VGG16 
network to extract various features optimised for PCA 
analysis. Together with the associated miRNA and 
overall survival, the features were classified with their 
unspecified classifiers to determine low and high-risk 
GBM groups (AUC = 95 %).

[18] 2020 Gliomas H&E images and associated IDH 
status

The tissue images were trained in a MIL CNN model, 
where the model takes small patches of the images as 
instances of the bag and calculates their scores. These 
scores were aggregated to generate the classification 
result of the IDH1 mutation (positive vs. negative). 
They were able to achieve an optimum accuracy of 
around 78 %.

[29] 2015 GBM and LGG H&E images and clinical data 
(tumour subtype)

They proposed an ensemble CNN pipeline, where the 
CNNs have a LeNeT-like architecture. The first CNN 
will distinguish between GBM and LGG, and any LGG 
classification results will be fed into the 2nd CNN to 
determine between tumour grade II or III. They 
achieved 96 % accuracy in distinguishing GBM and 
LGG while achieving 71 % accuracy in distinguishing 
between LGG tumour grades II and III.

[80] 2014 Meningioma (Meningotheliomatous, 
Fibroblastic, Transitional, Psammomatous)

H&E images and clinical data 
(tumour subtype)

Authors utilised k-means clustering to segment nuclei 
and used shape-based and texture-based (multilayer 
perceptron) to classify meningioma subtypes. They 
achieved 92.50 % classification accuracy with their 
hybrid classifier technique.

[45] 2018 gliomas (GBM-specified) H&E and IHC images Utilised CNN-VGG19 to organise histomorphologic 
information in brain tumour H&E images to visualise 
meningioma subtype classifications. t-SNE was used to 
discretise the relationship between classes, and their 
distribution was used to create statistically driven 
classifications. After tuning, they reduced errors in 
multi-class classifications to about 4 %.

[23] 2017 Meningioma (Meningotheliomatous, 
Fibroblastic, Transitional, Psammomatous)

H&E images and clinical data 
(tumour subtype)

The authors investigated various feature extraction 
techniques, feature selection techniques and classifiers 
to achieve accurate classification of the various 
meningioma subtypes. Together with GA evolution, 
they could classify meningioma subtypes with 94.88 % 
accuracy in their dataset.

[20] 2020 Various brain tumours including GBM Stimulated Raman histology (SRH) 
images and clinical data (tumour 
subtype)

Used ResNet-v2 to extract features and predict the 13 
diagnostic classes. T-SNE was used to discretise the 
relationship between each class based on the extracted 
features. They also implemented semantic 
segmentation by mapping each image patch’s tumour 
class probability maps into the WSI. Overall, they were 
able to achieve a 94.6 % classification accuracy 
(Classes included malignant glioma (glioblastoma and 
diffuse midline glioma, diffuse lower-grade gliomas 
(oligodendrogliomas and diffuse astrocytomas), 
pilocytic astrocytoma, ependymoma, lymphoma, 
metastatic tumours, medulloblastoma, meningioma, 
pituitary adenoma, gliosis/reactive astrocytosis/ 
treatment effect, white matter, grey matter and 
nondiagnostic tissue).

(continued on next page)

C.K. Vong et al.                                                                                                                                                                                                                                 Computers in Biology and Medicine 186 (2025) 109642 

8 



Table 2 (continued )

Authors Publication 
Date (Year) 

Brain Tumour specified Data type Utilisation of ML/DL

[81]. 2016 Various gliomas including GBM H&E images and clinical data 
(tumour subtype)

Presented a patch-based (MIL CNN) together with t- 
SNE based classification. With this pipeline, they were 
able to segment and classify various glioma types 
(GBM, oligodendroglioma (ODG), oligoastrocytoma 
(OC), diffuse astrocytoma (DA), anaplastic 
astrocytoma (AAC), anaplastic oligodendroglioma 
(AODG), LGG with the best accuracy of 77.1 %

[33] 2021 LGG (grade II and III) and GBM (grade IV) H&E images, clinical data (tumour 
subtypes) and associated molecular 
data

Trained various glioma images on a range of CNNs to 
classify ODG vs. non-ODG (identified initially with 
associated molecular data) and grading diffuse 
gliomas; ResNet50V2, Inception V4, Xception, 
DenseNet201 were used to classify ODG vs. non-ODG 
via majority voting of patch classifications, while 
MnasNet, EfficientNet-B4, EfficientNet-B5 and 
DenseNet201 CNNs were used to classify diffuse 
glioma grading (grade II-IV).

[82] 2021 GBM, anaplastic astrocytoma (AAC), 
astrocytoma (AC), oligodendroglioma 
(ODG), anaplastic oligodendroglioma 
(AODG)

H&E images Proposed the SD-Net-WCE model to classify pathology 
images into 6 types (ODG, AODG, AC, AAC, GBM and 
non-tumour). The H&E images were used to train and 
evaluate its performance, and the model was compared 
against DenseNet and Inception-FCN models. The SD- 
Net-WCE model outperformed the 2 popular models 
with an accuracy of 87 %.

[56] 2019 AC, ODG and GBM H&E images, clinical (tumour 
subtype, survival data) and 
genotyping data

Mainly used H&E images from both databases to train 
the FCN-GoogLeNet model to train and segment the 
microvasculature of the H&E images. The 
microvessels’ nuclei were further segmented by 
thresholding. Then its features, such as microvascular 
proliferation, microvascular area, microvessel density, 
was calculated. Overall, they used this to correlate 
with glioma subtype (i.e., increased microvascular 
density correlated well with GBM subtypes and TERT- 
mut cases). Additionally, their survival analysis 
showed that microvascular features can be used to 
cluster cases into 2 groups with different survival 
periods.

[37] 2015 Gliomas, but GBM is not specified H&E images Segmented endothelial and non-endothelial cells in 
glioma brain tumours were fed into the trained random 
forest classifier to evaluate its classification 
performance. This paper aimed to showcase their 
pipeline’s ability to classify endothelial nuclei 
accurately and propose that it can be used to allude to 
the angiogenesis in brain tumours, which can signal 
disease progression and a negative prognostic factor.

[83] 2017 LGG H&E images and genotyping data Similar to their older paper [37], they set out to use a 
random forest classifier to phenotype microvascular 
structures in LGG H&E images to predict survival. 
Additionally, they implemented molecular data to 
explore pathways associated with these phenotypes.

[38] 2013 GBM H&E images They used the sparse auto-encoder to learn 
unsupervised intrinsic features in H&E image patches. 
Once extracted features were used to classify necrosis, 
transition to necrosis, and viable regions via a multi- 
class regularised SVM. They were able to map the 
classified patches onto the WSI, which achieved a 
classification accuracy of 84 %.

[84] 2020 GBM IHC and RNA-seq data Generated a panel of selected biomarkers that can 
discriminate between different GBMs (proneural, 
mesenchymal, classical) using RNA-seq data. They 
generated a molecular panel via IHC staining with the 
panel and used it with their transcriptomic data to 
train the random forest classifier.

[32] 2021 LGG and GBM H&E images and molecular data Used U-Net to segment nuclei in H&E images. The 
cellularity from the nuclei segmentations was fed into 
the ResNet CNN with the molecular information and 
the feature extracted from the same H&E image to 
classify glioma subtypes (LGG II, LGG III, HGG). They 
achieved 93.81 % accuracy when classifying between 
LGG and GBM and a 73.95 % accuracy in classifying 
LGG II and LGG III.

[85] 2015 Not specified H&E images The authors developed a pipeline where a learned 
dictionary of cell shapes was used to detect cells in the 
H&E image via sparse reconstruction. Then, the 
stacked denoising autoencoder, trained with the 
original data and their structured labels, is used to 

(continued on next page)
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Table 2 (continued )

Authors Publication 
Date (Year) 

Brain Tumour specified Data type Utilisation of ML/DL

segment the cells. They could accurately segment 
heavily clustered and abnormally shaped nuclei that 
would have been very difficult to segment otherwise.

[86] 2016 GBM H&E images Using learned dictionaries in their DL method allows 
for good classification with sparse training data. They 
could distinguish between a microvascular 
proliferative (MVP) vessel and a non-MVP vessel in 
GBM H&E images. Additionally, the authors showed 
that DFDL exhibits a more graceful decay in 
classification accuracy as training images become 
sparser.

[39] 2017 LGG H&E images Trained SVM and random forest classifiers to 
distinguish under or over-segmented nuclei in LGG II 
H&E images. The goal is to develop a pipeline that can 
assess nuclei segmentation quality. The authors were 
able to achieve an 84.7 % classification accuracy

[19] 2019 GBM DAPI-stained nucleic images Proposed a modified version of U-Net, which 
implements gated recruitment units (GRU) to allow for 
iterative refinement of feature maps. The DAPI-stained 
GBM nuclei segmentations were used to train this 
model. Their model was able to achieve better 
segmentation performance while using much fewer 
parameters than the competing models (i.e. U-Net and 
Deconv network)

[87] 2015 Not specified H&E images A CNN was used to segment nuclei in the brain tumour 
H&E images. It was able to outperform other models 
such as SVM, random forest and deep belief network

[22] 2017 GBM and LGG H&E images and clinical data 
(tumour subtype)

The author proposed a CNN -SVM pipeline that can 
distinguish GBM from LGG H&E images. AlexNet was 
used to extract features from the H&E images, and they 
were then pooled, selected for, and classified using the 
SVM method. Furthermore, they extended their 
framework to segment the images by modifying the 
SVM to classify positive and negative image patches 
based on extracted features. A segmentation/heat map 
was produced as a result. They achieved accurate 
classification and segmentation results in the MICCAI 
2014 challenge.

[49] 2018 LGG and GBM H&E images and clinical data 
(tumour subtype)

The authors created a Deep CNN model to train and 
classify GBM and LGG H&E images in the TCGA 
dataset. Their model outperformed (96.5 % 
classification accuracy) their benchmark (LeNet, 
ZFNet, VGGNet).

[41] 2020 Mixed glioma, ODG, AC and GBM H&E images, genotypic and clinical 
data (survival data)

Proposed the DeepSurvNet model, which predicts the 
survival class (class I = 0–6 months, II = 6–12 months, 
III = 12–24 months, IV = >24 months survival after 
diagnosis) based on H&E image data. TCGA dataset 
was used to train the various CNNs (VGG19, 
GoogleNet, ResNet50, InceptionV3 and MobileNetV2) 
and they were evaluated based on their classification 
performance with locally derived datasets. GoogleNet 
outperformed the other CNNs in the classification of 
survival classes. Additionally, they correlated various 
mutated genes with the associated survival classes and 
suggested that these genetic fingerprints are associated 
with patient survival.

[53] 2021 GBM H&E images, RNA-seq data The authors trained a DenseNet model to semantically 
segment leading edge (LE), infiltrating tumour (IT), 
cellular tumour (CT), cellular tumour microvascular 
proliferation (CTmvp), cellular tumour 
pseudopalisading region around necrosis (CTpan), 
cellular tumour perinecrotic zones (CTpnz), cellular 
tumour necrosis (CTne) and background of the H&E 
images from the Ivy Gap dataset. These segmented 
features were then correlated with genetic signatures 
associated with the segmented image. This was 
evaluated on the TCGA datasets. The authors found 
that the GBM tumour sample had different gene 
signatures that were driven by different cell types in 
the tumour microenvironment.
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Table 3 
Detailed overview of data origin in training and testing datasets, proposed ML/DL model, training-testing-validation parameters, evaluation metrics,and what other models the proposed models are being compared to.

Authors Publication 
Date (Year)

Training Dataset Proposed model Data Processing training/test/validation 
parameters

Accuracy evaluation 
metric

Testing Dataset? What models are being 
compared?

[43]. 2007 Meningioma tissue from 
neurosurgical resections at 
a hospital in Bielefeld, 
Germany

Self-Organizing Maps (SOM) 
combined with Discrete 
Wavelet Transform (DWT) for 
feature selection and 
clustering.

80H&E images, subdivided 
into 1280 image tiles 
(256x256 pixels each).

Four-patients-left-out 
cross-validation, where 
one patient per class was 
left out during training. 
Classification was based on 
majority vote of the winner 
node in the SOM.

Correct classification as a 
percentage, average of 
79 %

Same dataset (four- 
patients-left-out 
cross-validation)

N/A

[30] 2022 Histopathological images 
and genomic data from 
TCGA-LGG and TCGA- 
GBM projects

MultiCoFusion: a multi-modal 
fusion framework using 
ResNet-152 and sparse graph 
convolutional network 
(SGCN)

953 samples for 469 
patients from TCGA, 
including 1024x1024 ROI 
histopathological images 
and mRNA expression data

80 % training, 20 % 
testing, repeated 15 times 
with alternate training 
(cross-validation) for 
survival and grade 
classification tasks

C-index of 0.857 for 
survival analysis (a 
generalisation of AUC for 
censored data), micro- 
AUC of 0.923 for grade 
classification. Model 
performance was 
improved with the 
inclusion of genomic 
mRNA data

Same dataset (20 % 
held-out for testing)

Compared with 
Pathomic Fusion and 
traditional methods 
(LASSO-Cox, MLP, 
Logistic Regression, 
PWMK)

[66] 2015 Four subtypes of grade I 
meningioma tissue 
biopsies from 
neurosurgical resections at 
the Bethel Department of 
Neurosurgery, Bielefeld, 
Germany

Fractal dimension-based 
model with wavelet packet 
(WP) decomposition and 
machine learning models 
(SVM, Bayesian, k-NN)

320 images subdivided 
into 512x512 pixel sub- 
images after truncation

Leave-one-patient-out 
cross-validation across 20 
patients

Classification accuracy as 
a percentage: SVM: 
94.12 %, Bayesian: 76.47 
%, k-NN: 82.35 %

Same dataset (leave- 
one-patient-out 
cross-validation)

Compared with Bayesian 
and k-Nearest Neighbors 
classifiers

[67] 2021 Three datasets: brain 
histological images (GBM), 
skin melanoma images, 
and lung necrosis images. 
Unspecified where it was 
collected

TisCut (Tissue Cluster Level 
Graph Cut) for unsupervised 
segmentation

H&E stained brain images 
for necrosis detection 
(500x5000 pixels)

No training, unsupervised 
method with graph cut 
partitioning

Brain tumour-specific 
accuracy: Jaccard-Index- 
coefficient (JIC): 70.24 
%, Dice similarity 
coefficient (DSC): 80.64 
% for TisCut; BTA-SVM: 
JIC: 55.87 %, DSC: 68.79 
%; TL-InceptionV3: JIC: 
65.05 %, DSC: 77.05 %; 
U-Net: JIC: 67.22 %, DSC: 
78.58 %

Same dataset 
(unsupervised 
segmentation 
applied to the brain 
dataset)

Compared with BTA- 
SVM, TL-InceptionV3, 
U-Net models

[26] 2016 604 images from TCGA 
(364 GBM, 240 LGG)

Coarse-to-fine profiling with 
Elastic Net classifier for GBM 
vs LGG classification

H&E stained images, 
1024x1024 tiles used for 
fine profiling after coarse 
clustering

5-fold cross-validation on 
TCGA dataset (364 GBM, 
240 LGG)

Classification accuracy 
on TCGA dataset: 93.1 %, 
AUC: 0.96 for Elastic Net, 
and 100 % classification 
accuracy on MICCAI 
Pathology Challenge 
models; Bueno et al.: 
Accuracy: 98.1 %, Chang 
and Parvin: 85.83 %, Xu 
et al.: Accuracy: 97.8 %

Same dataset 
(TCGA) for 5-fold 
cross-validation; 
additional 45 tissue 
slices used during 
comparison with 
MICCAI challenge 
models

Compared to manual 
subsetting methods (e. 
g., Bueno et al., Xu et al.)

[68] 2008 100 Hematoxylin-Eosin 
stained biopsies, classified 
into low-grade (41 cases) 
and high-grade (59 cases), 
from the Department of 
Pathology of the 
University Hospital of 
Patras, Greece

Fuzzy Cognitive Maps (FCM) 
with Activation Hebbian 
Learning (AHL) algorithm

Qualitative assessments of 
eight histopathological 
features provided by 
pathologists (e.g., 
cellularity, mitoses) of 
H&E images

The model was evaluated 
on 100 cases, and the 
Activation Hebbian 
Learning (AHL) algorithm 
was used to optimize the 
FCM. Tumor classification 
was performed after four 
interaction cycles.

Classification accuracy 
Low-grade: 90.26 %, 
High-grade: 93.22 %; 
FCM Grading Tool overall 
accuracy: 92 %; 
Compared with ID3 
Decision Tree: 80 %, J48 
Decision Tree: 85.71 %, 

Same dataset (100 
samples)

ID3 Decision Tree, J48 
Decision Tree, Fuzzy 
Decision Tree

(continued on next page)
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

Fuzzy Decision Tree: 93 
%

[69] 2022 Four public histopathology 
image datasets: TCGA-IDH 
(1494 whole-slide images 
from 921 glioma patients), 
CAMELYON16 (400 
slides), CAMELYON17 
(1000 slides), and 
BreakHis (7909 images)

Colour Adaptive Generative 
Network (CAGAN) for stain 
normalisation using both 
supervised and unsupervised 
learning, ResNet34 
classification model to classify 
after stain normalisation

Stain augmentation of 
H&E images with 
supervised and 
unsupervised stain 
normalisation using a 
GAN. 1191 samples from 
TCGA-IDH, into 
1024x1024 pixel tiles

Dual-decoder structure, 
supervised (target domain) 
and unsupervised (source 
domain), with histogram 
loss. 1191 slides for 
training and 154 for 
validation and 149 for 
testing for classification 
model

SSIM (Structural 
Similarity Index 
Measure): 0.984 for 
CAGAN, 0.870 for 
Macenko, 0.948 for 
Vahadane, PSNR (Peak 
Signal-to-Noise Ratio): 
32.86 for CAGAN, 23.41 
for Macenko, 26.14 for 
Vahadane. Classification 
accuracy, F1 and AUC: 
0.981, 0.973 and 0.981 
for CAGAN method, 
0.938, 0.899 and 0.885 
for Macenko method, 
0.908, 0.910 and 0.921 
for Vahadane.

Same datasets used 
for testing, with 
cross-domain testing 
on CAMELYON17 
after training on 
CAMELYON16

Compared to other stain 
normalisation methods 
like Macenko, Reinhard, 
Vahadane, StainGAN, 
STST, Tellez et al.

[70] 2021 Two datasets for 
mitochondria 
segmentation (EPFL 
dataset and Kasthuri++

dataset) and the CPM-17 
dataset for nuclei 
segmentation

Authors proposed CS-Net 
(Derived from U-Net), a 
lightweight deep network for 
cellular segmentation using 
hierarchical dimension- 
decomposed (HDD) 
convolutions, with two 
variants: CS-Net (2D) and CS- 
Net (2.5D++)

40 pathological slides into 
128x128 image tiles, 
randomly cropped

26 train and 14 test split DSC and Aggregated 
Jaccard Index (AJI): 88.3 
and 71.1 for CS-Net (2D), 
86.9 and 70.5 for HoVer- 
Net, 85.6 and 59.4 for 
SegNet + WS

Same dataset (14 
test)

Compared to a large 
range of models, some 
state-of-the arts include 
Mask-RCNN, U-Net, 
FCN, SegNet, HoVer-Net

[52] 2017 Two datasets: 2015 
MICCAI Gland 
Segmentation (GLaS) 
Challenge dataset and 
2015 MICCAI Nuclei 
Segmentation Challenge 
dataset, containing images 
from glioblastoma and 
lower-grade glioma tissues

Used DCAN (Deep Contour- 
Aware Network), a multi-task 
learning framework 
combining object and contour 
detection for instance 
segmentation of histology 
images.

Manually segmented 
nuclei from the H&E 
images in 15 image tiles 
and 18 images

500 manually segmented 
nuclei in training, 18 
images used for evaluation

Dice coefficient (D1) and 
object-level Dice 
coefficient (D2): 0.876 
and 0.748 for proposed 
model, 0.826 and 0.694 
for Team 2’s model, 
0.792 and 0.642 for Team 
3’s model for the 2015 
MICCAI nuclei 
segmentation challenge

Same dataset (18 
images held-out)

Compared to other 
teams’ model for the 
2015 MICCAI nuclei 
segmentation challenge

[40] 2022 Multiple datasets 
including 10x Genomics 
Visium spatial 
transcriptomics datasets 
on the human and mouse 
cortex, and in-house 
Alzheimer’s disease (AD) 
samples.

RESEPT (REconstructing and 
Segmenting Expression 
mapped RGB images based on 
sPatially resolved 
Transcriptomics), which uses 
deep learning (based on the 
ResNet101 architecture) for 
characterising tissue 
architecture by converting 
spatial transcriptomics into 
RGB images and performing 
segmentation with 
convolutional neural 
networks (CNN).

The datasets were 
processed by converting 
spatial transcriptomics 
data into RGB images using 
10x Genomics Visium 
datasets.

16-fold Leave-One-Out 
Cross-Validation (LOOCV). 
The final model was 
selected based on the 
Moran’s I autocorrelation 
index for the testing data

Adjusted Rand Index 
(ARI) and 
Fowlkes–Mallows index 
(FM). RESEPT achieved 
ARI: 0.706 and FM: 0.780 
for segmentation 
accuracy.

Same datasets used 
for training and 
testing, with Leave- 
One-Out Cross- 
Validation (LOOCV) 
strategy

Compared to Seurat, 
BayesSpace, SpaGCN, 
stLearn, STUtility, 
HMRF, and Giotto

(continued on next page)
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

[55] 2022 TCGA dataset, containing 
32,072 whole-slide images 
(WSIs) across 32 primary 
tumor types, including 
GBM (35 WSIs) and LGG 
(39 WSIs)

A deep neural network (DNN) 
model with evolutionary 
feature selection method that 
compresses deep feature 
vectors extracted from 
gigapixel histopathology 
images, reducing the size of 
these vectors by 11,000 times 
while maintaining 
classification accuracy

WSIs were preprocessed by 
extracting patches 
(1000x1000 pixels) from 
each WSI

Feature selection is 
performed by using an 
evolutionary algorithm 
with multi-objective 
optimization.

F1-score for both LGG 
and GBM: 97 % and 97 % 
for proposed model, 93 % 
and 94 % for PCA, 86 % 
and 87 % for 
Autoencoder model, 91 % 
and 90 % for ANN-based 
feature selectors

Same dataset used 
for both training and 
testing (TCGA WSIs)

Compared to PCA, 
Autoencoder, and ANN- 
based feature selectors

Komosin’ski 
et al., 2000

2000 Various CNS tumours were 
collected from the 
Department of Pathology, 
University School of 
Medicine in Poznan’.

Evolutionary algorithm with 
genetic algorithm 
optimization technique for 
feature selection and 
weighting to improve the 
classification accuracy (using 
kNN classifier) for CNS 
tumours based on microscopic 
images.

Microscopic images of 
neuroepithelial tumours 
that are segmented into 
approximately 1300 
regions (512x512 pixels)

Genetic algorithm with 
uniform crossover and bit- 
flipping mutation to 
optimize the feature 
weights and improve 
classification accuracy, 
with two-level cross- 
validation

Classification accuracy: 
83.43 for astrocytic 
tumours and 77.83 for 
glial tumours

Same dataset (two- 
level cross- 
validation)

N/A

[72] 2021 In-house glioblastoma 
stem cells (GSCs) derived 
from human and mouse 
models. Serial 
transplantation into 
immunocompetent BL6 
mouse models was used to 
mimic the tumor 
microenvironment (TME).

"Built-in" machine learning 
(ML) algorithm - model not 
specified. Part of the Inform 
software package

H&E stained and GFP 
stained images, and 5 
randomly selected regions 
from the tumour area. Cell 
markers Iba-1, F4/80 and 
CD45 used to train the 
algorithm into 
phenotyping these cells

N/A N/A N/A N/A

[36] 2017 H&E stained slides from 
the LGG cohort of The 
Cancer Genome Atlas 
(TCGA). The dataset 
includes Grade II and III 
tumours from 53 patients, 
split into two groups based 
on short and long overall 
survival (OS)

Using a bag-of-words (BoW) 
machine learning approach to 
create a visual dictionary of 
image-derived features 
associated with overall 
survival (OS). A SVM model 
would then be used to predict 
OS categories

H&E images were colour 
separated to H and E 
components using Pipeline 
Pilot, H component was 
used to segment the nuclei 
and the image was tiled 
into 256x256 patches with 
50-pixel overlap. The 
segmentations had their 
feature extracted. Various 
clinical data were also 
extracted per patient

SVM model was trained 
using a bag-of-words 
representation of image 
patches, clustered into 100 
visual words using K- 
means clustering. The 
optimal model was 
determined through 10- 
fold cross-validation.

AUC and F1 score: 0.76 
AUC with machine 
learned dictionary alone, 
but 0.82 when 
supplemented with 
molecular biomarkers 
and 0.89 when also 
supplemented with 
clinical factors.

Same dataset was 
used for training and 
testing, with 10-fold 
cross-validation.

N/A

[46] 2022 Two public nuceli 
segmentation dataset were 
used. Monuseg: 30 
histopathology images 
from 7 tissue types (breast, 
kidney, liver, prostate, 
bladder, colon, and 
stomach). CPM-17: 64 
histopathology images, 
including images from 
glioblastoma multiforme 
(GBM), lower-grade 
glioma (LGG)

Meta Multi-Task Learning 
(Meta-MTL) model (Based off 
U-Net architecture) for nuclei 
segmentation that uses a 
model-agnostic meta-learning 
(MAML) algorithm to improve 
model generalization with 
fewer training samples

H&E images cropped into 
256x256 pixels and data 
augmentation applied: 
elastic transformation, 
scaling, shift, rotation and 
flipping

No explicit statement on 
how the dataset was used 
to train and split models 
and whether cross- 
validation was used

DICE coefficient and AJI 
for over all segmentation 
quality. Panoptic Quality 
(PQ) to evaluate nuclei 
segmentation of 
overlapping regions: 
0.8756 DICE, 0.7081 AJI 
and 0.6791 PQ in 
ablation studies, and 
proposed model 
outperformed the state- 
of-the-art models in 
sparser datasets while 
maintaining near 

Same dataset used 
for evaluation

Various state-of-the-art 
models compared 
including: HoVer-Net, 
TripleU, DCAN, Mask R- 
CNN, and others

(continued on next page)
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

identical performance at 
larger datasets

[73] 2019 Three datasets were used 
in this article. An in-house 
dataset containing 10 
multiplexed fluorescent 
microscopy images. CPM 
2017 challenge: 64 images 
with various tumours 
including GBM and LGG. 
The third dataset used was 
the Warwick-QU dataset 
from the GLaS challenge

Micro-Net, a model with 
multi-resolution input and 
bypass layers

H&E images from CPM 
dataset were cropped into 
300x300 pixels image tiles. 
Various data augmentation 
applied, such as gaussian 
filter, rotation and 
flipping.

32 images were used for 
training and another 32 
images were used for 
testing

DICE, F1, Object Dice 
(OD), Pixel Accuracy and 
Object Hausdorff (OH) 
respectively: 82.43, 
71.79, 74.12, 63.53, 
27.53 for the proposed 
model. State-of-the-arts 
like U-Net performed 
with 78.39, 66.43, 67.35, 
80.28, 40.49

Same dataset used 
(32 images reserved 
in CPM for testing)

Compared against U- 
Net, FCN8, and DCAN

[74] 2022 Two datasets were used. 
10 cohorts from the TCGA 
dataset which included 
various brain tumours 
including GBM and LGG. 
Histologic sections from 
the East Asian cohort from 
Singapore were also used, 
which included 179 lung 
adenocarcinoma patients

A Multiple instance learning 
(MIL) model (Derived from a 
ResNet18 architecture) 
designed to predict tumour 
purity from H&E-stained 
histopathology slides. The 
model can learn spatial 
tumour purity distributions 
without requiring pixel-level 
annotations, based on 
corresponding genomic 
sequencing data.

H&E images cropped into 
non-overlapping 512x512 
pixel patches and the 
corresponding tumour 
purity level in the patch 
was extracted from 
adjacent slide, to be used 
as ground truth labels

60 % training, 20 % 
validation and 20 % testing 
distribution

Mean absolute error 
between purity values 
and model predictions, 
and between purity 
values and pathologists’ 
% tumour nuclei 
estimates: GBM and LGG 
predictions achieved 
<0.15 mean absolute 
error compared to 
pathologists’ estimates 
while maintaining <0.2 
when compared to 
genomic purity values

Same dataset (20 % 
held-out for testing)

N/A

[54] 2022 6592 gigapixel WSIs from 
5720 patient samples 
across 14 cancer types 
from the TCGA (including 
LGG and GBM)

Pathology-Omics Research 
Platform for Integrative 
Survival Estimation 
(PORPOISE), which uses a 
multimodal fusion (MMF) 
algorithm integrating WSIs 
and molecular profile features 
(mutation status, RNA-seq, 
and copy-number variations)

512x512 pixel patches 
were extracted from the 
WSIs, and genomic data 
was processed from RNA 
sequencing and mutation 
profiles.

5-fold cross-validation on 
the paired WSI-molecular 
datasets from the 14 cancer 
types (GBM inclusive)

Survival AUC and cross- 
validated concordance 
index (c-index). MMF 
(WSI and molecular 
features combined) 
model: 0.662 AUC and 
0.644 c-index. AMIL 
(WSIs only): 0.615 AUC 
and 0.578 c-index. SNN 
(molecular features 
only): 0.588 AUC and 
0.606 c-index

Same dataset (5-fold 
cross validation; 
GBM excluded)

N/A

[42] 2022 WSIs of neuroblastoma 
were retrospectively 
obtained from the 
Affiliated Children’s 
Hospital of Xi’an Jiaotong 
University. In total, 563 
WSIs from 107 patients 
with neuroblastoma 
collected

Logistic regression approach 
to classify neuroblastoma 
patients into favorable 
histology (FH) and 
unfavorable histology (UH) 
groups

HoVer-Net model was used 
to segment nuclei and had 
their features extract. 13 
cell-level morphological 
features and 36 intensity 
features were extracted 
from the nuclei in various 
color spaces (RGB, Lab, 
HSV, H&E). Patient-level 
data was also collected and 
used as features

Bootstrap resampling 
training, with 80 % 
training 20 % test, and 
another 20 % withheld for 
independent validation

AUC, Classification 
accuracy, and Mathhews 
Correlation Coefficient 
(MCC) respectively. 
Proposed model: 0.938, 
0.865 and 0.630. SVM: 
0.913, 0.814 and 0.599. 
Siamese-kNN: 0.910, 
0.909, 0.,828.

Same dataset (20 % 
held-out for testing)

SVM and siamese kNN 
neural netowrk

[75] 2018 In-House GBM animal 
models: Patient-derived 
xenograft (PDX) mouse 
model and cdkn2a− / 

The ilastilk software, used to 
segment image data using 
supervised random forest 
algorithms

N/A N/A N/A N/A N/A
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

− PDGFRB lentivirus- 
induced mouse GBM 
model

[31] 2021 Histopathology slides with 
associated quantified 
features (cellularity, 
necrosis, tumor nuclei, 
age, tumour weight) from 
the Cancer Imaging 
Archive (TCIA) used to 
trained the model

Trained various convolutional 
neural networks (InceptionV1 
to V4, InceptionResNetV1 and 
V2, and self-designed simple 
CNNs) to find the best 
performing to use in their 
analysis

Histopathology images 
cropped into 299x299 
pixel patches, with 49 
pixels of overlap from edge 
to edge. Patches with >30 
% background were not 
used. Genotypic 
information were 
associated with the 
histopathology images.

70 % training 15 % 
validation and 15 % testing 
at patient level

N/A N/A InceptionV1 to V4, 
InceptionResNetV1 and 
V2, and self-designed 
simple CNNs were tested 
against each other

[34] 2022 69H&E medulloblastoma 
formalin-fixed paraffin 
embedded whole-slide 
images obtained from 
patients under the age of 
18 from the Children’s 
Hospital Los Angeles and 
digitized at University 
Hospital

Tested various classifier 
algorithms trained on nuclear 
histomorphometric features 
to distinguish various 
molecular subgroups

Nuclei in 2000x2000 
image tiles segmented with 
a watershed algorithm, and 
nuclear morphological 
features (texture, shape, 
architectural 
rearrangement) were 
extracted. Molecular 
subtypes and survival was 
recorded for ground truth 
labelling

100 iterations of per- 
patient 3-fold cross- 
validation training.

AUC for molecular 
subtype prediction (0.7 - 
LDA when SHH and WNT 
vs. Group 3 and 4 
tumours) and AUC for 
survival prediction (0.92 
- neural network for 
Group 3 survival)

Same dataset (3-fold 
cross-validation)

4 models were tested 
and compared (Random 
Forest, Neural network, 
SVM and LDA)

[48]. 2022 Patients at the Department 
of Neurosurgery of the 
Medical Center, University 
of Freiburg (Freiburg, 
Germany)

A customised pipeline that 
utilises various models for 
various tasks in the article 
(machine-learning-based 
nuclei segmentation with 
ilastik, artificial neural 
network to predict tumour 
content and a pre-trained 
VGG16 CNN model that will 
be trained to predict various 
histological morphology)

No clear data processing 
for the cell detection 
model. Performed single- 
cell sequencing, and 
corresponding spatially 
resolved transcriptomics 
from the same donor to 
train the ANN. 500x500 
pixel image patches of 
H&E secitons at random 
positions across samples 
from all patients were used 
to train the CNN model.

No clear training 
parameter provided for the 
cell detection model. 2000 
training spots with 19 
different cell numbers were 
outlined for the prediciton 
of tumour content. No clear 
training parameters were 
outlined for the 
histomorphological 
prediction model.

F-score: Ilastik +
Cellprofiler cell detection 
0.841, overall accuracy of 
95 % in predicting 
tumour content and 
significant correlation 
between training and 
validation datasets. 
Refined necrosis 
morphological 
segmentation with an F- 
score of 0.893 when 
overlapped to the 
necrosis segmentation 
based on transcriptional 
data.

Same dataset N/A

[76] 2018 In-house TS603 
subcutaneous xenograft 
tumour tissues, which are 
mouse glioma models

Machine-learning algorithm 
in the inForm software was 
used in this article

N/A N/A N/A N/A N/A

[77] 2022 TCGA dataset, containing 
H&E WSIs of 599 GBM and 
515 LGG cases, totalling 
into 239,600 patches for 
GBM and 206,000 patches 
for LGG tissue

Proposed the shallow neural 
network (SNN) model

H&E WSIs cropped into 
128x128 pixel tiles, and 
their disease classifcation 
was collected for each tile

5-fold cross-validation 
method was applied

Classification accuracy, 
Precision, Recall, 
Specificity, F1 score, 
respectively. SNN: 97.21, 
0.9782, 0.9667, 0.9787, 
0.9714. SVM: 95.13, 
0.9194, 0.8903, 0.9241, 
0.9036

Same dataset (5-fold 
cross validation)

SVM and kNN models

(continued on next page)
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

[78] 2017 The TCGA dataset was 
used in this article. GBM 
and kidney renal clear cell 
carcinomas were the two 
specified diseases used in 
the TCGA dataset

Proposed models include both 
human-engineered features 
and unsupervised feature 
learning. The study used 
combinations such as Cellular 
Morphometric Features 
(CMF) and Predictive Sparse 
Decomposition (PSF) with 
Kernel-based Spatial Pyramid 
Matching (KSPM) and Sparse 
Feature Encoding (SFE), and 
using a linear SVM classifier

H&E stained histology 
images were processed into 
1000x1000 pixels, and 
feature extraction includes 
CMF from segmented 
nuclei and Dense/Salient 
SIFT for other types of 
features

Cross-validation with 10 
iterations, with 160 images 
per category used for 
training

Correct classification 
rate, reported as the 
mean and standard error. 
CMF-LCDL-LSPM SPE 
model reported near 94 % 
classification rate while a 
pre-trained Alex-Net 
based network can 
achieve similar 
performance as well

Same dataset used 
(From cross- 
valdiation splits)

Dense SIFT (DSIFT), 
Dense Color-Texture 
(DCT), and deep 
learning models like 
AlexNet

[79] 2022 WSIs from Australian 
Genomics and Clinical 
Outcomes of Glioma 
(AGOG) tissue bank, as 
well as a second cohort 
from the Sydney Brain 
Tumour Bank

Bifocal Convolutional Neural 
Network (BCNN), used for 
automatic detection, 
profiling, and counting of 
cells in whole-slide images

H&E and 
immunochemically 
labelled for CD276, 
cropped into 32x32 and 
64x64 pixel patches. Data 
augmentation (rotation, 
contrast, sharpness) was 
applied to improve model 
generalization

50,714 image patches, split 
into 36,734 for training 
and 14,005 for testing

Accuracy, Precision, 
Recall, and F1-Score, 
respectively. BCNN 
achieved 97.7 for all 
metrics. Resnet-50 
achieved 94.0 % for all 
metrics

Same dataset 
(14,005 for testing)

ResNet-50 model

[44] 2021 Pediatric medulloblastoma 
was collected from 
Guwahati Medical College 
and Hospital (GMCH) and 
Guwahati Neurological 
Research Centre (GNRC). 
The dataset consists of 
images from 15 children, 
with a total of 204 images.

MB-AI-His, a computer-aided 
diagnosis system that 
combines deep learning (DL) 
and textural analysis 
techniques. It utilises three 
pre-trained CNNs (ResNet-50, 
DenseNet-201, and 
MobileNet) for spatial feature 
extraction and integrates 
these with Discrete Wavelet 
Transform (DWT) and 
Discrete Cosine Transform 
(DCT)

Histopathological images 
were resized to 224x224x3 
pixels image patches. 
Spatial features were 
extracted using CNNs, and 
textural features were 
added using DWT

5-fold cross-validation was 
used

The accuracy for binary 
classification reached 
nearly 100 % for ResNet- 
50, DenseNet-201 and 
MobileNet. For multi- 
class classification, the 
highest accuracy was 
95.74 % for ResNet-50, 
94.54 % for MobileNet, 
and 97.16 % for 
DenseNet-201

Same dataset ResNet-50, DenseNet- 
201 and MobileNet 
models were compared 
against each other

[47] 2021 Pediatric medulloblastoma 
was collected from 
Guwahati Medical College 
and Hospital (GMCH) and 
Guwahati Neurological 
Research Centre (GNRC). 
The dataset consists of 
images from 15 children, 
with a total of 204 images.

CoMB-Deep, a deep learning 
pipeline that combines 
features from 10 different 
CNNs (DenseNet-201 +
Inception 
V3 + ResNet-50 + MobileNet 
+ DarkNet-53 +
NasNetMobile) with the 
Discrete Wavelet Transform 
(DWT) and uses Bi-Directional 
Long Short-Term Memory (Bi- 
LSTM) for classification

Histopathological images 
resized appropriately as 
input to the CNNs for 
feature extraction, and 
features were added using 
DWT. Data augmentation 
(e.g., flipping, translation, 
scaling, and shearing) 
wasn applied prior to 
training

10-fold cross-validation 
were used

Classification accuracy. 
ResNet-50 and 
InceptionResNet are 
capable of 100 % 
accuracy in binary 
classification, but the 
combination of CNNs for 
feature extraction in the 
CoMB-Deep model 
achieved 99.35 % multi- 
class classification 
accuracy, which superior 
than end-end single CNN- 
based classification

Same dataset (10- 
fold cross 
validation)

ShuffleNet, ResNet-50, 
Squeeze, MobileNet, 
Inception V3, DenseNet- 
201, Inception-ResNet 
V2, Xception, 
NasNetMobile, DarkNet- 
53

[35] 2022 37 Tissue samples from 
GBM patients from the 
General University 
Hospital of Patras, Greece

Hybrid deep learning system 
for risk stratification of GBM 
patients. The system used 
machine learning algorithms 
for feature extraction (VGG16 
CNN) and data analysis, 

RNA extraction from FFPE 
tissues, followed by qRT- 
PCR to quantify miRNA 
expression levels. IHC 
images cropped into 
224x224x3 image patches 

10 iterations of 
bootstrapping, and training 
and validation were 
performed on the miRNA 
expression data

Classification accuracy 
and F1-score. Random 
forest algorithm achieved 
the highest performance, 
with an accuracy of 
94.32 %, an F1 score of 

Same dataset Models include LDA, 
SVM, kNN and naïve 
Bayes
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

including random forest, LDA, 
SVM, and kNN

to be fed into the VGG16 
CNN model for feature 
extraction

92.82 %, and an AUC of 
97 % in the validation 
data. Sensitivity for high- 
risk patients was 95.36 
%, and specificity for 
low-risk patients was 
90.67 %.

[18] 2020 1121 histopathology 
images of glioma patients, 
with clinical information 
collected from TCGA 
dataset. 682 images with 
the IDH1 mutation and 
439 images without the 
mutation

Multiple-Instance Learning- 
based Convolutional Neural 
Network (MIL-based CNN), a 
CNN to extract features from 
histopathology images and 
integrates MIL to classify the 
presence of the IDH1 
mutation

Histopathological images 
were segmented into 
smaller patches of different 
sizes (32x32, 64x64, 
128x128, 256x256, 
512x512, and full-size) 
before being input into the 
CNN

10-fold cross-validation 
technique used to train and 
evaluate the model

Classification accuracy, 
precision, recall, AUC. 
The model achieved an 
accuracy of 78.95 %, a 
precision of 82.23 %, and 
a recall of 83.43 %. The 
area under the curve 
(AUC) was 0.84

Same dataset (10- 
fold cross 
validation)

N/A

[29] 2015 Digital pathology images 
of LGG and GBM from the 
TCGA dataset

Ensemble of CNN to grade 
gliomas

WSI images were cropped 
into tiles (1024x1024 
pixels) and only tiles with 
tissue occupying at least 
90 % of the tile were 
selected for further 
analysis. Nuclei were 
segmented but not cropped 
individually to leave it in 
place in the tile. Patches of 
256x256 were then used 
for the model

80 % training and 20 % 
testing split.

Classification accuracy, 
precision, sensitivity, 
specificity. The model 
achieved a 96 % accuracy 
in classifying GBM and 
LGG, with 0.94, 0.98 and 
0.94 precision, sensitivity 
and specificity in 
predicting the GBM class.

Same dataset (20 % 
held-out for testing)

N/A

[80] 2014 320 images of meningioma 
tumor samples obtained 
from the Bethel 
Department of 
Neurosurgery, Bielefeld, 
Germany

Proposed a Hybrid 
classification technique that 
integrates texture and shape 
characteristics for the 
classification of four 
meningioma subtypes. It uses 
Grey-Level Co-occurrence 
Matrix (GLCM) textural 
features and a Multilayer 
Perceptron (MLP) classifier 
for transitional and 
psammomatous subtypes, 
while nuclei shape-based 
features are used for 
meningothelial and 
fibroblastic subtypes

H&E images were 
converted into grayscale 
images, and nuclei were 
segmented via K-means 
clustering for feature 
extraction. The shape of 
the nuclei is used in Phase 
1, and GLCM textural 
features are extracted for 
Phase 2 of the classification 
process.

64 images per subtype used 
for training and 16 images 
for testing

Classification accuracy. 
The Hybrid classifier 
achieved an average 
accuracy of 92.50 % 
across five test trials, 
which outperformed 
other feature extraction 
techniques such as 
RADWPT (88 % overall 
accuracy) and WPFD 
(90.31 % overall 
accuracy)

Same Dataset (16 
testing)

N/A

[45] 2018 WSIs for their own 
neuropathology service 
was used, although where 
the data comes from is not 
specified. The data 
includes gliomas, 
metastatic carcinomas, 
meningiomas, lymphomas, 
and schwannomas

The proposed model is a 
multi-class Convolutional 
Neural Network (CNN) 
classifier based on VGG19, 
using t-distributed stochastic 
neighbour embedding (t-SNE) 
for dimensionality reduction 
and visualisation of high- 
dimensional data.

H&E images cropped into 
1024 x 1024-pixel tiles. 
Each tile is classified into 
one of the 13 
neuropathological 
categories, and 
dimensionality reduction is 
performed using t-SNE for 
further analysis

85 % of the dataset used for 
training and 15 % for 
testing

Classification accuracy 
and AUC: The model 
achieved an accuracy of 
94.8 % for the 
classification of 13 tissue 
and lesion types. The 
AUC of the proposed 
model is 0.99. Using t- 
SNE dimensional 
reductionality technique 
before classifcaiton 

Same dataset (15 % 
validation set)

N/A
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Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

yielded better results 
than using the PCA 
technique, but no other 
model was used as 
comparison.

[23] 2017 Four subtypes of grade-I 
benign meningioma from 
the Bethel Department of 
Neurosurgery, Bielefeld, 
Germany. Total of 320 
images collected

The proposed model is an 
evolutionary classification 
framework based on nuclear 
spatial and spectral features. 
The framework applies a SVM 
classifier combined with the 
genetic algorithm to select 
optimal features and classifier 
parameters for meningioma 
subtype classification

Nuclei isolated using 
adaptive color 
thresholding and 
watershed transformation. 
Various morphological, 
intensity, and texture 
features were computed in 
the RGB color space. 
Features were extracted 
from the isolated nuclei to 
be used for training the 
model

5-fold cross validation 
training and testing, and 
features were selected 
using Genetic Algorithm

The proposed framework 
achieved an overall 
classification accuracy of 
94.88 %, while other 
classifiers like the linear- 
SVM and MLP only 
achieved an overall 
classification accuracy of 
88.75 % and 85.63 %, 
respectively

Same dataset (5-fold 
cross validation)

Linear SVM, RBF SVM, 
quadratic SVM, MLP, 
Random Forest, kNN, 
and Naive Bayes

[20] 2020 415 patients from two 
datasets: University of 
Michigan (UM) images 
from a prototype clinical 
Stimulated Raman 
Histology (SRH) 
microscope; and UM 
images from one NIO 
Imaging System

Proposed an Inception- 
ResNet-v2 architecture 
classification model

Sliding window algorithm 
to crop images into 
300x300 pixels patches 
with 100 pixel step size. 
Image patches undergo 
contrast enhancement and 
transformation to create 
three-channel input for the 
CNN model. Data 
augmentation is also 
applied to mitigate class 
imbalance, including 
transformations like 
rotation, shift, and 
reflection

415 patient training group 
with 16 patient validation 
set. Performance evaluated 
with University of Miami 
and Columbia University 
datasets

Classification accuracy 
and AUC: The proposed 
model achieved an 
overall diagnostic 
accuracy of 94.6 % in the 
experimental arm of the 
trial, compared to 93.9 % 
accuracy using 
conventional H&E 
histology interpreted by 
pathologists. The model 
also achieved an area 
under the curve (AUC) of 
97 %

Testing dataset from 
two other image 
datasets: Columbia 
University images 
from a second NIO 
Imaging System; and 
University of Miami 
images from a third 
NIO Imaging System

N/A

[81]. 2016 H&E WSIs of gliomas 
(including GBM) and Non- 
Small-Cell Lung 
Carcinoma (NSCLC) cases 
from the TCGA dataset

Proposed a patch-based 
Convolutional Neural 
Network (CNN) combined 
with an Expectation- 
Maximization (EM)-based 
model.

Image patches from large 
H&E images were 
generated, and patches 
with <30 % or too bloody 
were discarded. Data 
augmentation (rotation, 
mirror, adjusting H and E 
component of image) was 
applied to each patch

80 % training 20 % testing 
split

Classification accuracy: 
EM-CNN with logistic 
regression (LR) achieved 
the best accuracy of 77.1 
% for gliomas, whereas 
other combinations of 
CNN + classifier, like the 
CNN-SVM, only achieved 
0.697.

Same dataset (20 % 
withheld for testing)

Compared various CNN 
+ classifier combos: 
CNN-Vote, CNN-SMI, 
CNN-Fea-SVM, and 
Pretrained CNN-Fea- 
SVM

[33] 2021 468H&E glioma slides 
from Catholic University 
of Korea Yeouido St. 
Mary’s Hospital from 2017 
to 2019 during routine 
clinical 1p/19q 
fluorescence in situ 
hybridization (FISH) test

The proposed model is a deep 
transfer learning model based 
on ResNet50V2 for the 
classification task.

ROI sections of the H&E 
images were tiled into 
1024x1024 pixels and then 
cropped into 224x224 
pixels when inputted into 
the model. Random image 
augmentation (e.g., 
flipping, rotation, scaling, 
and Gaussian noise) was 
applied. Molecular 
information from FISH was 
processed together with 
associated images for 

70 % training, 10 % 
validation, 20 % testing

The proposed model 
achieved a balanced 
accuracy of 0.8727 using 
the majority voting 
technique for glioma 
subtype classification 
(ODG vs. non-ODG). For 
grading, the best- 
balanced accuracy was 
0.5801 using the 
MnasNet model for grade 
II, III, and IV gliomas

Same dataset (20 % 
testing)

ResNet50V2, 
InceptionV4, Xception, 
DenseNet201, and 
MnasNet

(continued on next page)
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

classifying 
oligodendroglioma and 
non-oligodendroglioma

[82] 2021 97,252 histopathological 
images and molecular data 
from 323 glioma patients, 
collected from the Central 
Nervous System Disease 
Biobank at Huashan 
Hospital, Fudan 
University, Shanghai. The 
dataset includes various 
brain tumour tissues and 
background (non-tumour 
tissues)

“AI Neuropathologist for 
Glioma” platform is proposed, 
which is a Squeeze-and- 
Excitation block DenseNet 
(SD-Net-WCE), which uses 
deep convolutional neural 
networks (CNNs) for the 
classification of six glioma 
subtypes. Using additional 
molecular data, the subtyped 
cases can be further classified 
with logical algorithms 
similar to decision trees

H&E images were 
preprocessed by resizing 
them to 512 x 384 pixels 
and undergoing data 
augmentation (e.g., 
flipping, rotation, and 
random changes in 
brightness and contrast)

6-fold cross-validation 
method

SD-Net-WCE shows the 
best classification 
accuracy at 87 % 
compared to DenseNet 
and Inception-FCN. It 
achieved a patch-level 
accuracy of 86.5 % and a 
patient-level accuracy of 
87.5 % for classifying 
glioma subtypes. 
Sensitivity and specificity 
across different subtypes 
are also reported, with 
glioblastoma achieving 
74.6 % and 97.60 % 
sensitivity and 
specificity, respectively.

Same dataset (6-fold 
cross-validation)

DenseNet and Inception- 
FCN

[56] 2019 350 adult patients who 
were pathologically 
diagnosed with glioma 
between 2012 and 2017 at 
the Huashan Hospital of 
Fudan University. This 
includes H&E sections 
with associated genotypic 
data

Three types of FCNs (FCN- 
GoogLeNet preferred) were 
tested as a model for 
segmentation.

H&E images were cropped 
into various patches, with 
the smallest patch being 
204x220 pixels, the largest 
patch being 4594 × 3718, 
with the average being 
763 × 815 pixels. Data 
augmentation techniques 
like random rotation and 
color disruption were 
applied. These images 
were associated with their 
corresponding genotypic 
information

58 WSIs for training and 
292 WSIs for testing

Pixel accuracy. FCN- 
GoogLeNet achieved the 
highest segmentation 
performance, with a pixel 
accuracy (PA) of 95.7 %, 
a mean pixel accuracy 
(MPA) of 54.9 %, and a 
Dice coefficient of 95.4 % 
for microvessel regions

292 testing sets from 
the same dataset and 
195 patches from 
the independent 
TCGA dataset were 
used as an 
independent 
validation set

FCN-GoogLeNet, FCN- 
VGG, and U-Net

[37] 2015 WSIs from The Cancer 
Genome Atlas (TCGA), 
specifically focusing on 
glioma brain tumours.

An interactive machine 
learning framework that 
enables users to rapidly build 
classifiers for histological 
entities using a browser-based 
system. The model employs 
active learning to iteratively 
improve classifier 
performance by selecting the 
most ambiguous samples for 
labeling by the user. In this 
article, the random forest 
classifier is used in the 
pipeline

WSI images were 
segmented to isolate cell 
nuclei, and a total of 48 
descriptive features were 
extracted from each cell to 
describe their size, shape, 
and texture. These features 
were used to build the 
classifier

18 sampling iterations, 169 
samples used for training 
and 321 independent 
testing set (cross-validated)

The classifier achieved an 
AUC of 0.902. The 
abundance of detected 
endothelial cells was 
positively correlated with 
PECAM-1 expression 
(associated genomic data 
from TCGA)

Same dataset (321 
withheld for testing)

N/A

[83] 2017 781 (464 tumours) images 
from the TCGA LGG 
dataset were used.

Proposes HistomicsML, an 
interactive machine-learning 
system for histopathology 
image analysis, which uses 
active learning to efficiently 
classify histologic objects. The 

WSIs were tiled into 
4096x4096 tiles. Nuclei 
were segmented from these 
tiles and 48 histomic 
features describing shape, 
intensity and texture

N/A The VECN classifier 
(based from the random 
forest classifier) achieved 
an AUC of 0.964

Same dataset (67 
slide used to 
validate)

N/A

(continued on next page)
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

model involves iterative 
feedback between users and 
the system to train 
classification rules

[38] 2013 Images of glioblastoma 
multiforme (GBM) and 
clear cell kidney 
carcinoma (KIRC) were 
obtained from TCGA. The 
GBM dataset contained 
1400 images, and the KIRC 
dataset contained 2500 
images

The proposed model uses a 
variation of the Restricted 
Boltzmann Machine (RBM) 
with added sparsity 
constraints for unsupervised 
feature learning. A SVM 
classifier is then trained using 
the learned features to classify 
different tissue types

WSIs split into 1000x1000 
pixel tiles, and 25x25 pixel 
patches were extracted. 
These patches would be 
used to learn features and 
then classified for various 
tissue classes

4000 patches per tissue 
class, with cross-validation 
repeated 100 times

An overall classification 
accuracy of 84.3 % was 
achieved when 
distinguishing between 
necrosis, transition to 
necrosis, and tumour in 
GBM

Same dataset (cross- 
validation testing 
sets)

N/A

[84] 2020 197 glioblastoma (GBM) 
patients obtained from the 
Institutional Database of 
Spedali Civili of Brescia. 
Additionally, RNA 
sequencing analysis was 
performed on 51 cases

They propose an integrated 
molecular and 
immunohistochemical (IHC) 
approach combined with a 
machine-learning algorithm 
(random forest classifier) to 
predict glioblastoma 
transcriptional subtypes 
(GliTS)

RNA sequencing was first 
done to validate gene 
expression profile, and IHC 
staining was used to 
quantify these biomarkers. 
Hierarchical cluster 
analysis was performed 
using Kendall correlation 
coefficient as similarity 
metric and Ward criterion, 
and these features will be 
learned by the model

39 of 51 cases for testing, 
(assumed 12 cases used to 
train classifier)

Concordance between 
IHC classification and 
transcriptional data was 
used as a metric of 
accuracy. The predictive 
model achieved 79.5 % 
overall concordance, 
with a concordance of 90 
% for the mesenchymal 
(MES) subgroup. The 
classical (CL) subgroup 
showed 81.3 % 
concordance, while the 
proneural (PN) subgroup 
had a lower concordance 
of 69.2 %

Same dataset (39 
testing set)

N/A

[32] 2021 549 patient cases from 
TCGA dataset. This 
includes LGG and HGG 
(GBM). WSIs and 
molecular data were used

The proposed model 
integrates pathology images 
with molecular data using a 
deep neural network (DNN), 
including a regular DNN and 
the ResNet architecture. The 
model can incorporate 
cellularity features and 
molecular information for 
better classification

ROIs extracted from H&E 
images had their nuclei 
segmented using an Unet 
model trained on the 
MonuSeg dataset. 
Cellularity features were 
calculated based on these 
nuclei and passed to the 
model together with the 
colour-normalized stained 
tissue samples and 
associated molecular 
information

80 % training and 20 % 
testing using a 5-fold cross- 
validation

When classifying 
between HGG and LGG, 
the proposed model 
achieved 90.16 % 
classification accuracy 
with the pathology image 
alone, but when 
combined with genetic 
and cellularity features, 
the accuracy increased to 
93.81 %. This 
improvement was also 
seen in grading LGG II 
and III (from 70.69 % to 
73.95 %). This performed 
better than most other 
models, given that the 
performance of this 
model was trained and 
tested with a much larger 
dataset compared to the 
other models trained and 
tested by other authors

Same dataset (5-fold 
cross-validation)

CNN, SVM, ResNet, 
ElasticNet classifier, 
Decision tree

(continued on next page)
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

[85] 2015 Two data sets including 
about 2000 lung tumor 
cells and 1500 brain 
tumour cells. Where the 
data is collected is 
unspecified.

Used sparse reconstruction 
and stacked denoising 
autoencoders (sDAE) to build 
a cell segmentation model

Each cell in in the 
histopathological images 
was centralised in a 45x45 
pixel patch for cell 
detection, and a 28x28 
pixel patch for cell 
segmentation. Data 
augmentation is applied 
(rotation and random 
translation)

No clear mention on how 
the training and testing 
data was split

Primary measure of 
accuracy is F1 score. The 
proposed model achieved 
0.96 F1 score for cell 
detection and 0.85 F1 
score in segmentation 
performance in the brain 
tumour data, which 
outperformed other state- 
of-the-art methods like 
Laplacian-of-Gaussian 
(LoG), Iterative Radial 
Voting (IRV), ITCN, and 
Single-Pass Voting (SPV)

Same dataset (not 
clearly specified)

Laplacian-of-Gaussian 
(LoG), Iterative Radial 
Voting (IRV), ITCN, and 
Single-Pass Voting (SPV)

[86] 2016 190 GBM images from the 
TCGA dataset

Discriminative Feature- 
oriented Dictionary Learning 
(DFDL) method that learns 
class-specific dictionaries for 
automatic feature discovery

Patches were extracted 
from the images at 20x20 
pixels, which would be 
vectorized for dictionary 
learning.

20 images of 190 images 
(3000x3000 pixel size) 
randomly picked for 
training

Overall accuracy for the 
TCGA dataset (containing 
GBM images) was 92.85 
%, which is competitive 
compared to other 
dictionary learning 
methods like LC-KSVD 
and FDDL

Same dataset 
(remaining images 
used to test)

WND-CHARM, SRC, 
SHIRC, LC-KSVD, and 
FDDL

[39] 2017 Images from The Cancer 
Genome Atlas (TCGA), 
specifically focusing on 
WHO Grade II lower-grade 
glioma (LGG) and lung 
adenocarcinoma (LUAD) 
cases

A machine-learning-based 
semi-automated workflow to 
assess the quality of nucleus 
segmentation in 
histopathology images using 
texture features. The 
methodology uses a 
classification model trained 
on labelled image patches 
from segmentation results

512x512 pixel patches 
extracted from labelled 
regions, and a set of texture 
and intensity features is 
computed from the red, 
green, and blue channels. A 
stepwise variable selection 
is applied to reduce 
redundant features

10-fold cross-validation 
technique used to train and 
evaluate the model

F1 score. Random forest 
classifier achieved F1 
scores of 84.71 %, 95.49 
% and 73.76 % in good, 
under and over cases, 
respectively. It was able 
to outperform the SVM 
classifier in the testing set

Same dataset (10- 
fold cross 
validation)

Random forest and SVM 
classifiers were tested 
against each other to see 
which one performs 
better

[19] 2019 50 maximum intensity 
projection tissue images of 
glioblastoma cells

Proposed GRUU-Net, which 
combines the base U-net 
architecture with Gated 
Recurrent Units (GRU), which 
is capable of multi-scale 
feature aggregation through 
the CNN and iterative 
refinement using GRUs

Nuclei microscopy images 
were segmented by two 
experts by drawing 
contours around them. 
Data augmentation was 
performed

25 training, 5 validation 
and 20 test images

object-wise Jaccard 
similarity index (SEG), 
Dice and Hausdorff 
distance. GRUU-Net 
consistently 
outperformed (0.886 
Dice and 0.648 SEG) in 
nuclei segmentation in 
the testing datasets 
compared to other state- 
of-the-art models like U- 
Net and UP-PT

Own 20 test images 
and 22 microscopy 
images from the Cell 
Tracking Challenge, 
which includes DAPI 
stained cell nuclei in 
GBM tissue

U-Net and UP-PT, ASPP- 
Net

[87] 2015 Unclear specification of 
where the dataset was 
collected from. Dataset 
include brain tumours, 
neuroendocrine tumours 
(NET) and breast cancer 
images

Proposed a deep 
convolutional neural network 
(CNN) framework to segment 
nuclei combined with a 
selection-based sparse shape 
model and a repulsive 
deformable model to separate 
individual nuclei

Small patches were 
cropped from the images 
(55x55x3 pixels), and the 
YUV colour space was used 
for the image 
representation. 
Augmentation techniques 
like rotation were applied 
to the patches

No clear mention on how 
the training and testing 
data was split

Dice coefficient (DSC), 
Hausdorff Distance (HD), 
and Mean Absolute 
Distance (MAD). The 
proposed model was able 
to segment better than 
more traditional 
segmentation techniques 
like marker-based 
watershed and graph-cut 

Not clearly specified Mean shift (MS), 
isoperimetric graph 
partition (ISO), 
superpixel (SUP), 
marker-based watershed 
(MWS), graph-cut and 
colouring (GCC), and 
repulsive level set (RLS)

(continued on next page)
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Table 3 (continued )

Authors Publication 
Date (Year) 

Training Dataset Proposed model Data Processing training/test/validation 
parameters 

Accuracy evaluation 
metric 

Testing Dataset? What models are being 
compared?

colouring, achieving a 
superior DSC of 0.85, HD 
of 5.06 and competitive 
MAD of 3.26

[22] 2017 Two histopathology image 
datasets: the MICCAI 2014 
Brain tumour Digital 
Pathology Challenge and a 
colon cancer dataset. The 
MICCAI dataset consisted 
of 23 GBM and 22 LGG 
images

Proposed a model in which a 
CNN (based on the AlexNet 
architecture) is used to extract 
necessary features to be 
pooled, selected and classified 
via an SVM classifier for 
segmentation and 
classification tasks

Overlapping image patches 
of 336x336 pixels were 
generated from H&E 
images. Patches with 
majority white background 
was excluded from 
training, and then further 
resized to 224x224 pixels.

5-fold cross-validation was 
performed for 
classification, and leave- 
one-out cross-validation 
for segmentation

The proposed model 
achieved 97.5 % 
classification accuracy in 
the MICCAI 2014 Brain 
tumour Digital Pathology 
Challenge for 
distinguishing GBM from 
LGG. For segmentation, 
the model achieved 84 % 
accuracy in detecting 
necrosis vs. non-necrosis 
regions

Same dataset Compared against other 
state-of-the-art methods 
in the training data from 
MICCAI 2014 challenge.

[49] 2018 GBM and LGG 
histopathological images 
from TCGA, with 100 
images per glioma subtype 
being collected for this 
study

Proposed model is a deep CNN 
that has been to train to 
classify the glioma subtypes

H&E images were cropped 
into 1000x1000 patches, 
and 100 image patches 
were generated per image.

4-fold cross-validation 
technique to train and test 
model

Classification accuracy. 
The proposed model 
achieved 96.5 % mean 
classification accuracy, 
which is comparable to 
VGGNet (97 %) and 
better than ZFNet (95.2 
%) and LeNet (79.4 %).

Same dataset (4-fold 
cross-validation)

LeNet, ZFNet, and 
VGGNet

[41] 2020 WSIs and clinical data of 
490 brain cancer patients 
from the TCGA dataset was 
used.

DeepSurvNet, a deep CNN 
(Based on GoogleNet) that is 
designed to classify brain 
cancer patient survival rates 
based on histopathological 
images

ROIs from H&E images had 
their patches extracted at 
256x2566, 512x512 and 
1024x1024 pixels.

80 % training, 18 % 
validation, and 2 % testing 
sets, trained and test with 3 
different testing folds

The model achieved 
precision and AUC of 
0.99 and 1 with 256x256 
patches and used the 
GoogleNet architecture, 
which outperformed 
other state-of-the-art 
models like InceptionV3 
and ResNet50. The best 
model also achieved an 
average precision and 
AUC of 0.8 and 0.96, 
respectively, with the 
independent dataset.

Same dataset (2 % 
testing set) and 
independet dataset 
of tissue samples 
collected from 9 
patients at SA 
Pathology

VGG19, GoogleNet, 
ResNet50, InceptionV3, 
and MobileNetV2

[53] 2021 The Ivy GAP dataset, 
which includes 32 GBM 
patients diagnosed by 
primary surgery type with 
a total of 805 WSIs

Proposed a DenseNet 
segmentation model (based 
on the tiramisu design) to 
segment various regions in the 
tumour.

H&E images were resized 
to 1024x1024 pixels, and 
patches of size 512x512 
pixels were extracted for 
training. Data 
augmentation techniques 
such as random crops and 
vertical flips were applied

Training, validation and 
test sets were split into 
14:1:1 ratio.

Accuracy score (Rand 
index). The model 
achieved an overall 
accuracy across ~70 % 
across all eight classes.

Same dataset. The 
trained model was 
applied to the TCGA 
dataset for further 
analysis with the 
various segmented 
regions

N/A
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astrocytomas) and more [20]. Much of the same trend is observed in 
GBM-related studies, suggesting that the studies tended to investigate 
GBM concerning clinical and biological data.

Known clinical data, such as overall survival and tumour subtypes, 
were typically paired with H&E data. Studies utilising the survival +
H&E data typically model their ML/DL pipelines to predict patient 
survival based on H&E images. In contrast, tumour subtypes/grades +
H&E data were used for tumour subtype/grade classifications. However, 
while these studies provide a good tool for accessible and affordable 

prognosis/diagnosis, they lack additional insights into GBM disease 
pathology as they lack additional context from biological data. These 
analyses were referred to as “Typical” analyses for the rest of the article. 
This category represents the majority of studies, as 26 articles in this 
review have been reported to perform typical analysis (Fig. 6). Ertosun 
and Rubin illustrate the methodology of “typical” analysis as they have 
built an accurate model that could distinguish GBM from LGG, and even 
grade LGG based on H&E-stained images only [29].

However, several articles (12 out of 54; Fig. 6) performed more 

Fig. 3. Distribution of what brain tumour types the studies focused on. Studies were grouped either under GBM-related or GBM-unrelated studies, and further 
stratified to the specified types of brain tumours that has been specified. Data derived from Tables 2 and 3

Fig. 4. Studies were distributed by the dataset they used. The top 3 public dataset were compared against the number of articles that collected their data from 
non-public dataset, and against articles that did not clearly specify where they collected their data. Abbreviations: Computational Precision Medicine (CPM), 
Genomic Data Commons (GDC), Glioblastoma (GBM), Medical Image Computing and Computer Assisted Intervention (MICCAI), The Cancer Genome Atlas (TCGA). 
Data is derived from Table 3.
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unique analyses using additional data sets, such as genomic or proteo
mic data, to provide biological context to the analysis/prediction, thus 
gaining insight into the disease, particularly for GBM. For example, Tan 
and colleagues used H&E images and corresponding survival and mRNA 
expression datasets to classify GBM and LGG grades and predict their 
overall survival [30]. Similarly, Wang and colleagues utilised the Gli
oma CpG island methylator phenotype (G-CIMP), telomere length and 
immune response profiles to associate with various histopathological 
features in H&E images. This has provided some much-needed context in 
the overall classification task, as it allowed Wang and colleagues to find 
associations in the various immune profile with histologic features in 
their predictive model [31]. In addition, several articles in the “unique 
analysis” have also shown marked improvements in model prediction 
tasks when biological context is given. For instance, Pei and colleagues 
designed a model that would predict HGG and LGG and found that by 
combining the genetic features from genomic profiling and H&E-based 
cellularity features, they were able to enhance the prediction accuracy of 
the model, compared to a model without genetic features [32]. Simi
larly, Tan and colleagues reported improved performance of their model 

in predicting long- and short-term overall survival in LGG patients by 
integrating associated mRNA biomarkers and H&E features collected 
from the TCGA dataset, although the selected biomarkers were not 
specified [30]. This suggests a relationship exists between the 
H&E-derived feature set and mRNA biomarker-derived feature set that 
would improve predictive capabilities, which the authors can further 
explore.

We also report that the number of articles is spread relatively evenly 
between the three categories of analyses within the GBM-related studies, 
indicating (12 “uniquely analysed” studies, 14 “typically analysed” and 
11 “segmentation/processing” studies; Fig. 6). Furthermore, most 
studies categorised as “Unique” are GBM-related (Fig. 6), indicating that 
context and biological insight-driven studies in ML/DL-aided GBM 
research are more critical than other brain tumour research. Interest
ingly, the oldest article published in the “unique analysis” category is in 
2020, indicating that this type of analysis is relatively novel.

We further stratified the articles within the “Unique analysis” cate
gory to investigate how many of them used biological data effectively to 
explore relationships between it and histological data. We found that 
only 8 of 12 GBM-related studies within the “Unique analysis” category 
explored the relationship between biological features and histological 
features to gain insights into GBM pathology, while the other 4 GBM- 
related studies only used the biological features as contextual data to 
improve their prediction model (Fig. 7).

Overall, studies conducting “unique analysis” are relatively novel. 
Integrating H&E data, additional -omics data, and clinical data has 
proven critical in better understanding GBM pathology and enhancing 
the predictive capabilities of ML/DL models.

3.4. ML/DL utilisation

In this section, the overarching aim is to ascertain what model ar
chitectures and how these models are commonly used. To achieve this, 
we collected the type of preferred model architecture used and the task it 
performed. Moreover, we collected the training parameters, evaluation 
metrics and the common model architectures used to compare with their 
preferred models (Table 3). This would clearly indicate how stand
ardised the training parameters and evaluation methodology are in 
GBM-related studies.

The eligible studies utilised ML/DL techniques for predictive classi
fication and segmentation tasks. Typically, ML classifier and clustering 
algorithms were used on histopathological data and various clinical data 
to cluster and predict classes, whether it be: (1.) tumour subtypes or 
tumour grades [29,33,34], (2.) predefined survival classes [34–36], (3.) 
nuclei types or feature types in the tissue [37,38], and in one case, it was 

Fig. 5. The data types used in their studies distributed the number of 
articles. Three categories that the studies were distributed into are: Studies 
only using H&E (H&E only), studies combining H&E with various data types 
(H&E + other data types) and studies using different histological data types 
altogether (Other). Data is derived from Tables 2 and 3

Fig. 6. The number of studies distributed by the types of ML/DL-aided 
analyses. Typical analyses included H&E + tumour subtype/grade or H&E 
+ survival data. Unique analyses include H&E data combined with various 
other data types (genomic, proteomic, etc.) for their analyses. The remaining 
articles only used ML/DL techniques to investigate segmentation or processing 
performance. Data is derived from Tables 2 and 3

Fig. 7. Distribution of articles within the “Unique analysis” category that 
either used biological purely as a “Contextual” information without 
further analyses, or deeply explored the relationship between to biolog
ical data and histological data to offer additional “Biological insights”. 
Data derived from Table 3.
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used to determine the quality of nuclei segmentations [39](Table 3). 
Moreover, DL CNN models were commonly used to extract features from 
histopathological images for both segmentation and classification tasks. 
For instance, Chang and colleagues developed the RESEPT network 
containing the ResNet101 backbone network to segment and identify 
GBM’s characteristic elongated nuclei. They could match these infil
trative tumour-marking genes, thus allowing them to distinguish 
tumour, non-tumour and infiltrating tumour zones [40]. In another 
example, Shirazi and colleagues used various CNNs to be trained using 
H&E data and corresponding survival data so that it can accurately 
predict their survival classes [41]. However, the common trend 
observed from the literature survey was that the CNN architectures were 
combined with classifiers to create robust models. Liu and colleagues 
implemented HoVer-Net CNN to first segment neuroblastoma nuclei and 
have their features extracted. They then implemented K-means clus
tering, a classifier algorithm, to cluster the features and learn visual 
words (e.g., cluster centres). These were used to predict patient survival 
and thus predict the risk to the pathological prognosis [42].

In the analysed studies, some classifier algorithms were used more 
often than others. Classifier/clustering algorithms include SVM, k 
nearest neighbour (kNN)/k-Means clustering and random forest (RF) 
classifiers. In Fig. 8-A, the most common classifiers used in the preferred 
models were derivatives of SVM (6 articles overall; Fig. 8-A), kNN/K- 
Means clustering (3 articles overall; Fig. 7-A) and RF classifiers (3 arti
cles overall; Fig. 8-A). In the GBM-related studies, the SVM remained the 
most popular classifier (3 articles; Fig. 8-A).

Of note are the studies utilising unique techniques to solve their 
classification problems. In one case, Lessmann and colleagues used the 
self-organizing map (SOM) ML algorithm to cluster certain features in 
meningioma H&E images and classify their subtypes (Meningothelial, 
Fibroblastic, Transitional, Psammomatous)[43]. Several other studies 
utilised less popular algorithms, such as the linear and quadratic 
discriminant analysis (LDA and QDA, respectively), naïve Bayes, and 
t-distributed Stochastic Neighbour Embedding (t-SNE) to solve their 
classification problems [20,23,35,44,45].

Another popular DL technique is the CNN architecture. In the rele
vant studies, many authors used the deep residual networks, better 
known as ResNet, and many of its derivatives, as the primary architec
ture for their CNN models. 6 GBM-related studies utilised many versions 
of the ResNet model or built their own derivative model, while the 2nd 
most popular model used in GBM-related studies was the U-Net model 
and its derivatives; 3 studies featured derivatives of U-Net as their main 
model (Fig. 8-B). This was followed closely by the VGG model; 4 overall 
studies, with 2 GBM-related studies using VGG-derived models as their 
preferred model (Fig. 8-B). Moreover, the U-Net model and its de
rivatives are used primarily for segmentation tasks [19,32,46]. Models 
such as the ResNet and VGG derived models tended to be used to extract 
features from the images, and with the model’s decoding feature or with 
the help of classifiers, it was used for classification tasks [31,45,47,48] 

Interestingly, several studies opted for simpler architectures as their 
model of choice. For example, Yonekura and colleagues developed a 
custom but simple CNN network consisting of 7 convolutional layers. 
They trained their model on GBM and LGG H&E images to discriminate 
between the two types of gliomas [49].

We report that SVM and kNN-based classifiers are also often used as 
benchmark classifiers (Fig. 9-A). At the same time, the ResNet, U-Net 
and Inception-based CNN architectures remain the most common state- 
of-the-art benchmarking model in GBM-related studies (Fig. 9-B). This 
solidifies our findings that many of the models used in the GBM-related 
research have revolved around the refinement of existing and state-of- 
the-art models in the past 2 decades.

When investigating how the models were trained and evaluated for 
their performance, we found that most of the train-evaluation strategies 
the studies used were variations of the cross-fold validation strategy (23 
articles with 13 articles being GBM-related; Fig. 10-A). The cross- 
validation strategy is considered a gold standard in evaluating the 
robustness of a model, as it builds validation metrics on several models 
trained on multiple sub-parts of a training set, known as “folds” [50]. 
Although the gold standard train-evaluation strategy represents a large 
portion of GBM-related studies, the number of studies reporting the 
usage of single train/test or train/validation/test splits is concerning (17 
out of 37 articles; Fig. 10-A). Even more concerning, 5 out of 37 
GBM-related articles did not specify how their model’s performance was 
evaluated. This suggests that model robustness may not be at the fore
front of the ML/DL model design ethos in GBM-related studies.

We also observed that many GBM-related studies used the same 
dataset to evaluate their model, as 30 of 37 GBM-related studies have 
reserved a portion of their training dataset as their testing dataset to 
evaluate their models’ performance (Fig. 10-B). However, 4 GBM- 
related studies collected an independent testing dataset to evaluate 
their performance. For instance, Shirazi and colleagues collected histo
pathological data from 9 patients from a locally derived dataset to 
evaluate the performance of their model, which was trained on the 
TCGA public dataset. They achieved competitive performance in pre
dicting overall survival classes in the locally derived dataset compared 
to the TCGA dataset [41]. This showcased good generalizability in their 
model and further strengthened their model design.

In Fig. 11, we report the evaluation metrics employed by studies to 
benchmark their segmentation and classification tasks. We report that 
the classification accuracy and area under the receiver operating char
acteristic curve (AUC) evaluation metric (16 and 7 GBM-related studies, 
respectively; Fig. 11) is most used in evaluating classification perfor
mance, and we observe that the two metrics are often paired together. 
Similarly, the two most common evaluation metric in segmentation 
tasks, the DICE score and Accuracy score (also known as the Rand Index) 
(8 and 7 GBM-related studies found to use these metrics, respectively; 
Fig. 11), are often paired together as well. This suggests that the stan
dard pairing of evaluation metrics for segmentation tasks and 

Fig. 8. Distribution of popular classifiers (A) and convolutional neural networks (CNN)(B) used either as the main architecture or a base-architecture that 
has been built upon, in the relevant studies. Abbreviations: Support vector machine (SVM), k nearest neighbour (kNN), random forest (RF). Data is derived 
from Table 3.
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classification tasks should be DICE + Rand Index and Classification 
Accuracy + AUC, respectively.

A notable observation made in the analysed studies was that many of 
the studies’ objectives were to evaluate their model performances 
against other models. Still, more recent studies tended to apply their 
model for novel discoveries or complex biological analyses rather than 
evaluative purposes. For instance, Pei and colleagues utilised the U-Net- 
ResNet hybrid model to discern various types of gliomas and had their 
model performance evaluated. They used the segmented nuclei features, 
histopathologic features and IDH statuses for their classification tasks, 
and they evaluated its performance at 93.81 % classification accuracy 
between GBM and LGG, and a 73.95 % classification accuracy between 
LGG grade II and III [51]. On the other spectrum, Ravi and colleagues’ 

approach to utilising ML/DL techniques differs, as they integrated their 
VGG classification model with various other data forms to create a 
complex analysis system that investigates how GBM can dynamically 
adapt to various environments. In Ravi’s study, they used a VGG 
pre-trained model to classify tumour histologic microenvironments in 
GBM whole slide image (WSI) patches (infiltrating, necrosis, necrotic 
edge, cellular, and vascular microenvironments). The histologic 
phenotype classified by the model was integrated with transcriptomic, 
proteomic and metabolic data to contextualise the histologic phenotype 
and investigate recurring transcriptomic patterns spatially. They 
consequently characterised GBM at various molecular levels in a 
spatially resolved manner. They discovered that metabolic alterations 
such as hypoxia could lead to significant gene copy-number alterations. 
The data indicated that regional hypoxia metabolism ultimately repre
sents drivers of microevolution that enable the evolution of 
therapy-resistant phenotypes [48]. The main critique is that although 
Ravi and colleagues used ML/DL tools in a novel way, their scope of 
studying hypoxic areas may be narrow, considering that GBM exhibits 
high inter- and intra-tumoural heterogeneity [5,6]. Overall, this could 
suggest that although the ML/DL integration into GBM research is 
nascent, it is slowly evolving and maturing to use these tools for more 
complex analyses and, thus, for potentially novel discoveries.

4. Discussion

Our literature review found that most relevant articles were pub
lished recently, suggesting that ML/DL utilisation in histopathological 
brain tumour research is nascent. Our literature review further 

Fig. 9. Distribution of popular state-of-the-art classifiers (A) and convolutional neural networks (CNN)(B) used as a benchmark comparison in relevant 
studies. Abbreviations: Support vector machine (SVM), k nearest neighbour (kNN), random forest (RF). Data is derived from Table 3.

Fig. 10. Distribution of A.) various training-evaluation strategies of the 
relevant studies and B.) the type of dataset used to evaluate the ML/DL 
model performance. Data is derived from Table 3.

Fig. 11. Distribution of top 4 evaluation metrics used for segmentation 
and classification tasks. Studies that did not evaluate model performance 
were omitted from this analysis. Data is derived from Table 3.
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corroborates this, as many relevant articles mainly evaluated the ML/DL 
models’ performance for various tasks [22,36,52]. Moreover, several 
studies have explored more complex analyses using ML/DL techniques 
to make potentially novel discoveries by integrating histological data 
from proteomic and genomic studies [41,48,53]. The additional 
bio-information has proven advantageous in improving model perfor
mance when provided in context with histological data [32,54]. Because 
of this, we envisage that studies using ML/DL-aided complex analyses 
will become the predominant form of study in the near future as the field 
matures. However, we also believe there is still considerable work to be 
done in the field of ML/DL-aided brain tumour histopathological 
research, as the ML/DL-aided histopathological research resulting in 
biological insights into GBM are few relative to the evaluative perfor
mance studies in our literature survey.

Furthermore, many of the relevant studies in our literature review 
investigated the general characterisation of brain tumour grades and/or 
subtypes [20,40,55], with some studies investigating further via char
acterisation of tumour histologic microenvironments in the WSIs [48,53,
56]. We believe that ML/DL-aided investigations into GBM histologic 
tumour microenvironments will become more prominent moving for
ward, as GBM is known to be characterised by its high inter-tumoural 
and intra-tumoural heterogeneity [57,58], and this is expressed at 
various inter-related levels (histologic, cellular and molecular level). 
Notably, Phillips and colleagues showed that high-grade gliomas (HGG), 
which includes GBM, can be characterised into three subtypes using a 
panel of molecular gene expression profiles: proneural, proliferative and 
mesenchymal. They also found a correlation between the molecular 
subtypes and histologic grading of HGG. Moreover, they reported that 
proneural subtypes tended to have more prolonged survival than the 
proliferative and mesenchymal subtypes [7]. In a more recent study, 
Garofano and colleagues suggested that GBM can be subtyped based on 
biological traits of single cells and bulk tumours, and they were 
distributed along the neurodevelopmental and metabolic axis: pro
liferative/progenitor, neuronal, mitochondrial and glycolytic/plur
imetabolic subtypes. Moreover, Garofano and colleagues found that 
mitochondrial GBM subtypes were particularly vulnerable to oxidative 
phosphorylation inhibitors. Finally, they postulate that this 
pathway-based classification of GBM can inform survival and enable 
more precise targeting of cancer metabolism [59]. Another study by 
Martinez-Lage and colleagues reported that immune heterogeneity ex
ists in different subtypes of GBM and that mesenchymal GBMs showed 
the highest levels of immune infiltration. In contrast, proneural GBMs 
were observed to have the least infiltration. Likewise, they reported that 
various types of T-lymphocytes are heterogeneously involved in various 
subtypes, with higher percentages of CD163+ T-cells associated with 
worse prognosis [60]. This showcases that various aspects of GBM play a 
key role in its pathogenesis and that even within an aspect of GBM, its 
nature can be heterogeneous, thus culminating in many complex re
lationships in GBM that must be accounted for to understand its pa
thology fully.

Recent studies have given some hope for a better understanding of 
various aspects of GBM pathogenesis. Namely, Ravi and colleagues 
effectively integrate ML/DL segmentation and classification of histo
logic features with transcriptomic, proteomic and metabolic features to 
create a multi-layered and accurate characterisation of necrotic features 
of GBM [48]. Indeed, the mentioned study has constrained its scope to a 
smaller aspect of GBM, which would not be the best representation of 
GBM. However, we understand its limitations as the investigative efforts 
into other complex aspects of GBM would require a significant increase 
in expensive multi-omics and resources needed to complete such a 
study. This challenge seems to be understood by other studies under
taking similar integrative research in our literature review, hence the 
relatively low number of this type of research. Given this limitation, it 
would still be possible to integrate various “smaller” relationships that 
studies such as Garofano’s and Martinez-Lage have found and integrate 
histologic features for the ML/DL models to learn and predict. With a 

more collaborative approach, these trained models for various con
strained relationships can be integrated into a larger “macro” model. 
This approach would have to be an iterative approach, as newer dis
coveries will prompt the development of models to relate these insights 
to histologic features, which would then be embedded into the “macro” 
model. As a result, the “macro” model would provide the most 
feature-rich prediction and context to histopathological work, while 
maintaining a good representation of GBM’s heterogeneous nature. 
Although, in practicality, this approach would require a substantial 
amount of collaborative effort and investments, we believe it to be a 
necessary step, in the long term, towards fully understanding GBM pa
thology and providing a comprehensive yet accessible tool for clinicians 
and researchers alike.

Our literature review also investigated the types of classifiers and 
CNN models used in various brain tumour research. We report that SVM, 
RF and kNN/k-Means are amongst the most common classifiers today for 
classification tasks specific to brain tumour research. ResNet and U-Net 
were the more common CNNs used in our literature review. Our brief 
literature inquiry suggests that recent studies used the same common ML 
classifiers we found in our systematic literature review in the scope of 
classifier tool utilisation. For example, Kang and colleagues used a 
collection of classifiers, including SVM, RF and kNN, to evaluate their 
performance in classifying MRI brain tumour images. They found that 
SVM is the optimum classifier for their use case. Interestingly, Kang and 
colleagues also considered the AdaBoost classifier, an ensemble of 
classifiers combined to produce more accurate classification outcomes, 
although it did not perform as well as SVM [61]. In another example, 
Saha and colleagues developed EMCNet, an automated COVID-19 
diagnosis tool with an ensemble of ML classifiers to detect COVID-19 
presence from patient X-ray images. They combined SVM, decision 
tree and AdaBoost into an ensemble classifier for a more accurate clas
sification performance [62]. Our literature inquiry determined that 
ensemble classifiers seemed popular and accurate, and these types of 
classifiers were not considered as thoroughly in the brain tumour his
topathology research field. Similarly, as illustrated by Kang and col
leagues, ensemble CNNs can also combine feature extraction layers from 
various CNNs (including ResNet) to generate a more accurate classifi
cation performance overall [61]. Upon a literature inquiry into the CNNs 
available for biomedical applications, although we found studies that 
used derivations of ResNet and U-Net, we also observed a variety of 
models that combined ResNet or U-Net into other models. For example, 
Upschulte and colleagues proposed a contour proposal network (CPN), 
which can detect overlapping objects in an image, and it could imple
ment a U-Net or ResNet backbone into their network. As a result, their 
model outperformed basic U-Net and ResNet models in detecting various 
objects, including neuronal cell bodies, U2OS cell nuclei and synthetic 
shapes [63]. Given the “macro” model approach that we have suggested, 
we suggest the implementation of deeper and more robust models such 
as the ResNet backboned models or ensemble models, so that more 
biological data can be integrated to improve performance and robust
ness of the final model.

The biggest concern noted in our literature review is that the number 
of studies that failed to report how the dataset was split for training and 
evaluation was larger than expected. Secondarily, a larger-than- 
expected number of studies forego the evaluation of their model 
robustness through cross-validation approaches, which is the gold 
standard in assessing the variance in accuracy predictions [50]. 
Furthermore, most of the articles in this literature review curate an 
evaluative set from the same dataset from which the training set was 
built, albeit the evaluative set does not contain any data that the model 
would have “seen” in the training set. This could still pose the issue of 
generalizability, especially when 14 of the 37 GBM-related studies 
collect their data from a single source of non-public dataset. Moreover, 
Thakkar and colleagues noted in their epidemiologic review of GBM that 
Asian Pacific Islanders have significantly better survival rates than 
whites and blacks at all time differences and that survival rates between 
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men and women differ as well [64]. These population-based differences 
are very important and are not as well represented when a 
mono-sourced dataset is used. Therefore, it is reasonable for clinicians to 
hold the accuracy variance and generalizability of the model to a very 
high standard, as the predictions from said model could determine the 
course of the patients’ lives. We should uphold these standards so that 
the performance of our model can instil confidence in our clinicians to 
make the correct decisions when treating our patients. Lastly, we noted 
that several articles had poor reporting on where their data is sourced 
and how their models were trained and evaluated, which would result in 
poor model reproducibility. Thus, we suggest: 1.) using public datasets 
containing data from multiple institutions in combination with locally 
derived datasets to improve model generalizability, and 2.) A standard 
method of reporting includes where the data is sourced from and how 
many were sourced, how the data was split into cross-validation folds, 
and the results of the accuracy metrics (Classification accuracy and AUC 
for classification tasks, and DICE and Rand Index scores for segmenta
tion tasks). This would improve reproducibility and ensure a stand
ardised reporting of model robustness and generalizability, thus 
facilitating the collaborative efforts of designing the overarching 
“macro” model and guaranteeing the adoption of the model in the 
clinical setting.

We acknowledge that the scope has constrained the scope to only 
histopathological studies, but much of the literature in our initial survey 
utilised ML/DL tools in MRI/CT patient brain scans for brain tumour 
research. While important, there were relatively few ML/DL-aided his
topathological studies compared to purely MRI/CT-based studies, as we 
found in our literature survey. We see this as a gap in the overall brain 
tumour research as MRI/CT data are known to be expensive to image 
and collect. In contrast, pathological slides are the standard and more 
cost-effective procedure to classify patient tumour type, grade and po
tential prognosis [65]. Hence, histopathological studies and analyses are 
more accessible than MRI/CT data in less privileged areas. Therefore, we 
believe that a wider usage of ML/DL techniques in histopathological 
studies is important in the future so that more ML/DL tools for analysing 
histopathological samples for prognostic and diagnostic purposes are 
made accessible for clinical use.

5. Conclusion

In conclusion, we have conducted a systematic review of the litera
ture concerning ML/DL-based studies on brain tumours, particularly in 
GBM, and analysed the current trends in the how and why ML/DL 
models were used in histopathological studies. We sought to understand 
how these ML/DL-based studies uncovered biological insights towards 
GBM pathology. This would allow us to uncover the cutting-edge ways 
that studies have used ML/DL models to learn more about GBM pa
thology, and to find potential improvements in how the ML/DL-based 
GBM should be conducted.

We report that the majority of articles in this review focused on 
designing and improving model performance in classifying tumour 
grades/subtypes (i.e. classifying between GBM and LGG grades) or 
segmenting tumour microenvironments (necrotic region, tumour core 
etc.), while a small number (8 out of 37 GBM-related studies) imple
mented the models in a way that effectively integrates biological data 
with histopathological data to gain new insights into GBM pathogenesis. 
We also found that the two main types of models were utilised in this 
review were classifier models (SVM and kNN being the most popular 
classifiers) and CNNs (ResNet and U-Net based architectures are the 
most popular CNNs).

However, we also uncovered limitations in the articles in this review 
which concerned us. Namely, we found that a larger-than-expected 
number of articles failed to report where the data was sourced from 
which gives rise to reproducibility concerns. Furthermore, over half of 
the GBM-related studies did not use the gold standard cross-validation 
strategy and curated evaluation sets from the same dataset as the 

training set, which posed a concern towards model robustness and 
generalizability, respectively.

Overall, we postulate that ML/DL-based GBM research would evolve 
to be more collaborative in nature, to tackle the complexity of the dis
ease. This would culminate to the design of a “macro” model that would 
integrate various smaller biology-contextualised and histology-based 
predictive models for various aspects of GBM. These suggestions 
below are the key actionable steps that would facilitate that evolution. 

• Integration of genomic or proteomic data in the models with histo
logical data, by extracting the -omics features (i.e. marker presence, 
shape, texture) and combining it with extracted histological features 
(i.e. nuclei shape, texture, cellularity), and training the model to 
predict the multi-omics features

• Designing ensemble models (i.e. SVM-kNN ensemble classifiers, or 
ResNet-Inception ensemble CNNs) and deeper CNN models (i.e. 
ResNet-backboned U-Net models) to achieve the task. This would 
facilitate the design of models that can integrate more biological data 
and provide more robust and accurate models overall

• Using multiple datasets, preferably one from a publicly available 
dataset like TCGA and a locally derived dataset (i.e. from a hospital 
and local research centre) to train and evaluate the ML/DL models. 
This would improve model generalizability and instil confidence in 
clinicians to adopt the models in a clinical setting

• Standardised training/testing/evaluation splits and standardised 
reporting of it: 
o Clear description of where the datasets are acquired and how 

much data was collected
o How the data was split for cross-validation
o Clear description and reporting of the evaluation metric (Classi

fication accuracy and AUC for classification tasks, and DICE and 
Rand Index scores for segmentation tasks)

CRediT authorship contribution statement

Chun Kiet Vong: Writing – review & editing, Writing – original 
draft, Validation, Methodology, Investigation, Formal analysis, Data 
curation, Conceptualization. Alan Wang: Writing – review & editing, 
Supervision. Mike Dragunow: Writing – review & editing. Thomas I-H. 
Park: Writing – review & editing, Supervision. Vickie Shim: Writing – 
review & editing, Validation, Supervision.

Ethics statement

No ethics required for this systematic review.

Declaration of competing interest

The authors declare that there are no competing financial and/or 
personal interests that would influence the work reported in this article.

Acknowledgements

We acknowledge The University of Auckland’s Post-Graduate 
Scholarship for making this work possible.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2024.109642.

References

[1] H. Ohgaki, P. Kleihues, The definition of primary and secondary glioblastoma, Clin. 
Cancer Res. 19 (2013) 764–772, https://doi.org/10.1158/1078-0432.CCR-12- 
3002/85807/AM/THE-DEFINITION-OF-PRIMARY-AND-SECONDARY.

C.K. Vong et al.                                                                                                                                                                                                                                 Computers in Biology and Medicine 186 (2025) 109642 

28 

https://doi.org/10.1016/j.compbiomed.2024.109642
https://doi.org/10.1016/j.compbiomed.2024.109642
https://doi.org/10.1158/1078-0432.CCR-12-3002/85807/AM/THE-DEFINITION-OF-PRIMARY-AND-SECONDARY
https://doi.org/10.1158/1078-0432.CCR-12-3002/85807/AM/THE-DEFINITION-OF-PRIMARY-AND-SECONDARY


[2] C. Luo, K. Song, S. Wu, N.U.F. Hameed, N. Kudulaiti, H. Xu, Z.Y. Qin, J.S. Wu, The 
prognosis of glioblastoma: a large, multifactorial study, Br. J. Neurosurg. 35 (2021) 
555–561, https://doi.org/10.1080/02688697.2021.1907306/SUPPL_FILE/IBJN_ 
A_1907306_SM6507.DOCX.

[3] B. Campos, L.R. Olsen, T. Urup, H.S. Poulsen, A comprehensive profile of recurrent 
glioblastoma, Oncogene 35 (2016) 5819–5825, https://doi.org/10.1038/ 
onc.2016.85.

[4] M. Weller, T. Cloughesy, J.R. Perry, W. Wick, Standards of care for treatment of 
recurrent glioblastoma—are we there yet? Neuro Oncol. 15 (2013) 4, https://doi. 
org/10.1093/NEUONC/NOS273.

[5] D.A. Nathanson, B. Gini, J. Mottahedeh, K. Visnyei, T. Koga, G. Gomez, A. Eskin, 
K. Hwang, J. Wang, K. Masui, A. Paucar, H. Yang, M. Ohashi, S. Zhu, J. Wykosky, 
R. Reed, S.F. Nelson, T.F. Cloughesy, C.D. James, P.N. Rao, H.I. Kornblum, J. 
R. Heath, W.K. Cavenee, F.B. Furnari, P.S. Mischel, Targeted therapy resistance 
mediated by dynamic regulation of extrachromosomal mutant EGFR DNA, Science 
343 (2014) 72, https://doi.org/10.1126/SCIENCE.1241328.

[6] J.M. Stommel, A.C. Kimmelman, H. Ying, R. Nabioullin, A.H. Ponugoti, 
R. Wiedemeyer, A.H. Stegh, J.E. Bradner, K.L. Ligon, C. Brennan, L. Chin, R. 
A. DePinho, Coactivation of receptor tyrosine kinases affects the response of tumor 
cells to targeted therapies, Science 318 (2007) 287–290, https://doi.org/10.1126/ 
SCIENCE.1142946/SUPPL_FILE/STOMMEL.SOM.PDF, 1979.

[7] H.S. Phillips, S. Kharbanda, R. Chen, W.F. Forrest, R.H. Soriano, T.D. Wu, A. Misra, 
J.M. Nigro, H. Colman, L. Soroceanu, P.M. Williams, Z. Modrusan, B.G. Feuerstein, 
K. Aldape, Molecular subclasses of high-grade glioma predict prognosis, delineate a 
pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell 9 
(2006) 157–173, https://doi.org/10.1016/J.CCR.2006.02.019/ATTACHMENT/ 
0B967CEF-1B18-4C7E-90C7-7AF2804EB01D/MMC7.XLS.

[8] R.G.W. Verhaak, K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C. 
R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O’Kelly, 
P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J. 
G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R. 
K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, 
An integrated genomic analysis identifies clinically relevant subtypes of 
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1, 
Cancer Cell 17 (2010) 98, https://doi.org/10.1016/J.CCR.2009.12.020.

[9] D.N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. 
K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison, The 2016 World 
Health organization classification of tumors of the central nervous system: a 
summary, Acta Neuropathol. 131 (2016) 803–820, https://doi.org/10.1007/ 
s00401-016-1545-1.

[10] P. Blanc-Durand, A. Van Der Gucht, N. Schaefer, E. Itti, J.O. Prior, Automatic lesion 
detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net 
convolutional neural network study, PLoS One 13 (2018) e0195798, https://doi. 
org/10.1371/journal.pone.0195798.

[11] A.P. Nanthagopal, R.S. Rajamony, A region-based segmentation of tumour from 
brain CT images using nonlinear support vector machine classifier, J. Med. Eng. 
Technol. 36 (2012) 271–277, https://doi.org/10.3109/03091902.2012.682638.

[12] J. Unkelbach, T. Bortfeld, C.E. Cardenas, V. Gregoire, W. Hager, B. Heijmen, 
R. Jeraj, S.S. Korreman, R. Ludwig, B. Pouymayou, N. Shusharina, J. Söderberg, 
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