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Glioblastoma (GBM), the most aggressive and lethal subtype of glioma, remains

therapeutically intractable despite advances in surgical and chemo-radiotherapy

interventions. The highly immunosuppressive tumor microenvironment (TME)

contributes significantly to treatment resistance and tumor recurrence. Among

the predominant immune constituents, glioma-associated microglia and

macrophages (GAMs) constitute a major cellular compartment, exerting

profound influence on tumor progression, immune evasion, angiogenesis, and

therapeutic response. These myeloid populations, derived from both yolk sac–

origin microglia and bone marrow–derived macrophages, exhibit remarkable

functional plasticity and are actively recruited, polarized, and reprogrammed by

tumor-intrinsic and environmental cues. Recent studies have elucidated a range

of molecular pathways, including chemokine signaling, metabolic

reprogramming, and epigenetic modulation, that govern GAM behavior and

sustain their tumor-supportive phenotype. Therapeutic strategies targeting

GAM recruitment, depletion, or functional re-education toward an anti-tumor

state are emerging as promising adjuncts to conventional and immune-based

therapies. This review comprehensively explores the ontogeny, regulatory

networks, and pathological roles of GAMs in GBM, with particular emphasis on

novel immunotherapeutic approaches, including CSF-1R blockade,

nanoparticle-mediated reprogramming, and oncolytic virotherapy. A deeper

understanding of GAM–TME interactions will be critical to overcoming

immunotherapy resistance and advancing precision immunomodulation in GBM.
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1 Introduction

Gliomas represent the most prevalent form of malignancy

within the central nervous system (CNS), contributing to 80% of

all malignant brain cancers (1). Among the histological subtypes,

glioblastoma (GBM) stands out as the most aggressive variant,

accounting for approximately 70–75% of glioma cases (2). Despite

aggressive multimodal therapy—comprising extensive surgical

resection followed by radiochemotherapy—the median survival

for individuals diagnosed with GBM remains under 20 months

(3). Furthermore, disease recurrence occurs in nearly 80% of

patients, predominantly within or proximal to the original

surgical margin (4). These bleak clinical outcomes highlight an

urgent demand for more effective treatment modalities, with

immunotherapeutic approaches emerging as a particularly

promising direction in GBM care.

The tumor microenvironment (TME) has been increasingly

recognized not only as a central orchestrator of tumor development

and progression but also as a critical contributor to the phenotypic

and molecular heterogeneity observed within GBM (5, 6). A key

component of this microenvironment is the GAMs, which constitute

the dominant immune cell population in gliomas. Their infiltration

correlates positively with tumor grade, often making up 30–50% of

the total tumor cellular content (6). GAMs exert multifaceted effects

on the TME, significantly influencing tumor growth, immune

suppression, and therapeutic resistance (7, 8). Accumulation of

GAMs is strongly linked with glioma advancement and is

indicative of unfavorable prognosis in GBM patients, underscoring

their potential as crucial targets for immunomodulatory interventions

(9). This review delineates the developmental origins of GAMs,

outlines the signaling axes governing their recruitment and

polarization, and explores their functional contributions to glioma

biology. Particular focus is placed on recent progress in therapeutic

strategies that aim to manipulate GAMs activity to enhance the

efficacy of GBM treatments.
2 Microglia and macrophages in
glioblastoma

In glioblastoma, the tumor microenvironment is marked by

minimal T cell presence but a pronounced enrichment of GAMs,

which collectively constitute over 30% of the infiltrating immune

population within the neoplastic niche (10). This population

includes both infiltrating macrophages, derived from circulating

monocytes, and resident microglial cells. Monocyte-derived

macrophages originate in the bone marrow, where they

differentiate in response to cytokine cues before migrating into

peripheral tissues (11). Conversely, microglia stem from yolk sac–

derived erythromyeloid precursors and undergo lineage

specification regulated by defined transcriptional programs,

ultimately settling in specific compartments of the central nervous

system during development (12). Importantly, GAMs exhibit the

ability to self-renew and engage in competitive interactions for

spatial occupancy within the TME (13). In both primary and
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relapsed GBM lesions, particularly under hypoxic conditions, the

majority of GAMs are derived from microglia rather than from

monocytes (14).
2.1 Recruitment of microglia and
macrophages

The glioblastoma tumor microenvironment harbors a dense

network of chemokines and inflammatory mediators that

orchestrate the recruitment of GAMs (15, 16). Substantial

progress has been made in delineating the molecular

underpinnings of this process. Aberrant metabolic activity within

tumor cells not only alters intrinsic signaling but also remodels the

surrounding stroma (17, 18). For instance, the metabolic byproduct

kynurenine (Kyn), produced during GBM-associated metabolic

rewiring, activates aryl hydrocarbon receptor (AhR) signaling in

GAMs (19, 20). This activation triggers upregulation of chemokine

(C-C motif) ligand 2 (CCL2), which facilitates the directed

migration of GAMs toward the tumor site (19). In addition to

this ligand–receptor cascade, several signaling axes have been

implicated. The guidance molecule SLIT2 engages roundabout

receptors ROBO1 and ROBO2, whose expression on target cells

mediates their chemoattraction. In GBM, SLIT2–ROBO

interactions promote GAMs infiltration via activation of the PI3K

pathway (21). Importantly, downstream of PI3K, activation of small

Rho GTPases such as Rac1 and Cdc42 orchestrates actin

cytoskeletal remodeling, lamellipodia and filopodia formation,

and directional migration of GAMs (22, 23). These cytoskeletal

changes are critical for enabling GAMs to traverse the dense

extracellular matrix and reach tumor foci. Therefore, the PI3K–

Rac1/Cdc42 axis represents a key mechanistic bridge linking

chemotactic signaling to the physical motility of glioma-

infiltrating myeloid cells (24). Moreover, the receptor tyrosine

kinase mesenchymal–epithelial transition factor (MET) is notably

upregulated within the TME of secondary GBM, and has been

shown to initiate the STAT4–PD-L1 signaling cascade in primary

GBM, thereby enhancing GAMs infiltration and contributing to

immune escape mechanisms (25, 26). Epigenetic alterations in

glioma cells profoundly influence the immunological landscape.

Among these, N6-methyladenosine (m6A), a prevalent RNA

epigenetic modification in eukaryotic cells, is subject to dynamic

regulation in response to hypoxic stress (27). GBM cells elevate

expression of the demethylase ALKBH5, significantly increasing

GAMs accumulation in xenograft models (28, 29). Likewise, glioma

stem cells (GSCs), through persistent transcriptional and epigenetic

remodeling, activate gene expression programs characteristic of

bone marrow-derived lineages, which in turn amplify GAMs

recruitment (30).
2.2 Polarization of GAMs

GAMs exhibit functional plasticity, shifting between pro-

inflammatory, tumor-suppressive M1-like states and anti-

inflammatory, tumor-supportive M2-like phenotypes (31). These
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subsets are not rigidly fixed and can transition bidirectionally

depending on local cues. The M2-like subset comprises several

variants—namely M2a, M2b, M2c, and M2d—that span a spectrum

of functional states (32, 33). In the process of acquiring the M2

phenotype, GAMs secrete immunomodulatory and tumor-

promoting factors such as TGF-b, epidermal growth factor (EGF),

IL-10, and the proteolytic enzymes MMP-2 and MMP-9, thereby

reinforcing an immunosuppressive tumor milieu within the

glioblastoma microenvironment (31, 34). Among these M2

subtypes, M2a macrophages—typically induced by IL-4/IL-13—

are associated with tissue repair and wound healing, whereas M2d

macrophages, often driven by IL-6 and adenosine signaling,

promote tumor angiogenesis and immunosuppression (35).

Recent single-cell transcriptomic and spatial profiling studies of

human GBM specimens have indicated a predominance of M2d-

like polarization signatures within the GAM compartment,

particularly localized around perivascular niches, suggesting their

functional relevance in supporting neovascularization and immune

evasion in GBM (36–38). In contrast, M2a-like signatures appear

more spatially restricted and are enriched in regions undergoing

tissue remodeling or repair post-therapy, indicating a context-

dependent distribution of M2 subtypes (38).

Cytokines are pivotal regulators orchestrating GAMs

polarization in the tumor microenvironment (39). Evidence from

both murine glioma models and human GBM specimens reveals

that IL-33 enhances the expression of M2-associated markers,

thereby skewing GAMs toward an M2-biased profile. Conversely,

genetic ablation of IL-33 compromises this polarization trajectory

(40). The IL-6 and IL-6R axis also exerts a significant influence.

GBM-infiltrating GAMs expressing b-site amyloid precursor

protein cleaving enzyme 1 (BACE1) or T cell immunoglobulin

and mucin-domain containing-3 (TIM-3) engage IL-6R, triggering

downstream signaling pathways that perpetuate their pro-

tumorigenic and anti-inflammatory state. Notably, inhibition of

BACE1 pharmacologically has been shown to redirect GAMs

toward a tumor-restraining phenotype. Additionally, IL-6R

blockade has been demonstrated to impede tumor progression in

vivo (41, 42). BACE1 also modulates the polarization of GAMs

through activation of the JAK/STAT3 signaling pathway, a critical

driver of immunosuppressive mechanisms in glioma. BACE1

activation has been linked to JAK/STAT3 pathway activation,

which enhances the M2-like polarization of GAMs (43). This

pathway promotes immune suppression by upregulating the

secretion of cytokines such as IL-10 and TGF-b, and by inhibiting

the cytotoxic functions of tumor-infiltrating immune cells (44, 45).

In particular, the activation of JAK/STAT3 by BACE1 contributes

to a feedback loop that perpetuates a pro-tumorigenic and immune-

evasive environment within the glioma TME (41, 46). Furthermore,

chemotherapeutic agents such as temozolomide (TMZ), the

standard treatment for GBM, may also modulate GAMs

phenotypic plasticity. Certain TMZ-responsive long noncoding

RNAs have been implicated in driving microglial polarization

toward the M2 state, thereby fostering drug resistance (46). In

contrast, GBM cells treated with TMZ can release high-mobility

group box 1 (HMGB1), which activates the NF-kB–NLRP3
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inflammasome signaling axis in GAMs, thus promoting their

differentiation into the M1 subtype (47, 48).
3 Functions of GAMs

3.1 Enhancement of glioma cell growth
and infiltrative potential

Within the tumor microenvironment, metabolic rewiring serves

as a critical determinant of glioma cell proliferation and

invasiveness (49, 50). Among glioma-associated GAMs, those

exhibiting an M2 phenotype secrete IL-1b, which activates

protein kinase d through the PI3K cascade (51, 52). This

signaling leads to phosphorylation of glycerol-3-phosphate

dehydrogenase at threonine 10, subsequently boosting glycolytic

flux and promoting tumor cell proliferation (51). Moreover,

exosomes released by glioblastoma cells (GBex) have been shown

to convert M1 macrophages toward a tumor-supportive phenotype

and reinforce M2-like characteristics (53, 54). These GBex-educated

GAMs secrete vesicles enriched with arginase-1 (ARG-1), a

metabolic enzyme that further drives glioma cell propagation (55,

56). Chemokine-mediated signaling within the TME also governs

tumor invasion by facilitating immune cell trafficking and directly

influencing cancer cell behavior. For instance, CCL8, abundantly

produced by GAMs, enhances glioma cell pseudopod extension and

interacts with CCR1 and CCR5 receptors on tumor surfaces (57,

58). This ligand-receptor engagement triggers ERK1/2

phosphorylation, potentiating cellular invasiveness. In parallel,

GAMs-derived CCL5 stimulates glioma motility and matrix

degradation by activating MMP-2 through a calcium-dependent

pathway (57, 59). These findings delineate a multifaceted regulatory

axis wherein GAMs, via metabolic and chemokine-driven

mechanisms, accelerate glioma progression and invasion.
3.2 Tumor angiogenesis facilitation

Neovascularization plays a fundamental role in sustaining

tumor expansion, with endothelial cell activation acting as a key

initiating event in this process (60, 61). Glioblastoma-derived IL-8

and CCL2 chemokines can activate glioma-associated GAMs,

which, in turn, secrete TNF-a, thereby triggering gene expression

programs in ECs characteristic of an activated state (62, 63). In a

murine glioblastoma setting, administration of the bevacizumab

analog B20.4.1.1 was associated with heightened TNF-a release by

GAMs and increased endothelial activation—findings that may

underlie the observed inefficacy of anti-angiogenic strategies in

glioblastoma treatment (63, 64). Vascular endothelial growth

factor (VEGF) is widely recognized as a core component of the

pro-angiogenic signaling milieu. In glioblastoma cells deficient in

the tumor suppressor PTEN, aberrant activation of the AKT–

CSK9b–IRF9 axis promotes the overproduction of galectin-9 (65,

66). This lectin interacts with the Tim-2 receptor on GAMs,

enhancing their M2-like polarization, which subsequently leads to
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VEGF-A secretion and stimulation of neovascular formation to

support glioma progression (67). Furthermore, recent evidence has

revealed that GAMs play an essential role in the modulation of

angiogenesis via the activation of intracellular calcium flux (9, 68,

69). GAM-derived signals, particularly TNF-a, activate the

phospholipase C (PLC) pathway, which triggers calcium influx

and activates protein kinase C (PKC) and calcium/calmodulin-

dependent protein kinase II (CaMKII) (59, 63). This signaling

cascade reinforces the notion that GAMs, through calcium-

mediated signaling and VEGF production, play a pivotal role in

glioma-associated angiogenesis and tumor progression. In addition,

research by Blank et al. revealed that GAMs, in collaboration with

granulocytes, may facilitate angiogenesis through VEGF-

independent mechanisms by releasing alternative angiogenic

mediators, thereby contributing to resistance against conventional

VEGF-targeted therapies (70). These findings underscore the

necessity of in-depth mechanistic dissection of the interactions

between GAMs and vascular remodeling processes within the

tumor microenvironment.
3.3 Immunosuppressive conditioning of the
glioblastoma tumor microenvironment

The establishment of an immunosuppressive tumor

microenvironment is a critical mechanism by which glioblastoma

circumvents immune detection and enables immune escape (43,

71). In GAMs, activation of the mammalian target of rapamycin

(mTOR) signaling is driven through transcriptional programs

orchestrated by STAT3 and NF-kB, culminating in a suppressive

microglial phenotype that restricts the expansion, infiltration, and

cytotoxicity of effector T lymphocytes, thereby promoting immune

evasion (72). GAMs are a key cellular component of this

immunosuppressive niche. Their heightened expression of

indoleamine 2,3-dioxygenase-1 (IDO1) and tryptophan 2,3-

dioxygenase (TDO) initiates the catabolism of tryptophan into L-

kynurenine (L-Kyn), which activates the aryl hydrocarbon receptor

(AHR). This promotes the expansion of regulatory T cells and the

generation of tolerogenic myeloid populations, further reinforcing

local immunosuppression (73–75). This metabolic reprogramming,

orchestrated through the kynurenine pathway, facilitates tumor

progression by modulating immune cell infiltration and cytokine

secretion, creating a microenvironment that supports immune

evasion and tumor growth (76–78). Additionally, glioblastoma

cells accumulate quinolinic acid, a byproduct of the kynurenine

pathway, which activates NMDA receptors and triggers the Foxo1/

PPARg axis in GAMs, driving their polarization towards tumor-

promoting states (79, 80). In a study by Magri et al. (81),

suppression of heme oxygenase-1 (HO-1) in microglia enhanced

IL-10 production, concurrently inhibiting the STAT3/PD-L1

cascade and reducing IDO1 and ARG-2 transcription, collectively

alleviating the immunosuppressive characteristics of the TME.

Moreover, the phosphatase PP2A, in conjunction with its
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regulatory subunit STRN4, modulates Hippo signaling by

dephosphorylating MST1/2 kinases, thus stabilizing the

transcriptional co-activators YAP/TAZ. This regulatory circuit

suppresses interferon-stimulatory gene (STING) signaling, further

facilitating immune escape in glioblastoma (82). These multifaceted

interactions underscore the importance of delineating the

functional interplay between GAMs and the immunoregulatory

landscape of the TME to refine and enhance the effectiveness of

immunotherapeutic approaches in GBM (Figure 1).
4 Immunotherapy targeting GAMs

4.1 Targeting GAM recruitment and
depletion in GBM

Interrupting the infiltration of GAMs has emerged as a viable

strategy in the treatment of glioblastoma. Within the central

nervous system, CCL2 serves as a critical chemokine mediating

GAM (9, 83). In murine models of glioma, administration of a

CCR2-specific antagonist alone extended median survival, while

concurrent blockade with anti–PD-1 therapy yielded further

survival gains, substantiating its potential for early-phase clinical

evaluation (84). Osteopontin (OPN), a component of the

extracellular matrix, plays a substantial role in attracting GAMs

in a concentration-dependent manner within the tumor

microenvironment of GBM (16, 85). Secreted by tumor cells,

OPN interacts with GAMs surface receptors—particularly via

CD44—to promote chemotaxis and sustain M2-like gene

expression and cellular polarization. Inhibition or reduction of

OPN production profoundly impairs the recruitment efficiency of

the GAMs (85, 86). Further mechanistic insights from Chen et al.

(87) revealed that in GBM models deficient in PTEN, the

transcriptional coactivator YAP1 upregulates lysyl oxidase (LOX),

whose secreted form activates the b1 integrin–PYK2 signaling axis

to drive macrophage accumulation. Pharmacological suppression of

LOX consequently attenuates macrophage infiltration and limits

tumor advancement. Another regulator of the GAM landscape is

the sodium–hydrogen exchanger (NHE), specifically the SLC9A1

isoform. Overexpression of this transporter correlates with

heightened GAM density in the TME (88). In preclinical glioma

models, inhibition of NHE1 using HOE642 dampens both

macrophage infiltration and angiogenic processes, culminating in

reduced tumor expansion (89). Despite GAMs being genomically

stable and highly responsive to local environmental cues, efforts to

eradicate these cells have faced challenges. Liposome-encapsulated

clodronate, once internalized by phagocytes, induces programmed

cell death (90). However, its intracerebral delivery depletes not only

resident microglia but also inadvertently harms other neural and

vascular components, indicating insufficient specificity in targeting

GAMs (91). Therefore, such indiscriminate depletion strategies

demand careful reconsideration due to their potential off-

target effects.
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4.2 Therapeutic repolarization of GAMs

A promising approach to curtail glioma advancement involves

disrupting the M2 polarization state of GAMs and promoting a shift

toward an M1-like phenotype (92, 93). Various agents—such as

CSF-1R antagonists, chlorogenic acid, inhibitors targeting mTOR,

lipopolysaccharide, curcumin-loaded phytosomes (CCP), and

duloxetine—have demonstrated efficacy in redirecting GAMs

toward an inflammatory, tumor-suppressive state, thereby

mitigating their tumor-supportive properties (94–97). Central to

this immunomodulatory process is the colony-stimulating factor 1

receptor (CSF-1R), whose blockade has been shown to reorient

CD163+ macrophages away from an immunosuppressive state.

Specifically, the CSF-1R inhibitor BIZ954 enhances glioblastoma

responsiveness to radiotherapy and synergizes with anti–PD-1

immune checkpoint blockade, effectively augmenting antitumor

immunity (98, 99). Nevertheless, the impact of CSF-1R inhibition

is not uniform across glioblastoma subtypes. For instance, PLX3397

substantially inhibits PDGFB-driven gliomagenesis, yet

paradoxically accelerates RAS-driven variants and exerts minimal

influence on other proneural or mesenchymal tumor models. The

mechanisms underlying these subtype-specific differences in

response remain largely elusive (99). Additional repolarization

strategies involving small interfering RNAs (siRNAs), microRNAs

(miRNAs), or immunomodulatory cytokines face considerable

translational barriers, including cytotoxicity, limited target

specificity, and adverse systemic reactions, all of which constrain
Frontiers in Immunology 05
their clinical utility and warrant further optimization (100, 101). It

is also critical to consider the unintended consequences of GAMs

repolarization, as altering macrophage phenotypes may

inadvertently suppress endogenous antitumor responses or induce

systemic inflammatory side effects. A nanoparticle platform

designed to deliver mRNA encoding interferon regulatory factor 5

(IRF5) in vivo (102). Upon cellular uptake, the mRNA engages

IKKb, its activating kinase, successfully redirecting GAMs toward a

tumor-inhibitory phenotype while avoiding systemic toxicity

(102, 103).
4.3 GAMs and oncolytic virotherapy

The therapeutic action of oncolytic herpes simplex virus

(OHSV) involves not only direct lysis of tumor cells but also the

activation of a long-lasting anti-tumor immune response (104, 105).

Nevertheless, the host’s innate antiviral mechanisms frequently

suppress viral replication within the tumor, thereby limiting

oncolytic efficacy (106, 107). Among the key mediators of this

suppression TNFa secreted by GAMs has been identified as a

principal effector of apoptosis in virally infected cells,

consequently diminishing intratumoral viral spread. Inhibition of

TNFa markedly augments viral replication in vivo and correlates

with enhanced therapeutic outcomes, as demonstrated in clinical

investigations (108, 109). Additional mechanistic studies have

revealed that phosphorylation of STAT1 and STAT3 impairs
FIGURE 1

Glioma-associated microglia and macrophages in glioblastoma progression.
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OHSV-1 propagation in GAMs (110). Notably, pharmacological

blockade of STAT1/3 signaling using the oxindole/imidazole

compound C16 facilitates increased viral replication in these

immune cells, bolstering OHSV-1’s oncolytic potential against

glioblastoma multiforme and promoting tumor regression (111).
5 Conclusion

Glioblastoma (GBM) presents a formidable clinical challenge,

underscored by its rapid progression, immune evasion, and dismal

prognosis. A defining feature of the GBM microenvironment is the

extensive infiltration of GAMs, which orchestrate a spectrum of

tumor-promoting functions—including metabolic rewiring,

angiogenesis, and immunosuppression—while remaining largely

unresponsive to current immunotherapeutic regimens. The dual

origin of GAMs, their spatial–temporal heterogeneity, and their

plasticity under dynamic cues confer both complexity and

opportunity for targeted intervention.

Emerging strategies aimed at attenuating GAMs recruitment,

depleting pro-tumor macrophages, or reprogramming their

phenotypic state have shown preclinical promise. Moreover,

modulation of GAMs signaling networks has demonstrated

synergy with immune checkpoint inhibitors and oncolytic viruses,

offering a rationale for combinatorial therapeutic regimens.

Nonetheless, challenges remain in translating these findings into

clinical benefit, including off-target effects, phenotypic rebound,

and tumor subtype–specific resistance. Future efforts must

prioritize precise GAMs subpopulation mapping, longitudinal

tracking of their functional states, and development of delivery

platforms that minimize systemic toxicity. Ultimately, targeting the

immunological plasticity of GAMs may unlock new therapeutic

potential in GBM and reshape the landscape of myeloid-

based immunotherapy.
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