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Glioblastoma (GBM), the most aggressive and lethal subtype of glioma, remains
therapeutically intractable despite advances in surgical and chemo-radiotherapy
interventions. The highly immunosuppressive tumor microenvironment (TME)
contributes significantly to treatment resistance and tumor recurrence. Among
the predominant immune constituents, glioma-associated microglia and
macrophages (GAMs) constitute a major cellular compartment, exerting
profound influence on tumor progression, immune evasion, angiogenesis, and
therapeutic response. These myeloid populations, derived from both yolk sac—
origin microglia and bone marrow-derived macrophages, exhibit remarkable
functional plasticity and are actively recruited, polarized, and reprogrammed by
tumor-intrinsic and environmental cues. Recent studies have elucidated a range
of molecular pathways, including chemokine signaling, metabolic
reprogramming, and epigenetic modulation, that govern GAM behavior and
sustain their tumor-supportive phenotype. Therapeutic strategies targeting
GAM recruitment, depletion, or functional re-education toward an anti-tumor
state are emerging as promising adjuncts to conventional and immune-based
therapies. This review comprehensively explores the ontogeny, regulatory
networks, and pathological roles of GAMs in GBM, with particular emphasis on
novel immunotherapeutic approaches, including CSF-1R blockade,
nanoparticle-mediated reprogramming, and oncolytic virotherapy. A deeper
understanding of GAM-TME interactions will be critical to overcoming
immunotherapy resistance and advancing precision immunomodulation in GBM.
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1 Introduction

Gliomas represent the most prevalent form of malignancy
within the central nervous system (CNS), contributing to 80% of
all malignant brain cancers (1). Among the histological subtypes,
glioblastoma (GBM) stands out as the most aggressive variant,
accounting for approximately 70-75% of glioma cases (2). Despite
aggressive multimodal therapy—comprising extensive surgical
resection followed by radiochemotherapy—the median survival
for individuals diagnosed with GBM remains under 20 months
(3). Furthermore, disease recurrence occurs in nearly 80% of
patients, predominantly within or proximal to the original
surgical margin (4). These bleak clinical outcomes highlight an
urgent demand for more effective treatment modalities, with
immunotherapeutic approaches emerging as a particularly
promising direction in GBM care.

The tumor microenvironment (TME) has been increasingly
recognized not only as a central orchestrator of tumor development
and progression but also as a critical contributor to the phenotypic
and molecular heterogeneity observed within GBM (5, 6). A key
component of this microenvironment is the GAMs, which constitute
the dominant immune cell population in gliomas. Their infiltration
correlates positively with tumor grade, often making up 30-50% of
the total tumor cellular content (6). GAMs exert multifaceted effects
on the TME, significantly influencing tumor growth, immune
suppression, and therapeutic resistance (7, 8). Accumulation of
GAMs is strongly linked with glioma advancement and is
indicative of unfavorable prognosis in GBM patients, underscoring
their potential as crucial targets for immunomodulatory interventions
(9). This review delineates the developmental origins of GAMs,
outlines the signaling axes governing their recruitment and
polarization, and explores their functional contributions to glioma
biology. Particular focus is placed on recent progress in therapeutic
strategies that aim to manipulate GAMs activity to enhance the
efficacy of GBM treatments.

2 Microglia and macrophages in
glioblastoma

In glioblastoma, the tumor microenvironment is marked by
minimal T cell presence but a pronounced enrichment of GAMs,
which collectively constitute over 30% of the infiltrating immune
population within the neoplastic niche (10). This population
includes both infiltrating macrophages, derived from circulating
monocytes, and resident microglial cells. Monocyte-derived
macrophages originate in the bone marrow, where they
differentiate in response to cytokine cues before migrating into
peripheral tissues (11). Conversely, microglia stem from yolk sac-
derived erythromyeloid precursors and undergo lineage
specification regulated by defined transcriptional programs,
ultimately settling in specific compartments of the central nervous
system during development (12). Importantly, GAMs exhibit the
ability to self-renew and engage in competitive interactions for
spatial occupancy within the TME (13). In both primary and
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relapsed GBM lesions, particularly under hypoxic conditions, the
majority of GAMs are derived from microglia rather than from
monocytes (14).

2.1 Recruitment of microglia and
macrophages

The glioblastoma tumor microenvironment harbors a dense
network of chemokines and inflammatory mediators that
orchestrate the recruitment of GAMs (15, 16). Substantial
progress has been made in delineating the molecular
underpinnings of this process. Aberrant metabolic activity within
tumor cells not only alters intrinsic signaling but also remodels the
surrounding stroma (17, 18). For instance, the metabolic byproduct
kynurenine (Kyn), produced during GBM-associated metabolic
rewiring, activates aryl hydrocarbon receptor (AhR) signaling in
GAMs (19, 20). This activation triggers upregulation of chemokine
(C-C motif) ligand 2 (CCL2), which facilitates the directed
migration of GAMs toward the tumor site (19). In addition to
this ligand-receptor cascade, several signaling axes have been
implicated. The guidance molecule SLIT2 engages roundabout
receptors ROBO1 and ROBO2, whose expression on target cells
mediates their chemoattraction. In GBM, SLIT2-ROBO
interactions promote GAMs infiltration via activation of the PI3K
pathway (21). Importantly, downstream of PI3K, activation of small
Rho GTPases such as Racl and Cdc42 orchestrates actin
cytoskeletal remodeling, lamellipodia and filopodia formation,
and directional migration of GAMs (22, 23). These cytoskeletal
changes are critical for enabling GAMs to traverse the dense
extracellular matrix and reach tumor foci. Therefore, the PI3K-
Racl/Cdc42 axis represents a key mechanistic bridge linking
chemotactic signaling to the physical motility of glioma-
infiltrating myeloid cells (24). Moreover, the receptor tyrosine
kinase mesenchymal-epithelial transition factor (MET) is notably
upregulated within the TME of secondary GBM, and has been
shown to initiate the STAT4-PD-L1 signaling cascade in primary
GBM, thereby enhancing GAMs infiltration and contributing to
immune escape mechanisms (25, 26). Epigenetic alterations in
glioma cells profoundly influence the immunological landscape.
Among these, N6-methyladenosine (m6A), a prevalent RNA
epigenetic modification in eukaryotic cells, is subject to dynamic
regulation in response to hypoxic stress (27). GBM cells elevate
expression of the demethylase ALKBHS5, significantly increasing
GAMs accumulation in xenograft models (28, 29). Likewise, glioma
stem cells (GSCs), through persistent transcriptional and epigenetic
remodeling, activate gene expression programs characteristic of
bone marrow-derived lineages, which in turn amplify GAMs
recruitment (30).

2.2 Polarization of GAMs

GAMs exhibit functional plasticity, shifting between pro-
inflammatory, tumor-suppressive M1-like states and anti-
inflammatory, tumor-supportive M2-like phenotypes (31). These
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subsets are not rigidly fixed and can transition bidirectionally
depending on local cues. The M2-like subset comprises several
variants—namely M2a, M2b, M2c, and M2d—that span a spectrum
of functional states (32, 33). In the process of acquiring the M2
phenotype, GAMs secrete immunomodulatory and tumor-
promoting factors such as TGF-f, epidermal growth factor (EGF),
IL-10, and the proteolytic enzymes MMP-2 and MMP-9, thereby
reinforcing an immunosuppressive tumor milieu within the
glioblastoma microenvironment (31, 34). Among these M2
subtypes, M2a macrophages—typically induced by IL-4/IL-13—
are associated with tissue repair and wound healing, whereas M2d
macrophages, often driven by IL-6 and adenosine signaling,
promote tumor angiogenesis and immunosuppression (35).
Recent single-cell transcriptomic and spatial profiling studies of
human GBM specimens have indicated a predominance of M2d-
like polarization signatures within the GAM compartment,
particularly localized around perivascular niches, suggesting their
functional relevance in supporting neovascularization and immune
evasion in GBM (36-38). In contrast, M2a-like signatures appear
more spatially restricted and are enriched in regions undergoing
tissue remodeling or repair post-therapy, indicating a context-
dependent distribution of M2 subtypes (38).

Cytokines are pivotal regulators orchestrating GAMs
polarization in the tumor microenvironment (39). Evidence from
both murine glioma models and human GBM specimens reveals
that IL-33 enhances the expression of M2-associated markers,
thereby skewing GAMs toward an M2-biased profile. Conversely,
genetic ablation of IL-33 compromises this polarization trajectory
(40). The IL-6 and IL-6R axis also exerts a significant influence.
GBM-infiltrating GAMs expressing [-site amyloid precursor
protein cleaving enzyme 1 (BACE1) or T cell immunoglobulin
and mucin-domain containing-3 (TIM-3) engage IL-6R, triggering
downstream signaling pathways that perpetuate their pro-
tumorigenic and anti-inflammatory state. Notably, inhibition of
BACE1 pharmacologically has been shown to redirect GAMs
toward a tumor-restraining phenotype. Additionally, IL-6R
blockade has been demonstrated to impede tumor progression in
vivo (41, 42). BACE1 also modulates the polarization of GAMs
through activation of the JAK/STAT3 signaling pathway, a critical
driver of immunosuppressive mechanisms in glioma. BACE1
activation has been linked to JAK/STAT3 pathway activation,
which enhances the M2-like polarization of GAMs (43). This
pathway promotes immune suppression by upregulating the
secretion of cytokines such as IL-10 and TGF-f, and by inhibiting
the cytotoxic functions of tumor-infiltrating immune cells (44, 45).
In particular, the activation of JAK/STAT3 by BACE1 contributes
to a feedback loop that perpetuates a pro-tumorigenic and immune-
evasive environment within the glioma TME (41, 46). Furthermore,
chemotherapeutic agents such as temozolomide (TMZ), the
standard treatment for GBM, may also modulate GAMs
phenotypic plasticity. Certain TMZ-responsive long noncoding
RNAs have been implicated in driving microglial polarization
toward the M2 state, thereby fostering drug resistance (46). In
contrast, GBM cells treated with TMZ can release high-mobility
group box 1 (HMGBI1), which activates the NF-kB-NLRP3
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inflammasome signaling axis in GAMs, thus promoting their
differentiation into the M1 subtype (47, 48).

3 Functions of GAMs

3.1 Enhancement of glioma cell growth
and infiltrative potential

Within the tumor microenvironment, metabolic rewiring serves
as a critical determinant of glioma cell proliferation and
invasiveness (49, 50). Among glioma-associated GAMs, those
exhibiting an M2 phenotype secrete IL-1B3, which activates
protein kinase & through the PI3K cascade (51, 52). This
signaling leads to phosphorylation of glycerol-3-phosphate
dehydrogenase at threonine 10, subsequently boosting glycolytic
flux and promoting tumor cell proliferation (51). Moreover,
exosomes released by glioblastoma cells (GBex) have been shown
to convert M1 macrophages toward a tumor-supportive phenotype
and reinforce M2-like characteristics (53, 54). These GBex-educated
GAMs secrete vesicles enriched with arginase-1 (ARG-1), a
metabolic enzyme that further drives glioma cell propagation (55,
56). Chemokine-mediated signaling within the TME also governs
tumor invasion by facilitating immune cell trafficking and directly
influencing cancer cell behavior. For instance, CCL8, abundantly
produced by GAMs, enhances glioma cell pseudopod extension and
interacts with CCR1 and CCR5 receptors on tumor surfaces (57,
58). This ligand-receptor engagement triggers ERK1/2
phosphorylation, potentiating cellular invasiveness. In parallel,
GAMs-derived CCL5 stimulates glioma motility and matrix
degradation by activating MMP-2 through a calcium-dependent
pathway (57, 59). These findings delineate a multifaceted regulatory
axis wherein GAMs, via metabolic and chemokine-driven

mechanisms, accelerate glioma progression and invasion.

3.2 Tumor angiogenesis facilitation

Neovascularization plays a fundamental role in sustaining
tumor expansion, with endothelial cell activation acting as a key
initiating event in this process (60, 61). Glioblastoma-derived IL-8
and CCL2 chemokines can activate glioma-associated GAMs,
which, in turn, secrete TNF-a, thereby triggering gene expression
programs in ECs characteristic of an activated state (62, 63). In a
murine glioblastoma setting, administration of the bevacizumab
analog B20.4.1.1 was associated with heightened TNF-a. release by
GAMs and increased endothelial activation—findings that may
underlie the observed inefficacy of anti-angiogenic strategies in
glioblastoma treatment (63, 64). Vascular endothelial growth
factor (VEGF) is widely recognized as a core component of the
pro-angiogenic signaling milieu. In glioblastoma cells deficient in
the tumor suppressor PTEN, aberrant activation of the AKT-
CSK9B-IRF9 axis promotes the overproduction of galectin-9 (65,
66). This lectin interacts with the Tim-2 receptor on GAMs,
enhancing their M2-like polarization, which subsequently leads to
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VEGEF-A secretion and stimulation of neovascular formation to
support glioma progression (67). Furthermore, recent evidence has
revealed that GAMs play an essential role in the modulation of
angiogenesis via the activation of intracellular calcium flux (9, 68,
69). GAM-derived signals, particularly TNF-o, activate the
phospholipase C (PLC) pathway, which triggers calcium influx
and activates protein kinase C (PKC) and calcium/calmodulin-
dependent protein kinase II (CaMKII) (59, 63). This signaling
cascade reinforces the notion that GAMs, through calcium-
mediated signaling and VEGF production, play a pivotal role in
glioma-associated angiogenesis and tumor progression. In addition,
research by Blank et al. revealed that GAMs, in collaboration with
granulocytes, may facilitate angiogenesis through VEGE-
independent mechanisms by releasing alternative angiogenic
mediators, thereby contributing to resistance against conventional
VEGF-targeted therapies (70). These findings underscore the
necessity of in-depth mechanistic dissection of the interactions
between GAMs and vascular remodeling processes within the
tumor microenvironment.

3.3 Immunosuppressive conditioning of the
glioblastoma tumor microenvironment

The establishment of an immunosuppressive tumor
microenvironment is a critical mechanism by which glioblastoma
circumvents immune detection and enables immune escape (43,
71). In GAMs, activation of the mammalian target of rapamycin
(mTOR) signaling is driven through transcriptional programs
orchestrated by STAT3 and NF-xB, culminating in a suppressive
microglial phenotype that restricts the expansion, infiltration, and
cytotoxicity of effector T lymphocytes, thereby promoting immune
evasion (72). GAMs are a key cellular component of this
immunosuppressive niche. Their heightened expression of
indoleamine 2,3-dioxygenase-1 (IDO1) and tryptophan 2,3-
dioxygenase (TDO) initiates the catabolism of tryptophan into L-
kynurenine (L-Kyn), which activates the aryl hydrocarbon receptor
(AHR). This promotes the expansion of regulatory T cells and the
generation of tolerogenic myeloid populations, further reinforcing
local immunosuppression (73-75). This metabolic reprogramming,
orchestrated through the kynurenine pathway, facilitates tumor
progression by modulating immune cell infiltration and cytokine
secretion, creating a microenvironment that supports immune
evasion and tumor growth (76-78). Additionally, glioblastoma
cells accumulate quinolinic acid, a byproduct of the kynurenine
pathway, which activates NMDA receptors and triggers the Foxol/
PPARYy axis in GAMs, driving their polarization towards tumor-
promoting states (79, 80). In a study by Magri et al. (81),
suppression of heme oxygenase-1 (HO-1) in microglia enhanced
IL-10 production, concurrently inhibiting the STAT3/PD-L1
cascade and reducing IDO1 and ARG-2 transcription, collectively
alleviating the immunosuppressive characteristics of the TME.
Moreover, the phosphatase PP2A, in conjunction with its
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regulatory subunit STRN4, modulates Hippo signaling by
dephosphorylating MST1/2 kinases, thus stabilizing the
transcriptional co-activators YAP/TAZ. This regulatory circuit
suppresses interferon-stimulatory gene (STING) signaling, further
facilitating immune escape in glioblastoma (82). These multifaceted
interactions underscore the importance of delineating the
functional interplay between GAMs and the immunoregulatory
landscape of the TME to refine and enhance the effectiveness of
immunotherapeutic approaches in GBM (Figure 1).

4 Immunotherapy targeting GAMs

4.1 Targeting GAM recruitment and
depletion in GBM

Interrupting the infiltration of GAMs has emerged as a viable
strategy in the treatment of glioblastoma. Within the central
nervous system, CCL2 serves as a critical chemokine mediating
GAM (9, 83). In murine models of glioma, administration of a
CCR2-specific antagonist alone extended median survival, while
concurrent blockade with anti-PD-1 therapy yielded further
survival gains, substantiating its potential for early-phase clinical
evaluation (84). Osteopontin (OPN), a component of the
extracellular matrix, plays a substantial role in attracting GAMs
in a concentration-dependent manner within the tumor
microenvironment of GBM (16, 85). Secreted by tumor cells,
OPN interacts with GAMs surface receptors—particularly via
CD44—to promote chemotaxis and sustain M2-like gene
expression and cellular polarization. Inhibition or reduction of
OPN production profoundly impairs the recruitment efficiency of
the GAMs (85, 86). Further mechanistic insights from Chen et al.
(87) revealed that in GBM models deficient in PTEN, the
transcriptional coactivator YAP1 upregulates lysyl oxidase (LOX),
whose secreted form activates the 1 integrin-PYK2 signaling axis
to drive macrophage accumulation. Pharmacological suppression of
LOX consequently attenuates macrophage infiltration and limits
tumor advancement. Another regulator of the GAM landscape is
the sodium-hydrogen exchanger (NHE), specifically the SLC9A1
isoform. Overexpression of this transporter correlates with
heightened GAM density in the TME (88). In preclinical glioma
models, inhibition of NHE1 using HOE642 dampens both
macrophage infiltration and angiogenic processes, culminating in
reduced tumor expansion (89). Despite GAMs being genomically
stable and highly responsive to local environmental cues, efforts to
eradicate these cells have faced challenges. Liposome-encapsulated
clodronate, once internalized by phagocytes, induces programmed
cell death (90). However, its intracerebral delivery depletes not only
resident microglia but also inadvertently harms other neural and
vascular components, indicating insufficient specificity in targeting
GAMs (91). Therefore, such indiscriminate depletion strategies
demand careful reconsideration due to their potential off-
target effects.
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FIGURE 1
Glioma-associated microglia and macrophages in glioblastoma progression.

4.2 Therapeutic repolarization of GAMs

A promising approach to curtail glioma advancement involves
disrupting the M2 polarization state of GAMs and promoting a shift
toward an Ml-like phenotype (92, 93). Various agents—such as
CSF-1R antagonists, chlorogenic acid, inhibitors targeting mTOR,
lipopolysaccharide, curcumin-loaded phytosomes (CCP), and
duloxetine—have demonstrated efficacy in redirecting GAMs
toward an inflammatory, tumor-suppressive state, thereby
mitigating their tumor-supportive properties (94-97). Central to
this immunomodulatory process is the colony-stimulating factor 1
receptor (CSF-1R), whose blockade has been shown to reorient
CD163" macrophages away from an immunosuppressive state.
Specifically, the CSF-1R inhibitor BIZ954 enhances glioblastoma
responsiveness to radiotherapy and synergizes with anti-PD-1
immune checkpoint blockade, effectively augmenting antitumor
immunity (98, 99). Nevertheless, the impact of CSF-1R inhibition
is not uniform across glioblastoma subtypes. For instance, PLX3397
substantially inhibits PDGFB-driven gliomagenesis, yet
paradoxically accelerates RAS-driven variants and exerts minimal
influence on other proneural or mesenchymal tumor models. The
mechanisms underlying these subtype-specific differences in
response remain largely elusive (99). Additional repolarization
strategies involving small interfering RNAs (siRNAs), microRNAs
(miRNAs), or immunomodulatory cytokines face considerable
translational barriers, including cytotoxicity, limited target
specificity, and adverse systemic reactions, all of which constrain

Frontiers in Immunology

05

their clinical utility and warrant further optimization (100, 101). Tt
is also critical to consider the unintended consequences of GAMs
repolarization, as altering macrophage phenotypes may
inadvertently suppress endogenous antitumor responses or induce
systemic inflammatory side effects. A nanoparticle platform
designed to deliver mRNA encoding interferon regulatory factor 5
(IRF5) in vivo (102). Upon cellular uptake, the mRNA engages
IKKP, its activating kinase, successfully redirecting GAMs toward a
tumor-inhibitory phenotype while avoiding systemic toxicity
(102, 103).

4.3 GAMs and oncolytic virotherapy

The therapeutic action of oncolytic herpes simplex virus
(OHSV) involves not only direct lysis of tumor cells but also the
activation of a long-lasting anti-tumor immune response (104, 105).
Nevertheless, the host’s innate antiviral mechanisms frequently
suppress viral replication within the tumor, thereby limiting
oncolytic efficacy (106, 107). Among the key mediators of this
suppression TNFou secreted by GAMs has been identified as a
principal effector of apoptosis in virally infected cells,
consequently diminishing intratumoral viral spread. Inhibition of
TNFo. markedly augments viral replication in vivo and correlates
with enhanced therapeutic outcomes, as demonstrated in clinical
investigations (108, 109). Additional mechanistic studies have
revealed that phosphorylation of STATI and STAT3 impairs
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OHSV-1 propagation in GAMs (110). Notably, pharmacological
blockade of STAT1/3 signaling using the oxindole/imidazole
compound C16 facilitates increased viral replication in these
immune cells, bolstering OHSV-1’s oncolytic potential against
glioblastoma multiforme and promoting tumor regression (111).

5 Conclusion

Glioblastoma (GBM) presents a formidable clinical challenge,
underscored by its rapid progression, immune evasion, and dismal
prognosis. A defining feature of the GBM microenvironment is the
extensive infiltration of GAMs, which orchestrate a spectrum of
tumor-promoting functions—including metabolic rewiring,
angiogenesis, and immunosuppression—while remaining largely
unresponsive to current immunotherapeutic regimens. The dual
origin of GAMs, their spatial-temporal heterogeneity, and their
plasticity under dynamic cues confer both complexity and
opportunity for targeted intervention.

Emerging strategies aimed at attenuating GAMs recruitment,
depleting pro-tumor macrophages, or reprogramming their
phenotypic state have shown preclinical promise. Moreover,
modulation of GAMs signaling networks has demonstrated
synergy with immune checkpoint inhibitors and oncolytic viruses,
offering a rationale for combinatorial therapeutic regimens.
Nonetheless, challenges remain in translating these findings into
clinical benefit, including off-target effects, phenotypic rebound,
and tumor subtype-specific resistance. Future efforts must
prioritize precise GAMs subpopulation mapping, longitudinal
tracking of their functional states, and development of delivery
platforms that minimize systemic toxicity. Ultimately, targeting the
immunological plasticity of GAMs may unlock new therapeutic
potential in GBM and reshape the landscape of myeloid-
based immunotherapy.
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