

OPEN ACCESS

EDITED BY

Dengli Wang,
Okayama University, Japan

REVIEWED BY

Yunfei Liu,
Central South University, China

*CORRESPONDENCE

Jun Yan
✉ yanjun@ccmu.edu.cn

[†]These authors have contributed equally to this work

RECEIVED 16 October 2025

REVISED 29 November 2025

ACCEPTED 30 November 2025

PUBLISHED 17 December 2025

CITATION

Wang B, Li C, Gu J, Wang X, Xun M, Jiang B and Yan J (2025) Targeting glioma-associated microglia and macrophages: a new frontier in glioblastoma immunotherapy. *Front. Immunol.* 16:1726440.

doi: 10.3389/fimmu.2025.1726440

COPYRIGHT

© 2025 Wang, Li, Gu, Wang, Xun, Jiang and Yan. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Targeting glioma-associated microglia and macrophages: a new frontier in glioblastoma immunotherapy

Bingyang Wang^{1†}, Cong Li^{2†}, Jiatong Gu^{2†}, Xiaojie Wang¹,
Mingjuan Xun², Bin Jiang¹ and Jun Yan^{2*}

¹Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China

²Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China

Glioblastoma (GBM), the most aggressive and lethal subtype of glioma, remains therapeutically intractable despite advances in surgical and chemo-radiotherapy interventions. The highly immunosuppressive tumor microenvironment (TME) contributes significantly to treatment resistance and tumor recurrence. Among the predominant immune constituents, glioma-associated microglia and macrophages (GAMs) constitute a major cellular compartment, exerting profound influence on tumor progression, immune evasion, angiogenesis, and therapeutic response. These myeloid populations, derived from both yolk sac–origin microglia and bone marrow–derived macrophages, exhibit remarkable functional plasticity and are actively recruited, polarized, and reprogrammed by tumor-intrinsic and environmental cues. Recent studies have elucidated a range of molecular pathways, including chemokine signaling, metabolic reprogramming, and epigenetic modulation, that govern GAM behavior and sustain their tumor-supportive phenotype. Therapeutic strategies targeting GAM recruitment, depletion, or functional re-education toward an anti-tumor state are emerging as promising adjuncts to conventional and immune-based therapies. This review comprehensively explores the ontogeny, regulatory networks, and pathological roles of GAMs in GBM, with particular emphasis on novel immunotherapeutic approaches, including CSF-1R blockade, nanoparticle-mediated reprogramming, and oncolytic virotherapy. A deeper understanding of GAM–TME interactions will be critical to overcoming immunotherapy resistance and advancing precision immunomodulation in GBM.

KEYWORDS

glioblastoma, glioma-associated microglia/macrophages, immune evasion, immunotherapeutic strategies, polarization, tumor microenvironment

1 Introduction

Gliomas represent the most prevalent form of malignancy within the central nervous system (CNS), contributing to 80% of all malignant brain cancers (1). Among the histological subtypes, glioblastoma (GBM) stands out as the most aggressive variant, accounting for approximately 70–75% of glioma cases (2). Despite aggressive multimodal therapy—comprising extensive surgical resection followed by radiochemotherapy—the median survival for individuals diagnosed with GBM remains under 20 months (3). Furthermore, disease recurrence occurs in nearly 80% of patients, predominantly within or proximal to the original surgical margin (4). These bleak clinical outcomes highlight an urgent demand for more effective treatment modalities, with immunotherapeutic approaches emerging as a particularly promising direction in GBM care.

The tumor microenvironment (TME) has been increasingly recognized not only as a central orchestrator of tumor development and progression but also as a critical contributor to the phenotypic and molecular heterogeneity observed within GBM (5, 6). A key component of this microenvironment is the GAMs, which constitute the dominant immune cell population in gliomas. Their infiltration correlates positively with tumor grade, often making up 30–50% of the total tumor cellular content (6). GAMs exert multifaceted effects on the TME, significantly influencing tumor growth, immune suppression, and therapeutic resistance (7, 8). Accumulation of GAMs is strongly linked with glioma advancement and is indicative of unfavorable prognosis in GBM patients, underscoring their potential as crucial targets for immunomodulatory interventions (9). This review delineates the developmental origins of GAMs, outlines the signaling axes governing their recruitment and polarization, and explores their functional contributions to glioma biology. Particular focus is placed on recent progress in therapeutic strategies that aim to manipulate GAMs activity to enhance the efficacy of GBM treatments.

2 Microglia and macrophages in glioblastoma

In glioblastoma, the tumor microenvironment is marked by minimal T cell presence but a pronounced enrichment of GAMs, which collectively constitute over 30% of the infiltrating immune population within the neoplastic niche (10). This population includes both infiltrating macrophages, derived from circulating monocytes, and resident microglial cells. Monocyte-derived macrophages originate in the bone marrow, where they differentiate in response to cytokine cues before migrating into peripheral tissues (11). Conversely, microglia stem from yolk sac-derived erythromyeloid precursors and undergo lineage specification regulated by defined transcriptional programs, ultimately settling in specific compartments of the central nervous system during development (12). Importantly, GAMs exhibit the ability to self-renew and engage in competitive interactions for spatial occupancy within the TME (13). In both primary and

relapsed GBM lesions, particularly under hypoxic conditions, the majority of GAMs are derived from microglia rather than from monocytes (14).

2.1 Recruitment of microglia and macrophages

The glioblastoma tumor microenvironment harbors a dense network of chemokines and inflammatory mediators that orchestrate the recruitment of GAMs (15, 16). Substantial progress has been made in delineating the molecular underpinnings of this process. Aberrant metabolic activity within tumor cells not only alters intrinsic signaling but also remodels the surrounding stroma (17, 18). For instance, the metabolic byproduct kynurene (Kyn), produced during GBM-associated metabolic rewiring, activates aryl hydrocarbon receptor (AhR) signaling in GAMs (19, 20). This activation triggers upregulation of chemokine (C-C motif) ligand 2 (CCL2), which facilitates the directed migration of GAMs toward the tumor site (19). In addition to this ligand–receptor cascade, several signaling axes have been implicated. The guidance molecule SLIT2 engages roundabout receptors ROBO1 and ROBO2, whose expression on target cells mediates their chemoattraction. In GBM, SLIT2–ROBO interactions promote GAMs infiltration via activation of the PI3K pathway (21). Importantly, downstream of PI3K, activation of small Rho GTPases such as Rac1 and Cdc42 orchestrates actin cytoskeletal remodeling, lamellipodia and filopodia formation, and directional migration of GAMs (22, 23). These cytoskeletal changes are critical for enabling GAMs to traverse the dense extracellular matrix and reach tumor foci. Therefore, the PI3K–Rac1/Cdc42 axis represents a key mechanistic bridge linking chemotactic signaling to the physical motility of glioma-infiltrating myeloid cells (24). Moreover, the receptor tyrosine kinase mesenchymal–epithelial transition factor (MET) is notably upregulated within the TME of secondary GBM, and has been shown to initiate the STAT4–PD-L1 signaling cascade in primary GBM, thereby enhancing GAMs infiltration and contributing to immune escape mechanisms (25, 26). Epigenetic alterations in glioma cells profoundly influence the immunological landscape. Among these, N6-methyladenosine (m6A), a prevalent RNA epigenetic modification in eukaryotic cells, is subject to dynamic regulation in response to hypoxic stress (27). GBM cells elevate expression of the demethylase ALKBH5, significantly increasing GAMs accumulation in xenograft models (28, 29). Likewise, glioma stem cells (GSCs), through persistent transcriptional and epigenetic remodeling, activate gene expression programs characteristic of bone marrow-derived lineages, which in turn amplify GAMs recruitment (30).

2.2 Polarization of GAMs

GAMs exhibit functional plasticity, shifting between pro-inflammatory, tumor-suppressive M1-like states and anti-inflammatory, tumor-supportive M2-like phenotypes (31). These

subsets are not rigidly fixed and can transition bidirectionally depending on local cues. The M2-like subset comprises several variants—namely M2a, M2b, M2c, and M2d—that span a spectrum of functional states (32, 33). In the process of acquiring the M2 phenotype, GAMs secrete immunomodulatory and tumor-promoting factors such as TGF- β , epidermal growth factor (EGF), IL-10, and the proteolytic enzymes MMP-2 and MMP-9, thereby reinforcing an immunosuppressive tumor milieu within the glioblastoma microenvironment (31, 34). Among these M2 subtypes, M2a macrophages—typically induced by IL-4/IL-13—are associated with tissue repair and wound healing, whereas M2d macrophages, often driven by IL-6 and adenosine signaling, promote tumor angiogenesis and immunosuppression (35). Recent single-cell transcriptomic and spatial profiling studies of human GBM specimens have indicated a predominance of M2d-like polarization signatures within the GAM compartment, particularly localized around perivascular niches, suggesting their functional relevance in supporting neovascularization and immune evasion in GBM (36–38). In contrast, M2a-like signatures appear more spatially restricted and are enriched in regions undergoing tissue remodeling or repair post-therapy, indicating a context-dependent distribution of M2 subtypes (38).

Cytokines are pivotal regulators orchestrating GAMs polarization in the tumor microenvironment (39). Evidence from both murine glioma models and human GBM specimens reveals that IL-33 enhances the expression of M2-associated markers, thereby skewing GAMs toward an M2-biased profile. Conversely, genetic ablation of IL-33 compromises this polarization trajectory (40). The IL-6 and IL-6R axis also exerts a significant influence. GBM-infiltrating GAMs expressing β -site amyloid precursor protein cleaving enzyme 1 (BACE1) or T cell immunoglobulin and mucin-domain containing-3 (TIM-3) engage IL-6R, triggering downstream signaling pathways that perpetuate their pro-tumorigenic and anti-inflammatory state. Notably, inhibition of BACE1 pharmacologically has been shown to redirect GAMs toward a tumor-restraining phenotype. Additionally, IL-6R blockade has been demonstrated to impede tumor progression *in vivo* (41, 42). BACE1 also modulates the polarization of GAMs through activation of the JAK/STAT3 signaling pathway, a critical driver of immunosuppressive mechanisms in glioma. BACE1 activation has been linked to JAK/STAT3 pathway activation, which enhances the M2-like polarization of GAMs (43). This pathway promotes immune suppression by upregulating the secretion of cytokines such as IL-10 and TGF- β , and by inhibiting the cytotoxic functions of tumor-infiltrating immune cells (44, 45). In particular, the activation of JAK/STAT3 by BACE1 contributes to a feedback loop that perpetuates a pro-tumorigenic and immune-evasive environment within the glioma TME (41, 46). Furthermore, chemotherapeutic agents such as temozolomide (TMZ), the standard treatment for GBM, may also modulate GAMs phenotypic plasticity. Certain TMZ-responsive long noncoding RNAs have been implicated in driving microglial polarization toward the M2 state, thereby fostering drug resistance (46). In contrast, GBM cells treated with TMZ can release high-mobility group box 1 (HMGB1), which activates the NF- κ B-NLRP3

inflammasome signaling axis in GAMs, thus promoting their differentiation into the M1 subtype (47, 48).

3 Functions of GAMs

3.1 Enhancement of glioma cell growth and infiltrative potential

Within the tumor microenvironment, metabolic rewiring serves as a critical determinant of glioma cell proliferation and invasiveness (49, 50). Among glioma-associated GAMs, those exhibiting an M2 phenotype secrete IL-1 β , which activates protein kinase δ through the PI3K cascade (51, 52). This signaling leads to phosphorylation of glycerol-3-phosphate dehydrogenase at threonine 10, subsequently boosting glycolytic flux and promoting tumor cell proliferation (51). Moreover, exosomes released by glioblastoma cells (GBex) have been shown to convert M1 macrophages toward a tumor-supportive phenotype and reinforce M2-like characteristics (53, 54). These GBex-educated GAMs secrete vesicles enriched with arginase-1 (ARG-1), a metabolic enzyme that further drives glioma cell propagation (55, 56). Chemokine-mediated signaling within the TME also governs tumor invasion by facilitating immune cell trafficking and directly influencing cancer cell behavior. For instance, CCL8, abundantly produced by GAMs, enhances glioma cell pseudopod extension and interacts with CCR1 and CCR5 receptors on tumor surfaces (57, 58). This ligand-receptor engagement triggers ERK1/2 phosphorylation, potentiating cellular invasiveness. In parallel, GAMs-derived CCL5 stimulates glioma motility and matrix degradation by activating MMP-2 through a calcium-dependent pathway (57, 59). These findings delineate a multifaceted regulatory axis wherein GAMs, via metabolic and chemokine-driven mechanisms, accelerate glioma progression and invasion.

3.2 Tumor angiogenesis facilitation

Neovascularization plays a fundamental role in sustaining tumor expansion, with endothelial cell activation acting as a key initiating event in this process (60, 61). Glioblastoma-derived IL-8 and CCL2 chemokines can activate glioma-associated GAMs, which, in turn, secrete TNF- α , thereby triggering gene expression programs in ECs characteristic of an activated state (62, 63). In a murine glioblastoma setting, administration of the bevacizumab analog B20.4.1.1 was associated with heightened TNF- α release by GAMs and increased endothelial activation—findings that may underlie the observed inefficacy of anti-angiogenic strategies in glioblastoma treatment (63, 64). Vascular endothelial growth factor (VEGF) is widely recognized as a core component of the pro-angiogenic signaling milieu. In glioblastoma cells deficient in the tumor suppressor PTEN, aberrant activation of the AKT-CSK9 β -IRF9 axis promotes the overproduction of galectin-9 (65, 66). This lectin interacts with the Tim-2 receptor on GAMs, enhancing their M2-like polarization, which subsequently leads to

VEGF-A secretion and stimulation of neovascular formation to support glioma progression (67). Furthermore, recent evidence has revealed that GAMs play an essential role in the modulation of angiogenesis via the activation of intracellular calcium flux (9, 68, 69). GAM-derived signals, particularly TNF- α , activate the phospholipase C (PLC) pathway, which triggers calcium influx and activates protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII) (59, 63). This signaling cascade reinforces the notion that GAMs, through calcium-mediated signaling and VEGF production, play a pivotal role in glioma-associated angiogenesis and tumor progression. In addition, research by Blank et al. revealed that GAMs, in collaboration with granulocytes, may facilitate angiogenesis through VEGF-independent mechanisms by releasing alternative angiogenic mediators, thereby contributing to resistance against conventional VEGF-targeted therapies (70). These findings underscore the necessity of in-depth mechanistic dissection of the interactions between GAMs and vascular remodeling processes within the tumor microenvironment.

3.3 Immunosuppressive conditioning of the glioblastoma tumor microenvironment

The establishment of an immunosuppressive tumor microenvironment is a critical mechanism by which glioblastoma circumvents immune detection and enables immune escape (43, 71). In GAMs, activation of the mammalian target of rapamycin (mTOR) signaling is driven through transcriptional programs orchestrated by STAT3 and NF- κ B, culminating in a suppressive microglial phenotype that restricts the expansion, infiltration, and cytotoxicity of effector T lymphocytes, thereby promoting immune evasion (72). GAMs are a key cellular component of this immunosuppressive niche. Their heightened expression of indoleamine 2,3-dioxygenase-1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) initiates the catabolism of tryptophan into L-tryptophane (L-Kyn), which activates the aryl hydrocarbon receptor (AHR). This promotes the expansion of regulatory T cells and the generation of tolerogenic myeloid populations, further reinforcing local immunosuppression (73–75). This metabolic reprogramming, orchestrated through the kynurene pathway, facilitates tumor progression by modulating immune cell infiltration and cytokine secretion, creating a microenvironment that supports immune evasion and tumor growth (76–78). Additionally, glioblastoma cells accumulate quinolinic acid, a byproduct of the kynurene pathway, which activates NMDA receptors and triggers the Foxo1/PPAR γ axis in GAMs, driving their polarization towards tumor-promoting states (79, 80). In a study by Magri et al. (81), suppression of heme oxygenase-1 (HO-1) in microglia enhanced IL-10 production, concurrently inhibiting the STAT3/PD-L1 cascade and reducing IDO1 and ARG-2 transcription, collectively alleviating the immunosuppressive characteristics of the TME. Moreover, the phosphatase PP2A, in conjunction with its

regulatory subunit STRN4, modulates Hippo signaling by dephosphorylating MST1/2 kinases, thus stabilizing the transcriptional co-activators YAP/TAZ. This regulatory circuit suppresses interferon-stimulatory gene (STING) signaling, further facilitating immune escape in glioblastoma (82). These multifaceted interactions underscore the importance of delineating the functional interplay between GAMs and the immunoregulatory landscape of the TME to refine and enhance the effectiveness of immunotherapeutic approaches in GBM (Figure 1).

4 Immunotherapy targeting GAMs

4.1 Targeting GAM recruitment and depletion in GBM

Interrupting the infiltration of GAMs has emerged as a viable strategy in the treatment of glioblastoma. Within the central nervous system, CCL2 serves as a critical chemokine mediating GAM (9, 83). In murine models of glioma, administration of a CCR2-specific antagonist alone extended median survival, while concurrent blockade with anti-PD-1 therapy yielded further survival gains, substantiating its potential for early-phase clinical evaluation (84). Osteopontin (OPN), a component of the extracellular matrix, plays a substantial role in attracting GAMs in a concentration-dependent manner within the tumor microenvironment of GBM (16, 85). Secreted by tumor cells, OPN interacts with GAMs surface receptors—particularly via CD44—to promote chemotaxis and sustain M2-like gene expression and cellular polarization. Inhibition or reduction of OPN production profoundly impairs the recruitment efficiency of the GAMs (85, 86). Further mechanistic insights from Chen et al. (87) revealed that in GBM models deficient in PTEN, the transcriptional coactivator YAP1 upregulates lysyl oxidase (LOX), whose secreted form activates the β 1 integrin–PYK2 signaling axis to drive macrophage accumulation. Pharmacological suppression of LOX consequently attenuates macrophage infiltration and limits tumor advancement. Another regulator of the GAM landscape is the sodium–hydrogen exchanger (NHE), specifically the SLC9A1 isoform. Overexpression of this transporter correlates with heightened GAM density in the TME (88). In preclinical glioma models, inhibition of NHE1 using HOE642 dampens both macrophage infiltration and angiogenic processes, culminating in reduced tumor expansion (89). Despite GAMs being genetically stable and highly responsive to local environmental cues, efforts to eradicate these cells have faced challenges. Liposome-encapsulated clodronate, once internalized by phagocytes, induces programmed cell death (90). However, its intracerebral delivery depletes not only resident microglia but also inadvertently harms other neural and vascular components, indicating insufficient specificity in targeting GAMs (91). Therefore, such indiscriminate depletion strategies demand careful reconsideration due to their potential off-target effects.

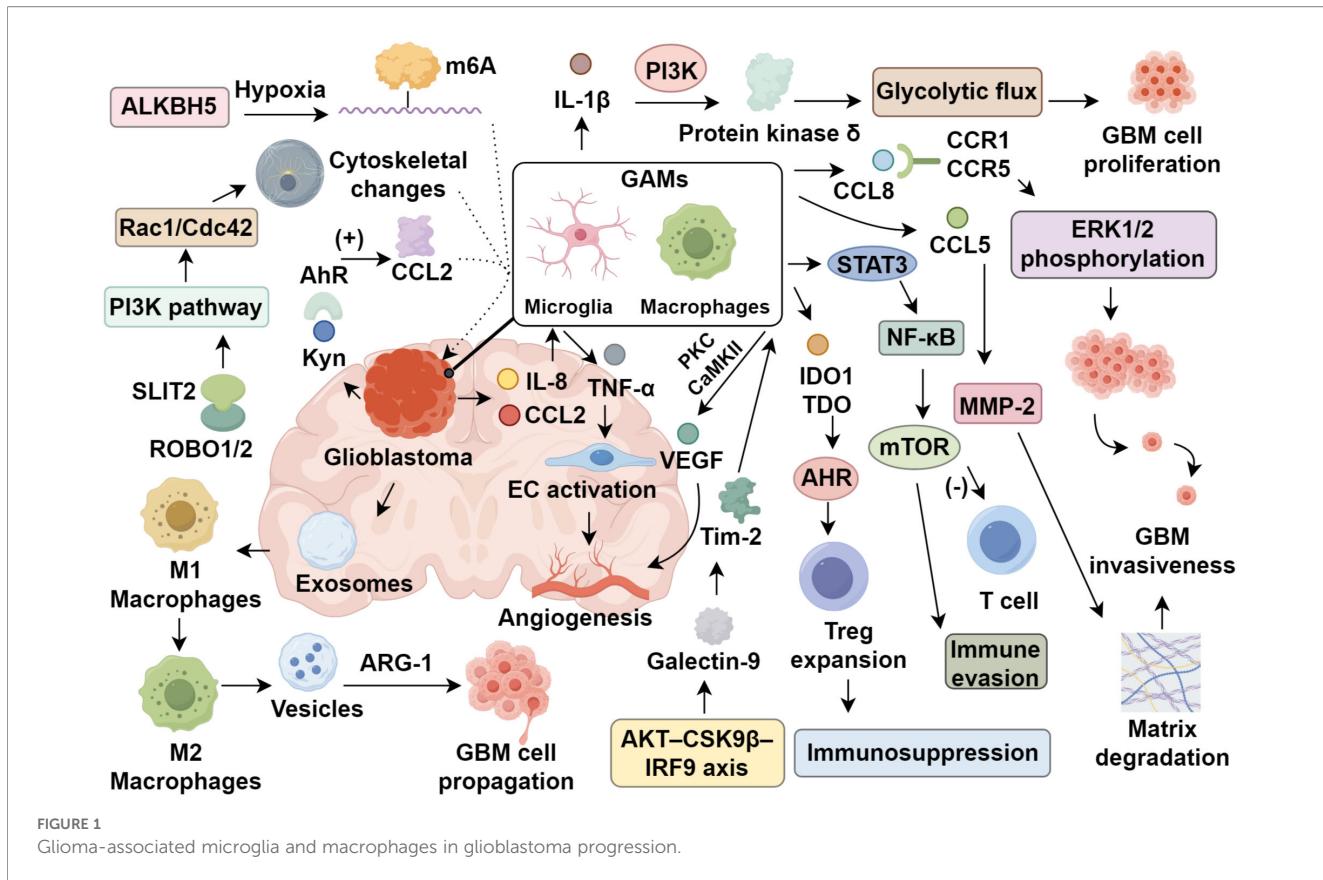


FIGURE 1
Glioma-associated microglia and macrophages in glioblastoma progression.

4.2 Therapeutic repolarization of GAMs

A promising approach to curtail glioma advancement involves disrupting the M2 polarization state of GAMs and promoting a shift toward an M1-like phenotype (92, 93). Various agents—such as CSF-1R antagonists, chlorogenic acid, inhibitors targeting mTOR, lipopolysaccharide, curcumin-loaded phytosomes (CCP), and duloxetine—have demonstrated efficacy in redirecting GAMs toward an inflammatory, tumor-suppressive state, thereby mitigating their tumor-supportive properties (94–97). Central to this immunomodulatory process is the colony-stimulating factor 1 receptor (CSF-1R), whose blockade has been shown to reorient CD163⁺ macrophages away from an immunosuppressive state. Specifically, the CSF-1R inhibitor BIZ954 enhances glioblastoma responsiveness to radiotherapy and synergizes with anti-PD-1 immune checkpoint blockade, effectively augmenting antitumor immunity (98, 99). Nevertheless, the impact of CSF-1R inhibition is not uniform across glioblastoma subtypes. For instance, PLX3397 substantially inhibits PDGFB-driven gliomagenesis, yet paradoxically accelerates RAS-driven variants and exerts minimal influence on other proneural or mesenchymal tumor models. The mechanisms underlying these subtype-specific differences in response remain largely elusive (99). Additional repolarization strategies involving small interfering RNAs (siRNAs), microRNAs (miRNAs), or immunomodulatory cytokines face considerable translational barriers, including cytotoxicity, limited target specificity, and adverse systemic reactions, all of which constrain

their clinical utility and warrant further optimization (100, 101). It is also critical to consider the unintended consequences of GAMs repolarization, as altering macrophage phenotypes may inadvertently suppress endogenous antitumor responses or induce systemic inflammatory side effects. A nanoparticle platform designed to deliver mRNA encoding interferon regulatory factor 5 (IRF5) *in vivo* (102). Upon cellular uptake, the mRNA engages IKK β , its activating kinase, successfully redirecting GAMs toward a tumor-inhibitory phenotype while avoiding systemic toxicity (102, 103).

4.3 GAMs and oncolytic virotherapy

The therapeutic action of oncolytic herpes simplex virus (OHSV) involves not only direct lysis of tumor cells but also the activation of a long-lasting anti-tumor immune response (104, 105). Nevertheless, the host's innate antiviral mechanisms frequently suppress viral replication within the tumor, thereby limiting oncolytic efficacy (106, 107). Among the key mediators of this suppression TNF α secreted by GAMs has been identified as a principal effector of apoptosis in virally infected cells, consequently diminishing intratumoral viral spread. Inhibition of TNF α markedly augments viral replication *in vivo* and correlates with enhanced therapeutic outcomes, as demonstrated in clinical investigations (108, 109). Additional mechanistic studies have revealed that phosphorylation of STAT1 and STAT3 impairs

OHSV-1 propagation in GAMs (110). Notably, pharmacological blockade of STAT1/3 signaling using the oxindole/imidazole compound C16 facilitates increased viral replication in these immune cells, bolstering OHSV-1's oncolytic potential against glioblastoma multiforme and promoting tumor regression (111).

5 Conclusion

Glioblastoma (GBM) presents a formidable clinical challenge, underscored by its rapid progression, immune evasion, and dismal prognosis. A defining feature of the GBM microenvironment is the extensive infiltration of GAMs, which orchestrate a spectrum of tumor-promoting functions—including metabolic rewiring, angiogenesis, and immunosuppression—while remaining largely unresponsive to current immunotherapeutic regimens. The dual origin of GAMs, their spatial-temporal heterogeneity, and their plasticity under dynamic cues confer both complexity and opportunity for targeted intervention.

Emerging strategies aimed at attenuating GAMs recruitment, depleting pro-tumor macrophages, or reprogramming their phenotypic state have shown preclinical promise. Moreover, modulation of GAMs signaling networks has demonstrated synergy with immune checkpoint inhibitors and oncolytic viruses, offering a rationale for combinatorial therapeutic regimens. Nonetheless, challenges remain in translating these findings into clinical benefit, including off-target effects, phenotypic rebound, and tumor subtype-specific resistance. Future efforts must prioritize precise GAMs subpopulation mapping, longitudinal tracking of their functional states, and development of delivery platforms that minimize systemic toxicity. Ultimately, targeting the immunological plasticity of GAMs may unlock new therapeutic potential in GBM and reshape the landscape of myeloid-based immunotherapy.

Author contributions

BW: Writing – original draft. CL: Writing – original draft. JG: Writing – original draft. XW: Writing – original draft.

MX: Writing – original draft. BJ: Writing – original draft. JY: Writing – original draft, Writing – review & editing.

Funding

The author(s) declared that financial support was received for this work and/or its publication. This work was supported by Major Science and Technology Initiatives in the Health System of Nanshan District, Shenzhen (NSZD2023053).

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Mohsen Naghavi, Hmwe Hmwe Kyu, Bhoomadevi A, Mohammad Amin Aalipour, Hasan Aalruz, Hazim S Ababneh, et al. Global burden of 292 causes of death in 204 countries and territories and 660 subnational locations, 1990-2023: a systematic analysis for the Global Burden of Disease Study 2023. *Lancet.* (2025) 406:1811-72. doi: 10.1016/S0140-6736(25)01917-8
2. Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziae E, Salami A, et al. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. *Mol Cancer.* (2025) 24:58. doi: 10.1186/s12943-025-02267-0
3. Bausart M, Préat V, Malfanti A. Immunotherapy for glioblastoma: the promise of combination strategies. *J Exp Clin Cancer Res.* (2022) 41:35. doi: 10.1186/s13046-022-02251-2
4. van Solinge TS, Nieland L, Chiocca EA, Broekman MLD. Advances in local therapy for glioblastoma - taking the fight to the tumour. *Nat Rev Neurol.* (2022) 18:221-36. doi: 10.1038/s41582-022-00621-0
5. De Leo A, Ugolini A, Yu X, Scirocchi F, Scocozza D, Peixoto B, et al. Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. *Immunity.* (2024) 57:1105-1123.e1108. doi: 10.1016/j.jimmuni.2024.04.006
6. Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: Current and emerging concepts. *Neurooncol Adv.* (2023) 5:vdad009. doi: 10.1093/noajnl/vdad009
7. Solomou G, Young AMH, Bulstrode H. Microglia and macrophages in glioblastoma: landscapes and treatment directions. *Mol Oncol.* (2024) 18:2906-26. doi: 10.1002/1878-0261.13657
8. Hara T, Chanoch-Myers R, Mathewson ND, Myskiw C, Atta L, Bussema L, et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. *Cancer Cell.* (2021) 39:779-792.e711. doi: 10.1016/j.ccr.2021.05.002

9. Lin C, Wang N, Xu C. Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy. *Front Immunol.* (2023) 14:1123853. doi: 10.3389/fimmu.2023.1123853
10. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. *Nat Neurosci.* (2016) 19:20–7. doi: 10.1038/nn.4185
11. Teh YC, Ding JL, Ng LG, Chong SZ. Capturing the fantastic voyage of monocytes through time and space. *Front Immunol.* (2019) 10:834. doi: 10.3389/fimmu.2019.00834
12. Wurm J, Konttinen H, Andressen C, Malm T, Spittau B. Microglia development and maturation and its implications for induction of microglia-like cells from human iPSCs. *Int J Mol Sci.* (2021) 22:3088. doi: 10.3390/ijms22063088
13. Xu C, Xiao M, Li X, Xin L, Song J, Zhan Q, et al. Origin, activation, and targeted therapy of glioma-associated macrophages. *Front Immunol.* (2022) 13:974996. doi: 10.3389/fimmu.2022.974996
14. Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoran A, Duerinck J, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. *Nat Neurosci.* (2021) 24:595–610. doi: 10.1038/s41593-020-00789-y
15. Yeo ECF, Brown MP, Gargett T, Ebert LM. The role of cytokines and chemokines in shaping the immune microenvironment of glioblastoma: implications for immunotherapy. *Cells.* (2021) 10:607. doi: 10.3390/cells10030607
16. Zhou X, Jin G, Zhang J, Liu F. Recruitment mechanisms and therapeutic implications of tumor-associated macrophages in the glioma microenvironment. *Front Immunol.* (2023) 14:1067641. doi: 10.3389/fimmu.2023.1067641
17. Schwörer S, Vardhana SA, Thompson CB. Cancer metabolism drives a stromal regenerative response. *Cell Metab.* (2019) 29:576–91. doi: 10.1016/j.cmet.2019.01.015
18. Huang K, Han Y, Chen Y, Shen H, Zeng S, Cai C. Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy. *Mol Cancer.* (2025) 24:7. doi: 10.1186/s12943-024-02205-6
19. Takenaka MC, Gabriely G, Rothhammer V, Mascanfroni ID, Wheeler MA, Chao CC, et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. *Nat Neurosci.* (2019) 22:729–40. doi: 10.1038/s41593-019-0370-y
20. Khan F, Pang L, Dunteman M, Lesniak MS, Heimberger AB, Chen P. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. *J Clin Invest.* (2023) 133:e163446. doi: 10.1172/JCI163446
21. Geraldo LH, Xu Y, Jacob L, Pibouin-Fragner L, Rao R, Maissa N, et al. SLIT2/ROBO signaling in tumor-associated microglia and macrophages drives glioblastoma immunosuppression and vascular dysmorphia. *J Clin Invest.* (2021) 131:e141083. doi: 10.1172/JCI141083
22. Campa CC, Ciraolo E, Ghigo A, Germena G, Hirsch E. Crossroads of PI3K and Rac pathways. *Small GTPases.* (2015) 6:71–80. doi: 10.4161/cb.21541248.2014.989789
23. Qi Y, Yu CH. PI(3,4,5)P3-mediated Cdc42 activation regulates macrophage podosome assembly. *Cell Mol Life Sci.* (2025) 82:127. doi: 10.1007/s00018-025-05664-2
24. Ma N, Xu E, Luo Q, Song G. Rac1: A regulator of cell migration and a potential target for cancer therapy. *Molecules.* (2023) 28:2976. doi: 10.3390/molecules28072976
25. Wang QW, Sun LH, Zhang Y, Wang Z, Zhao Z, Wang ZL, et al. MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated macrophages-mediated immunosuppression in primary glioblastomas. *J Immunother Cancer.* (2021) 9:e002451. doi: 10.1136/jitc-2021-002451
26. Guo X, Wang G. Advances in research on immune escape mechanism of glioma. *CNS Neurosci Ther.* (2023) 29:1709–20. doi: 10.1111/cns.14217
27. Chai RC, Wu F, Wang QX, Zhang S, Zhang KN, Liu YQ, et al. m(6)A RNA methylation regulators contribute to Malignant progression and have clinical prognostic impact in gliomas. *Aging (Albany NY).* (2019) 11:1204–25. doi: 10.18632/aging.101829
28. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. *Cancer Cell.* (2017) 31:591–606.e596. doi: 10.1016/j.ccr.2017.02.013
29. Wei C, Wang B, Peng D, Zhang X, Li Z, Luo L, et al. Pan-cancer analysis shows that ALKBH5 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including gliomas. *Front Immunol.* (2022) 13:849592. doi: 10.3389/fimmu.2022.849592
30. Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. *Cell.* (2021) 184:2454–2470.e2426. doi: 10.1016/j.cell.2021.03.023
31. Buonfiglioli A, Hambardzumyan D. Macrophages and microglia: the cerberus of glioblastoma. *Acta Neuropathol Commun.* (2021) 9:54. doi: 10.1186/s40478-021-01156-z
32. Luo M, Zhao F, Cheng H, Su M, Wang Y. Macrophage polarization: an important role in inflammatory diseases. *Front Immunol.* (2024) 15:1352946. doi: 10.3389/fimmu.2024.1352946
33. Strizova Z, Benesova I, Bartolini R, Novyseckla R, Cecrdlova E, Foley LK, et al. M1/M2 macrophages and their overlaps - myth or reality? *Clin Sci (Lond).* (2023) 137:1067–93. doi: 10.1042/CS20220531
34. Grégoire H, Roncali L, Rousseau A, Chérel M, Delneste Y, Jeannin P, et al. Targeting tumor associated macrophages to overcome conventional treatment resistance in glioblastoma. *Front Pharmacol.* (2020) 11:368. doi: 10.3389/fphar.2020.00368
35. Ricketts TD, Prieto-Dominguez N, Gowda PS, Ubil E. Mechanisms of macrophage plasticity in the tumor environment: manipulating activation state to improve outcomes. *Front Immunol.* (2021) 12:642285. doi: 10.3389/fimmu.2021.642285
36. Müller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. *Genome Biol.* (2017) 18:234. doi: 10.1186/s13059-017-1362-4
37. Onubogu U, Gatenbee CD, Prabhakaran S, Wolfe KL, Oakes B, Salatino R, et al. Spatial analysis of recurrent glioblastoma reveals perivascular niche organization. *JCI Insight.* (2024) 9:e179853. doi: 10.1172/jci.insight.179853
38. Zhao W, Zhang Z, Xie M, Ding F, Zheng X, Sun S, et al. Exploring tumor-associated macrophages in glioblastoma: from diversity to therapy. *NPJ Precis Oncol.* (2025) 9:126. doi: 10.1038/s41698-025-00920-x
39. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. *Nat Rev Clin Oncol.* (2022) 19:237–53. doi: 10.1038/s41571-021-00588-9
40. De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, et al. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. *Nat Commun.* (2020) 11:4997. doi: 10.1038/s41467-020-18569-4
41. Zhai K, Huang Z, Huang Q, Tao W, Fang X, Zhang A, et al. Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. *Nat Cancer.* (2021) 2:1136–51. doi: 10.1038/s43018-021-00267-9
42. Guo Q, Shen S, Guan G, Zhu C, Zou C, Cao J, et al. Cancer cell intrinsic TIM-3 induces glioblastoma progression. *iScience.* (2022) 25:105329. doi: 10.1016/j.isci.2022.105329
43. Chen J, Wu Q, Berglund AE, Macaulay RJ, Mulé JJ, Etame AB. Tumor-associated macrophages in glioblastoma: mechanisms of tumor progression and therapeutic strategies. *Cells.* (2025) 14:1458. doi: 10.3390/cells14181458
44. Zhang H, Luo YB, Wu W, Zhang L, Wang Z, Dai Z, et al. The molecular feature of macrophages in tumor immune microenvironment of glioma patients. *Comput Struct Biotechnol J.* (2021) 19:4603–18. doi: 10.1016/j.csbj.2021.08.019
45. Verdeil G, Lawrence T, Schmitt-Verhulst AM, Auphan-Anezin N. Targeting STAT3 and STAT5 in tumor-associated immune cells to improve immunotherapy. *Cancers (Basel).* (2019) 11:1832. doi: 10.3390/cancers11121832
46. Xia T, Zhang M, Lei W, Yang R, Fu S, Fan Z, et al. Advances in the role of STAT3 in macrophage polarization. *Front Immunol.* (2023) 14:1160719. doi: 10.3389/fimmu.2023.1160719
47. Li Z, Fu WJ, Chen XQ, Wang S, Deng RS, Tang XP, et al. Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization. *J Exp Clin Cancer Res.* (2022) 41:74. doi: 10.1186/s13046-022-02291-8
48. Sim J, Park J, Moon JS, Lim J. Dysregulation of inflammasome activation in glioma. *Cell Commun Signal.* (2023) 21:239. doi: 10.1186/s12964-023-01255-5
49. El Khayari A, Bouchma N, Taib B, Wei Z, Zeng A, El Fatimy R. Metabolic rewiring in glioblastoma cancer: EGFR, IDH and beyond. *Front Oncol.* (2022) 12:901951. doi: 10.3389/fonc.2022.901951
50. Scott AJ, Mittal A, Meghdabi B, O'Brien A, Bailleul J, Sravya P, et al. Rewiring of cortical glucose metabolism fuels human brain cancer growth. *Nature.* (2025) 646:413–22. doi: 10.1038/s41586-025-09460-7
51. Lu J, Xu Z, Duan H, Ji H, Zhen Z, Li B, et al. Tumor-associated macrophage interleukin-β promotes glycerol-3-phosphate dehydrogenase activation, glycolysis and tumorigenesis in glioma cells. *Cancer Sci.* (2020) 111:1979–90. doi: 10.1111/cas.14408
52. Liu X, Liu Y, Qi Y, Huang Y, Hu F, Dong F, et al. Signal pathways involved in the interaction between tumor-associated macrophages/TAMs and glioblastoma cells. *Front Oncol.* (2022) 12:822085. doi: 10.3389/fonc.2022.822085
53. Krapet G, Kouter K, Jovčevska I, Videtič Paska A. Dynamic intercell communication between glioblastoma and microenvironment through extracellular vesicles. *Biomedicines.* (2022) 10:151. doi: 10.3390/biomedicines10010151
54. Balaşa A, Šerban G, Chinezu R, Hurghiş C, Tămaş F, Manu D. The involvement of exosomes in glioblastoma development, diagnosis, prognosis, and treatment. *Brain Sci.* (2020) 10:553. doi: 10.3390/brainsci10080553
55. Azambuja JH, Ludwig N, Yerneni SS, Braganhol E, Whiteside TL. Arginase-1+ Exosomes from reprogrammed macrophages promote glioblastoma progression. *Int J Mol Sci.* (2020) 21:3990. doi: 10.3390/ijms21113990
56. Guo X, Sui R, Piao H. Exosomes-mediated crosstalk between glioma and immune cells in the tumor microenvironment. *CNS Neurosci Ther.* (2023) 29:2074–85. doi: 10.1111/cns.14239

57. Zhang X, Chen L, Dang WQ, Cao MF, Xiao JF, Lv SQ, et al. CCL8 secreted by tumor-associated macrophages promotes invasion and stemness of glioblastoma cells via ERK1/2 signaling. *Lab Invest.* (2020) 100:619–29. doi: 10.1038/s41374-019-0345-3

58. Ross JL, Puigdelloses-Vallcorba M, Piñero G, Soni N, Thomason W, DeSisto J, et al. Microglia and monocyte-derived macrophages drive progression of pediatric high-grade gliomas and are transcriptionally shaped by histone mutations. *Immunity* (2024) 57:2669–2687.e2666. doi: 10.1016/j.jimmuni.2024.09.007

59. Yu-Ju Wu C, Chen CH, Lin CY, Feng LY, Lin YC, Wei KC, et al. CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2. *Neuro Oncol.* (2020) 22:253–66. doi: 10.1093/neuonc/noz189

60. Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, et al. Understanding neovascularization in glioblastoma: insights from the current literature. *Int J Mol Sci.* (2025) 26:2763. doi: 10.3390/ijms26062763

61. Castellani G, Buccarelli M, D'Alessandris QG, De Luca G, Ilari R, Pedini F, et al. DUSP8 as a regulator of glioblastoma stem-like cell contribution to tumor vascularization. *J Exp Clin Cancer Res.* (2025) 44:269. doi: 10.1186/s13046-025-03515-3

62. Aleman OR, Quintero JC, Camacho-Arroyo I. The language of glioblastoma: A tale of cytokines and sex hormones communication. *Neurooncol Adv.* (2025) 7:vdaf017. doi: 10.1093/noajnl/vdaf017

63. Wei Q, Singh O, Ekinci C, Gill J, Li M, Mamatjan Y, et al. TNF α secreted by glioma associated macrophages promotes endothelial activation and resistance against anti-angiogenic therapy. *Acta Neuropathol Commun.* (2021) 9:67. doi: 10.1186/s40478-021-01163-0

64. Erbani J, Boon M, Akkari L. Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. *Semin Cancer Biol.* (2022) 86:41–56. doi: 10.1016/j.semcan.2022.05.003

65. Sanchez JC, Pierpont TM, Argueta-Zamora D, Wilson K, August A, Cerione RA. PTEN loss in glioma cell lines leads to increased extracellular vesicle biogenesis and PD-L1 cargo in a PI3K-dependent manner. *J Biol Chem.* (2025) 301:108143. doi: 10.1016/j.jbc.2024.108143

66. Cahuzac KM, Lubin A, Bosch K, Stokes N, Shoenfeld SM, Zhou R, et al. AKT activation because of PTEN loss upregulates xCT via GSK3 β /NRF2, leading to inhibition of ferroptosis in PTEN-mutant tumor cells. *Cell Rep.* (2023) 42:112536. doi: 10.1016/j.celrep.2023.112536

67. Ni X, Wu W, Sun X, Ma J, Yu Z, He X, et al. Interrogating glioma-M2 macrophage interactions identifies Gal-9/Tim-3 as a viable target against PTEN-null glioblastoma. *Sci Adv.* (2022) 8:eabl5165. doi: 10.14791/btrt.2022.10.Supp1

68. Bae E, Huang P, Müller-Greven G, Hambardzumyan D, Sloan AE, Nowacki AS, et al. Integrin α 3 β 1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis. *Nat Commun.* (2022) 13:4268. doi: 10.1038/s41467-022-31981-2

69. Zalpoor H, Azizian F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, et al. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. *Cell Commun Signal.* (2022) 20:186. doi: 10.1186/s12964-022-00951-y

70. Blank A, Kremenetskaia I, Urbantat RM, Acker G, Turkowski K, Radke J, et al. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. *J Pathol.* (2021) 253:160–73. doi: 10.1002/path.5569

71. Jiang D, Li Y. Unraveling the immunosuppressive microenvironment of glioblastoma and advancements in treatment. *Front Immunol.* (2025) 16:1590781. doi: 10.3389/fimmu.2025.1590781

72. Dumas AA, Pomella N, Rosser G, Guglielmi L, Vinel C, Millner TO, et al. Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment. *EMBO J.* (2020) 39:e103790. doi: 10.15252/embj.2019103790

73. Campesato LF, Budhu S, Tchaicha J, Weng CH, Gigoux M, Cohen IJ, et al. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenone. *Nat Commun.* (2020) 11:4011. doi: 10.1038/s41467-020-17750-z

74. Xu Y, Zhang H, Sun Q, Geng R, Yuan F, Liu B, et al. Immunomodulatory effects of tryptophan metabolism in the glioma tumor microenvironment. *Front Immunol.* (2021) 12:730289. doi: 10.3389/fimmu.2021.730289

75. Adams S, Teo C, McDonald KL, Zinger A, Bustamante S, Lim CK, et al. Involvement of the kynurene pathway in human glioma pathophysiology. *Plos One.* (2014) 9:e112945. doi: 10.1371/journal.pone.0112945

76. Jennings MR, Munn D, Blazek J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. *J Immunother Cancer.* (2021) 9:e003013. doi: 10.1136/jitc-2021-003013

77. Gouasmi R, Ferraro-Peyret C, Nancey S, Coste I, Renno T, Chaveroux C, et al. The kynurene pathway and cancer: why keep it simple when you can make it complicated. *Cancers (Basel).* (2022) 14:2793. doi: 10.3390/cancers14112793

78. Jacquerie A, Hoeben A, Eekers DBP, Postma AA, Vanmechelen M, de Smet F, et al. Prognostic relevance of high expression of kynurene pathway markers in glioblastoma. *Sci Rep.* (2024) 14:14975. doi: 10.1038/s41598-024-65907-3

79. Kesarwani P, Kant S, Zhao Y, Prabhu A, Buelow KL, Miller CR, et al. Quinolinolate promotes macrophage-induced immune tolerance in glioblastoma through the NMDAR/PPAR γ signaling axis. *Nat Commun.* (2023) 14:1459. doi: 10.1038/s41467-023-37170-z

80. Stone TW, Williams RO. Interactions of IDO and the kynurene pathway with cell transduction systems and metabolism at the inflammation-cancer interface. *Cancers (Basel).* (2023) 15:2895. doi: 10.3390/cancers15112895

81. Magri S, Musca B, Pinton L, Orechini E, Belladonna ML, Orabona C, et al. The immunosuppression pathway of tumor-associated macrophages is controlled by heme oxygenase-1 in glioblastoma patients. *Int J Cancer.* (2022) 151:2265–77. doi: 10.1002/ijc.34270

82. Ho WS, Mondal I, Xu B, Das O, Sun R, Chiou P, et al. PP2Ac/STRN4 negatively regulates STING-type I IFN signaling in tumor-associated macrophages. *J Clin Invest.* (2023) 133:e162139. doi: 10.1172/JCI162139

83. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. *Cancer Res.* (2016) 76:5671–82. doi: 10.1158/0008-5472.CAN-16-0144

84. Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Charo IF, et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. *Proc Natl Acad Sci U.S.A.* (2020) 117:1129–38. doi: 10.1073/pnas.1910856117

85. Wei J, Marisetty A, Schrand B, Gabrusiewicz K, Hashimoto Y, Ott M, et al. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. *J Clin Invest.* (2019) 129:137–49. doi: 10.1172/JCI121266

86. Moorman HR, Poschel D, Klement JD, Lu C, Redd PS, Liu K. Osteopontin: A key regulator of tumor progression and immunomodulation. *Cancers (Basel).* (2020) 12:3379. doi: 10.3390/cancers12113379

87. Chen P, Zhao D, Li J, Liang X, Li J, Chang A, et al. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma. *Cancer Cell.* (2019) 35:868–884.e866. doi: 10.1016/j.ccr.2019.05.003

88. Guan X, Luo L, Begum G, Kohanbash G, Song Q, Rao A, et al. Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas. *J Exp Clin Cancer Res.* (2018) 37:255. doi: 10.1186/s13046-018-0923-z

89. Zhu W, Carney KE, Pigott VM, Falgout LM, Clark PA, Kuo JS, et al. Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na $^{+}$ /H $^{+}$ exchanger isoform 1. *Carcinogenesis.* (2016) 37:839–51. doi: 10.1093/carcin/bgw068

90. van Rooijen N, Sanders A, van den Berg TK. Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. *J Immunol Methods.* (1996) 193:93–9. doi: 10.1016/0022-1759(96)00056-7

91. Han X, Li Q, Lan X, El-Mufti L, Ren H, Wang J. Microglial depletion with clodronate liposomes increases proinflammatory cytokine levels, induces astrocyte activation, and damages blood vessel integrity. *Mol Neurobiol.* (2019) 56:6184–96. doi: 10.1007/s12035-019-1502-9

92. Michiba A, Shiogama K, Tsukamoto T, Hirayama M, Yamada S, Abe M. Morphologic analysis of M2 macrophage in glioblastoma: involvement of macrophage extracellular traps (METs). *Acta Histochem Cytochem.* (2022) 55:111–8. doi: 10.1267/ahc.22-00018

93. Wang J, Li S, Lan Y, Liu X, Li W. Glioma-associated macrophages: unraveling their dual role in the microenvironment and therapeutic implications. *Curr Med.* (2024) 3:4. doi: 10.1007/s44194-024-00031-y

94. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. *Nat Med.* (2013) 19:1264–72. doi: 10.1038/nm.3337

95. Xue N, Zhou Q, Ji M, Jin J, Lai F, Chen J, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizing macrophage from M2 to M1 phenotype. *Sci Rep.* (2017) 7:39011. doi: 10.1038/srep39011

96. Lisi L, Ciotti GMP, Chiavari M, Pizzoferrato M, Mangiola A, Kalinin S, et al. Phospho-mTOR expression in human glioblastoma microglia-macrophage cells. *Neurochem Int.* (2019) 129:104485. doi: 10.1016/j.neuint.2019.104485

97. Mukherjee S, Fried A, Hussaini R, White R, Baidoo J, Yalamanchi S, et al. Phytoposomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. *J Exp Clin Cancer Res.* (2018) 37:168. doi: 10.1186/s13046-018-0792-5

98. Cui X, Ma C, Vasudevaraja V, Serrano J, Tong J, Peng Y, et al. Dissecting the immunosuppressive tumor microenvironments in Glioblastoma-on-a-Chip for optimized PD-1 immunotherapy. *Elife.* (2020) 9:e52253. doi: 10.7554/elife.52253

99. Rao R, Han R, Ogurek S, Xue C, Wu LM, Zhang L, et al. Glioblastoma genetic drivers dictate the function of tumor-associated macrophages/microglia and responses to CSF1R inhibition. *Neuro Oncol.* (2022) 24:584–97. doi: 10.1093/neuonc/noab228

100. Tang L, Zhang R, Wang Y, Liu M, Hu D, Wang Y, et al. A blood-brain barrier-and blood-brain tumor barrier-penetrating siRNA delivery system targeting gliomas for brain tumor immunotherapy. *J Control Release.* (2024) 369:642–57. doi: 10.1016/j.jconrel.2024.04.006

101. Khayati S, Dehnavi S, Sadeghi M, Tavakol Afshari J, Esmaeili SA, Mohammadi M. The potential role of miRNA in regulating macrophage polarization. *Heliyon.* (2023) 9:e21615. doi: 10.1016/j.heliyon.2023.e21615

102. Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. *Nat Commun.* (2019) 10:3974. doi: 10.1038/s41467-019-11911-5

103. Huang Y, Wang Z, Gong J, Zhu D, Chen W, Li F, et al. Macrophages as potential targets in gene therapy for cancer treatment. *Explor Target Antitumor Ther.* (2023) 4:89–101. doi: 10.37349/etat.2023.00124

104. Saha D, Martuza RL, Rabkin SD. Oncolytic herpes simplex virus immunotherapy in combination with immune checkpoint blockade to treat glioblastoma. *Immunotherapy.* (2018) 10:779–86. doi: 10.2217/imt-2018-0009

105. Zheng Y, Pei Y, Dong C, Liang J, Cai T, Zhang Y, et al. Oncolytic herpes simplex virus therapy: latest advances, core challenges, and future outlook. *Vaccines (Basel).* (2025) 13:880. doi: 10.3390/vaccines13080880

106. Saha D, Wakimoto H, Rabkin SD. Oncolytic herpes simplex virus interactions with the host immune system. *Curr Opin Virol.* (2016) 21:26–34. doi: 10.1016/j.coviro.2016.07.007

107. Aldrak N, Alsaab S, Algethami A, Bhere D, Wakimoto H, Shah K, et al. Oncolytic herpes simplex virus-based therapies for cancer. *Cells.* (2021) 10:1541. doi: 10.3390/cells10061541

108. Meisen WH, Wohleb ES, Jaime-Ramirez AC, Bolyard C, Yoo JY, Russell L, et al. The impact of macrophage- and microglia-secreted TNF α on oncolytic HSV-1 therapy in the glioblastoma tumor microenvironment. *Clin Cancer Res.* (2015) 21:3274–85. doi: 10.1158/1078-0432.CCR-14-3118

109. Shen Z, Liu X, Fan G, Na J, Liu Q, Lin F, et al. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages. *J Transl Med.* (2023) 21:842. doi: 10.1186/s12967-023-04709-z

110. Okemoto K, Wagner B, Meisen H, Haseley A, Kaur B, Chiocca EA. STAT3 activation promotes oncolytic HSV1 replication in glioma cells. *PLoS One.* (2013) 8: e71932. doi: 10.1371/journal.pone.0071932

111. Delwar ZM, Kuo Y, Wen YH, Rennie PS, Jia W. Oncolytic virotherapy blockade by microglia and macrophages requires STAT1/3. *Cancer Res.* (2018) 78:718–30. doi: 10.1158/0008-5472.CAN-17-0599