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ABSTRACT

Background: Glioma is the most common malignant tumor in the central nervous system, with unclear pathogenesis and poor
treatment outcomes. Recent research reveals that the brain-gut axis—involving gut microbiota and immune activity—
influences central nervous system tumors. Given the pivotal role of the brain-gut axis in glioma, our study aimed to elucidate
the causal association between gut microbiota and glioma, and to identify potential immune-mediated effects and therapeutic
targets.

Methods: Based on publicly available genome-wide association study data, our research employed multi-subgroup, replicated,
Bayesian weighted, and summary statistics-based two-sample Mendelian randomization (MR) studies, combined with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) systematic review strategy, to systematically
evaluate the potential causal effects of gut microbiota on glioma and their immune-mediated traits.

Results: The initial screening identified 53 gut microbiota and 58 plasma immune traits with potential causal associations with
glioma. Through external data and systematic review from six studies, we ultimately confirmed five gut microbiota-plasma
immune trait-glioma pathways. CD28*CD45RA™ CD8dim Treg (OR =0.019, p = 0.007) mediated the risk of Bacteroides A
plebeius A (OR =0.149, p =0.036) on glioma, accounting for 2.99% of the effect; the proportion of CD4* memory T cells in
whole blood (OR = 0.066, p = 0.029) mediated the risk of Bacteroides sp002160055 (OR = 0.158, p = 0.024) on non-glioblastoma
(GBM), accounting for 8.51% of the effect, while the risk of Faecalicoccus (OR = 0.345, p =0.005) on non-GBM was jointly

Abbreviations: AC, absolute cell count; BBB, blood-brain barrier; cDC, classic dendritic cell; CI, confidence interval; FDR, false discovery rate; GBM, glioblastoma; GSMR, Summary-data-based
Mendelian randomization; GTDB, Genomic Taxonomy Database; GWAS, genome-wide association studies; HEIDI, Heterogeneity in Dependent Instruments; IV, instrumental variable; IVW, inverse
variance weighted; MeSH, Medical Subject Headings; MIF, macrophage migration inhibitory factor; MR, Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual
Sum and Outlier; NK, natural killer; OR, odds ratio; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; RC, relative cell count; ROBIS, Risk of Bias In Systematic Reviews;
SCFA, short-chain fatty acid; SE, standard error; SNP, single-nucleotide polymorphism; STROBE-MR, Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian
Randomization; Treg, regulatory T cell; VEGFR2, vascular endothelial growth factor receptor 2; a-GalCer, alpha-galactosylceramide.

Jiachen Wang and Yilin Zhang contributed equally to this study and should be considered co-first authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

© 2025 The Author(s). Cancer Innovation published by John Wiley & Sons Ltd on behalf of Tsinghua University Press.

Cancer Innovation, 2025; 4:¢70039 1 of 15
https://doi.org/10.1002/cai2.70039


https://doi.org/10.1002/cai2.70039
https://orcid.org/0000-0001-7638-4395
mailto:liwenbin@ccmu.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/cai2.70039

mediated by the absolute number of Naive CD8br and the expression of CD19 in IgD* CD38br B cells. The protective effect of
Faecalibacterium sp002160895 on GBM was mediated by 7.59% of the expression level of CD4 in Treg cells.

Conclusion: Our study, through MR analysis, revealed the causal relationship between gut microbiota and the susceptibility to

glioma, and for the first time proposed the important role of circulating immune cells in this process, providing new potential

biomarkers for the early diagnosis and treatment of glioma.

1 | Introduction

Gliomas are the most common malignant tumors of the central
nervous system, accounting for up to 80% of all malignant
primary brain tumors [1]. Among them, the 5-year survival rate
for GBM (WHO Grade 4 IDH wild type) is only 7.2%, with a
near 100% recurrence rate [2]. Despite certain advancements in
multidisciplinary treatments for gliomas, the efficacy remains
limited, with an average survival time of just 14 months [2]. The
heterogeneity of tumor cells and immunologic escape are two
critical factors in the poor prognosis of gliomas.

Gut microbiota imbalance affects cancer progression and treat-
ment response. It regulates local inflammation and immune
responses, impacting whole-body immunity. The discovery of the
brain-gut axis provides compelling evidence for the relationship
between gut microbiota and gliomas [3]. In a qualitative assess-
ment and characterization of the gut microbiome in GBM pa-
tients, there was a significant increase in Proteobacteria at the
phylum level and a decrease in Firmicutes in GBM patient feces
compared to healthy fecal specimens. At the family level, the
abundance of Enterobacteriaceae, Bacteroidaceae, and Lachnos-
piraceae was increased in GBM patients, while Veillonellaceae,
Rikenellaceae, and Prevotellaceae were decreased. At the genus
level, the abundance of Parasutterella, Escherichia-Shigella, and
Bacteroides was significantly increased in the GBM group, while
the levels of Ruminococcus 2, Faecalibacterium, and Prevotella_9
were significantly reduced [4]. Ishaq et al. through high-
throughput sequencing, found that patients with GBM exhibit
significantly increased microbial diversity. A notable decrease in
Firmicutes and an increase in the families Coriobacteriaceae and
Ruminococcaceae were observed, with significant reductions in
the levels of Ruminococcus2 and Prevotella_9, demonstrating
clear dysbiosis in GBM patients [4]. The regulatory role of the gut
microbiota and immune cells is crucial for the occurrence and
development of gliomas and has a potential impact on thera-
peutic efficacy [5]. Given the key role of the brain-gut axis in
gliomas, our study aims to elucidate the causal associations
between these complex traits and identify potential gut micro-
biota and targets for early diagnosis and clinical immunotherapy.

Genomics plays a significant role in understanding the occur-
rence and development of gliomas, and genome-wide associa-
tion studies (GWAS) have identified multiple genetic variants
associated with glioma susceptibility, providing important clues
for identifying potential etiology [6, 7]. MR is an innovative
method for causal inference that uses specific genetic variants
(single-nucleotide polymorphisms [SNPs]) as objective and
unique instrumental variables (IVs) to assess the potential
causal effects between exposure factors and disease outcomes.
Based on Mendelian inheritance laws, MR utilizes the random
segregation and independent assortment of SNPs on gene loci,

similar to randomized controlled trials, to reduce the interfer-
ence of confounding factors and reverse causality. SNPs, as
naturally occurring genetic markers, are not easily influenced
by individual knowledge or external factors. SNP rs755622 in
the promoter region of cytokine macrophage migration inhibi-
tory factor (MIF) has been found to be associated with increased
leukocyte infiltration in GBM [8]. The SNP rs2305948 on vas-
cular endothelial growth factor receptor 2 (VEGFR2) has been
found to be associated with glioma susceptibility in Asian
populations [9].

Our study conducted a series of MR analyses to thoroughly
investigate the impact of the gut microbiota on the risk of gli-
omas and their subtypes. We used multiple methods and sys-
tematic reviews to enhance the robustness of the results and
further explored the complex role of the immune system. The
study identified various gut microbiota with significant causal
relationships with glioma subtypes and immune-mediated ef-
fects, aiming to uncover the gut secrets of glioma susceptibility.

2 | Materials and Methods

2.1 | Study Design

This study was meticulously designed in accordance with the
Strengthening the Reporting of Observational Studies in Epide-
miology Using Mendelian Randomization (STROBE-MR)
guidelines [10]. The research was divided into three specific
steps. In the first and second steps of the study, we utilized
published GWAS, encompassing 471 gut microbiota Genomic
Taxonomy Database (GTDB) traits, 731 immune cell traits, and
three subtypes of glioma summary data. We selected appropriate
SNPs as IVs for two-sample MR to analyze bidirectional causal
relationships between exposures and outcomes, and validated the
results using external data and systematic reviews [11]. All data
used in this study were derived from published GWAS summary
statistics, and no individual-level data were employed; therefore,
ethical approval was not required for this study (data sources and
workflow are depicted in Figure 1). In the third step of the study,
we utilized the pairwise MR results between exposure-mediation,
mediation-outcome, and exposure-outcome to analyze the med-
iating effects of immune cells between gut microbiota and glioma
outcomes, and calculated the effect size and proportion for each
mediating factor.

2.2 | Data Sources

For the exposure factor in this study, we utilized the most
recent summary data on microbiota from Qin et al. which ex-
amined blood and fecal samples from 5959 European
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descendants in the FINRISK cohort, incorporating 7,967,866
SNPs as genetic characteristics. This study identified 471 dis-
tinct GTDB clusters, including 11 phyla, 19 classes, 24 orders,
62 families, 146 genera, and 209 species [12].

We considered the 731 immune cell traits reported by Orru
et al. as the mediating variables. This study data from 3757
European descendants, encompassing 20,143,392 mutation sites
and covering various types of immune cells such as T cells, B
cells, dendritic cells (DCs), monocytes, myeloid cells, natural
killer (NK) cells, and regulatory T cells (Treg). The character-
istics were categorized as follows: absolute cell counts (AC,
n =118), median fluorescence intensity reflecting surface anti-
gen levels (MFI and SAL; n = 389), morphological parameters
(MP; n = 32), and relative cell counts (RC; n=192) [13].

The outcome data were derived from the largest glioma
genetic susceptibility GWAS statistics to date (Glioma GWAS),
which summarized data from eight independent European
population samples. This included 12,496 cases (6191 classi-
fied as GBM and 5819 as non-GBM tumors) and 18,190 con-
trols that passed quality control, with GWAS SNP data for
6,887,412 SNPs [6]. All cases were histologically confirmed as
gliomas (ICD-O-3), and the data were stratified based on
malignancy. The external validation set for the outcome was
derived from FinnGen_R11, using ICD-O-3 as the diagnostic
criterion, encompassing 508 patients with GBM or Astrocy-
toma (GBM: 378, Astrocytoma: 130), and included 21,304,506
SNPs [14]. We matched this validation cohort with the three
strata of Glioma_GWAS: Glioma_GWAS_AIll-Glioma corre-
sponded to C3_GBM_ASTROCYTOMA_EXALLC, Glio-
ma_GWAS_GBM corresponded to C3_GBM_ASTROCY
TOMA_EXALLC, and Glioma_GWAS_non-GBM corre-
sponded to C3_ASTROCYTOMA_EXALLC. Although this
correspondence carries certain biases, given the consistency of
the diagnostic criteria, we were able to derive objective results
for GBM and Astrocytoma.

Studies included in Mendelian
randomization(n = 6)

[ Included ] [

2.3 | Selection of Instrumental Variables

To conduct a two-sample MR study, the IVs must satisfy the fol-
lowing basic assumptions: (1) Relevance assumption: the selected
SNPs are closely related to the exposure factor; (2) Independence
assumption: the SNPs must be unrelated to potential confounding
factors between exposure and outcome; (3) Exclusivity assumption:
the SNP can only affect the outcome through the exposure factor. In
two-sample MR, we set the significance threshold for the IVs of the
exposure factors (gut microbiota, immune cells, and glioma risk) to
1x107°, a threshold widely accepted in multiple published MR
studies to satisfy the independence assumption [12, 13, 15, 16]. As
an exploratory study, the threshold (p <1 x 107°) is selected based
on literature support, supplemented by linkage disequilibrium fil-
tering (R < 0.001, window 10,000 kb) and F-statistic test (F> 10),
which will ensure that IVs meet the three key assumptions of
“relevance, independence, and exclusivity.” Additionally, Bayesian
weighted Mendelian Randomization (BWMR) and generalized
summary data Mendelian Randomization (GSMR) are employed to
further correct potential pleiotropy and heterogeneity, thereby off-
setting the risks arising from the relaxed threshold .

All IVs in this study underwent strict weak IV testing, with an
F-statistic > 10 used as the threshold for excluding weak IVs.
This criterion was referenced from the guidelines of STROBE-

MR [10] and consensus from similar studies.

The calculation of R* adopted the standard formula (1) in
genetic epidemiology:

R* = (282 p(1 — p)/[28°p(Q —p) + 2Np(1 —p)] (D)

Calculation of the F-statistic (The distribution of the F-statistic:
Figure S1) as the formula (2):

F= (RN -2)/1 - R 2
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Gut microbiota traits-SNP-F statistic (GMs-SNP-F): mean 22.3,
median 21.1, 5th to 95th percentile: 19.6-29.3; Immune cells-
SNP-F statistic (IMCs-SNP-F): mean 34.4, median 21.7, 5th to
95th percentile: 19.7-63.6; Glioma Genome-Wide Association
Study-SNP-F = statistic (GliomaGWAS-SNP-F): mean 45.1,
median 23.3, 5th to 95th percentile: 19.8-187.0.

After screening with this threshold, the median number of
SNPs for gut microbiota IVs was 18 (mean 19.5), 23 for immune
cells (mean 25.6), and 48-57 for glioma. The F-statistic of all IVs
was > 10, indicating no weak IV bias (the IVs used in this study
are presented in Tables S1-S3).

2.4 | Two-Sample MR Analysis

The two-sample MR analysis was conducted using the Two
Sample MR R package (version 0.6.6). We employed the inverse
variance weighted (IVW) method as the primary approach to
assess the correlation between exposure and outcome. The TVW
method provides accurate and stable estimates when all IVs meet
the three key assumptions. Results were presented as beta values
with their standard errors (SEs) or odds ratios (OR) with their 95%
confidence intervals (CIs), with p <0.05 considered statistically
significant. We accounted for the potential statistical errors due to
multiple testing and used the false discovery rate (FDR) method
for correction. As per previously reported studies, p-values less
than 0.05 but above the FDR-adjusted threshold were considered
to suggest a relationship [15]. Given that this was an exploratory
study, the results we reported were not corrected for FDR. For
results with p <0.05 in the IVW MR analysis, we used additional
supplementary MR analysis models as auxiliary methods to vali-
date the significance of the findings, including the Wald ratio,
Weighted Median, Weighted Mode, and MR-Egger. Preliminary
positive results from the MR were defined as those with p < 0.05
in the IVW model and the same direction of causal association as
the MR-Egger method. The same analytical methods were applied
to the external validation cohort.

2.5 | Heterogeneity and Pleiotropy Tests

In this study, Cochran's Q test (based on IVW) method and MR-
Egger model were used to evaluate the heterogeneity of IVs. A
significant heterogeneity was indicated if p < 0.05. For horizontal
pleiotropy, MR-Egger intercept and MR-PRESSO (Mendelian
Randomization Pleiotropy RESidual Sum and Outlier) were
applied for testing. If the intercept of MR-Egger regression sig-
nificantly deviated from 0 (p < 0.05), it suggested the presence of
horizontal pleiotropy, meaning that at least some SNPs affect the
outcome through non-exposure pathways. MR-PRESSO analyzed
the residual distribution of genetic variants (SNPs) via the Global
Test, identified and removed outliers causing bias (p <0.05),
thereby obtaining more robust estimates of causal effects.

2.6 | Sensitivity Analysis

The “leave-one-out” method was used for sensitivity analysis in
this study. By sequentially excluding each SNP and re-running

IVW and MR-Egger analyses, the changes in the combined
effect size of the remaining SNPs were observed to verify the
robustness of the causal effect estimates. If the direction of the
results remained unchanged after excluding any SNP, it indi-
cated that the conclusion was not driven by a single variant and
had high reliability.

For the significant associations between gut microbiota char-
acteristics (exposures) and glioma risk (outcome) identified in
MR analyses, reverse causality tests were conducted to clarify
the direction of the causal relationship.

2.7 | BWMR and GSMR

To comprehensively address the challenges posed by weak IV
bias and horizontal pleiotropy, we employed two advanced
statistical frameworks: BWMR and GSMR [11, 17]. BWMR
(version 0.1.1) integrates the variational expectation-
maximization (VEM) algorithm to estimate the posterior prob-
ability of causal effects while accounting for potential pleio-
tropic SNPs, thus providing more robust effect estimates. GSMR
(gslmr2 version 1.1.1) can address two key limitations of tra-
ditional MR: first, it introduces the HEIDI (Heterogeneity in
Dependent Instruments) test to exclude SNPs affected by plei-
otropy through statistical testing (HEIDI p < 0.01); second, it
directly models the genetic correlation between SNPs based on
the generalized linear mixed model (GLMM), thereby avoiding
potential impacts from linkage disequilibrium. Ultimately, only
those results that successfully passed pleiotropy tests, hetero-
geneity tests, PRESSO tests, BWMR, and GSMR analyses were
considered positive and were included in the final exploration
of mediating effects.

2.8 | Mediation Analysis

We selected potential immune mediators in the glioma-gut
microbiota pathway through the following steps, utilizing the
IVW method as the analytical approach for the mediator effect
size beta in this study. Initially, we identified immune media-
tors that demonstrated a significant causal effect with the pos-
itive exposure factors and calculated their effect sizes (betal).
Subsequently, we conducted a two-sample MR for the afore-
mentioned mediators against the outcome (Glioma_ GWAS) and
retained the effect sizes (beta2). To ensure the validity of the
IVs, we checked for non-redundancy among the IVs used to
calculate betal and beta2 in the Two-Step MR. In the third step,
we extracted the causal effect size (beta0) of the positive ex-
posure outcome on the outcome. Finally, we retained mediators
that were logically consistent (if the total effect betaO was pos-
itive, then both betal and beta2 should be either positive or
negative; if the total effect betaO was negative, then betal and
beta2 should be one positive and one negative), and calculated
the mediation effect size of the immune mediators using the
“product of coefficients” method (betal X beta2) and the pro-
portion of the effect size ([betal x beta2]/beta0) [18]. This
design strictly follows the mediation analysis framework
proposed by Sanderson [19], which ensures that the mediating
variable is temporally situated between the exposure and the
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outcome by stepwise verifying the causal relationships
between exposure and mediator, and between mediator and
outcome. We have supplemented this point in the method-
ology section.

2.9 | Systematic Literature Review Strategy
Adhering to the PRISMA guidelines, we conducted a system-
atic aggregation and review of MR studies examining the
relationship between gut microbiota and glioma [20]. We
identified relevant studies up to September 2024 using Medical
Subject Headings (MeSH) indexing and keyword searches. We
utilized disease-related terms “glioma”, “Malignant Glioma”,
and “glioblastoma” along with gut microbiota-related terms
“gut microbiota”, “intestinal microbiota”, “gut microbiome”
and “intestinal microbiome” in PubMed and ScienceDirect to
identify these studies. We included all MR studies concerning
the gut microbiota and glioma. The studies encompassed the
causal effects of GBM on gut microbiota and the intermediary
factors associated with both. The following were excluded: (1)
Various animal and cellular experiments, (2) Pure clinical
trials, (3) Reviews and meta-analyses, and (4) Lack of full-text
availability.

Our literature review was conducted entirely by two scholars in
the field of glioma through manual identification. Initially, a
preliminary screening was performed based on titles and ab-
stracts, applying exclusion criteria to exclude any content that
did not meet the predefined requirements. After the prelimi-
nary exclusion, a thorough and rigorous repeat review of the
abstracts and full-text articles was conducted. This detailed
evaluation aimed to confirm whether each study met the spe-
cific inclusion criteria set by this systematic review. Any dis-
crepancies in the assessment were resolved through
collaboration between the two authors to ensure consensus on
the final selection of studies included (the PRISMA flow dia-
gram is shown in Figure 1). Then, we used the Risk of Bias In
Systematic Reviews (ROBIS) tool to evaluate the bias of the
systematic review. As the first rigorously validated methodo-
logical standard specifically designed to assess risk of bias in
systematic reviews, this tool structures the evaluation of bias
sources through four domains: Domain 1 (study eligibility
criteria), Domain 2 (identification and selection of studies),
Domain 3 (data collection and bias assessment) and Domain
4(synthesis and findings) [21]. The overall risk of bias for this
study was rated as moderate (the ROBIS result is shown in
Figure S2).

3 | Results

3.1 | Selection of Instrumental Variables

After applying the clump selection for IVs, the median number
of SNPs for GMs was 18, with an average of 19.5. For immune
cells, the median number of SNPs was 23, and the average was
25.6. The number of SNPs for Glioma_GWAS was as follows:
All glioma had 53, GBM had 48, and non-GBM had 57. All
harmonized SNPs met the conditions of 72 = 0.001, kb = 10000,

and p < 0.05, ensuring that the F-statistics were all greater than
10, with no weak IVs present (Tables S1-S3).

3.2 | Causal Associations Between Gut
Microbiota and Glioma Risk

Among the 471 gut microbial populations included in the IVW
analysis, 53 gut microbial populations were found to have signifi-
cant causal associations with glioma (p <0.05), encompassing 4
phyla, 4 classes, 3 orders, 5 families, 13 genera, and 24 species (as
shown in Figure 2). When using Glioma_GWAS_all_glioma as the
outcome, 23 microbial populations were positively associated with
the onset of glioma, while 9 microbial populations were inversely
related to the risk of glioma. Notably, CAG-345 (OR =1.116,
p = 0.004), Terrisporobacter othiniensis (OR = 1.483, p = 0.004), and
species from the family f Oscillospiraceae, CAG-83 sp000435555
(OR =1.189, p<0.001) and UBA1777 sp900316255 (OR = 1.708,
p =0.004), exhibited a more significant positive relationship with
the development of glioma. In contrast, the species UBA7177
(OR=0.560, p<0.001,) and its genus UBA7177 sp002491225
(OR=0.634, p=0.008), along with Coprobacter secundus
(OR=0.677, p = 0.002), demonstrated a more significant protective
effect against glioma. A total of 18 microbial taxa were found to
promote GBM, while 13 taxa potentially protected against the GBM
subtype. The GBM results further emphasized the significant pos-
itive association of fecal CAG-83 sp000435555 (OR =1.186,
p =0.004) and UBA1777 sp900316255 (OR = 1.938, p = 0.003) with
GBM risk, in addition to Prevotellamassilia (OR = 1.269, p = 0.010),
Treponemataceae (OR=1418, p=0.010), and Peptococcia
(OR =1.916, p=0.008), which were also significant risk factors.
UBA7177 (OR=0463, p<0.001) and its genus UBA7177
sp002491225 (OR=0.504, p=0.003), as well as Pararhizobium
(OR =0.464, p=0.005), were found to have a protective effect
against the development of GBM. For non-GBM, 10 microbes
showed a positive relationship, and only 4 microbes exhibited a
protective effect. C. secundus (OR =0.594, p=0.001) and Faecali-
coccus (OR =1.413, p=0.005) were identified as more significant
protective and risk factors, respectively. In the MR analysis of GMs
and GBM, Rhodococcus (p=0.025) and UBA1777 sp900316255
(p=0.048) did not pass the horizontal pleiotropy test, while all
other results passed the heterogeneity test (p > 0.05), the PRESSO
test, and the leave-one-out method test (Tables S4-S6).

To exclude the potential for reverse causal effects, we conducted
a two-sample MR analysis using the three types of gliomas as
exposures and the significant results obtained from the IVW
method as outcomes. We only identified one set of IVW sig-
nificant causal effects, where GBM exerts a slight negative
regulatory effect on the abundance of Elusimicrobia in stool
(OR=1.008, p=0.028, 3 =10.008) (Table S8).

3.3 | Results of Validation Based on Systematic
Review and External Datasets

We conducted a systematic review and identified a total of 1213
articles from the PubMed and ScienceDirect databases. After
screening, we selected 6 MR studies that met our criteria
[16, 22-26], which reported 46 positive results (p <0.05). These
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results implicated 3 Phyla (Verrucomicrobia, Euryarchaeota,
Cyanobacteria), 1 Order (Desulfovibrionales), 9 Families
(Peptostreptococcaceae, Ruminococcaceae, Bacteroidaceae, Pepto-
coccaceae, Streptococcaceae, Victivallaceae, Erysipelotrichaceae,
Prevotellaceae, Rikenellaceae), 14 Genera (Adlercreutzia, cateni-
bacterium, Coprobacter, Eubacterium brachy group, Anaerostipes,
Faecalibacterium, Phascolarctobacterium, Streptococcus, Actino-
myces, Bacteroides, Lactococcus, Eubacterium nodatum group,
Ruminococcus gnarvus group, Lachnoclostridium, Selimonas), and
5 Species (Olsenella, Prevotella7, Lachnospiraceae UCG004, Rumi-
niclostridiumé6, Ruminococcaceae UCG002) (Table 1).

Mapping these results to our three groups of MR findings, we
identified 19 significant microbial entries (IVW, p <0.05),
confirming 6 Families previously reported (Bacteroidaceae,
Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, Pep-
tostreptococcaceae, Peptococcaceae), 4 Genera (Prevotella,
Coprobacter, Eubacterium, Faecalibacterium), and 1 Species
(Olsenella) (Figure 3).

Using the same MR methods, we conducted a validation against the
external data set Finn_R11. When using finn_r11_gbm_astro as the
outcome, the positive result CAG-83 sp000435555 (OR =1.388,
p=0.042) and the negative result Eubacterium F sp000434115
(OR=0.612, p=0.019) were consistent with the results from
Glioma_GWAS. When using finn_r11_gbm as the outcome, CAG-
590 sp000431135 (OR =0.193, p=0.044) was validated. When
using finn_r11_astro as the outcome, only UBA8621 (OR = 29.387,
p =0.002) maintained the same directionality as the results from
Glioma_GWAS. None of the above three results showed horizontal
pleiotropy or heterogeneity (Tables S9 and S10).

To further avoid potential heterogeneity and pleiotropy, we
performed additional BWMR and GSMR tests on the results

that were validated by systematic review or external data-
bases. We ultimately selected the microbial entries that met
the significance criteria (p <0.05) in both tests for
further mediation analysis: seven, four, and five positive
microbial entries for all glioma, GBM, and non-GBM,
respectively, passed this test and were considered potential
microbial entries for mediation effect exploration (Figure 4,
Table S7).

3.4 | Causal Associations Between Immune Cell
Phenotypes and Glioma Risk

To identify potential immunological factors influencing gli-
oma, we conducted a two-sample MR analysis between
immune cell phenotypes and three glioma outcomes, revealing
that 58 immune cell phenotypes have a potential role in the
occurrence of glioma. When Glioma_GWAS_all_glioma was
used as the outcome, 6 B cell phenotypes, 1 classic dendritic
cell (cDC) phenotype, 5 mature T cell phenotypes, 1 monocyte
phenotype, 1 myeloid cell phenotype, 3 T/B/NK cell pheno-
types, and 12 Treg phenotypes were found to have causal ef-
fects on various subtypes of glioma. For GBM, three B cell
phenotypes, two cDC phenotypes, four mature T cell pheno-
types, one monocyte phenotype, three myeloid cell pheno-
types, one TBNK phenotype, and five Treg phenotypes were
identified as potentially influencing GBM. For non-GBM out-
comes, in addition to 1 cDC and 2 mature T cell phenotypes, as
many as 7 B cell and 7 T/B/NK phenotypes, as well as 13 Treg
phenotypes, were found to influence non-GBM outcomes. We
subsequently excluded five immune cell phenotypes that did
not meet the criteria for IV heterogeneity and pleiotropy, with
the remaining results all passing sensitivity tests (Figure 5,
Tables S11-S13).
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FDR

OR 95% CI p
1.8112  1.0399-3.1545  0.036
1.8835 1.1115-2.5497 0.014

GMs
Lactococcus
ceae UCGO002

Glioma Mean MR Ivs
database methods thresholds
Ruminococca-

Exposure GMs Outcome
cases database cases

Author

(Continued)
DOI

TABLE 1
Year

1.5679-2.2278 < 0.001

1.8689
1.0295-11.3141

3.4129

Selimonas

0.045

Desulfovibrio-

nales

0.4463  0.2243-0.8878  0.022

Cyanobacteria

Abbreviations: FDR, false discovery rate; OR, odds ratios.

#Causal relationship that remains significant after FDR correction.

3.5 | Mediation Effect Exploration

In this study, specific gut microbiota and immune cell pheno-
types were found to have a causal relationship with glioma.
Considering the potential immune-mediated effects, we screened
significant immune cell phenotypes and ultimately identified 14
gut microbiota-immune cell-glioma pathways (Tables S14
and S15). To ensure more reliable results, we conducted stringent
sensitivity checks, and all pathways involving gut microbiota-
immune cell and immune cell-glioma were analyzed using
BWMR and GSMR, ultimately retaining four types of gut
microbial communities and five immune cells. We calculated the
mediation effect size and proportion for each significant pathway
(Figure 6, Tables S16-S18). The results indicated that
CD28*CD45RA™ CD8dim AC mediated the risk of Bacteroides A
plebeius A on glioma in both all_glioma and non_GBM, with
mediation effect proportions of 2.99% and 3.66%, respectively.
CD45RA™CD4* %T cell mediated the risk of Bacteroides
sp002160055 on all_glioma, with a proportion of 8.51%. Naive
CD8br AC and CD19 on IgD+ CD38br both participated in
mediating the causal relationship between Faecalicoccus and
non-GBM (4.67% and 9.6%). We identified a protective factor for
GBM, Faecalibacterium sp002160895, which also has the
potential to increase the expression of CD4 on secreting
Treg (betal =0.474, p=0.021). Moreover, CD4 on secreting
Treg also had a negative effect on the development of GBM
(beta2 = —0.073, p =0.026), accounting for 7.59% of the protec-
tive effect in the gut microbiota-immune cell-glioma pathway.

4 | Discussion

The discovery of the brain—gut axis has progressively unveiled
the relationship between gut microbiota and neurological dis-
eases, including glioma [4]. Our study, employing a compre-
hensive bidirectional MR framework combined with a
systematic review, provides robust genetic evidence supporting
a causal role of specific gut microbial taxa in glioma suscepti-
bility. Importantly, we delineate the critical mediating effects of
circulating immune cells within this relationship, identifying
key gut microbiota-immune-glioma pathways. These findings
emphasize the brain-gut-immune axis as a key modulator of
glioma pathogenesis and reveal potential targets for biomarker
discovery and therapeutic intervention.

We report for the first time multiple gut microbial communities,
primarily within the phyla Firmicutes and Bacteroidota, with
potential causal links to glioma development. Previous MR
studies have shown considerable heterogeneity, with the
majority suffering from low statistical power due to small out-
come sample sizes. Our large sample size, multiple replications,
and enhanced analyses further substantiate the reliability of our
results. Our results validate some of the previously published
MR conclusions, but there are also some discrepancies.

The findings regarding Bacteroides, Coprobacter, and Rumino-
coccaceae align with previous conclusions, whereas opposing
results were observed for Eubacterium and Prevotella. Bacteroides,
with increasing abundance in gut microbiota, raises the risk of
GBM multiforme. This bacterium produces short-chain fatty acids
(SCFAs) that regulate the growth and metabolism of gliomas by
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Trait OR 95% ClI pvalue nSNPs
All glioma i
CAG-590 sp000431135 0.487 0.250 - 0.952 —— 0.035 26
UBA7177 0560 0.415-0.754 — 0 18
UBA7177 sp002491225 0.634 0.453-0.887 —.— 0.008 16
Coprobacter secundus 0.677 0.532-0.862 —a— E 0.002 8
Prevotella sp002933775 0.802 0.662-0.970 -—-—-: 0.023 13
Eubacterium F sp000434115  0.877 0.786 - 0.979 HH| 0.02 17
Bacteroides A plebeius A 1.161 1.010-1.335 :.-.—. 0.036 13
Bacteroides sp002160055 1.171 1.021-1.343 —-— 0.024 18
Prevotellamassilia 1.192 1.028-1.382 Er—l—- 0.02 9
Dorea phocaeense 1.288 1.022-1.623 —— 0.032 17
Faecalicatena sp002397985 1.469 1.000 -2.158 :'—l—>0.05 14
Terrisporobacter othiniensis 1.483 1.137-1.933 E ——a—— 0.004 7
Peptococcia 1.516 1.026 - 2.239 ——a——>0.037 13
An181 3.454 1.248 - 9.557 : ——>0.017 14
GBM i
UBA7177 0.474 0.326 - 0.691 —— ' 0 18
UBA7177 sp002491225 0.504 0.322-0.788 —.— 0.003 16
Faecalibacterium sp002160895 0.634 0.417 - 0.964 '—l—if 0.033 14
Olsenella C 0.697 0.489-0.993 —a— 0.046 12
Coprobacter secundus 0.735 0.540 - 1.000 -—-—é 0.05 8
Prevotella sp002933775 0.760 0.601 - 0.960 r—l—h 0.022 13
CAG-590 sp000431135 0.791 0.628 - 0.996 —a—] 0.046 22
Prevotellamassilia 1.269 1.059 - 1.521 Er—l—i 0.01 9
GCA-900066755 sp900066755 1.340 1.014 - 1.769 }—=——  0.039 17
Terrisporobacter othiniensis 1.453 1.050-2.010 E'—I—>0.024 7
Faecalicatena sp002397985 1.656 1.032-2.656 ——=—>0.036 14
Peptococcia 1.916 1.189-3.089 E ———»(0.008 13
non-GBM E
Coprobacter secundus 0.594 0.433-0.814 —— 0.001 8
Ruminococcus C sp000437255 0.819 0.689 - 0.973 '—-—‘E 0.023 18
Bacteroides A plebeius A 1.211 1.033-1.420 —.— 0.018 13
Dorea phocaeense 1.359 1.004-1.841 :l—-—- 0.047 17
Faecalicoccus 1.413 1.113-1.793 | —=—— 0.005 16
Terrisporobacter othiniensis 1.824 1.152 -2.887 i ——>0.01 16
0 1 2

FIGURE 3 |
polymorphisms; OR, odds ratio.

affecting immune responses, angiogenesis, and epigenetic modi-
fications [25]. B. fragilis toxin promotes chronic intestinal
inflammation, activates Tregs via the STAT3 pathway, and en-
hances Th17 activity. Pathogenic Th17 cells produce IL-17 and
IL-6, which contribute to tissue damage, inflammation, and ulti-
mately oncogenesis by promoting tumor cell survival, prolifera-
tion, angiogenesis, and metastasis [27]. Our mediation analysis
revealed that the risk effect of Bacteroides A plebeius A on glioma
was mediated by CD28*CD45RA~CD8dim Treg cells, suggesting a
pathway where microbiota influences T-cell regulation, potentially
fostering a permissive tumor microenvironment.

Conversely, the protective effect of Faecalibacterium sp002160895
was mediated by CD4 expression on secreting Treg cells. This
aligns with preclinical studies showing that Faecalibacterium
prausnitzii, a congener, enhances antitumor immune effects of
immune checkpoint inhibitors (ICIs) by promoting CD8"T-cell
infiltration and cytokine production, such as interferon-y (IFN-y)

Causal relationships between gut microbiota and glioma supported by the literature review. nSNP, number of single-nucleotide

and tumor necrosis factor-a (TNF-o) [28]. Faecalibacterium.
prausnitzii stabilizes Tregs via SCFA-mediated inhibition of his-
tone deacetylase (HDAC) [29]. The dose-dependent nature of host-
microbiota interactions suggests that the balance between pro-
tumor and antitumor taxa is critical, potentially explaining why a
high abundance of certain Bacteroides may disrupt the Th17/Treg
balance towards inflammation and tumor progression [30]. Ani-
mal experiments related to Coprobacter have shown that this
bacterium enhances the efficacy of immune checkpoint blockade
(ICB) therapy, modulating CTLA-4 or PD-L1, pointing to a new
direction for future cancer treatments [22, 31].

The role of Eubacterium in health is still a matter of consid-
erable debate. Our findings suggest a potential protective effect
of certain species, which contrasts with the pro-tumor role
proposed by Wang et al., where E. rectale was identified as a
potential “driver” for colorectal cancer (CRC) initiation by
fostering an inflammatory microenvironment [32]. This
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Trait OR 95% Cl BWMR p value OR 95% Cl GSMR pvalue

All glioma 5 ;
Klebsiella pneumoniae 0.628 0.392 - 1.004 —a—] 0.052 0.639 0.407 - 1.003 —a—] 0.052
Coprobacter secundus 0.671 0.519 - 0.868 —— E 0.002 0.689 0.536 - 0.885 - E 0.004
Prevotella sp002933775 0.796 0.649 - 0.975 ——| 0.027 0.807 0.664-0.98 ) 0.03
Eubacterium F sp000434115 0.872 0.776 - 0.98 »--«E 0.022 0.885 0.791-0.99 '-I-', 0.032
Prevotellamassilia 1.157 0.974-1.373 —— 0.097 1.128 0.977 - 1.303 —.— 0.1
Bacteroides A plebeius A 1.173 1.025-1.342 :l—-—c 0.02 1.153 1.025-1.297 r—l—c 0.018
Bacteroides sp002160055 1.178 1.018-1.363 :'—-—4 0.028 1.161 1.009 - 1.335 .'_'_' 0.036
CAG-83 sp000435555 1.195 1.079-1.324 | H— 0.001 1.182 1.071-1.305 | 0.001
Terrisporobacter othiniensis 1.494 1.124-1.985 E ————0.006 1.478 1.123-1.944 E ——a—— 0.005
Peptococcia 1.535 1.014-2.323 ——=——0.043 1.484 0.996 - 2.211 ——=——0.052
Halomonadaceae 2.018 0.986 - 4.133 ':—>0.055 1.884 0.941-3.772 v-e—->0.074

GBM | |
UBA7177 sp002491225 0.504 0.305-0.835 —a— I 0.008 0.530 0.346 - 0.813 —a— : 0.004
Faecalibacterium sp002160895 0.603 0.390 - 0.934 —a— : 0.024 0.658 0.435-0.996 '—I—i 0.048
Olsenella C 0.694 0.478 - 1.008 —a—] 0.055 0.701 0.488 - 1.007 —a— 0.054
Coprobacter secundus 0.725 0.53-0.992 '—l—c: 0.044 0.748 0.552-1.014 l—-—:1 0.061
Prevotella sp002933775 0.750 0.585 - 0.963 - 0.024 0.769 0.605 - 0.978 —a—| 0.032
CAG-590 sp000431135 0.792 0.62-1.012 -—-—:- 0.062 0.803 0.634-1.016 v—l—f 0.067
Prevotellamassilia 1.209 0.969 - 1.508 —— 0.092 1.180 0.988-1.409 —a— 0.067
GCA-900066755 sp900066755 1.367 0.998 - 1.873 g—-—‘ 0.052 1.327 0.999 - 1.764 '—l—- 0.051
Peptococcia 1.967 1.169-3.308 E ——=(0.011 1.843 1.128-3.011 E ———>0.015

non-GBM ' !
Ruminococcus C sp000437255 0.815 0.679 - 0.977 l—I—iE 0.027 0.827 0.694 - 0.986 "'_'. 0.034
Bacteroides A plebeius A 1.222 1.043-1.431 | —— 0.013 1.196 1.025-1.394 .- 0.023
Faecalicoccus 1431 1.112-1.843 . —s—— 0.005 1.385 1.083-1.772 —s— 0.01
Terrisporobacter othiniensis 1.564 1.075-2.277 | ——=——0.019 1.519 1.065-2.168 | ——a——0.021
UBA8621 1.878  1.149 - 3.069 ' ——>0012 1755 1.098-2.804 ' ———=>0.019

0 1 2 0 1 2

FIGURE 4 | Causal relationships between gut microbiota and glioma strengthened by Bayesian weighted Mendelian randomization (BWMR)
and generalized summary data Mendelian randomization (GSMR) enhanced analyses. nSNP, number of single-nucleotide polymorphisms; OR, odds

ratio.
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FIGURE 5 | Significant causal relationship between plasma
** indicates p < 0.01, and ***p < 0.001.

immune

cells and gliomas (IVW, p<0.05), * in heatmap indicates p <0.05,
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beta1=0.235 CD28+ CD45RA- beta2=0.019
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FIGURE 6 |

discrepancy likely originates from the considerable functional
heterogeneity within this phylogenetically diverse genus [33].
For instance, while Eubacterium produces acetate—a bioener-
getic substrate for GBM that could theoretically support tumor
proliferation [34]—it also produces butyrate, which can inhibit
HDAC and induce cell cycle arrest. Furthermore, antigenic
peptides derived from Eubacterium have been shown to activate
tumor-infiltrating lymphocytes (TILs) [35], suggesting that
specific species, such as the Eubacterium F sp000434115 iden-
tified in our study, might confer protection by enhancing anti-
tumor immunity. This underscores the critical influence of
species- or strain-level differences on its functional outcome in
glioma pathogenesis.

A notable finding was the protective association of Prevotella
with glioma, which contrasts with some previous studies

Proportion=7.59%

beta0=-0.455 p=0.033

Glioma_GWAS_GBM

The mediation effect of immune traits between gut microbiota and glioma.

reporting its pro-inflammatory, cancer-promoting role [22, 36].
This discrepancy highlights the significant functional hetero-
geneity at the strain level within a genus. For example, Pre-
votella copri has been reported to produce a-GalCer in mouse
GBM tissue, stimulating ydT cells or invariant natural killer T
(iNKT) cells to exert direct or indirect anticancer effects [37],
while other strains like Prevotella 7 may promote inflammation
via Toll-like receptor 2 (TLR2)/interleukin-23 (IL-23) signaling
[36]. The ultimate effect likely depends on a triad of factors: the
specific bacterial strain, the host's genetic background, and
environmental influences like diet. The Prevotella 7 strain
belongs to a different subtype from the bacteria we are studying.
The functional differences at the strain level are the core reason
for the contradiction in the conclusion. Besides, the host
genotype may significantly influence the microbial-host inter-
action. People with acquired mutations in the TLR2 function
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may be more sensitive to the pro-inflammatory effects of Pre-
votella 7, while the genetic polymorphism of the gene encoding
the a-GalCer synthase may determine whether an individual
can effectively utilize the anticancer function of this bacterium.
Furthermore, a high-fiber diet can promote the production of
SCFAs by Provorotra bacteria, enhancing their anticancer ef-
fects; while a high-fat diet may induce the bacteria to shift to an
inflammatory metabolic phenotype. Provorotra bacteria have an
ecological niche competition with the Bacteroidetes phylum,
and the abundance of the latter may affect the functional ex-
pression of the former. In the future, it is necessary to further
analyze the triadic interaction among the bacterial strain, the
host, and the environment by integrating multi-omics data
(such as whole-genome sequencing and metabolomics).

Our results validate the protective role of Ruminococcaceae
family bacteria, consistent with findings from several prior MR
studies and observations in other cancers, such as melanoma
and liver cancer [38, 39]. This family's association with im-
proved response to anti-PD-1 immunotherapy in melanoma
suggests a conserved mechanism of enhancing tumor immune
surveillance, possibly through metabolic regulation of the
tumor microenvironment [29, 38]. The implication is that cer-
tain gut microbial features might predict response to immu-
notherapy not only in peripheral cancers but also in central
nervous system malignancies, especially considering the com-
promised blood-brain barrier in glioma allows for greater
immune cell migration [40, 41].

Our findings lend robust support to the established concept that
gut microbiota dysbiosis can contribute to glioma pathogenesis
through immune dysregulation [35]. The gut microbiota exerts
systemic immunomodulatory effects by shaping the develop-
ment and function of the intestinal immune system, with
approximately 70% of the body's immune cells residing in the
gut-associated lymphoid tissue [42-44]. During the develop-
ment of glioma, the blood-brain barrier (BBB) is compromised,
allowing various immune cells to infiltrate the tumor sur-
roundings, providing a theoretical basis for the application of
gut microbiota and their derived antigenic peptides in the
treatment of central nervous system tumors [40, 41].

The identified microbiota-immune pathways hold substantial
translational promise. For diagnosis, a composite model integrating
fecal abundance of specific microbes (e.g., Faecalicoccus) with
plasma levels of specific immune cells (e.g., CD19*IgD*CD38bright
B cells) could facilitate noninvasive risk stratification for glioma,
potentially identifying high-risk individuals before radiological
detection. Therapeutically, modulating the gut microbiome presents
a viable strategy. Supplementation with protective taxa like Faeca-
libacterium sp002160895 could potentially sensitize “immune-cold”
gliomas to immune checkpoint inhibitors by enhancing Treg-
mediated antitumor responses. Furthermore, engineered probiotics
expressing immunomodulators (e.g., IL-12) or metabolites that
counteract oncogenic bacterial products represent a frontier for
next-generation microbiome-based therapies. Fecal microbiota
transplantation (FMT) enriched with protective consortia (e.g.,
Ruminococcaceae) could also be explored in adjuvant settings.

Future validation necessitates a multi-tiered approach: a prospective
cohort tracking microbiome-immune dynamics; humanized mouse

models testing candidate strains (Faecalicoccus vs. Faecalibacter-
ium); and Phase I trials of FMT capsules enriched with protective
taxa. This systematic approach will accelerate clinical translation of
microbiome-based therapies.

The modest mediation proportions (2.99%-9.6%) may arise from
direct microbiota effects through metabolites; synergistic effect
of multiple immune mediators (such as B cells and T cell sub-
sets); and limitations in capturing functional immune states.
Future studies should integrate single-cell technologies and
functional validation.

This study has several limitations. First, to obtain sufficient IVs,
we set the SNP significance threshold at 1 x 10~°. Although we
conducted comprehensive sensitivity analyses, including leave-
one-out, horizontal pleiotropy, and MR-PRESSO tests to ensure
robustness, potential residual bias may persist. Second, the ex-
ternal validation data set (FinnGen_R11) had a limited sample
size (508 cases total), and the classification differences between
astrocytoma in the validation set and non-GBM in Glio-
ma_GWAS resulted in fewer validation outcomes. To address
these issues, we performed a systematic literature review of
previous MR studies to further supplement and validate our
conclusions. Our findings demonstrate strong persuasiveness
for GBM outcomes, warranting future investigations into gut
microbiota in other glioma subtypes.

Furthermore, methodological differences may introduce bias:
FINRISK represents a general population cohort, while the
Glioma GWAS employs a case-control design. Glioma treat-
ments and progression may alter gut microbiota composition,
differing from healthy baseline levels. Although both datasets
are European-derived, genetic and dietary variations between
Finnish and other European populations may limit general-
izability to other ethnic groups.

To address limited ethnic diversity, we plan to establish mul-
tiethnic cohorts to validate conserved pathways; develop ethnic-
specific genomic databases; and conduct cross-population
functional studies. These initiatives will enhance the general-
izability and translational potential of our findings.

5 | Conclusion

In summary, this study thoroughly explored the causal rela-
tionship between gut microbiota and glioma and analyzed the
mediating role of the immune system. Through replicated, two-
sample, bidirectional MR studies and PRISMA systematic re-
views, we found that gut microbiota imbalance is closely related
to the occurrence of glioma and identified multiple gut micro-
bial communities and immune-mediated effects with significant
causal relationships to glioma subtypes. Our findings emphasize
the role of the brain-gut axis in glioma and provide potential
targets for early diagnosis and clinical immunotherapy.
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